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Abstract

Given a sefS of line segments in the plane, we introduce a new family ofifi@ns of the convex hull o& called
segment triangulations &. The set of faces of such a triangulation is a maximal setspbilit triangles that cus at,

and only at, their vertices. A segment triangulation is Daky if its faces are inscribable in circles whose interiors
do notintersec®. The main result of this paper is that any given segmentdritation can be transformed by a finite
sequence of local improvements in a segment triangulatiahhas the same topological structure as the segment
Delaunay triangulation. The mainftérence with the classical flip algorithm for point set triatagions is that some
local improvements have to be performed on non convex reghe overcome this fliculty by using locally convex
functions.

Key words: Delaunay triangulation, Segment triangulation, Segmenbivoi diagram, Edge legality, Flip algorithm,
Locally convex function

1. Introduction

Given a sef of points in the plane, a Delaunay triangulatiorsok a triangulation o5 whose triangles’ circum-
circles contain no point o8 in their interiors. In 1977, Lawson [16] has shown that amgnigulation ofS can be
transformed in a Delaunay triangulation by a sequence af logprovements: Every improvement consists in flipping
a diagonal of a convex quadrilateral to the other diagonialceSthen, many extensions of flip algorithms have been
proposed. In particular, they have been studied ffiedént types of triangulations such as constrained triaatiguls
[11], weighted triangulations [12], pseudo-triangulasdl], pre-triangulations [2], ... For a recent survey op fli
algorithms, see [5].

In this paper we address the question of a flip algorithm tstant the segment Delaunay triangulation (or edge
Delaunay triangulation). This triangulation has beenodtrced by Chew and Kedem [8] as the dual of the segment
Voronoi diagram. Recall that, i® is a set of line segments in the plane, the segment Vorongratia of S is a
partition of the plane whose regions are the points closentparticular segment & than to any others.

At first, we need to define a new family of diagrams, which wé sagjment triangulations, that contains the
segment Delaunay triangulation. A segment triangulatioB @s a partition of the convex hull o whose set of
faces is a maximal set of disjoint triangles such that th&éces of each triangle (and only its vertices) belong toghre
distinct sites ofS (see Figure 1). The edges of the segment triangulation ar@tssibly two-dimensional) connected
components of the convex hull & when the sites and open faces are removed. We show that thesgutations
retain diferent geometrical and topological properties of point sahgulations and that they are intimately related
to some generalized constrained triangulations.

The segment Delaunay triangulation is the one whose faeemsaeribable in “empty” circles. In case of point
set triangulations, the Delaunay triangulation can alstobally characterized: It is the only triangulation suchtth
any two triangles sharing a common edge are Delaunay wiffeo¢$o the four points defining the triangles [16]. We

“Corresponding author.
Email addresseslathieu.Brevilliers@gipsa-lab.inpg.fr (Mathieu Brévilliers),Nicolas.Chevallier@uha.fr (Nicolas
Chevallier),Dominique.Schmitt@uha.fr (Dominique Schmitt)

Preprint submitted to Computational Geometry : Theory apgl&ations July 9, 2009



Figure 1: Example of segment triangulation. The siteS afe in black, the faces in white and the edges in grey.

show that the segment Delaunay triangulation can be cleaizet in the same way. We also give a local property
that characterizes the set of segment triangulations patie same topological structure as the segment Delaunay
triangulation.

An obstacle arises when we try to transform a segment triatign into the segment Delaunay triangulation by
a sequence of local improvements; some of these local tianafions have to be performed on non convex regions.
In order to characterize these transformations and to ptltatethe constructed triangulations tend to the segment
Delaunay triangulation, we use a lifting on the three-disienal paraboloid together with locally convex functions.
The usefulness of locally convex functions in the contexXlipfalgorithms has been already noticed by several authors
(see[1], [3], ...)- Itis also worth noting that our algorittis close to Perron’s method for solving partiaffeiential
equations [19].

Another dificulty is that there are infinitely many segment triangulagiof a given set, while the number of
triangulations usually handled by flip algorithms is finit€o, a flip algorithm that aims to construct a segment
Delaunay triangulation explicitly, might need infinitelyamy steps. Fortunately, this drawback can be circumvented
by stopping the algorithm when it reaches a segment triatigul that has the same topological structure as the
segment Delaunay triangulation. We shall show that sudlagulation is obtained in finitely many steps.

2. Segment triangulations

2.1. Definition and existence

Let S be a finite set oh > 2 disjoint closed segments in the plane, which we call siiésoughout this paper, a
closed segment may possibly be reduced to a single pointayMat a circle is tangent to a sié smeets the circle
but not its interior. The sites & are supposed to be in general position, that is, we suppas@dhthree segment
endpoints are collinear and that no circle is tangent to éites (when a site is a point, we consider that this point is
the only endpoint of the site). In the following, the wdrthngle will always denote a non degenerate triangle, that is
a triangle whose vertices are not collinear. We will dengt&ithe union of the sites d, that is the set of points of
the sites 0S. If U is a subset oR?, we will denote byU the closure otJ, by U° the interior ofU, by relint(U) the
relative interior ofU, and byoU the boundary oU.

Definition 1. A segment triangulatiofi” of S is a partition of the convex hull cof®) of Sin disjoint sites, edges and
faces such that:

(i) Every face of7 is an open triangle whose vertices are in three distinctssgeS and whose open sides do not
intersectS,

(i) No face can be added without intersecting another one,

(iif) The edges off” are the (possibly two-dimensional) connected compondrdsmo(S) \ (F U S), where F is the
union of the faces of.

We will use indiferently the termsriangle andfaceto designate the faces of a segment triangulation.

Property 1. Every set of sites admits a segment triangulation.



Proor. To prove the existence of a segment triangulation of a sgitedS, it is enough to show that only a bounded
number of disjoint open triangles can inters8ett, and only at, their vertices.

Obviously, if S contains only two sites, no such triangle exists. Otherwageconsidering the dierent kinds of
convex hulls of two disjoint triangles in the plane, it is mifficult to see that, if the two triangles have their vertices
(and only their vertices) in the same three sites, then tee are encountered in two distinct orders when the triangle
are traversed in counter clockwise direction. As a consecgieat most two disjoint triangles can have their vertices
in the same three sites. O

2.2. Segment triangulations and weakly constrained tridatpns

The segment triangulations defined here are not “real” guidations since the convex hull is not decomposed in
triangles. To this aim the two dimensional edges of a segtniamgulation should be decomposed in triangles. A
well-known triangulation defined on a set of points and liegreents in the plane is the constrained triangulation. It
is a triangulation of the set of points and line segment emdpsuch that every given line segment is an edge of the
triangulation. We show now that segment triangulationdratimately related to a kind of constrained triangulations
with weaker constraints. This result will allow us to spgdifie shape of the edges of a segment triangulation and
later on to give an algorithm to construct a particular segfrtréangulation.

Definition 2. 1. Given a set S of sites, we call S-polygon (possibly whitesh@ny closed region A included in
conyS) and such that the boundary of A is composed of a finite numbdisfint segments that are of the two
following forms:

—on the one hand, closed segments includesi(ipossibly reduced to points),

—on the other hand, open segments that do not intesaatd whose endpoints are &

2. An S-polygon A is said to be non degenerate if A is equaktaltisure of its interior and if A Sis connected.

3. We call weakly constrained triangulation of A (with resp® S), any partition of A into triangles whose vertices
are in S, whose interiors do not interseft and whose open sides either do not inter&at are included inS.

When A= con\S), such a triangulation is also called a weakly constraingdrigulation of S .

Note that a (classical) constrained triangulation is aipaler case of weakly constrained triangulation.

&

(a)

Figure 2: AnS-polygon in gray (a) and a weakly constrained triangulafoited lines) of thisS-polygon (b).

Lemma 1. If A is a non degenerate S -polygon that intersects at leasethites of S, then any weakly constrained
triangulation of A contains at least one triangle havingugstices in three distinct sites of S.



Proor. Given a weakly constrained triangulatidrof A, let At (A) be the (possibly empty) set of trianglesiohaving
one side irS. We show, by induction on the numbar (A)| of triangles ofAt (A), thatT contains at least one triangle
that has its vertices in three distinct sitesSof

Obviously, if At (A) = 0, every triangle oflT has its vertices in three distinct sites®f Suppose the result is true
for any weakly constrained triangulatidnof any non degenerat&polygonA that intersects at least three sitesSof
and such thainr (A)] < k, k > 1.

Let nowT be a weakly constrained triangulation of suchSapolygonA but with |At(A)| = k. Lett be a triangle
of At(A). SinceA\ S is connected, at least one of the two sides thfat are not irS is not in the boundary oA. It
follows that this side is also in the boundary®f, t. Hence A\ t intersects the sites cut thy Moreover, sinceA is
equal to the closure of its interiof \ t = A\ (tU S) and it follows thatA \ (t U S) cuts exactly the same sites As
Now, the closure of every connected componerAdft U S) cuts the two sites containing the verticeg.ofhus, the
closureA’ of at least one of these connected components cuts at leestdtites.

By constructionA’ is anS-polygon. Moreover, ifT” is the restriction ofl to A, then|At. (A")| < |At(A)|. Thus,
by induction hypothesis’ contains at least one triangle having its vertices in thistndt sites ofS. It is the same
forT. O

Theorem 1. Every weakly constrained triangulation of S is a refinemdra segment triangulation of S, that is, a
segment triangulation whose edges are decomposed in teégng

Proor. Obviously, every triangle of a weakly constrained trialajon T having its vertices in three distinct sites of
S is a face of a segment triangulation®f If F is the union of these open triangles, the closure of everpected
componeneof conyS) \ (FUS) is anS-polygon. Sincé& contains no triangle of having its vertices in three distinct
sites,g intersects at most two sites, from Lemma 1. Hence, it is irsipbsto add ire a triangle having its vertices in
three distinct sites. It follows th&t is the union of the faces of a segment triangulatio8 ahd thafT is a refinement
of this segment triangulation. O

Theorem 2. (i) The closure of every edge of a segment triangulafioof S intersects exactly two sites of S.
(il) Every edge off” contains

— either two sides of two triangles @f,

— or one side of one triangle 6f and one side of cor8) that is not a site,

— or two such sides of co(lS).

Proor. By definition, every edge of 7 is a connected componentodn\yS) \ (F U S) whereF is the union of the
faces of7". As in proof of Theorem 1g is anS-polygon. Actually,€ is either a line segment or a non degenerate
S-polygon.

In the first caseg connects two points @& and is either a common side of two triangles/obr a side ofconyS)
that is not a site.

In the second cas@,is a “polygon” with at least three vertices and these vesti@ee inS. Hence,g intersects
at least two sites 08. But € cannot intersect more than two sites otherwise, by Lemmafacea of a segment
triangulation could be placed &) contradicting the fact thaft is already a segment triangulation. It follows tleas
either a triangle with one vertex and its opposite sid8 or a (possibly non convex) quadrilateral with two opposite
sides inS (see Figure 3). In both casesadmits two sides that are not 1and each of them is either a side of a
triangle of 7~ or a side ofton\(S) that is not a site. O

\

\

Figure 3: Examples of edges connecting two sites in a segimangulation.
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Theorem 2 shows that, as in point set triangulations, evégg ®f a segment triangulation “connects” two sites.
This justifies the term “edge” for two dimensional regionsted segment triangulation.

2.3. Topological properties

Since every edge of a segment triangulation “connects” ites,sve can associate a combinatorial map with this
triangulation in the following way:

Definition 3. The combinatorial map associated with a segment triangahaf” of S is such that:

1. The vertices of the map are the sites of S,

2. The arcs connecting two sites s and t in the map are the edgeswfose closures intersect s and t,

3. For every vertex s of the map, the cyclic ordering of the argsod s agrees with the counter-clockwise ordering
of the associated edges around the site §'in

Definition 4. We say that two segment triangulations of S have the saméppid they have the same associated
combinatorial map.

Proposition 1. The combinatorial map associated with a segment triangadaf” of S is planar. Its faces match the
faces off” and the outer face of (that is, the complement of co(®)).

Proor. For every sitesof S, letys be a closed convex Jordan curve such that:
—sis insideys (that is, in the region of the plane bounded)ay,
— for every sites’ # s, ys is outsideys,
—the interior ofys only intersects the edges Bf whose closures mest

Clearly, if an edge intersectsys, en ys is connected (see Figure 4). Replace now every edgelof one of the
triangle or convex hull sides included int the edge. Theta@pevery sites by a pointps insideys and, for every
reduced edge that intersectys, replace the part of included inys by a line segment connecting the poiets ys
andps. The order of the new edges aroupglis the same as the order of the corresponding initial edgesdis in
7. Moreover, since the new edges do not intersect (excepeatehdpoints), we get a planar representation of the
map whose faces correspond to the triangleg @ind to the complement abny(S). O

Figure 4: The sites are isolated inside convex curves (e, the edges are replaced with line segments (b), and fielgites are replaced with
points (c).

This result allows to characterize the number of faces age®uh a segment triangulation:

Theorem 3. Every segment triangulatioir of a set S of n sites contaids — n” — 3 edges an®n — n’ — 2 faces,
where riis the number of sides of cof8) that are not sites.



Proor. Let f be the number of faces Gf and letey, e; ande, be the numbers of edges®fthat contain respectively
0, 1 and 2 sides of faces @f.
Since the sides of any face 9f are contained in exactly three distinct edgeg of

3f =28+ €. 1)
Since the edges countedenandey contain respectively 1 and 2 sidesaan\yS),
n = e + 26ep. (2

Since7 has the same number of faces, of edges, and of vertices asdisiated combinatorial map and since this
map is planar, Euler’s relation says that
f-(e2+e+e)+n=1 3)

The result follows from (1), (2), and (3). O

An interesting consequence of this theorem is that the dizesegment triangulation is linear with the number
of sites. Moreover, it shows that the number of trianglesheftriangulation is an invariant of the set of sites. This
extends classical properties of point set triangulations.

2.4. Storage and construction

The combinatorial map associated to a segment triangulatican be used as data structure to store the topology
of 7. To maintain the geometrical informations of, it suffices to add the coordinates of the triangle vertices in
the structure. These vertices can be associated with tresedfghe map: one vertex per oriented edge. A segment
triangulation of a se$ of n sites can thus be stored usi@§n) space.

From Theorem 1, every constrained triangulatior8dé a refinement of a segment triangulationSf Now, a
constrained triangulatiom of S can be constructed i@(nlogn) time [11]. A segment triangulation” can then be
deduced fronT in linear time by merging the triangles dfthat are adjacent to the same two sites into a unique edge
of 7~ (see Figure 5).

Algorithms that construct the constrained triangulafionan also be adapted to directly construct the segment

triangulation7” in O(nlogn) time [6].
[ Ll

Figure 5: A constrained triangulation (a) and the corredpansegment triangulation (b).

2.5. Segment Delaunay triangulations

The classical Delaunay triangulation of a set of points camdsily extended to a s8tof line segments in the
following way:

Definition 5. A segment triangulation of S is Delaunay if the circumcimi@ach face does not contain any point of
Sin its interior.



A way to show that every s& admits a segment Delaunay triangulation is to show thatdte to the segment
Voronoi diagram ofS. Recall that the segment Voronoi diagrantak a partition of the plane in regions. Each region
contains the set of points closer to one siteSahan to any other site. An edge of the segment Voronoi diagsam
the set of points closest to and equidistant from two sitesitaronsists of line and parabola segments. W8&asiin
general position, the vertices of its Voronoi diagram aeegthints of the plane closest to and equidistant from exactly
three sites. Thus, each of these vertices is the center ofla wihose interior does not c8tand which circumscribes
a triangle whose vertices are in three distinct siteS.aoft is easy to see that these triangles are pairwise disjoidf
thus, that they are faces of a segment triangulatic. of

Moreover, ifF is the union of these triangles, Chew and Kedem [8, 9] pointeédhat the connected components
of con(S) \ (F U S) are dual to the edges of the segment Voronoi diagra® afd that each of these components
is adjacent to exactly two sites 8f It follows that the triangles of are all the faces of a segment triangulation of
S and that this triangulation is dual to the segment Voronagthm ofS. This extends a classical result of point set
triangulations:

Theorem 4. Every set S of sites in general position admits one and ordysegment Delaunay triangulation. This
triangulation is dual to the segment Voronoi diagram of S.

The segment Delaunay triangulationrobites can be constructed @(nlogn) time either by first building the
segment Voronoi diagram [14, 4], or by adapting segmentiMirdiagram constructions [6].

3. Edge legality

3.1. Geometric legality of an edge

An interesting property of the Delaunay triangulation ofl@yar point set is the legal edge property. Consider an
edge of a point set triangulation and its two adjacent tlesgrhe edge is illegal if a vertex of one of these triangles
lies inside the circumcircle of the other triangle. It is iWahown that the Delaunay triangulation of a point set is the
unigue triangulation of this point set without illegal edde the following, we are going to prove a similar property
for segment triangulations.

Definition 6. Let e be an edge of a segment triangulatioiof S and let Sbe the set of sites that contain the vertices
of the zero, one, or two facespfadjacent to e. The edge e is geometrically legal if:

1. either e is not adjacent to any face®f

2. or the interior of the circumcircles of the faces adjacen¢ do not cut'.

This directly extends the definition of edge legality in gaiat triangulations (see Figure 6).

Figure 6: The edgesy, €4, e5, ande; are geometrically legal whereas the edgess, andes are not.

Theorem 5. The segment Delaunay triangulation of S is the unique segimangulation of S whose edges are all
geometrically legal.
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Proor. By definition, the segment Delaunay triangulatiorBdfias no geometrically illegal edge. Now, {€(S) be a
segment triangulation @& that is not Delaunay and let us show tlatS) contains at least one geometrically illegal
edge. Sincg (S) is not Delaunay, it contains at least one fdcguch that the open disk¢ circumscribed tdf cuts

S. Letxbe a pointinf and letp be a pointinD¢ N S. We can always choogesuch that the open segmenrt p[ does
not cutS. Sincep can not be a vertex df (because it is iD¢), ]x, p[ cuts an edge of 7 (S) adjacent tof . If ] x, p[
cuts no other edge of (S), eitherp is in one of the sites that cut the closurespbr p is a vertex of the other face of
7 (S) adjacent tee. In both cases, the edggs geometrically illegal (see Figure 7(a)).

u

Figure 7: lllustrations of the proof of Theorem 5.

Now, we can state the following induction hypothesisxiffi[ cutsk edges, wittk > 1, then at least one of them
is geometrically illegal. Assume that,]p[ cutsk+ 1 edges, wittk+ 1 > 2, and let us show th&t(S) contains at least
one geometrically illegal edge. In this case, fj[ crossese and also cuts the other fageadjacent toe. Let Dy be
the open disk circumscribed gpand let p, b] be the side ofig included ine (see Figure 7(b)). I&is geometrically
illegal, we are done. I&is geometrically legal, the®; must be tangent to the sites that contain the verticefls of
Since two of these sites conta@gnandb, the pointsa andb can not be inD¢. Since k, p[ is included inD¢ and
crosses, the pointy = [a, b]N]x, p[is in D¢. It means thatd, b] split D+ into two parts: one of them contaifisand
the other containg. Let D; be the part that containsand D, the part that containp. Since the circumcircle af
passes through andb, the diskDy contains at leasD; or D, (the two circles that boungds andDy can not have
four intersection points). 1Dy containsDs, then it also containg. Now, sincee is geometrically legal, the vertices
of f must lie on the boundary dby, which means thaDy = D;. As a consequencé)y containsD, and, thus,
also containg. Moreover, for any poink’ of [y, p] N g, the segment{, p[ cuts exactlyk edges. From the induction
hypothesis, we can conclude tla(S) contains at least one geometrically illegal edge. O

This theorem allows to know whether a given segment triaatgnr is Delaunay by checking the geometric legality
of its edges. From Theorem 3, the number of edges in a segrigulation ofn sites isO(n). Moreover, the legality
test can be done in constant time since it is enough to contipeliatersection of at most two circles and at most four
segments. It means that we can know in linear time whetheremgiegment triangulation is Delaunay.

Due to precision errors, an algorithm could construct a sggimiangulation that is almost Delaunay, in the sense
that it has the same topology as the Delaunay one but theegf its faces are at distance 0 from the vertices of
the segment Delaunay triangulation faces. Clearly, geaeregality will not help to recognize such a triangulation
Furthermore, if a given segment triangulation has the sapelagy as the Delaunay one, then the latter can be
computed by just moving the vertices of each face until itsehcircle becomes tangent to the three sites that contain
the vertices of the face. As a consequence, an algorithnedmatructs the segment Delaunay triangulation only needs
to compute its topology. For this reason, we define in th@falhg the concept of topologic legality of an edge, which
will allow us to know whether a given segment triangulati@s ithe same topology as the Delaunay one.

3.2. Topologic legality of an edge

In order to not consider the geometric position of the faees,associate with each face a so called tangency
triangle:



Definition 7. Let f be a face of a segment triangulation of S. The tangeraygle of f is an open triangle such that
— its vertices are on the same three sites as the vertices of f,

— its circumcircle is tangent to these three sites,

— these three sites are encountered in the same order wher ftatangency triangle are traversed in counter-
clockwise direction.

The existence of the tangency triangle associated witheaffaan be deduced from the existence of the Delaunay
triangulation of the set of sites adjacentfto

Definition 8. Let e be an edge of a segment triangulation of S. The edge pdkgically legal in the two following
cases:
1. eis adjacent to at most one face of the segment triangulation
2. eis adjacentto two faces &nd % and the following property holds. Denote t, r, u, v the siteshsthat t, r, u are
incident to f and r, t, v are incident to.fin counter-clockwise direction. Letryu; and ntyv, be the tangency
triangles of f and L, witht et,rj er,u; € u,and ¢ € v. Then,
— the polygont,r,ry is either reduced to a segment or is a counter-clockwisenteie simple polygon (with
three or four sides),
— the circumcircles’ interiors ofit,u; and rtv, do not intersect the sites v and u respectively.

Case 2 of this definition can be stated in a more intuitive reanfihe edges is topologically legal iff; and f,
are two faces of a segment triangulatioriiof, u, v} with the same topology as the segment Delaunay triangulafio
{r,t,u, Vv}.

The two conditions of case 2 can be simultaneously falseh@srsin Figure 8. Figure 9 gives an example where
only the first condition is false. In the case where t, andr; = ry, the polygort;toror; is reduced to a segment and
only the second condition determines whether the edge @dgjeally legal or not.

(a)

Figure 8: The edge of the segment triangulation in (a) is topologically illépacause the tangency trianglesfpfand f, (b) are such that neither
titorors is counter-clockwise oriented nor their circumcircles ‘@mpty”.

In Theorem 6, we use the topologic legality of an edge in otaleharacterize the segment triangulationS dfat
have the same topology as the Delaunay one. At first, we givelampnary result that states an important argument
used in the proof of Theorem 6.

Lemma 2. Let g, , s be three disjoint segments and leta € s, i = 1, 2, 3. Consider the oriented triangles
T=amazand T = ajaa;.

fTns={aland T ns ={a}, fori=1,2 3 andif T and T have the same orientation, then the cup@rmed
by the segmen{sy, ag], [as, &, [a;, &], and[&,, a;] does not enclose any point of s

Proor. We suppose that encloses a poird of 5, and we show that it leads to a contradiction. We can distsigui
four cases, which are illustrated in Figure 10. If we conside case of Figure 10(a), sin€ec s;, sinceT Ns; = {ay},
and sincel” N s; = {a}}, g is entirely enclosed by the curye It means tha#] is necessarily on the left c@;’z and
thata, is on the left ofaza3. As a resultT andT’ do not have the same orientation, which contradicts the thgses.

We can use the same argument in all other cases given in Fiure O
9
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Figure 9: The edge in (a) is topologically illegal even if the circumcircles tife tangency triangles dfi and f, are “empty” (b). Indeed, the
polygontjtorors is not counter-clockwise oriented.

Figure 10: lllustration of the proof of Lemma 2.

Theorem 6. A segment triangulation of S whose all edges are topololyidagjal has the same topology as the
segment Delaunay triangulation of S.

Proor. Let7 (S) be a segment triangulation 8fwhose edges are all topologically legal. The Theorem wiptweved

if we can show that the tangency triangles of the faces (8) are the faces of a segment triangulatiorSofvhose
topology is the same as the topology/ofS). Indeed, from Theorem 5, this new triangulation is the segtr®elaunay
triangulation ofS. The first goal is to prove that the tangency triangles areyisé disjoint and do not cut any site
of S.

The main idea of the proof is to use a result of Devillers et [d40] which asserts that a representation of a

combinatorial map by smooth curves in the plane is a plareptuif:

— All the circuits of the map are represented by simple clasgues,

— The ordering at each verteof the map is given by the geometric ordering of the curvesratiiag from the point
representing.

Actually, the result of Devillers et al. is stated with segrsanstead of smooth curves but an approximation argument
leads to the same result for smooth curves. In the remairfitigeoproof, we will refer to this result as the planar
representation lemma.

In the following, we define a planar geometric graptnom 7 (S) and we callC the map of which" is a geometric
representation in the plane (Step 1). Then, we define angdwmetric representatidri of C with the tangency
triangles of7(S) (Step 2). Finally, we prove thdt satisfies the conditions needed to use the planar repréisenta
lemma and we conclude that the tangency triangles are &imsjoint and do not cut any site 8f(Step 3).

Step 1. At first, we construct a geometric graptfrom the segment triangulation(s).

Let ¢ be a strictly positive real number. For every site S, letys. be the simple closed curve formed by the
set of points at a distaneefrom s. The curves, are oriented in counter-clockwise direction. We chogsenall
enough so that the curves, are pairwise disjoint.

Let T be a triangle of/ (S) whose vertices are in three sitgg, andu in counter-clockwise direction. Lgdr s,
pri, andpr, be three points insid€ such thatprs € yse, Pt € Yte @andpru € yue. Itis easy to see that we can
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always choose the poinfs s, pr:, andpr, such that they can be joined with three disjoint curyes:, yrt..u, and
vT.us that are insidd at a distance less thanfrom the boundary of and that meeys,, yi., andy,. only at their
endpoints. We do the same with the outer fac@ ¢8), i.e.,R? \ con\(S). In the following,yt st denotes the curve
that goes fronpr s to pry, andyt s denotes the curve that goes frgmy to pr, i.e., it is the same geometric curve,
but with the reverse orientation.
Let sbe a site and leTy, ..., Tx_1 be the faces of (S) incident tosin counter-clockwise direction aroursdthe
outer face can be one of them). The cupygis split intok disjoint simple curvessr, 7., that go from the pointgr, s
to pr,,s (i =imodR. As beforeysr,, 1, andysT, 1,,, are the same geometric curve, but with reverse orientations
From the choice of, the geometric graphis planar (see Figure 11(a)) and it defines a combinatoripl mbich
we callC.

Figure 11: lllustration of Step 1 (a) and Step 2 (b) in the prafdrheorem 6.

Step 2. Now we construct another geometric representdiioof the mapC. We use the same method as in Step 1,
but with the tangency triangles 6f(S) instead of its faces. For every triangleof 7 (S), we denote byT’ the
corresponding tangency triangle.

In every tangency trianglé’, we choose three points; , p;,, andpg , that are respectively on the curves,
vie, andy, .. Consider now two trianglef; andT, that are consecutively incident to the same saed their tangency
trianglesT; andT;. Using the topologic legality, it easy to prove tfigtandT; are disjoint. As in Step 1, the points
Pr s Pry andpr, can be joined with three disjoint simple curvgsg,, v;,,, andyz ¢ that are insidel” and at a
distance less thannfrom the boundary of”.

In relation to Step 1, the only flerence is the definition of the curves around the sites.slb¥ a site and let
To, ..., Tk-1 be the faces df (S) incident tosin counter-clockwise direction aroursd For everyi € {0, ...,k — 1}, we
consider the curveg . 1. that goes fronpy. Sto py.  in counter-clockwise direction oy,

The set of curves’ ¢, v 1., defines a new geometric representationf the mapC (see Figure 11(b)).

Step 3. The third step consists of proving that the geometric reprgionl” of C is planar. Indeed, if” is planar
for eache > 0 small enough, then, lettinggo to 0, we see that the tangency trianglé$orm a segment triangulation
of S (note that the “outer” curves @f are choosen at a distance less than or equat foo?n conyS)).

We prove thal” is planar with the planar representation lemma. To this agmpvove thal” satisfies the two
conditions of this lemma. Since each trianglehas the same orientation as the corresponding triahgte7 (S)
and since the curvesr, 1., andygr 1, are counter-clockwise oriented 98,, the geometric order of the curves of
[” around a vertex is the same as the geometric order of thesoftearound the corresponding vertex. Thus the
second condition of the planar representation lemma hétldemains to show that the geometric representations (in
") of the circuits ofC are simple closed curves. The n@gontains three types of circuits :
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1. circuits with three arcs that correspond to the faces(&) and the outer circuit that corresponds to the boundary
of con\yS);

2. circuits with four arcs that correspond to the edges (8);

3. circuits around each site @f(S).

By construction, geometric representations of first-typeuits are simple curves. Geometric representations of
second-type circuits are also simple curves because abkaf@ (S) are topologically legal and all tangency triangles
are pairwise disjoint. The result is not so obvious for tkiyde circuits.

Let sbe a site and IeTy, ..., Tx_1 be the faces of (S) that are incident t@ in counter clockwise direction around
s. For the sake of simplicity, we suppose that these faceslhir@exnal faces. We begin by arbitrarily choosing a
non zero vecto and an origiD in s. For every oriented curve : [a, b] — R? that does not contai®, we denote
by var(y) the angle variation((l—J),Oy(t;) alongy. Since all the curveg ;. are oriented in counter clockwise
direction, it is enough to show that:

var(ygr,1,) +var(ysr, 1,) + - +vVar(ysr, , 1,) = 21 4)

For everyi € {0, ...k — 1}, letty, ..., tx_1 be the dfferent sites ok such thafl;_; andT; are incident ta;. The
geometric representatiarj of the circuit corresponding to a fadeis a closed curve that begins at the pgft, and
that is formed by the three curve$ .., v7. . ., andyy . . Itis obvious that the curveg do not enclose the origin
O, thus:

var(a)) = var(yr, o) + vVar(yr g 1.,) + Var(yr i,,6) = 0

Lets be the geometric representation of the circuit correspuantdi an edge incident f6_; andT;. Itis a closed
curve that begins at the poipt. . and that is formed by the four curve$ .., v 1 1 + 7 1s@Ndygr 1 - The
orientation condition of the topologlc legality impliesatithe curveg; do not enclose the origi®, thus :

var(g)) = var(yr,_, st) +Var(yy 7, , 1) + var(yr, o +var(ysy, 1) = 0.

Now, if we computevar(g) + var(e) for everyi € {0, ...,k - 1}, then all the termsar(yz. ) andvar(yr_ o
cancel out. It is the same for the terver(y%. ) andvar(yT“t“ ). Indeed, these terms are the angle varlatlons along
the same geometric curve, but in reverse orientations. \We ge

k-1 k-1
> (var(a)) +var(g)) = > (var(y . .) + Vary 1) + varsr 7, ) = 0
i=0 i=0

We deduce that: 1

k-1

D VA, m) = ) (varty 5, 7)) + Var(r ..,) (5)
i=0 i=0

Sincerl is planar by construction, the same calculation Withives rise to the following result:

k-1 k-1
D var(yst,m) = Y (var(y 1 y1) + var(yr g..)) = 2. (6)
i=0 i=0

The last thing to see is that the sums (5) and (6) are equahiF@im, on each curvg ., it is enough to choose
a curve; that joinspy 1, to p; ;. Since the triangle3; and T, have the same orientation, from Lemma 2, the
successive curves
YT T YTititias Oivls yfl'i,ti,,l,ti’ 'y’Ei,Ti,Ti_l’ —0i

form a closed curve that do not enclose the oriQi(see Figure 12). Summing oviethe angle variations, we get:

k-1

Z(Vaf(yti,Tifl,Ti) +var(yr g g..) + var(sica) + var(yr ) + var(yg 1.1.,) + var(=6)) = 0
i=0
12



k-1

D ar(y T 1) + VA ) +VarG, L) +Vart gr, ) = 0
i=0

k-1 k-1
D Wartyym,m) +vartme)) + ) (Varts ) +vary; gr ) = 0
i=0 i=0

k-1 k-1

Z(Var(')/ti,Ti_i,Ti) +var(yr i.t..)) = Z(Var(’yfri,ti,tiﬂ) + Var(’)’;,Tiil’Ti)),
i= i=0

hence
k-1 k-1
21 = Z var(ysti.,.1) = Z var(ysr, . 1)-
i=0 i=0

It follows that the circuits of” are simple curves. Thus, the tangency triangles are the fzfcee segment trian-
gulation ofS. It remains to prove that this latter triangulation has thme topology ag (S). Since the adjacency
relations of a triangle and of its tangency triangle are timaes the only thing to prove is that the cyclic ordering at
each vertex is unchanged. But it is an easy consequence of (4) O

Figure 12: lllustration of Step 3 of the proof of Theorem 6.

Theorem 6 enables to test whether a segment triangulat®iinba@opology of the segment Delaunay triangulation
by checking the topologic legality of its edges. On the onedhdhe topologic legality test of a given edge can be
done in constant time since the only operations needed anputing the tangency points of a circle with three sites,
checking the orientation of a polygon with (at most) fouresidand testing whether a line segment meets the interior
of a circle. On the other hand, from Theorem 3, the number géedn a segment triangulation is linear with the
number of sites. Hence:

Corollary 1. It can be checked in linear time whether a given segmentdtéation has the same topology as the
segment Delaunay triangulation.

4. Flip algorithm

4.1. Segment triangulations of S -polygons
Each step of the flip algorithm that will be presented in Sect.2 performs local modifications inside a subset
of the current segment triangulation that is@#polygon. So we first generalise the concept of segmentgulation

to S-polygons (see Figures 13(a) and 13(b)).
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Actually, when the intersection of &@polygon andSis a finite point set, a segment triangulation of this polygon
is nothing more than a classical triangulation of the potygo

In the following, U always refers to ats-polygon, and we denote b§’ the set of connected components of
S=UnS.

Definition 9. A segment triangulatiofi” of U (with respect to S) is a partition of U in disjoint siteslges, and faces
such that:

(i) Every face off is an open triangle whose vertices are in three distinctssaeéS and whose open sides do not
intersectS’,

(il) No face can be added without intersecting another one,

(iii) The edges o are the (possibly two-dimensional) connected componénis\qF U S'), where F is the union
of the faces of".

T

/"
\.\\ /

.
\
|
f
N

\
\

\ \ v

Figure 13: AnS-polygonU (a), a segment triangulation bf (b), and a segment Delaunay triangulatioriJofc). The circleo is tangent to four
connected components Bfn S.

Theorem 7. The number of faces of a segment triangulation of U depenigorthe couplé€U, S).

Proor. Let 7~ be a segment triangulation &f. As in Definition 3, a combinatorial mall can be associated with
7. Moreover, using the same method as in proof of Propositjdvi is planar. The faces dl match the faces of
7 together with the connected components of the complemedatinfR?. SinceM is planar, making use of Euler’s
relation, the result can be easily proved in the same way asrém 3. O

We can now define the segment Delaunay triangulation &-aolygonU (see Figure 13(c)). In the following,
we say that a poing € U is visible (relatively toU andS) from a pointp € U if the open segmeni] ¢ is included
inU\S.

Definition 10. 1. Lett be a closed triangle included in U with verticesSinThe interior of t is a Delaunay triangle of
U (with respect td®) if there exists a point p in the interior of t such that theeinbr of the circumcircle of t contains
no point ofS visible from p.

2. A segment triangulation of U is Delaunay if all its faces &elaunay triangles.

It should be noted that the circumcircle of a Delaunay triahgontains no point o8 visible from any point in.
This can be proved using Corollary 2.
We can also remark that the concept of Delaunay triangle imstds definition is very close to the one used in
the classical definition of a constrained Delaunay triaatjoih [17, 7].
14



Theorem 8. Every S -polygon admits a segment Delaunay triangulation.

This result will be a consequence of Theorems 11 and 12 ofegtibs 4.3. Note that a segment Delaunay
triangulation of arS-polygonU is not necessarily unigue since four connected componéite& may be cocircular
even ifS is in general position (see Figure 13(c)).

4.2. Description of the flip algorithm

In this section, we give a flip algorithm that transforms aegreent triangulation db in a segment triangulation
that has the same topology as the segment Delaunay tridiogudé S.

The inputs of the flip algorithm are a segment triangulatibrSoand a queue that contains all edges of the
triangulation.

One step of the algorithm goes as follows. The eegéthe head of the queue is popped. Bgte the closure
of the union ofe and of its at most two adjacent triangld; is called the input polygon o (see Figure 14 (b) and
(). Clearly, Pe is anS-polygon and since it meets at most four sites, the Delaumaydgles ofP, can be computed
in constant time. The triangulation Bt is then replaced with a Delaunay triangulatiorPaf This gives rise to a new
segment triangulation & (it is a consequence of Theorems 7 and 8). Finally, the edgacdiage is pushed at the
tail of the queue.

If this step changes the topology of the current segmentdtikation, we say that the processed edgas been
flipped

Beside the queue, the algorithm maintains the number ofldgpmally illegal edges in the current triangulation.
Notice that after the flip of an edge only the legality of the new edge and of the at most four edgkscent tdPe
has to be checked.

The algorithm ends when all edges are topologically legadnFTheorem 6, it means that the resulting segment
triangulation ofS has the same topology as the segment Delaunay trianguttin

A A . € - . es *
€3 €3
€
€1 €1
e \ \
(a) (b) (c) (d)
N ez °
o . . ’ o y
' e, - 2 | &
€4
\ =~ =~ \ \
(e) ® (9 (h) (i)

Figure 14: The flip algorithm transforms the given segmeiangulation (a) in a segment triangulation (h) that has timeestopology as the
segment Delaunay triangulation (i).

The topology in (a) and the topology in (h)idir only by the flip ofe;, which is the only illegal edge of (a). However, the edg®f (a) cannot be
immediately flipped because its input polygon is not con&x. the legal edgess ande, have to be processed bef@ebecomes flippable.

In (b), the algorithm considers the input polygBg, of the edgess. Then, in (c), it computes the segment Delaunay trianguiatif Pe, and this
gives rise to a new segment triangulation in (d). In the samg the processing of the edggleads to (e). Finally, the edgs can be flipped (f,
g), which leads to (h).
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In case of point set triangulations, when an illegal edgede@ssed by the flip algorithm, it is flipped to a new
legal edge, and the illegal edge will never reappear. Sineretare finitely many possible edges, the flip algorithm
reaches the Delaunay triangulation after a finite numbetepfss Our flip algorithm looks very close to this classical
flip algorithm, but we can not use the same idea to prove itse@ence because of some importafiiadiences (see
Figure 14):

— Even if an edge is not flipped, its geometry may change,
—some illegal edges cannot be flipped,
— a new constructed edge is not necessarily legal.

For point set triangulations, another way to prove the cayesmce of the flip algorithm to the Delaunay triangu-
lation, is to lift the point set on the three-dimensionalgimloidz = x2 + y2. It is well known that the downward
projection of the lower convex hull of the lifting is the Dalaay triangulation of the point set. Conversely, every pthe
triangulation lifts to a non convex polyhedral surface abthe lower convex hull. Now, it is enough to notice that an
edge flip brings down the polyhedral surface.

We will use the same approach to prove that our flip algorithmags reaches a segment triangulation that has
the same topology as the segment Delaunay triangulatiorfirsht for everyS-polygonU, the lower convex hull
of the lifting of U N S on the paraboloid is defined with the help of locally convemdiions and we show that it
projects down to the segment Delaunay triangulatiob ¢Theorem 12). Then, we define the lifting of any segment
triangulation that is not Delaunay (Definition 12) and wewltbat the lifting of the segment Delaunay triangulation
is lower than or equal to the lifting of any other segmentigialation (Theorem 13). In order to show the correctness
of the algorithm, we prove that, after a step of the algorittira lifting of the resulting segment triangulation is lawe
than or equal to the lifting of the segment triangulationdoefthis step (Theorem 14). This leads to prove that the
sequence of steps builds a sequence of segment trianguslétiat converges to the segment Delaunay triangulation
(Theorem 14). It remains to see that, after a finite numbetegfss the segment triangulation constructed by the flip
algorithm has the same topology as the segment Delaunagtii@ion (Corollary 3).

4.3. Locally convex functions and segment triangulations

By using locally convex functions, we define and charactetie lifting on a paraboloid ifR® of a segment
triangulation and of a segment Delaunay triangulation.

Recall that, ifV is a subset oR?, a functiong : V — R is locally convex if the restriction af to each segment
included inV is convex (see for example [3]). We define now the lower comdkof a function, which we shall use
instead of the usual lower convex hull of a subsék# Note that it corresponds to this usual lower convex hullwhe
the domairV is convex.

Definition 11. Let L(V) be the set of functions: V — R that are locally convex on V. Given a real-valued function
f defined on \© S, the lower convex hull of f oV, S) is the function s defined on V by

fus(X) = supé(x) : ¢ € L(V), Yy e VNS, 4(y) < f(y)}-

In the following, the above definition will be used on &molygonU with the functionf : R? — R defined by
f(x,y) = X2 + y?. The main aim of this subsection is to explain that the funcfi, s determines a segment Delaunay
triangulation ofU (see Figure 15). Next theorem gives information about theevaf the functionfy s at a pointp.
For every poinip in U, we denote byis, the closure of the set of points Bfvisible fromp, that is, the closure of the
set of pointgy in S such that the open segmemt §if is included inU \ S. The convex hull ovis, is denoted by/,,.

For the sake of readability, intermediate lemmas and longfgrare postponed to Subsection 4.4.

Theorem 9. Every point p of U belongs to a closed convex subset of U wheréunction {5 is gffine and whose
extreme points are one, two, or three pointSSoMoreover §s(p) = fv,vis,(P)-

Corollary 2. Lett be a triangle included in U with vertices B fys is gfine on t if and only if t is a Delaunay
triangle of U.
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Figure 15: AnS-polygonU and the graph ofys. U is decomposed into two triangles and infinitely many linensegts wherefy s is afine. The
triangles are Delaunay trianglesdfand the union of the segments forms the five edges of the sede&unay triangulation df.

Proor. Suppose thafys is affine ont. Let p be any point in the interior dfandq € Sp. Denoteh : R? — R the dfine
function equal tofy s ont. The functionfys is convex on p, g] and is equal td on a neighborhood gb. Therefore
fus > hon[p,q). Sincefys = f onS, f(q) = fus(g) > h(g). Henceq is not in the region oR? wheref < h, which
is precisely the interior of the circumcircle of the triaagl

Conversely, suppose thats a Delaunay triangle. We begin by the cd$e= con\S). There exists a poinp
in the interior oft such that the interior of the circumcircle btontains no point o8 visible from p. Consider the
affine functionh; : R> — R which is equal tof on the vertices of the triangte SinceU is convex, the interior of the
circumcircle contains no point @& Thereforeh, < f onS. It follows that fys > h; on the entire set). On the other
hand,fys = f = h; on the vertices of. Thus, by convexityfys < h; ont. It follows thatfys = h; ont.

In the general case, ifis a Delaunay triangle of) then, by definition, it is also a Delaunay triangle \&§
with respect tovis,. Hence, by the convex casky, .is, is afine ont. By the previous Theorem, we havfgs(p) =
fv,vis,(P). Sincefysis locally convex, we havéy s < fy, s, Ont. Now, pis in the interior oft, thereforefy s = fy, vis,
ont. O

The next step consists in showing tiihtan be partitioned into maximal convex subsets where thetiumfy s
is affine (see Figure 15). Actually, whesh = con\S), these subsets are the downward projections of the relativ
interiors of the lower faces of the convex hull of the liftin§S on the paraboloifz = x* + y?}. In the general case:

Theorem 10. Let p be a point of U and denote [z, the set of all relatively open convex subsets of U contaiping
where {5 is gffine.

1. There is a maximal element @ %, i.e., G, € 6, and, for every Ce 6, C c Cp,.

2. C,, has finitely many extreme points, which are alSirand ;s is afine onCy,.

3. The collection of all sets; p € U, forms a partition of U.

Theorem 11. Let T be a set of triangles that decompose all the two-dineas$iC,, p € U\S, and whose vertices
are extremal points of & Then the interiors of the triangles of T are the faces of arssqf triangulation of U.

Such a triangulation is said to lreducedby fys. Then, from Corollary 2,
Theorem 12. A segment triangulation of U is induced hysfif and only if all its triangles are Delaunay.

As a consequence, the graph of the functigrz is the lifting of a segment Delaunay triangulation on the
paraboloid. We define now the lifting of any segment triaatjoh and show that it is above the lifting of a seg-
ment Delaunay triangulation.
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Definition 12. Let7 be a segment triangulation of U. The functiaysf : U — R is defined in the following way:
— fusr(p) = f(p) if p is a point ofS,

— fuss(p) = fas(p) if pisinan edge e of,

— fusr(p) = fs(p) if pisinafacetoff.

Theorem 13. For every segment triangulation of U, fus < fuss.

Proor. LetV be a closed subset bf. The inclusionv c U implies bothV NS c U n Sandfys is locally convex on
V. It follows thatfys < f onV N Sand therefordys < fys onV. Using this last inequality witlV the closure of a
face or of an edge of , we getfys < fusys. O

4.4. Proofs of the main results

4.4.1. Proof of Theorem 9

Lemma 3. Let p g, r be three points in U such that:

— There exists a ball @, ) centered at p with radius > 0 such that Bp, £) N con{{p, g, r}) is included in U,

— The two open segmenis g[ and]p, r[ are included in US,

— The interior of the triangle £ con\{p, g, r}) contains no point u o8 such that the segmef, u] is included in U.
Then, the triangle tis included in U.

Proor. Let E be the set of pointg in t° N dU with [p, X] ¢ U. The only thing to prove is thd = 0. Suppose on the
contrary thate # (. By the third hypothesi€k Nn'S = (0. Furthermore, sincé c dU, each poini in E must be in a
boundary segmeng], 5[ of U with s1, s, in Sand Js;, $[NS = 0. Now, it is easy to see that a segment included in
U cannot cross such a boundary segment; therefre,] crosses neitherg, g[ nor ]p, r[. It follows thats; or s; is

in t°. Since there are only finitely many such boundary segmemgse iis an endpoirg € SN t° of such a segment
where the fiine functiony defined byyp(p) = 0 ande(q) = ¢(r) = 1 is minimal. By hypothesis, the segmenpt §]

is not included inJ and therefore it must contain a poitn E. Finally, the inequalitieg(s) < ¢(X) < ¢(s), which
hold for one of the two points; or s, associated wittx, contradict the definition of. O

Lemma 4. Let p be in W\Sand let H be a closed half space such tha¢ pH. Then there exists a pointg S\H
such thafp, [ is included in U\S.

Proor. Moving on a half line from the poirp in the open half plan&?\H, we can find a poini € SU dU such that
u e R?\H and [p,u[c U\S. If u € S, we are done. Otherwise, there exists a boundary segraess[]containing
u and such thas;, s, € Sand Js, [NS = 0. At least one of the two points; ands; is in R?\H. Suppose it is
s = s1. Letv be the point ofS in the trianglet = con{p, u, s}) such that the anglapvis minimal. The triangle
t" = con\{p, u, v}) contains no point 0§ except on the lineg, v). If the segmentp, V[ is included inU, we are done.
Otherwise there is a pointof dU in the segmenty, v] such that p, r[ is included inU°. As before, if [p, r] meetsS,

we are done. Otherwise there exists a boundary segmen[Jwith r1,r, € Sandr €]ry, ro[. One of the two points
ri, r, must be inside the triangté which contradicts the definition of O

Lemmab. Let f : R" — R be a convex function, let U be a subsefRdf let A be a closed convex subsefdf let
¢ : A — R be a convex function, and let W be a connected componertfA Assume thap > f on A and that
¢ = f ondA. Then the function gU — R defined by

_ | fonU\W
1 ¢éonW

is locally convex on U.

Proor. Let p andq be two points olJ such that the segmenp,[g] is included inU. Let us show that the restriction
g Of g to [p, ] is convex. If [p, q] does not meewV, theng,, = f on [p, g] andg,,, is convex on p, g]. Note that

| =[p,ql N W is an interval. Indeed, lat s be two points oW N [p, g]. SinceA° is convex, {, g is included inA°.
Moreover |, s| c [p,q] c U, thus |, s] ¢ U n A°. By definition of a connected component,d is included inW.
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Denoter andsthe endpoints of.

1. Suppose that s € dA. By definition of the functiong;,, = f on[p,r], #on[r, 5], andf on[s q]. If r = s, then
Jqg = fOn[p,glandg,, is convexonp,q]. If r # s, on the one hand, the functigns convexand > f onfr, g,
on the other handf(r) = ¢(r), therefore the right derivative @, is non decreasing orp[d. It follows thatg,

is convex on p, §. In the same way, using the left derivative, we show ta} is convex on i, g] which shows that
Jipq IS CONVexon p, q].

2. Suppose that s € A%, Let us show that = p ands = g. Suppose on the contrary that, [[# 0. Sincer € A°,
there exists’ € [p, r[ such that{’,r] c A% Now, [r’,r] c [p.q] c U, thereforef,r’] c U n A° It follows thatr and
r’ are in the same connected componentaf A° andr cannot be an endpoint of By the same way of reasoning,
we prove thas = g. Thereforeg,, = ¢ on [p, d], and thusy,, is convex.

3. Suppose thate A ands € A°. In this case, we show as in second case $hat and the result follows as in the
first case. O

ProoF oF THEOREM 9.

Convex case.Assume thaty = conyS). Consider the liftinge = {(x, f(X)) : x € S} of Sand the convex hull
K = conyE). The set of all lower points df is the graph of a convex functign: U — R. The convexity off
implies thaty = f on S, thusy < fys. Itis not dificult to prove thatp is affine on any downward projectidd of a
lower faceF of K. Moreover, since is strictly convexE is the set of extreme points &f. It follows that the set
ext(G) of extreme points o6 which are the projection of the extreme pointsHqfis included inS. Now, we know
that fus = ¢ onex{G), fus is convex andp is afine onG, thereforefys = ¢ on G. It follows that for any point
p € U, there is a closed convex sub&of U containingp such thatfy s is afine onG andex{G) c S.
In the case of a point in the interior ofU, it is possible to strengthen the last conclusion: togethbrthe sets there
exists an fine functionh : R? — R equal tofys on G and lower than or equal tb on S. This can be easily seen
using a supporting plane &f containing @, ¢(p)). We shall use this fact later in the proof.

General caself pisinSorindU, the proof of the Theorem is easy and we leave it to the reddép € U°\S.
Consider the convex s#f, = con\visy) instead ofU. We proceed in five steps.

Step 1. We prove that p is in the interior of ¥ con\visy).

If p ¢ Vy, there exists a supporting closed half plahsuch thatp € 9H andV, c H. By Lemma 4, there exists a
pointg € S\H such that p,g[c U\S. Thereforeq € vis, and we have botly € vis, ¢ H andqg € S\H, which is
impossible.

Step 2. There exists agfiae function iy onRR? and a subset Sof vis, such that j < f onvis,, f = hy, on S, and
p € conYSp) (hence §, s = hp on conySy).

The existence 08, follows from the convex case of the theorem used With= con\visp) instead ofU and with
vis, instead ofS.

Step 3. We prove that co{8) c U.

Denote byC the set of pointg| € conySp) such that p,q] ¢ U. We would like to show thaC = con\S;). Since
each poing in Sy is also inC, it is enough to prove that is convex. Letgandq’ be inC. If g, andp are on the
same line thend, q'] c [p,q] VU [p,q] c U, therefore §, ] € C. It remains to study the case wheya andp are
not on the same line. Singeis not inS, pis notinSy, hence by strict convexity of, f(p) < hy(p). Again, the strict
convexity of f implies that con\{p, d, q'})\{q, g’} is included in{x € R? : f(x) < hy(x)}. Moreoverh, < f onvisy,
thus cony{p,d,q’})\{0, g’} cannot contain a poird € Ssuch that p, §c U\S. Making use of Lemma 3, we get that
cony{p, 0, q}) c U; it follows that [g, '] € C andC = con\Sy).

Step 4. We prove that § < hy on conySp).
It simply comes from the convexity dfy s on conySp) which is included inJ and from the equalitfys = f = hp
onSp.
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Step 5. We prove that § = hy on conySp).

This is the main step of the proof and it needs Lemma 5.Ale¢ the convex subset & wheref < h,. Sincepis
notin$S, pis notinSp, and by strict convexity of , we havef(p) < hp(p). It follows thatp is in the interiorA° of A.
Let W be the connected componentldin A° that containg. By Lemma 5, the functiog : U — R defined by

_ | fonU\W
| hponW

is locally convex orJ. If we can prove thag < f onSnU thenfys > gand sinceS, c {h, = f} andcony(Sp)\Sp €
W, fus > g = hp onconySp). We now prove thag < f onSn U.
Itis enough to show thaW does not contain any point 8 Suppose on the contrary that there exists a gpanSNW.
SinceW is arcwise connected, there exists a paibining p to g in W. By continuity, the distancé = d(y, 0A) is
strictly positive.
Let As = {x € A: d(x,0A) > 6}. ObviouslyAs is closed and it is easy to see that it is convex. Let us shotv tha
As N W is closed. Indeed, ik € As N W, thenx € U. It follows that there exists a balB(x, r) with r > 0 such that
Uy = B(x,r) N U is star shaped from and thus connected. Therefdhg = Uy N A° is also star shaped from Since
B(x,r) N W N As is not empty and is included M/, Wy contains at least one point 8f. Therefore by definition of
connected componenid), ¢ W andx € W which implies thatA; N W is closed.
It follows that there exists a shortest pathjoining p to g in As N W. For all x in U\S, there exists > 0 such that
U N B(x,r) is convex, therefore for akkin As NnW\S, there exists > 0 such thatd; "W N B(X, r) is convex. It follows
that the pathy; is straight on the parts where it does not m&etetq’ be the first point ofs encountered bys;. The
segmentp, ] is in A; "W and [p, g’[ does not contain any point &, it follows thatq’ € vis,. Butq € As ¢ A°,
thus by strict convexity of, f(q") < hy(q") which contradicts the definition di,.

At last, by Caratheodory theorei®, can be chosen with two or three points. O

Note that, in case df} = con\(S), the first step of the proof shows thifs is lower semi continuous. Moreover,
the main geometric fact abolt, used in the proof of the Theorem, is that for all pointgpah U\S, there exists a
ball B(p, r) such thatU n B(p,r) is convex. This is the reason why the Theorem may be hardtemexn higher
dimensions.

4.4.2. Proof of Theorem 10

Lemma 6. Let p, p1,do, 01 be four points of U such that:

— The segmen{$o, p1] and[do, 01] are included in U,

— The intersectiofpo, p1[N]do, 01[ contains at least one point p,

— The function {§ s is gffine on both segmenfgo, p1] and[do, q1].

Then the quadrilatera® = con\({po, P1, do, d1}) is included in U and (s is affine onQ.

Proor. If the four pointspo, p1, go, andg; are on the same line, then the result is obvious. Otherwise) the
hypotheses, the pointis in the interior oiQ. Let h, be the #ine function equal tdy s at po, p1, andgp. Sincefys
andh, are dfine on [po, p1] and since they are equal ptanddp, it means that they are equal on the entire segment
[do. 01]. Consequentlyh, and fy s are equal ongo, p1] and on Po, g1

The applicationf is strictly convex,fys(po) = f(po), fus(pi) = f(p1) andfys is afine on [po, p1], therefore
fus(p) > f(p) andp ¢ S.

Let us show that the interiap of Q dose not contain a point @& visible from p. Let q be a point ofw such
that [p,q] c U. Sincep ¢ S, there exists a convex neighbourhoodpoih U. Sincep €] po, p1[N]do, 1] and since
Po, P1, o are not on the same line, the convex neighbourhogrinfU necessarily contains two points qgdof p1] and
two points of fjo, 01], which are the vertices of a quadrilateral that contgims its interior and that is included in the
convex neighbourhood gf in U. Thus, there exists > 0 such that the baB(p, ¢) is included inU. Consequently,
there exists a poing’ € B(p, ) such thatp €]q’, q[ and such that/ is the barycenter of two points,, g, that are
respectively in the segmentgg] p1] N B(p, ) and [, 91] N B(p. ). Sinceq’ € [p2, g2] < U, sincefys is convex on
[p2. g2], and sincehy is afine on [y, 2], we havefys(q’) < hp(q’). Moreover, the equalityiy s(p) = hp(p) and the
convexity of fus on [, ] implies thatfy s(d) > hp(g). Now, g € w, hy > f on po, p1, 0o, 1, andf is strictly convex,
thushp(g) > (). As a consequencéys(q) > f(g) andqg ¢ S.
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Sincew contains no point o visible from p, Lemma 3 shows that the four triangeEsn\({ p, po, p1}), con\{p, Po, do}),
cony({p, p1, do}) andconv{p, qo, 01}) are included irJ, thereforaQ is included inU. The convexity offys onQ and
the equality offy s andhy on [po, p1] U [do, g1] show thatfys = hy onQ. O

Using standard arguments, one can show:

Lemma 7. Let C; and G be two relatively open convex subset®8f If the intersection €N C, is not empty, then
conyC, U Cy) is relatively open.

Proor oF THEOREM 10.
Assume first thap ¢ S. Observe that), is non empty sincép} € %p.

Step 1. Let us show that, iCo andC; are in%},, thencon(Co U C,) is in €. We can assume th& andC; are not
reduce tg p}. From Lemma 7, we know thabnyCy U C;) is relatively open.

First, we prove that, for alp in Co and allp; in Cy, [po, p1] € U, and thatfy s is afine on [po, p1]. If po or p1 is equal
to p, the resultis obvious, thus we can assumephat pandp; # p. SinceCy andC; are relatively open, there exists
0o € Co andq; € C; such thatpis in ]po, o[ @and in Jp1, g1[. By Lemma 6, the quadrilateré = con\({po, p1, do, d1})
is included inU andfys is affine onQ. Hence po, p1] € U andfys is afine on [po, p1]. It remains to show thaty s
is affine on each segmerd,[b] c con(Cy U C;). The pointais in a segmentdp, a;] and the poinb is in a segment
[bo, b1] with ag, by in Cp anday, by in C;. The segmentd, b is included in the quadrilater&® = cony{ag, by, az, b1}).
We have just proved that all the segmentsy] with x € [ag, bp] andy € [a, b;] are included inU and thatfys
is affine on each of them. Furthermore, by definitidns is affine on pg, by] and [a;, bi]. This implies thatfys is
affine on the four triangleson\({ag, bo, a1}), cony{ap, bo, b1}), con{ay, az, b1}), andcony{bo, a1, b1}), and thusfy s
is affine onR and [a, b].

Step 2. Let us show tha€, = con|Ucc,C) is relatively open. By step LG, is included inU and fys is affine on
Cp. So the only thing to show is th&, is relatively open. IC is contained in a straight line, th€p = Uces,C and

it is clear thatC, is relatively open.

Suppose that, is two-dimensional. FixCo andC; which are not included in the same straight line. For eachtpoi
g in Cp, there exists at most three elemef@ts C; andC, in ¢, such thatg € con|C, U Cz U C4). Therefore
g € con|U;t ,Ci) which is open ifR? by Lemma 7.

Step 3. G contains no point o8. Indeed, ifgis in Cp, N S, thenf(q) = fys(q). The strict convexity off implies
that, on any segment,]q containingg, f cannot be lower than or equal to affilme functionh such that(q) = (q).
Sincef < fys and sincefy s is afine onC,, this leads to a contradiction.

Step 4. Let us show that the extreme points(ﬁ are all inS. Let g be an extreme point (:(E_p The pointq is
the limit of a sequencegg)nso of points inCp,. By Theorem 9, for each, there exists,, b, andc, in S such that
n = con{an, b, cn}) is included inU, g, € t,, andfys is afine ont,. By step 3., is neither equal tay, to b, nor
to ¢c,. Hence, we can suppose thgtis in relint(t,), by removing, if necessary one of the poiatsb;, or ¢,. Making
use of step 1 witly, instead ofp, we see thaﬂ:;, = conYC, U relint(ty)) is included inU and thatfy s is afine onCy,.

HenceCj, is in pand thereforeelint(t,) is included inCp, andt, is included inCp.
Now, Since the pointa,, b, andc, are inSn Cp, extracting a subsequence, we can assume that the seq(@)ges
(br)n=0 @nd €n)nz0 CONverge ta, b andc in SN Cp,. Extracting once more a subsequence, we can suppose that the

sequences of barycentric ¢heients ofg, converge. It follows thagj is a barycenter of three poirgsb andc, which
belong toSn C,,. Sinceq is an extreme point o, we haveg = a = b = ¢, which shows thafjis in S.

Step 5. Leth : R? — R be an #&ine function such thdi = fusonCy. Let us show thatys = h onC_,,.

Letqbe inC_p and let @in)n-0 be a sequence of point @, converging tay. As in step 4, there exists three converging
sequencesal)nso, (bn)n=0 and €n)nso0 in S such that for alh, t, = conv{an, by, ¢n}) is included inU, ¢, = anan +
Bnbn + vnCn € tn, andfys is afine ont,. As in step 4, we can also suppose that the sequengisd, (Bn)ns0 and
(yn)nso converge tar, 8 andy. Thusq = aa + b + yc. By convexity,
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fus(a) < afus(@) + Bfus(b) + v fus(c)
= af(a) + pb) + v (0.

Sincefys is affine onty, fus(dn) = anf(an) + Bnf(bn) + ¥nf(cn), hence

lim fus(tn) = @ f(@) +BT(B) +¥f(0).

Sinceh is continuoush(q) = limp-. h(gn) = af (@) + f(b) + yf(c) > fus(q). Moreover,fys is convex orC, and
fus = honCy, hencefys > honC, and fys(g) > h(q).

Step 6. Sincef is strictly convex, each segmesit S can contain one point &, at most. Thus, by step 4, there are
finitely many extreme points.

To finish the proof, we have to consider the caseS. Making use of the strict convexity df, we show as in step 4,
that the set, contains only one elementp).

At last, we haveCy = C; for all x € C,, which shows that, for alp andq in U, we have eitheC, = Cq or
ConNCy=0. O

4.4.3. Proof of Theorem 11
Lemma 8. fygsis continuouson U S.

Proor. Let pbe inU N S. Sincefys(p) = f(p) and sincef < fyg, itis enough to prove that there exists 0 and a
continuous functiory defined on the neighborhodd= U N B(p, r) such thag(p) = f(p) andfys < gonV. Since
U is anS-polygon, we can find > 0 such thaB(p,r) N U is an union of radius of the ba(p, r). The functionf is
bounded from above dd by a constanM. By Theorem 9, the functiofiys is also bounded from above by onU.
Let g be the function defined dR? by

009 = fus(p) + oS .
The three following properties hold:
—gis afine on each half line whose endpoinfis
—g=M > fysonthe boundary oB(p, r),
=9(p) = fus(p).
Sincefys is locally convex,fys < g on each radius oB(p, r) included inU. Henceg > fyusonB(p,r)nU. O

Lemma 9. For all € > 0, there exist$ > 0 such that for all p € Sand all segmeniig, r] such that :
—d(p.[a.r]) <0,

—qgresS, ]gr[cU\S

— fusis gffine on[q, r],

we have ¢p’, q) or d(p’,r) < .

Proor. Suppose on the contrary that there exists 0, a sequencepg)ney Of points ofU\S, a sequencep()nex Of
points ofS and a sequence of segmertg ] such that:

—d(pn, p;,) = 0 whenn — co,

Yne N,

=0n,Tn €S, ]0n, In[C U\S, pn €], [

— fus is afine on i, rn],

—d(py, gn) @andd(py, rn) > &.

We can assume thd{pn, p,) < %. Foralln e N, p, = (1 — An)0n + Anrn Whered, is in [0, 1]. Moreover, for alln in
N, d(pn» qn) andd(pn’ rn) > 5. NOW: Pn—0n = /ln(rn - Qn)a thus

< d(pn, gn) = And(rn, gn) < A, diamu
22
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andl, > sga—y. In the same way, + 1, > 5555 . Extracting subsequences, we can suppose that the sequence
(Pr)nens> (PR)nens (On)nen @nd €n)nen CcONverge to the points, p’, g andr. Since the sequencip,, pf,) goes to 0, we
havep = p’ € S. By assumption, the functiohis strictly convex and continuous, thus

E

a=Inf{(L-DFf(X) +tf(y) - f(L-Dx+ty):x,yeU, dxy) >¢g 1,1-1> m}

is strictly positive. Since € S, by the previous lemma, the functidps is continuous ap. At the same timef
is continuous ap, therefore there exis§ > 0 such that ¥x € U, d(x,p) < 8 = |fU,S(x) - fu,s(p)| < gand
[f(X) — f(p)| < %. Forn suficiently larged(pn, p) < 8, hence

|fus(pn) — fus(p)| <
[£(p) = F(P) < .
On the one hand, sindg s(p) = f(p), we get| fus(pn) — f(pn)| < 5. On the other hand,

f(Pn) = F((1 = An)0n + Anrn) < (1= An) F(On) + Anf(rn) — @
= (1 - An) fus(an) + Anfus(rn) — a
= fus((1 = An)On + Anrn) — @
= fus(pn) — @,

thusfys(pn) — f(pPn) = @, which contradicts the inequalityu,s(pn) - f(pn)| <35 O

EENE

ProoF oF THEOREM 11.

Let T be the set of triangles induced liys andA be a connected component &f\(S)\U1t°. We have to prove
thatV = A meets at most two sites & Suppose on the contrary thatA is the union ofk > 3 disjoints segments
S1,S2, Sz, ..., Sk included inS. For 1< i, j < k, denoteA;; the set ofa € A such thalC, =]p], p}[with p/ € S; and
pj € S; whereC, is defined in Theorem 10. Sind&S = A is connected, it is enough to prove that for all couples
(i, J), Ajj is open inA. Letabe inAjj. Letp = min{d(S;, Sy) : | # m}. Considers = %min{p, d(a p)), d(a, p})} and
6 > 0 associated witla by the previous lemma. We can assume thate/2.

Let | be the set of points i€, whose distances to the endpoipfsand p) are> ¢. The setl is a segmentd;, aj]
which does not mee$, hence there exists > 0 such thal, = {x € R? : d(x,1) < a} does not mee$. Since the
distances frona to the endpoints off are greater than, there existg > 0 such that:

a segmentd, r] whose endpoints are i, that does not me&,, and that is at a distangeg from a, contains a point
g at a distances §/2 froma; and a poing; at a distances 6/2 froma; (see Figure 16).

Figure 16: lllustration of the existence f

To see it, note that the endpoints of the segment][cannot lie inl, and if [g, r] is very close toa, then [, r] is
almost parallel ta@,.

Leta be a point ofA such thatl(a, &’) < 8. Let us show thaCy =]q,r[ whereq € S; andr € S;. By the choice
of 8, Cy =]q, r[ must contain a poing; at a distance: §/2 froma; and a pointy; at a distance: 6/2 froma,;.

Consider the segmerd,[q;]. This segment is included im[r], which is almost parallel tog;, p}], therefore either
it contains a poinp at a distance< § from p{ or it is included in the balB(p/, € + §) . In the first case, we use the
previous lemma withd, r] and p’ = p/, it follows thatCy,, which is equal tcC,, has one of its endpoint at a distance
< g from p{ and thereforeq € S;. In the second, cas#{p;,q) < p/2, henceg € S;. In the same way we show that
r € S;. Finally, An B(a,B) ¢ Aj; andA;j is open inA. O
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4.5. Convergence of the flip algorithm
Lemma 10. Let t be a triangle of a segment triangulatiGh of U and let h be the fine function equal to f at the
vertices of t. The functionyg+ = h onot.

Proor. Letaandb be two vertices of, and lete be the edge of such thatd, b[c e. Since p,b] C €, fas < fla,s 0N
[a,b]. On the one hand, by definitiofyss = fss one, and thus also org] b[. On the other hand, clearlfjap.s = h
on Ja, bl. It follows that fy s+ < hon Ja, b[. Hence,fyss < h surot.

Let f/, < be the function equal th on ot and equal tofy s+ everywhere else iy. From the last inequality, we

Us7s
can see that the functioff s - is locally convex on the closures of the edgesofSincef, s, < f onS, it follows

UST
thatf) s, < fuss onthe edges. Henc§ s, = fuss onat. g

Lemma 11. The function § s+ is continuous.

Proor. Let p be a pointofU N S. There is a finite number of edges ..., ey, of 7 whose closure contains In the
same way, there is a finite number of triandigs.., t, of 7~ whose closure contains Since the closures of the other
edges and triangles @f do not contairp, there exists a real number- 0 such that all these triangles and edges are
at distance> r from p. Consequently,

UnB(p,r)cSugu..ueyUt.. Ut

Now, from Lemma 8, the functionfg s and the functiond;, 5 are continuous ap, thusfy sy is continuous ap.
Moreover, fy sy is continuous on each face ©f and it is easy to see th&j sy is also continuous on each edge.
By Lemma 10, we see thég s+ is continuous on every side of a trianglefof It follows that fy s is continuous.

Definition 13. Let7 be a segment triangulation of S and lettlcon\S). The slope of™ is defined as follows :

fuss(p) - fuss(a) .
.0 tpeU\S geUNnS [p,q cU}L

Proposition 2. If 7~ is a segment triangulation of S, thet7") < +co.

o(T) = sud

Proor. We first show thafy sy is piecewiseC! and that the partial derivatives éf s are bounded on each piece.

The pieces are given by the triangulatidn We know thatfysgs is afine on each face of", this means that
the partial derivatives ofy s+ exist and are constant on each face. The case of edges ibldssi®) they need to
be decomposed. The closure of each edge is an union of fimitahy triangles and trapezoids. Furthermore, these
triangles and theses trapezoids are union of segments Vifhgyeis afine (see Figure 17). We study separately the
cases of triangles and of trapezoids.

(a) (b)

Figure 17: An edge of a segment triangulation (a) is a finiferof triangles and trapezoids, which are union of segmehtsre fy 57 is afine.

Cases of trianglesConsider a triangle= conyO, A, B) included in the closure of an edge such tBas in a site
S; € S, AandB are in the same sit8, € S, andfy s is dfine on each segmer®[q] with g in [A, B]. In the frame

(O,_i> = E&T = 5)3), a pointp of coordinatesX, y) is int if, and only if, x,y > 0 andx+y < 1. Since the poing of
coordinatesi—y(x, y)isin [A, B], fuss is afine on O, q], thus

fus7(p) = (1 - (x+Y))fus7(O) + (x+y)fuss(q)
=1 - (x+Yy)fuss(O) + (x+y)f(q).
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IntheframeO, , )Weget

fusr(xy) = (1 - (x+Yy))fus7(0,0)+ (x+y)f(m m)

Therefore, the functiofy s is C* ont\{O}. In the frame O,—i>,—j>), the functionf is of the form
f(x,y) = AX + 2Bxy+ Cy? + ax+ by+c

whereA, B, C, a, bandc are real numbers. Simple computations show thatXgy)(# (0,0) int,

AX + 2Bxy+ Cy?

fus7 (X y) = ax+ by+ x+y)

and
dfusr _ _ AX +2Bxy+Cy , 2Ax+ 2By

ox (x+Y)? (x+Y)

Sincex andy are non negative, we get
afu S,’]'
(x,¥)| < lal + 3max(Al, B, |C)).

In the same way, for all y) € t, (X, y) # (0, 0),

< |b| + 3max(Al, |B|, [C).

]‘9 UST (y 1)

Case of trapezoidsWe can choose the fram@(_i),_f) such that a point of coordinates ¢) is in the trapezoid
iff X,y > 0anda< x+y<bwhereb > a> 0. A pointint of coordinatesX, y) lies in the segment whose end points
are x+Y,0), (0 x+Yy) and fy sy is afine on this segment. Therefore,

fusr () = Sy fusr (6,0 + 3 fusr (0.x+)

X+Yy

= —X+yf(x+y,0)+ X+yf(0,x+y).

It follows that fy s is C* ont.
Since there are finitely many such triangles and trapezeidgan find a constaid in R such that

'5'fUST( )' ‘3 USJT(p)‘S M

for all pin a trapezoid or in a triangle (except its vertices) asdediaith7". Finally, by the mean value theorem, the
previous inequalities and the continuity hfss imply that, for allp, q € U such that the segmenp,[q] is included
inU,

fusr(p) - fuss(d) <M
p—d -

In the following, we denote by(7") the minimum angle of the triangles .

Proposition 3. There exists a positive constant ¢ depending only on f, S grehd such that, for every segment

triangulation7” of U, c

max(1 o(7))’
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Proor. LetA = con\({py, p2, p3}) be atriangle oR?. For 1< i < 3, denotén, the length of the altitude through, and

a X

a the lenght of the opposite side. We define the flatness of idnegtieA by flat(A) = max(hl, s b ). The flatness of
a segment triangulation” of U is flat(7") = maxXflat(A) : A € 7}. Itis not difficult to prove that(A) > 3‘/§flat(A)

Consequently, it is enough to show that there exists a pesittnstanC depending only orf, S andU, and such
that, for every segment triangulatignof U,
flat(7) < Cmax(, o (7).
Let A be a triangle of a segment triangulationldf and leth be the only &ine function equal td at the vertices
of A. Set hp) - (@)
P q
o(A) = su
e

Note that, ifA € 7, theno(A) < o(7). Thus, it is enough to prove that, for every triangleof a segment
triangulation ofU,

tpeA\S ge SNA}

flat(A) < Cmax(2, o(A)).

Let A = conVp, g, r) be a triangle of a segment triangulationf Sincep, g andr are in distinct segments &,
there existdy > 0 depending only 0% such thad(p, g), d(qg,r), d(r, p) > lo. Suppose that the angle at the ventex
of A is maximal and denotsethe foot of the altitude through

If two angles ofA are greater thag, it means that one of the anglespaobr atq is greater tharf. It follows that

d(r,s) = (sin3)lo > ?Io. Now, if D = diam(U), we haved(p, g) < D. Thus,
d(p.9 _ D _2D

< —.

flats) = G-y I
7

I/\

If only one angle ofA is greater thaf, it must be the angle at In this case, we havee [p, ] etd(p, s),d(q, ) >
(cos3)lo = %Io. Sets= (1 -t)p+tqg. Sinced(p, ) < D, we have
lo lo
5 <t<1- E
Denote
m=min{(1-t)f(p) +tf(q) - F(L-t)p+1q) :

Sincef is strictly convexmiis strictly positive. Furthermore, sindeis uniformly continuous otJ, there exists
§ > 0 such thatl(x.y) < & implies|f(x) - f(y)| < 3. Sinceflat(a) = $22 andd(p, ¢) < D, we haveflat(a) < z25.
If d(r, s) > 6, then

flat(a) < d(ES) < %.
Otherwise, whem(r, s) < 6, we have
fr) < f(9+ g (7)
= f(@-Yp+t+ 7 ®)
< @-Df(P+th@-m+ 3 ©
< h(s) - g (10)

hence

h(s) — f(r) m
o= =46 > 209> D
Finally, flat(A) < Cmax(1, o(A)) withC =D max(%, 5 r—n). O
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The algorithm starts with a segment triangulatiggof U = conyS) and computes a sequerntg 72, ..., Tn, ... Of
new triangulations.

Theorem 14. The sequence of functio(ionys) s 7, )ney decreases togdnys) s as n goes to infinity.

Corollary 3. There exists an integer N such that, for all integers N, the triangulatiorn7, has the same topology
as the segment Delaunay triangulation of S .

Proor oF THEOREM 14.

Setf, = feonyg,s7,. The first thing to prove is that the sequentgn is decreasing. At-th stage, the algorithm
is performed with the edge, at the head of the queue. Denaiet, the two triangles adjacent &, (or t; the
unigue triangle adjacent ®) anday, ..., an, M < 4, the other edges adjacent to the triangle$he input polygon is
Pn = e,Ut; Uty (or e, Uty). The algorithm computes a triangulati@y of P, induced byfp s. Let us denote the
elements o®, by:

—t] andt;, the new triangles (at,),

—b; the edge o), adjacentta;, 1 <i <m,

—en;1 the new edge that replaces

The new edges df ;1 aree,,1 and the edges = a; U by, 1 <i < m. By Theorem 13, sinch, t,, ande, are included
in Py, we havef, > fp sonP,. Now, fp s = fp sq,, thereforefy1 = fp 5@, = fr.s < faont’ U U ey, It
remains to show thaf,,; < f,ona/,i = 1,...,m. Onthe one hand, sinee C &, fy.1 = fg,s < fzs = fnona. Onthe
other hand, sinck; c &, f,.1 = fg,s < fE,s = fp,s < fhonb;. Thereforefy1 < fyont’jutsue,Ua U...Uap,
which impliesfn.1 < f, onconyS). By the way, we have proved the inequalitigs; < fp, s < f, ONPh.

It follows that the sequence of functionf ),y decreases to a functian: con(S) — R. The only thing to show
is thatg is locally convex.

Sinceg > f onconyS) andg = f on S, it suffices to show thaj is convex on any open segmepp] p1[ included
in the interior ofconyS) and that does not me& Let p be a point of such a segmermi)] pi[. The theorem will
be proved if we can show that there exists a B&p, £) centered ap with radiuse > 0 and infinitely many integers
n such thatlp . =]po, P1[NB(pP, €) is included either in a triangle of, or in the input polygorP,. Indeed, for these
integersn, eitherf, or fp,_ s is convex onl,,, and sincef,,; < fp s < f, on Py, the functiong is a limit of a sequence
of convex functions om, .

The inequalityfn,1 < f, implies thato(7h.1) < o(7h), therefore

C C
max(1 o-(77)) = max(1 o (70))

for all integersn. Thus the angles of any trianglgenerated by the algorithm are bounded from below by a consta
co > 0. Now, it is not dificult to see that there is a positive real numbstch that, ift is a triangle generated by the
algorithm and it meets the segmety, then the length of the segmem] p:[Nt is greater than2

Case 1 Suppose that, at the step, p lies in an edge of the segment triangulation,,. While the topological
edgee is not at the head of the queue, the geometrical exdgancreasing. At a later stage, the algorithm will be
performed with the segment triangulati@n, and the edge, which still containsp. By the choice of, the only
triangles of7y, that can meel, . are the triangle$; andt, adjacent to the edge Since the length of the segment
1po, p1[Nt; is greater than& 1. is included ineU t; U to. This means thét, . C Pp,.

Case 2 Suppose that, at the step, p lies in a trianglé of the segment triangulationy,. If I, is included int,
we are done. Otherwisé, . meets an edgeadjacent td. As in Case 1|, is included in the input polygoR,, at
the stagen; > np wheneis treated.

In all cases, we have shown that there exists infinitely maiggersn such thatl, is included inP, or in a
triangle of 7. O

0(Tn) =

Proor oF COROLLARY 3.

The set of topologies of all the segment triangulationS & finite. Hence, if the corollary does not hold, then a
non Delaunay topology would appear infinitely many timesergfore, it is enough to prove that, if for an increasing
sequence of integer&)nen, the triangulationsy, have the same topology, then it is the topology of the segment
Delaunay triangulation.
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We can always suppose that, given a topological triahgits geometrical representatiofis in 7k, converge
to a trianglet., whenn goes to infinity (just take subsequences7qf). The set of all these trianglds defines
a segment triangulatioft,,. It is clear that the triangulatiofi,, has the same topology as tfig,. The function
feonvs)s = liMn_e feonys).s7i,, Must be &ine on each of these triangles. Therefore, all the triangles of, are
Delaunay triangles anfi, is the segment Delaunay triangulation®f O

5. Conclusion

The aim of this paper was to show that the segment Delaurangtiiation can be constructed by a flip algorithm
in finitely many steps. The precise complexity of the aldoritseems diicult to estimate since we do not know of
any quantitative measure of the improvement of the trisaiipn after a step of the algorithm. However, we have
applied our algorithm to triangualtions of 1,000 to 40,0@8domly generated segments. The initial triangulations
have been obtained from constraint triangulations build bweep algorithm [11]. On these examples, the number of
steps of the algorithm is nearly linear with the number afss{about 340 steps per site). Aboy# 8f the steps seems
useless in the sense that they do not modify the currenguiation (neither by a flip, nor by a triangle shift). This
is because all the edges are systematically processed byatindoop of the algorithm. If one wants to improve the
practical performances of the algorithm, one should estall priority ordering of the edges.

In case of point sets, the Delaunay triangulation is the baterhaximizes the smallest angle of its triangles [21].
The proof of the convergence of our flip algorithm also usesctintrol of the angles of the triangles. Moreover, the
three-dimensional lifting of the segment Delaunay tridation is below the lifting of any other segment triangudati
These are two strong hints that make us believe that the seddetaunay triangulation should have some optimal
angular properties.

In recent years, particular attention has been paid to tidysif the Voronoi diagram of a set of line segments
in three dimensions [18], [20], [15], ... However, the topgy of this diagram is really known only for a set of
three lines [13]. The definition of segment triangulatiotegxis to three dimensions: Its three-dimensional regions
are tetrahedrons having their vertices on four distincteags. The right knowledge of these triangulations will
fairly facilitate the investigations about the three-dimi®nal segment Voronoi diagram, since it is dual to such a
triangulation.

The three-dimensional extension is certainly fiiclilt problem; it will be easier to consider first more general
convex sites in the plane. We believe that some of the regivies in this paper can be extended to this more general
setting.
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