Applications du théorème de Birkhoff aux fractions continues.

1 Ergodicité de la transformation $\{\frac{1}{x}\}$

Théorème 1 L'application $T: x \in B \to \{\frac{1}{x}\}$ est ergodique pour la mesure de Lebesgue ou la mesure de Gauss $\mu = \frac{1}{\ln 2(1+x)} dx$.

Démonstration. Utilisons la mesure de Lebesgue. Appelons \mathcal{B}_n l'ensemble de tous les cylindres $B(a_1,...,a_n)$ de longueur n et $\mathcal{B} = \bigcup_{n\geq 1} \mathcal{B}_n$. Comme le diamètre des cylindres tend vers 0 la tribu $\sigma(\mathcal{B})$ engendrée par \mathcal{B} est la tribu borélienne de \mathcal{B} . Soit \mathcal{A} une partie de \mathcal{B} invariante par \mathcal{T} . Cherchons pour $x \in B(a_1,...,a_n)$

$$\frac{1}{|B(a_1,...a_n)|} \int_{B(a_1,...,a_n)} 1_A(x) \, dx.$$

Comme $T^{-1}(A) = A$ on a $1_A = 1_A \circ T^n$ d'où

$$\frac{1}{|B(a_1,...a_n)|} \int_{B(a_1,...,a_n)} 1_A(x) \, dx = \frac{1}{|B(a_1,...a_n)|} \int_{B(a_1,...,a_n)} 1_A \circ T^n(x) \, dx.$$

Comme T^n est une bijection de $B(a_1,...,a_n)$ sur B de réciproque $V(a_1,...,a_n)$ on obtient avec le théorème du changement de variable

$$\frac{1}{|B(a_1, \dots a_n)|} \int_{B(a_1, \dots, a_n)} 1_A(x) dx = \frac{1}{|B(a_1, \dots a_n)|} \int_{B(a_1, \dots, a_n)} 1_A \circ T^n(x) dx
= \frac{1}{|B(a_1, \dots a_n)|} \int_B V'(a_1, \dots, a_n)(x) \times 1_A \circ T^n \circ V(a_1, \dots, a_n)(x) dx
= \frac{1}{|B(a_1, \dots a_n)|} \int_B 1_A V'(a_1, \dots, a_n)(x) dx.$$

Or

$$\frac{1}{4q_n^2} \le V'(a_1, ..., a_n)(x) \le 4\frac{1}{q_n^2}$$

et

$$|B(a_1,...,a_n)| = \int_B V'(a_1,...,a_n)(x) dx \le 4\frac{1}{q_n^2}$$

donc

$$\frac{1}{|B(a_1,...a_n)|} \int_B 1_A(x) V'(a_1,...,a_n)(x) dx \ge \frac{q_n^2}{4} \int_B 1_A(x) \frac{1}{4q_n^2} dx \ge \frac{|A|}{16}.$$

D'après le théorème de densité de Lebesgue on a pour presque tout $x \in B$

$$\lim_{n \to \infty, x \in B(a_1, \dots, a_n)} \frac{1}{|B(a_1, \dots, a_n)|} \int_{B(a_1, \dots, a_n)} 1_A(x) \, dx = 1_A(x)$$

d'où $1_A(x) \geq \frac{|A|}{16}$ presque partout et |A| = 0 ou 1. \square

2 Théorème de Levy

Théorème 2 Pour presque tout $\theta \in [0,1]$ on $a \lim_{n \to \infty} \frac{1}{n} \ln q_n = \frac{\pi^2}{12 \ln 2}$

Démonstration. Remarquons que $\frac{1}{n} \ln q_n$ et $-\frac{1}{n} \ln r_n$ sont proches. En effet, $q_n r_{n-1} + q_{n-1} r_n = 1 \text{ donc}$

$$\frac{1}{2} \le q_n r_{n-1} \le 1 \text{ et } \ln \frac{1}{2} \le \ln q_n + \ln r_{n-1} \le 0.$$

Par conséquent

$$\frac{1}{n}(-\ln 2 - \ln r_{n-1}) \le \frac{1}{n}\ln q_n \le -\frac{1}{n}\ln r_{n-1}.$$

Il suffit donc de montrer que $\frac{1}{n} \ln r_n = -\frac{\pi^2}{12 \ln 2}$. Pour $\theta \in [0,1[$ on a $\theta = r_0$ et $\theta_n = \frac{r_n}{r_{n-1}}$ pour $n \geq 1$ d'où $r_n = \theta_n \theta_{n-1} ... \theta_0 = \frac{r_n}{r_n}$ $T^n(\theta)T^{n-1}(\theta)....T^0(\theta)$ et

$$\frac{1}{n}\ln r_{n-1} = \frac{1}{n}\sum_{k=0}^{n-1}\ln T^k(\theta).$$

Appliquons le théorème de Birkhoff à $(B,T,\mu=\frac{dx}{(\ln 2)(1+x)})$ et à la fonction f(x)= $\ln x$. f est de sgn constant et

$$\int_{[0,1]} \frac{\ln x}{\ln 2 (1+x)} \, dx = \int_{[0,1]} \frac{\ln x}{\ln 2} \sum_{k=0}^{\infty} (-1)^k x^k \, dx.$$

Or

$$\int_{[0,1]} x^k \ln x \ dx = \left[\ln x \times \frac{x^{k+1}}{k+1} \right]_0^1 - \int_{[0,1]} \frac{x^k}{(k+1)} \, dx$$
$$= -\frac{1}{(k+1)^2}$$

et

$$\sum_{k\geq 0} (-1)^k \frac{1}{(k+1)^2} = -\sum_{k\geq 1} \frac{1}{(2k)^2} + \sum_{k\geq 0} \frac{1}{(2k+1)^2} = \sum_{k\geq 1} \frac{1}{(2k)^2} + \sum_{k\geq 1} \frac{1}{k^2} - \sum_{k\geq 0} \frac{1}{(2k)^2}$$
$$= \frac{1}{2} \sum_{k\geq 1} \frac{1}{k^2} = \frac{\pi^2}{12}$$

donc

$$\int_{[0,1]} \frac{\ln x}{\ln 2 (1+x)} \, dx = \int_{[0,1]} \frac{1}{\ln 2} \sum_{k>0} (-1)^{k+1} \frac{1}{(k+1)^2} \, dx = -\frac{\pi^2}{12}.$$

Comme T est ergodique on obtient $\frac{1}{n}\sum_{k=0}^{n-1}\ln T^k(\theta)=-\frac{\pi^2}{12}$ pour presque tout θ . \square

Théorème 3 de Khinchin. Soit $\phi : \mathbb{R}^+ \to \mathbb{R}$ une application.

- 1. Si $\sum_{n\geq 1} \phi(n) < +\infty$ alors pour presque tout $\theta \in \mathbb{R}$ il existe au plus un nombre fini de $q \in \mathbb{N}^*$ tels que $||qx|| \le \phi(n)$.
- 2. Si les applications $\phi(x)$ et $x\phi(x)$ sont décroissantes et si $\sum_{n>1} \phi(n) = +\infty$ alors pour presque tout $\theta \in \mathbb{R}$ il existe une nombre infini de $q \in \mathbb{N}$ te \bar{ls} que $||q\theta|| \leq \phi(n)$.

Démonstration. Il suffit de prouver le théorème pour $\theta \in [0, 1[$. Le **1** résulte du lemme de Borel-Cantelli et du fait que l'application $T_q : x \in [0, 1[\to \{qx\} \text{ conserve la mesure de Lebesgue. Prouvons$ **2**à l'aide des théorèemes de Borel-Bernstein et Levy.

D'après le théorème de Levy il existe $A \in \mathbb{R}^+$ tel que pour presque tout $\theta \in [0, 1[$ $q_n(\theta) \leq e^{An}$ pour n assez grand. Posons $f(x) = e^{Ax}\phi(e^{Ax})$. Par hypothèse f est décroissante donc

$$\sum_{n>1} f(n) = \infty \Leftrightarrow \int_{1}^{\infty} f(t) dt = \infty.$$

Or

$$\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} e^{Ax} \phi(e^{Ax}) \, dx = \frac{1}{A} \int_{e^{A}}^{\infty} \phi(t) \, dt = \infty$$

car ϕ est décroissante et $\sum_{n=1}^{\infty} \phi(n) = \infty$, donc pour presque $\theta \in [0, 1[a_{n+1}(\theta) \ge \frac{1}{f(n)}]$ pour une infinité de n. Par conséquent pour presque tout θ il existe une infinité de n tels que

$$||q_n\theta|| \le \frac{1}{q_{n+1}} \le \frac{1}{a_{n+1}q_n} \le \frac{f(n)}{q_n} = \frac{e^{An}\phi(e^{An})}{q_n} \le \frac{q_n\phi(q_n)}{q_n} = \phi(q_n). \square$$

3 Comportement de $q_n \|q_n\theta\|$

3.1 Extension naturelle du développement en fraction continue

Soit S l'application définie sur $B \times B$ par

$$S(x,y) = (T(x), V(a_1(x))(y)).$$

S est une bijection de $B \times B$ sur lui-même de réciproque

$$S^{-1}(x,y) = (V(a_1(y))(x), T(y)).$$

Lemme 1 La probabilité $\mu = \frac{1}{\ln 2} \frac{dxdy}{(1+xy)^2}$ est S-invariante.

Démonstration. Comme S est un diffeomorphisme de $]0,1[^2\backslash\{(x,y):\frac{1}{y}\in\mathbb{N}^*\}$ sur $]0,1[^2\backslash\{(x,y):\frac{1}{x}\in\mathbb{N}^*\}$ il suffit de montrer que $JacS^{-1}\times f\circ S^{-1}=f$. Calculons le Jacobien de S^{-1} . On a $S^{-1}(x,y)=(\frac{1}{a_1+x},\frac{1}{y}-a_1)$ où $a_1=a_1(y)$. Par conséquent

$$Jac(S^{-1})(x,y) = \det \begin{pmatrix} \frac{-1}{(a_1+x)^2} & 0\\ 0 & \frac{-1}{y^2} \end{pmatrix} = \frac{1}{(a_1+x)^2y^2}.$$

Avec $f(x,y) = \frac{1}{(1+xy)^2}$ on a

$$Jac(S^{-1})(x,y) \times f \circ S^{-1}(x,y) = \frac{1}{(a_1+x)^2 y^2} \times \frac{1}{(1+\frac{1}{a_1+x}(\frac{1}{y}-a_1))^2}$$
$$= \frac{1}{((a_1+x)y+1-a_1y)^2} = f(x,y). \square$$

Lemme 2 S est ergodique pour la mesure de Lebesgue ou la mesure μ .

Démonstration. Comme S est bijective bimesurable et conserve μ on a pour tout $f \in L^1$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k(x, y) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^{-k}(x, y)$$

pour presque tout (x,y). On a $S^k(x,y) = (T^k(x), V(a_k(x), ..., a_1(x))(y))$ donc si $y,y' \in B$ on a $\left|S^k(x,y) - S^k(x,y')\right| \to 0$ quand $k \to \infty$; par suite, si $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k(x,y) = l(x,y)$, alors pour tout $y' \in B$ on a $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k(x,y') = l(x,y)$ donc pour presque tout (x,y) la suite $\frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k(x,y)$ converge vers une limite l(x) qui dépend pas de y. De même avec S^{-1} on démontre que pour presque tout (x,y) la suite $\frac{1}{n} \sum_{k=0}^{n-1} f \circ S^{-k}(x,y)$ converge vers une limite l'(y) qui ne dépend pas de x. Par conséquent on l(x) = l'(y) pour presque tout (x,y) et l(x) et l'(y) ne dépendent ni de x ni de y. Il résulte que $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k(x,y)$ est presque surement constante et cette constante ne peut-être que la moyenne M(f) de f sur $B \times B$. D'après le theorème de convergence dominée (ou Von Neuman) la convergence a aussi lieu dans L^1 . La suite des applications linéaires $A_n f = \frac{1}{n} \sum_{k=0}^{n-1} f \circ S^k$ est bornée sur $L^1(\mu)$ et converge pour la norme $\|\|_1$ vers M(f) sur un ensemble dense (les fcts continues) donc pour tout $f \in L^1$ $A_n f$ tend vers M(f) dans L^1 . Finalement si A est une partie S-invariante la fonction $f = 1_A$ est S-invariante et $A_n f = f$ pour tout n donc f = cste. \square

Remarque. On a utilisé le lemme suivant :

Lemme 3 Soit (X, \mathcal{A}, μ) un espace mesuré, L, L' deux applications mesurables de $X \times X$ dans \mathbb{R} et l, l' deux applications mesurables de x dans \mathbb{R} . Si L = L' presque partout $L = l \circ p_1$, presque partout et $L' = l' \circ p_2$ presuqe partout alors L est presque sûrement constante.

3.2 Theorem de Bosma, Jager et Wiedijk (1983)

Théorème 4 Pour $N \in \mathbb{N}$, $t \in [0,1]$ et $\theta \in B$ posons

$$A(N, t, \theta) = |\{1 \le n \le N : q_n r_n \le t\}|.$$

Alors pour presque tout $\theta \in B$ on a pour tout $t \in [0,1]$,

$$\lim_{N \to \infty} \frac{1}{N} A(N, t, \theta) = g(t)$$

où g est donnée par

$$g(t) = \begin{cases} \frac{t}{\ln 2} si \ t \in [0, \frac{1}{2}] \\ \frac{-t + \ln(2t) + 1}{\ln 2} si \ t \in [\frac{1}{2}, 1] \end{cases}.$$

Démonstration. Il suffit de prouver que pour presque tout θ on a $\lim_{N\to\infty} \frac{1}{N}A(N,t,\theta) = g(t)$ pour les $t \in \mathbb{Q} \cap [0,1]$ car les fonctions g(t) et $\frac{1}{N}A(N,t,\theta)$ sont croissantes et la fonction g est continue.

Calculons $q_n r_n$ pour $\theta \in B \times B$. Nous avons

$$\theta = \frac{p_{n-1}T^n\theta + p_n}{q_{n-1}T^n\theta + q_n}$$

donc

$$\begin{aligned} q_n r_n &= q_n |q_n \theta - p_n| = q_n \left| q_n \frac{p_{n-1} T^n \theta + p_n}{q_{n-1} T^n \theta + q_n} - p_n \right| \\ &= q_n \left| \frac{p_{n-1} T^n \theta + p_n}{\frac{q_{n-1}}{q_n} T^n \theta + 1} - p_n \right| = q_n \left| \frac{p_{n-1} T^n \theta + p_n - p_n (\frac{q_{n-1}}{q_n} T^n \theta + 1)}{\frac{q_{n-1}}{q_n} T^n \theta + 1} \right| \\ &= q_n \left| \frac{p_{n-1} T^n \theta - p_n \frac{q_{n-1}}{q_n} T^n \theta}{\frac{q_{n-1}}{q_n} T^n \theta + 1} \right| = \left| \frac{q_n p_{n-1} T^n \theta - p_n q_{n-1} T^n \theta}{\frac{q_{n-1}}{q_n} T^n \theta + 1} \right| = \frac{T^n \theta}{\frac{q_{n-1}}{q_n} T^n \theta + 1} \end{aligned}$$

De plus,

$$S^{n}(\theta, y) = (T^{n}\theta, V(a_{n}(\theta), ..., a_{1}(\theta))(y)).$$

Calculons

$$V(a_n(\theta),...,a_1(\theta))(0)$$

Nous avons $V(a_1)(0) = \frac{1}{a_1} = \frac{q_0}{q_1}$ et par récurrence on voit que

$$V(a_n, ..., a_1)(0) = V(a_n)(V(a_{n-1}, ..., a_1)(0)) = \frac{1}{a_n + V(a_{n-1}, ..., a_1)(0)}$$
$$= \frac{1}{a_n + \frac{q_{n-2}}{q_{n-1}}} = \frac{q_{n-1}}{q_n}$$

Considérons la région

$$\Omega(t) = \{(x, y) \in B \times B : \frac{x}{1 + xy} \le t\},\$$

D'après le calcul précédent $q_n(\theta)r_n(\theta) \le t$ équivaut à $S^n(\theta,0) = (T^n(\theta), \frac{q_{n-1}}{q_n}) \in \Omega(t)$. Par conséquent

$$\lim_{N\to\infty}\frac{1}{N}A(N,t,\theta)=\lim_{N\to\infty}\frac{1}{N}\sum_{t=0}^{N-1}1_{\Omega(t)}\circ S^n(\theta,0).$$

Cela suggère d'appliquer le théorème de Birkhoff à $f_t=1_{\Omega(t)}$. Pour presque tout (θ,y) nous avons

$$\mu(\Omega(t)) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f_t \circ S^n(\theta, y).$$

Comme dans la démonstration de l'ergodicité de μ on voit que pour tout $y \in B$

$$V(a_n, ..., a_1)(y) \in B(a_n, ..., a_1)$$

et diam $(B(a_n,...,a_1)) \le \varepsilon_n$ qui tend vers 0 et ne dépend pas de θ . Par conséquent, pour $y \in B$ nous avons $S^n(\theta,y) = (u,v) = S^n(\theta,0) + \alpha_n$ où $|\alpha_n| \le \varepsilon_n$ et

$$S^{n}(\theta,0) = (u,v) \in \Omega(t) \Rightarrow (u,v-\alpha_{n}) \in \Omega(t)$$

$$\Rightarrow \frac{u}{1+u(v-\alpha_{n})} = \frac{u}{(1+uv)} \times \frac{1}{1-\frac{u\alpha_{n}}{1+uv}} \le t(1+\varepsilon_{n})$$

$$\Rightarrow S^{n}(\theta,y) \in \Omega(t(1+\varepsilon_{n})).$$

De même

$$S^n(\theta, y) \in \Omega(t - \varepsilon_n) \Rightarrow S^n(\theta, 0) \in \Omega(t).$$

Donc pour $\delta > 0$ fixé,

$$\lim \inf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f_{t-\delta} \circ S^n(\theta, y) \leq \lim \inf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f_t \circ S^n(\theta, 0)$$

$$\leq \lim \sup_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f_t \circ S^n(\theta, 0) \leq \lim \sup_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f_{t+\delta} \circ S^n(\theta, y).$$

Soit (θ, y) tel que $\frac{1}{N} \sum_{n=0}^{N-1} f_{t-\delta} \circ S^n(\theta, y) \to \Omega(t-\delta)$ et $\frac{1}{N} \sum_{n=0}^{N-1} f_{t+\delta} \circ S^n(\theta, y) \to \Omega(t-\delta)$ pour tous les δ d'une suite tendant vers 0. Comme $\mu(\Omega(t\pm\delta))$ tend vers $\mu(\Omega(t))$, d'après les inégalites précedentes on a

$$\frac{1}{N} \sum_{n=0}^{N-1} f_t \circ S^n(\theta, 0) = \mu(\Omega(t))$$

d'où pour presque tout $\theta \in B$ on a

$$\lim_{N \to \infty} \frac{1}{N} A(N, t, \theta) = \mu(\Omega(t)).$$

Il ne reste plus qu'à calculer $\mu(\Omega(t))$. On a

$$\frac{x}{1+xy} \le t \Longleftrightarrow y \ge \frac{1}{t} - \frac{1}{x}$$

et

$$\frac{1}{t} - \frac{1}{x} \le 1 \Longleftrightarrow x \le \frac{t}{1-t} \text{ et } \frac{1}{t} - \frac{1}{x} \le 0 \Longleftrightarrow x \le t$$

Si $t \leq 1/2$ alors

$$\ln 2 \times \mu(\Omega(t)) = \int_0^t dx \int_0^1 dy \, \frac{1}{(1+xy)^2} + \int_t^{\frac{t}{1-t}} dx \int_{\frac{1}{t}-\frac{1}{x}}^1 dy \, \frac{1}{(1+xy)^2} \\
= \int_0^t dx \, (\frac{1}{x} - \frac{1}{x(1+x)}) + \int_t^{\frac{t}{1-t}} dx \, (\frac{1}{x(1+x(\frac{1}{t}-\frac{1}{x}))} - \frac{1}{x(1+x)}) \\
= \int_0^t dx \, (\frac{1}{1+x}) + \int_t^{\frac{t}{1-t}} dx \, (\frac{t}{x^2} - \frac{1}{x} + \frac{1}{1+x}) \\
= \ln(1+t) + 1 - (1-t) - (\ln\frac{t}{1-t} - \ln t) + (\ln(1+\frac{t}{1-t}) - \ln(1+t)) \\
- t$$

Si $t \ge 1/2$ alors

$$\ln 2 \times \mu(\Omega(t)) = \int_0^t dx \int_0^1 dy \, \frac{1}{(1+xy)^2} + \int_t^1 dx \int_{\frac{1}{t}-\frac{1}{x}}^1 dy \, \frac{1}{(1+xy)^2}$$

$$= \int_0^t dx \, (\frac{1}{x} - \frac{1}{x(1+x)}) + \int_t^1 dx \, (\frac{1}{x(1+x(\frac{1}{t}-\frac{1}{x}))} - \frac{1}{x(1+x)})$$

$$= \int_0^t dx \, (\frac{1}{1+x}) + \int_t^1 dx \, (\frac{t}{x^2} - \frac{1}{x} + \frac{1}{1+x})$$

$$= \ln(1+t) + 1 - t + \ln t + \ln 2 - \ln(1+t)$$

$$= 1 - t + \ln 2t. \, \Box$$