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Abstract

Given a setS of line segments in the plane, we introduce a new family of partitions of the convex hull ofS called
segment triangulations ofS. The set of faces of such a triangulation is a maximal set of disjoint triangles that cutS at,
and only at, their vertices. A segment triangulation is Delaunay if its faces are inscribable in circles whose interiors
do not intersectS. The main result of this paper is that any given segment triangulation can be transformed by a finite
sequence of local improvements in a segment triangulation that has the same topological structure as the segment
Delaunay triangulation. The main difference with the classical flip algorithm for point set triangulations is that some
local improvements have to be performed on non convex regions. We overcome this difficulty by using locally convex
functions.
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1. Introduction

Given a setS of points in the plane, a Delaunay triangulation ofS is a triangulation ofS whose triangles’ circum-
circles contain no point ofS in their interiors. In 1977, Lawson [16] has shown that any triangulation ofS can be
transformed in a Delaunay triangulation by a sequence of local improvements: Every improvement consists in flipping
a diagonal of a convex quadrilateral to the other diagonal. Since then, many extensions of flip algorithms have been
proposed. In particular, they have been studied for different types of triangulations such as constrained triangulations
[11], weighted triangulations [12], pseudo-triangulations [1], pre-triangulations [2], ... For a recent survey on flip
algorithms, see [5].

In this paper we address the question of a flip algorithm to construct the segment Delaunay triangulation (or edge
Delaunay triangulation). This triangulation has been introduced by Chew and Kedem [8] as the dual of the segment
Voronoi diagram. Recall that, ifS is a set of line segments in the plane, the segment Voronoi diagram ofS is a
partition of the plane whose regions are the points closer toone particular segment ofS than to any others.

At first, we need to define a new family of diagrams, which we call segment triangulations, that contains the
segment Delaunay triangulation. A segment triangulation of S is a partition of the convex hull ofS whose set of
faces is a maximal set of disjoint triangles such that the vertices of each triangle (and only its vertices) belong to three
distinct sites ofS (see Figure 1). The edges of the segment triangulation are the (possibly two-dimensional) connected
components of the convex hull ofS when the sites and open faces are removed. We show that these triangulations
retain different geometrical and topological properties of point set triangulations and that they are intimately related
to some generalized constrained triangulations.

The segment Delaunay triangulation is the one whose faces are inscribable in “empty” circles. In case of point
set triangulations, the Delaunay triangulation can also belocally characterized: It is the only triangulation such that
any two triangles sharing a common edge are Delaunay with respect to the four points defining the triangles [16]. We
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Figure 1: Example of segment triangulation. The sites ofS are in black, the faces in white and the edges in grey.

show that the segment Delaunay triangulation can be characterized in the same way. We also give a local property
that characterizes the set of segment triangulations having the same topological structure as the segment Delaunay
triangulation.

An obstacle arises when we try to transform a segment triangulation into the segment Delaunay triangulation by
a sequence of local improvements; some of these local transformations have to be performed on non convex regions.
In order to characterize these transformations and to provethat the constructed triangulations tend to the segment
Delaunay triangulation, we use a lifting on the three-dimensional paraboloid together with locally convex functions.
The usefulness of locally convex functions in the context offlip algorithms has been already noticed by several authors
(see [1], [3], ...). It is also worth noting that our algorithm is close to Perron’s method for solving partial differential
equations [19].

Another difficulty is that there are infinitely many segment triangulations of a given set, while the number of
triangulations usually handled by flip algorithms is finite.So, a flip algorithm that aims to construct a segment
Delaunay triangulation explicitly, might need infinitely many steps. Fortunately, this drawback can be circumvented
by stopping the algorithm when it reaches a segment triangulation that has the same topological structure as the
segment Delaunay triangulation. We shall show that such a triangulation is obtained in finitely many steps.

2. Segment triangulations

2.1. Definition and existence

Let S be a finite set ofn ≥ 2 disjoint closed segments in the plane, which we call sites.Throughout this paper, a
closed segment may possibly be reduced to a single point. We say that a circle is tangent to a sites if smeets the circle
but not its interior. The sites ofS are supposed to be in general position, that is, we suppose that no three segment
endpoints are collinear and that no circle is tangent to foursites (when a site is a point, we consider that this point is
the only endpoint of the site). In the following, the wordtrianglewill always denote a non degenerate triangle, that is
a triangle whose vertices are not collinear. We will denote by S the union of the sites ofS, that is the set of points of
the sites ofS. If U is a subset ofR2, we will denote byU the closure ofU, by Uo the interior ofU, by relint(U) the
relative interior ofU, and by∂U the boundary ofU.

Definition 1. A segment triangulationT of S is a partition of the convex hull conv(S) of S in disjoint sites, edges and
faces such that:
(i) Every face ofT is an open triangle whose vertices are in three distinct sites of S and whose open sides do not
intersectS,
(ii) No face can be added without intersecting another one,
(iii) The edges ofT are the (possibly two-dimensional) connected components of conv(S) \ (F ∪ S), where F is the
union of the faces ofT .

We will use indifferently the termstriangleandfaceto designate the faces of a segment triangulation.

Property 1. Every set of sites admits a segment triangulation.
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Proof. To prove the existence of a segment triangulation of a set ofsitesS, it is enough to show that only a bounded
number of disjoint open triangles can intersectS at, and only at, their vertices.

Obviously, if S contains only two sites, no such triangle exists. Otherwise, by considering the different kinds of
convex hulls of two disjoint triangles in the plane, it is notdifficult to see that, if the two triangles have their vertices
(and only their vertices) in the same three sites, then the sites are encountered in two distinct orders when the triangles
are traversed in counter clockwise direction. As a consequence, at most two disjoint triangles can have their vertices
in the same three sites. �

2.2. Segment triangulations and weakly constrained triangulations

The segment triangulations defined here are not “real” triangulations since the convex hull is not decomposed in
triangles. To this aim the two dimensional edges of a segmenttriangulation should be decomposed in triangles. A
well-known triangulation defined on a set of points and line segments in the plane is the constrained triangulation. It
is a triangulation of the set of points and line segment endpoints such that every given line segment is an edge of the
triangulation. We show now that segment triangulations areintimately related to a kind of constrained triangulations
with weaker constraints. This result will allow us to specify the shape of the edges of a segment triangulation and
later on to give an algorithm to construct a particular segment triangulation.

Definition 2. 1. Given a set S of sites, we call S -polygon (possibly whith holes) any closed region A included in
conv(S) and such that the boundary of A is composed of a finite number ofdisjoint segments that are of the two
following forms:
– on the one hand, closed segments included inS (possibly reduced to points),
– on the other hand, open segments that do not intersectS and whose endpoints are inS.
2. An S -polygon A is said to be non degenerate if A is equal to the closure of its interior and if A\ S is connected.
3. We call weakly constrained triangulation of A (with respect to S ), any partition of A into triangles whose vertices
are inS, whose interiors do not intersectS, and whose open sides either do not intersectS or are included inS.
When A= conv(S), such a triangulation is also called a weakly constrained triangulation of S .

Note that a (classical) constrained triangulation is a particular case of weakly constrained triangulation.

(a) (b)

Figure 2: AnS-polygon in gray (a) and a weakly constrained triangulation(dotted lines) of thisS-polygon (b).

Lemma 1. If A is a non degenerate S -polygon that intersects at least three sites of S , then any weakly constrained
triangulation of A contains at least one triangle having itsvertices in three distinct sites of S .
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Proof. Given a weakly constrained triangulationT of A, let∆T (A) be the (possibly empty) set of triangles ofT having
one side inS. We show, by induction on the number|∆T (A)| of triangles of∆T (A), thatT contains at least one triangle
that has its vertices in three distinct sites ofS.

Obviously, if∆T (A) = ∅, every triangle ofT has its vertices in three distinct sites ofS. Suppose the result is true
for any weakly constrained triangulationT of any non degenerateS-polygonA that intersects at least three sites ofS
and such that|∆T (A)| < k, k ≥ 1.

Let nowT be a weakly constrained triangulation of such anS-polygonA but with |∆T(A)| = k. Let t be a triangle
of ∆T (A). SinceA \ S is connected, at least one of the two sides oft that are not inS is not in the boundary ofA. It
follows that this side is also in the boundary ofA \ t. Hence,A \ t intersects the sites cut byt. Moreover, sinceA is
equal to the closure of its interior,A \ t = A \ (t ∪ S) and it follows thatA \ (t ∪ S) cuts exactly the same sites asA.
Now, the closure of every connected component ofA \ (t ∪ S) cuts the two sites containing the vertices oft. Thus, the
closureA′ of at least one of these connected components cuts at least three sites.

By construction,A′ is anS-polygon. Moreover, ifT′ is the restriction ofT to A′, then|∆T′ (A′)| < |∆T(A)|. Thus,
by induction hypothesis,T′ contains at least one triangle having its vertices in three distinct sites ofS. It is the same
for T. �

Theorem 1. Every weakly constrained triangulation of S is a refinement of a segment triangulation of S , that is, a
segment triangulation whose edges are decomposed in triangles.

Proof. Obviously, every triangle of a weakly constrained triangulation T having its vertices in three distinct sites of
S is a face of a segment triangulation ofS. If F is the union of these open triangles, the closure of every connected
componenteof conv(S)\ (F∪S) is anS-polygon. Sinceecontains no triangle ofT having its vertices in three distinct
sites,e intersects at most two sites, from Lemma 1. Hence, it is impossible to add ine a triangle having its vertices in
three distinct sites. It follows thatF is the union of the faces of a segment triangulation ofS and thatT is a refinement
of this segment triangulation. �

Theorem 2. (i) The closure of every edge of a segment triangulationT of S intersects exactly two sites of S .
(ii) Every edge ofT contains
– either two sides of two triangles ofT ,
– or one side of one triangle ofT and one side of conv(S) that is not a site,
– or two such sides of conv(S).

Proof. By definition, every edgee of T is a connected component ofconv(S) \ (F ∪ S) whereF is the union of the
faces ofT . As in proof of Theorem 1,e is anS-polygon. Actually,e is either a line segment or a non degenerate
S-polygon.

In the first case,econnects two points ofS and is either a common side of two triangles ofT or a side ofconv(S)
that is not a site.

In the second case,e is a “polygon” with at least three vertices and these vertices are inS. Hence,e intersects
at least two sites ofS. But e cannot intersect more than two sites otherwise, by Lemma 1, aface of a segment
triangulation could be placed ine, contradicting the fact thatT is already a segment triangulation. It follows thate is
either a triangle with one vertex and its opposite side inS or a (possibly non convex) quadrilateral with two opposite
sides inS (see Figure 3). In both cases,e admits two sides that are not inS and each of them is either a side of a
triangle ofT or a side ofconv(S) that is not a site. �

Figure 3: Examples of edges connecting two sites in a segmenttriangulation.
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Theorem 2 shows that, as in point set triangulations, every edge of a segment triangulation “connects” two sites.
This justifies the term “edge” for two dimensional regions ofthe segment triangulation.

2.3. Topological properties

Since every edge of a segment triangulation “connects” two sites, we can associate a combinatorial map with this
triangulation in the following way:

Definition 3. The combinatorial map associated with a segment triangulationT of S is such that:

1. The vertices of the map are the sites of S ,
2. The arcs connecting two sites s and t in the map are the edges ofT whose closures intersect s and t,
3. For every vertex s of the map, the cyclic ordering of the arcs out of s agrees with the counter-clockwise ordering

of the associated edges around the site s inT .

Definition 4. We say that two segment triangulations of S have the same topology if they have the same associated
combinatorial map.

Proposition 1. The combinatorial map associated with a segment triangulationT of S is planar. Its faces match the
faces ofT and the outer face ofT (that is, the complement of conv(S)).

Proof. For every sitesof S, let γs be a closed convex Jordan curve such that:
– s is insideγs (that is, in the region of the plane bounded byγs),
– for every sites′ , s, γs′ is outsideγs,
– the interior ofγs only intersects the edges ofT whose closures meets.

Clearly, if an edgee intersectsγs, e∩ γs is connected (see Figure 4). Replace now every edge ofT by one of the
triangle or convex hull sides included int the edge. Then replace every sites by a pointps insideγs and, for every
reduced edgee that intersectsγs, replace the part ofe included inγs by a line segment connecting the pointse∩ γs

andps. The order of the new edges aroundps is the same as the order of the corresponding initial edges arounds in
T . Moreover, since the new edges do not intersect (except at their endpoints), we get a planar representation of the
map whose faces correspond to the triangles ofT and to the complement ofconv(S). �

(a) (b) (c)

Figure 4: The sites are isolated inside convex curves (a), then the edges are replaced with line segments (b), and finally the sites are replaced with
points (c).

This result allows to characterize the number of faces and edges in a segment triangulation:

Theorem 3. Every segment triangulationT of a set S of n sites contains3n − n′ − 3 edges and2n − n′ − 2 faces,
where n′ is the number of sides of conv(S) that are not sites.

5



Proof. Let f be the number of faces ofT and lete0, e1 ande2 be the numbers of edges ofT that contain respectively
0, 1 and 2 sides of faces ofT .

Since the sides of any face ofT are contained in exactly three distinct edges ofT ,

3 f = 2e2 + e1. (1)

Since the edges counted ine1 ande0 contain respectively 1 and 2 sides ofconv(S),

n′ = e1 + 2e0. (2)

SinceT has the same number of faces, of edges, and of vertices as its associated combinatorial map and since this
map is planar, Euler’s relation says that

f − (e2 + e1 + e0) + n = 1. (3)

The result follows from (1), (2), and (3). �

An interesting consequence of this theorem is that the size of a segment triangulation is linear with the number
of sites. Moreover, it shows that the number of triangles of the triangulation is an invariant of the set of sites. This
extends classical properties of point set triangulations.

2.4. Storage and construction

The combinatorial map associated to a segment triangulationT can be used as data structure to store the topology
of T . To maintain the geometrical informations ofT , it suffices to add the coordinates of the triangle vertices in
the structure. These vertices can be associated with the edges of the map: one vertex per oriented edge. A segment
triangulation of a setS of n sites can thus be stored usingO(n) space.

From Theorem 1, every constrained triangulation ofS is a refinement of a segment triangulation ofS. Now, a
constrained triangulationT of S can be constructed inO(n logn) time [11]. A segment triangulationT can then be
deduced fromT in linear time by merging the triangles ofT that are adjacent to the same two sites into a unique edge
of T (see Figure 5).

Algorithms that construct the constrained triangulationT can also be adapted to directly construct the segment
triangulationT in O(n logn) time [6].

(a) (b)

Figure 5: A constrained triangulation (a) and the corresponding segment triangulation (b).

2.5. Segment Delaunay triangulations

The classical Delaunay triangulation of a set of points can be easily extended to a setS of line segments in the
following way:

Definition 5. A segment triangulation of S is Delaunay if the circumcircleof each face does not contain any point of
S in its interior.
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A way to show that every setS admits a segment Delaunay triangulation is to show that it isdual to the segment
Voronoi diagram ofS. Recall that the segment Voronoi diagram ofS is a partition of the plane in regions. Each region
contains the set of points closer to one site ofS than to any other site. An edge of the segment Voronoi diagramis
the set of points closest to and equidistant from two sites and it consists of line and parabola segments. WhenS is in
general position, the vertices of its Voronoi diagram are the points of the plane closest to and equidistant from exactly
three sites. Thus, each of these vertices is the center of a circle whose interior does not cutS and which circumscribes
a triangle whose vertices are in three distinct sites ofS. It is easy to see that these triangles are pairwise disjointand,
thus, that they are faces of a segment triangulation ofS.

Moreover, ifF is the union of these triangles, Chew and Kedem [8, 9] pointedout that the connected components
of conv(S) \ (F ∪ S) are dual to the edges of the segment Voronoi diagram ofS and that each of these components
is adjacent to exactly two sites ofS. It follows that the triangles ofF are all the faces of a segment triangulation of
S and that this triangulation is dual to the segment Voronoi diagram ofS. This extends a classical result of point set
triangulations:

Theorem 4. Every set S of sites in general position admits one and only one segment Delaunay triangulation. This
triangulation is dual to the segment Voronoi diagram of S .

The segment Delaunay triangulation ofn sites can be constructed inO(n logn) time either by first building the
segment Voronoi diagram [14, 4], or by adapting segment Voronoi diagram constructions [6].

3. Edge legality

3.1. Geometric legality of an edge

An interesting property of the Delaunay triangulation of a planar point set is the legal edge property. Consider an
edge of a point set triangulation and its two adjacent triangles. The edge is illegal if a vertex of one of these triangles
lies inside the circumcircle of the other triangle. It is well-known that the Delaunay triangulation of a point set is the
unique triangulation of this point set without illegal edge. In the following, we are going to prove a similar property
for segment triangulations.

Definition 6. Let e be an edge of a segment triangulationT of S and let S′ be the set of sites that contain the vertices
of the zero, one, or two faces ofT adjacent to e. The edge e is geometrically legal if:
1. either e is not adjacent to any face ofT ,
2. or the interior of the circumcircles of the faces adjacentto e do not cutS′.

This directly extends the definition of edge legality in point set triangulations (see Figure 6).

e1

e2

e3

e4 e5
e7

e6

Figure 6: The edgese1, e4, e5, ande7 are geometrically legal whereas the edgese2, e3, ande6 are not.

Theorem 5. The segment Delaunay triangulation of S is the unique segment triangulation of S whose edges are all
geometrically legal.
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Proof. By definition, the segment Delaunay triangulation ofS has no geometrically illegal edge. Now, letT (S) be a
segment triangulation ofS that is not Delaunay and let us show thatT (S) contains at least one geometrically illegal
edge. SinceT (S) is not Delaunay, it contains at least one facef such that the open diskD f circumscribed tof cuts
S. Let x be a point inf and letp be a point inD f ∩S. We can always choosep such that the open segment ]x, p[ does
not cutS. Sincep can not be a vertex off (because it is inD f ), ]x, p[ cuts an edgee of T (S) adjacent tof . If ] x, p[
cuts no other edge ofT (S), eitherp is in one of the sites that cut the closure ofe, or p is a vertex of the other face of
T (S) adjacent toe. In both cases, the edgee is geometrically illegal (see Figure 7(a)).

f e

x

p

p

x
pf

ge

u

b

a

x'
y

Df

Dg

(a) (b)

Figure 7: Illustrations of the proof of Theorem 5.

Now, we can state the following induction hypothesis: if ]x, p[ cutsk edges, withk ≥ 1, then at least one of them
is geometrically illegal. Assume that ]x, p[ cutsk+1 edges, withk+1 ≥ 2, and let us show thatT (S) contains at least
one geometrically illegal edge. In this case, ]x, p[ crossese and also cuts the other faceg adjacent toe. LetDg be
the open disk circumscribed tog and let [a, b] be the side of∂g included ine (see Figure 7(b)). Ife is geometrically
illegal, we are done. Ife is geometrically legal, thenD f must be tangent to the sites that contain the vertices off .
Since two of these sites containa andb, the pointsa andb can not be inD f . Since ]x, p[ is included inD f and
crossese, the pointy = [a, b]∩]x, p[ is in D f . It means that [a, b] split D f into two parts: one of them containsf and
the other containsp. LetD1 be the part that containsf andD2 the part that containsp. Since the circumcircle ofg
passes througha andb, the diskDg contains at leastD1 orD2 (the two circles that boundD f andDg can not have
four intersection points). IfDg containsD1, then it also containsf . Now, sincee is geometrically legal, the vertices
of f must lie on the boundary ofDg, which means thatDg = D f . As a consequence,Dg containsD2 and, thus,
also containsp. Moreover, for any pointx′ of [y, p] ∩ g, the segment ]x′, p[ cuts exactlyk edges. From the induction
hypothesis, we can conclude thatT (S) contains at least one geometrically illegal edge. �

This theorem allows to know whether a given segment triangulation is Delaunay by checking the geometric legality
of its edges. From Theorem 3, the number of edges in a segment triangulation ofn sites isO(n). Moreover, the legality
test can be done in constant time since it is enough to computethe intersection of at most two circles and at most four
segments. It means that we can know in linear time whether a given segment triangulation is Delaunay.

Due to precision errors, an algorithm could construct a segment triangulation that is almost Delaunay, in the sense
that it has the same topology as the Delaunay one but the vertices of its faces are at distanceε > 0 from the vertices of
the segment Delaunay triangulation faces. Clearly, geometric legality will not help to recognize such a triangulation.
Furthermore, if a given segment triangulation has the same topology as the Delaunay one, then the latter can be
computed by just moving the vertices of each face until its circumcircle becomes tangent to the three sites that contain
the vertices of the face. As a consequence, an algorithm thatconstructs the segment Delaunay triangulation only needs
to compute its topology. For this reason, we define in the following the concept of topologic legality of an edge, which
will allow us to know whether a given segment triangulation has the same topology as the Delaunay one.

3.2. Topologic legality of an edge

In order to not consider the geometric position of the faces,we associate with each face a so called tangency
triangle:
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Definition 7. Let f be a face of a segment triangulation of S . The tangency triangle of f is an open triangle such that
– its vertices are on the same three sites as the vertices of f ,
– its circumcircle is tangent to these three sites,
– these three sites are encountered in the same order when f and its tangency triangle are traversed in counter-
clockwise direction.

The existence of the tangency triangle associated with a face f can be deduced from the existence of the Delaunay
triangulation of the set of sites adjacent tof .

Definition 8. Let e be an edge of a segment triangulation of S . The edge e is topologically legal in the two following
cases:

1. e is adjacent to at most one face of the segment triangulation.
2. e is adjacent to two faces f1 and f2 and the following property holds. Denote t, r, u, v the sites such that t, r, u are

incident to f1 and r, t, v are incident to f2 in counter-clockwise direction. Let t1r1u1 and r2t2v2 be the tangency
triangles of f1 and f2 with ti ∈ t, ri ∈ r, u1 ∈ u, and v2 ∈ v. Then,
– the polygon t1t2r2r1 is either reduced to a segment or is a counter-clockwise oriented simple polygon (with
three or four sides),
– the circumcircles’ interiors of t1r1u1 and r2t2v2 do not intersect the sites v and u respectively.

Case 2 of this definition can be stated in a more intuitive manner: The edgee is topologically legal if f1 and f2
are two faces of a segment triangulation of{r, t, u, v} with the same topology as the segment Delaunay triangulation of
{r, t, u, v}.

The two conditions of case 2 can be simultaneously false, as shown in Figure 8. Figure 9 gives an example where
only the first condition is false. In the case wheret1 = t2 andr1 = r2, the polygont1t2r2r1 is reduced to a segment and
only the second condition determines whether the edge is topologically legal or not.

u

r

t

ve

f1

f2

u1

t1

r1

v2

t2

r2

(a) (b)

Figure 8: The edgeeof the segment triangulation in (a) is topologically illegal because the tangency triangles off1 and f2 (b) are such that neither
t1t2r2r1 is counter-clockwise oriented nor their circumcircles are“empty”.

In Theorem 6, we use the topologic legality of an edge in orderto characterize the segment triangulations ofS that
have the same topology as the Delaunay one. At first, we give a preliminary result that states an important argument
used in the proof of Theorem 6.

Lemma 2. Let s1, s2, s3 be three disjoint segments and let ai , a′i ∈ si , i = 1, 2, 3. Consider the oriented triangles
T = a1a2a3 and T′ = a′1a′2a

′
3.

If T ∩ si = {ai} and T′ ∩ si = {a′i }, for i = 1, 2, 3, and if T and T′ have the same orientation, then the curveγ formed
by the segments[a2, a3], [a3, a′3], [a′3, a

′
2], and[a′2, a2] does not enclose any point of s1.

Proof. We suppose thatγ encloses a pointO of s1 and we show that it leads to a contradiction. We can distinguish
four cases, which are illustrated in Figure 10. If we consider the case of Figure 10(a), sinceO ∈ s1, sinceT∩s1 = {a1},
and sinceT′ ∩ s1 = {a′1}, s1 is entirely enclosed by the curveγ. It means thata′1 is necessarily on the left of

−−−→
a′3a′2 and

thata1 is on the left of−−−→a2a3. As a result,T andT′ do not have the same orientation, which contradicts the hypotheses.
We can use the same argument in all other cases given in Figure10. �
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u
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t
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e
f1

f2

u1

t1

r1

v2
t2

r2

(a) (b)

Figure 9: The edgee in (a) is topologically illegal even if the circumcircles ofthe tangency triangles off1 and f2 are “empty” (b). Indeed, the
polygont1t2r2r1 is not counter-clockwise oriented.

s3

s2a2

a3

a'2

a'3
s3

s2
a'2

a'3

a2

a3
s3

s2a2

a'3

a'2

a3
s3

s2
a'2

a3

a2

a'3

(a) (d)(c)(b)

O O

O O

Figure 10: Illustration of the proof of Lemma 2.

Theorem 6. A segment triangulation of S whose all edges are topologically legal has the same topology as the
segment Delaunay triangulation of S .

Proof. LetT (S) be a segment triangulation ofS whose edges are all topologically legal. The Theorem will beproved
if we can show that the tangency triangles of the faces ofT (S) are the faces of a segment triangulation ofS whose
topology is the same as the topology ofT (S). Indeed, from Theorem 5, this new triangulation is the segment Delaunay
triangulation ofS. The first goal is to prove that the tangency triangles are pairwise disjoint and do not cut any site
of S.

The main idea of the proof is to use a result of Devillers et al.[10] which asserts that a representation of a
combinatorial map by smooth curves in the plane is a planar graph if:
– All the circuits of the map are represented by simple closedcurves,
– The ordering at each vertexsof the map is given by the geometric ordering of the curves emanating from the point
representings.
Actually, the result of Devillers et al. is stated with segments instead of smooth curves but an approximation argument
leads to the same result for smooth curves. In the remaining of the proof, we will refer to this result as the planar
representation lemma.

In the following, we define a planar geometric graphΓ fromT (S) and we callC the map of whichΓ is a geometric
representation in the plane (Step 1). Then, we define anothergeometric representationΓ′ of C with the tangency
triangles ofT (S) (Step 2). Finally, we prove thatΓ′ satisfies the conditions needed to use the planar representation
lemma and we conclude that the tangency triangles are pairwise disjoint and do not cut any site ofS (Step 3).

Step 1. At first, we construct a geometric graphΓ from the segment triangulationT (S).
Let ε be a strictly positive real number. For every sites ∈ S, let γs,ε be the simple closed curve formed by the

set of points at a distanceε from s. The curvesγs,ε are oriented in counter-clockwise direction. We chooseε small
enough so that the curvesγs,ε are pairwise disjoint.

Let T be a triangle ofT (S) whose vertices are in three sitess, t, andu in counter-clockwise direction. LetpT,s,
pT,t, andpT,u be three points insideT such thatpT,s ∈ γs,ε, pT,t ∈ γt,ε, andpT,u ∈ γu,ε. It is easy to see that we can
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always choose the pointspT,s, pT,t, andpT,u such that they can be joined with three disjoint curvesγT,s,t, γT,t,u, and
γT,u,s that are insideT at a distance less thanε from the boundary ofT and that meetγs,ε, γt,ε, andγu,ε only at their
endpoints. We do the same with the outer face ofT (S), i.e.,R2 \ conv(S). In the following,γT,s,t denotes the curve
that goes frompT,s to pT,t, andγT,t,s denotes the curve that goes frompT,t to pT,s, i.e., it is the same geometric curve,
but with the reverse orientation.

Let s be a site and letT0, ...,Tk−1 be the faces ofT (S) incident tos in counter-clockwise direction arounds (the
outer face can be one of them). The curveγs,ε is split intok disjoint simple curvesγs,Ti ,Ti+1 that go from the pointspTi ,s

to pTi+1,s (i = i mod k). As before,γs,Ti+1,Ti andγs,Ti ,Ti+1 are the same geometric curve, but with reverse orientations.
From the choice ofε, the geometric graphΓ is planar (see Figure 11(a)) and it defines a combinatorial map, which

we callC.

s

t1

t2

t3

T1
T2

pT1,t1

pT1,s

pT1,t2

pT2,s

pT2,t2

pT2,t3

(a)

p'T1,s
s

t1

t2

t3

p'T2,s

p'T1,t1 p'T1,t2

p'T2,t2

p'T2,t3

T'1

T'2

(b)

Figure 11: Illustration of Step 1 (a) and Step 2 (b) in the proof of Theorem 6.

Step 2. Now we construct another geometric representationΓ′ of the mapC. We use the same method as in Step 1,
but with the tangency triangles ofT (S) instead of its faces. For every triangleT of T (S), we denote byT′ the
corresponding tangency triangle.

In every tangency triangleT′, we choose three pointsp′T,s, p′T,t, andp′T,u that are respectively on the curvesγs,ε,
γt,ε, andγu,ε. Consider now two trianglesT1 andT2 that are consecutively incident to the same sitesand their tangency
trianglesT′1 andT′2. Using the topologic legality, it easy to prove thatT′1 andT′2 are disjoint. As in Step 1, the points
p′T,s, p′T,t, andp′T,u can be joined with three disjoint simple curvesγ′T,s,t, γ

′
T,t,u, andγ′T,u,s that are insideT′ and at a

distance less thanε from the boundary ofT′.
In relation to Step 1, the only difference is the definition of the curves around the sites. Lets be a site and let

T0, ...,Tk−1 be the faces ofT (S) incident tos in counter-clockwise direction arounds. For everyi ∈ {0, ..., k− 1}, we
consider the curveγ′s,Ti ,Ti+1

that goes fromp′Ti ,s
to p′Ti+1,s

in counter-clockwise direction onγs,ε.
The set of curvesγ′T,s,t, γ

′
s,Ti ,Ti+1

defines a new geometric representationΓ′ of the mapC (see Figure 11(b)).

Step 3. The third step consists of proving that the geometric representationΓ′ of C is planar. Indeed, ifΓ′ is planar
for eachε > 0 small enough, then, lettingε go to 0, we see that the tangency trianglesT′ form a segment triangulation
of S (note that the “outer” curves ofΓ′ are choosen at a distance less than or equal to 2ε from conv(S)).

We prove thatΓ′ is planar with the planar representation lemma. To this aim we prove thatΓ′ satisfies the two
conditions of this lemma. Since each triangleT′ has the same orientation as the corresponding triangleT in T (S)
and since the curvesγs,Ti ,Ti+1 andγ′s,Ti ,Ti+1

are counter-clockwise oriented onγs,ε, the geometric order of the curves of
Γ′ around a vertex is the same as the geometric order of the curves of Γ around the corresponding vertex. Thus the
second condition of the planar representation lemma holds.It remains to show that the geometric representations (in
Γ′) of the circuits ofC are simple closed curves. The mapC contains three types of circuits :
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1. circuits with three arcs that correspond to the faces ofT (S) and the outer circuit that corresponds to the boundary
of conv(S);

2. circuits with four arcs that correspond to the edges ofT (S);
3. circuits around each site ofT (S).

By construction, geometric representations of first-type circuits are simple curves. Geometric representations of
second-type circuits are also simple curves because all edges ofT (S) are topologically legal and all tangency triangles
are pairwise disjoint. The result is not so obvious for third-type circuits.

Let sbe a site and letT0, ...,Tk−1 be the faces ofT (S) that are incident tos in counter clockwise direction around
s. For the sake of simplicity, we suppose that these faces are all internal faces. We begin by arbitrarily choosing a

non zero vector
−→
U and an originO in s. For every oriented curveγ : [a, b] → R

2 that does not containO, we denote

by var(γ) the angle variation∡(
−→
U ,
−−−−→
Oγ(t)) alongγ. Since all the curvesγ′s,Ti ,Ti+1

are oriented in counter clockwise
direction, it is enough to show that:

var(γ′s,T0,T1
) + var(γ′s,T1,T2

) + ... + var(γ′s,Tk−1,T0
) = 2π. (4)

For everyi ∈ {0, ..., k − 1}, let t0, ..., tk−1 be the different sites ofs such thatTi−1 andTi are incident toti . The
geometric representationα′i of the circuit corresponding to a faceTi is a closed curve that begins at the pointp′Ti ,s

and
that is formed by the three curvesγ′Ti ,s,ti

, γ′Ti ,ti ,ti+1
andγ′Ti ,ti+1,s

. It is obvious that the curvesα′i do not enclose the origin
O, thus:

var(α′i ) = var(γ′Ti ,s,ti ) + var(γ′Ti ,ti ,ti+1
) + var(γ′Ti ,ti+1,s) = 0.

Let β′i be the geometric representation of the circuit corresponding to an edge incident toTi−1 andTi . It is a closed
curve that begins at the pointp′Ti−1,s

and that is formed by the four curvesγ′Ti−1,s,ti
, γ′ti ,Ti−1,Ti

, γ′Ti ,ti ,s
andγ′s,Ti ,Ti−1

. The
orientation condition of the topologic legality implies that the curvesβ′i do not enclose the originO, thus :

var(β′i ) = var(γ′Ti−1,s,ti ) + var(γ′ti ,Ti−1,Ti
) + var(γ′Ti ,ti ,s) + var(γ′s,Ti ,Ti−1

) = 0.

Now, if we computevar(β′i ) + var(α′i ) for everyi ∈ {0, ..., k− 1}, then all the termsvar(γ′Ti−1,s,ti
) andvar(γ′Ti−1,ti ,s

)
cancel out. It is the same for the termsvar(γ′Ti ,s,ti

) andvar(γ′Ti ,ti ,s
). Indeed, these terms are the angle variations along

the same geometric curve, but in reverse orientations. We get:

k−1∑

i=0

(var(α′i ) + var(β′i )) =
k−1∑

i=0

(var(γ′Ti ,ti ,ti+1
) + var(γ′ti ,Ti−1,Ti

) + var(γ′s,Ti ,Ti−1
)) = 0.

We deduce that:
k−1∑

i=0

var(γ′s,Ti−1,Ti
) =

k−1∑

i=0

(var(γ′ti ,Ti−1,Ti
) + var(γ′Ti ,ti ,ti+1

)). (5)

SinceΓ is planar by construction, the same calculation withΓ gives rise to the following result:

k−1∑

i=0

var(γs,Ti−1,Ti ) =
k−1∑

i=0

(var(γti ,Ti−1,Ti ) + var(γTi ,ti ,ti+1)) = 2π. (6)

The last thing to see is that the sums (5) and (6) are equal. To this aim, on each curveγti ,ε, it is enough to choose
a curveδi that joinspti ,Ti−1 to p′ti ,Ti−1

. Since the trianglesTi andT′i have the same orientation, from Lemma 2, the
successive curves

γti ,Ti−1,Ti , γTi ,ti ,ti+1, δi+1, γ
′
Ti ,ti+1,ti , γ

′
ti ,Ti ,Ti−1

, −δi
form a closed curve that do not enclose the originO (see Figure 12). Summing overi the angle variations, we get:

k−1∑

i=0

(var(γti ,Ti−1,Ti ) + var(γTi ,ti ,ti+1) + var(δi+1) + var(γ′Ti ,ti+1,ti ) + var(γ′ti ,Ti ,Ti−1
) + var(−δi)) = 0
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k−1∑

i=0

(var(γti ,Ti−1,Ti ) + var(γTi ,ti ,ti+1) + var(γ′Ti ,ti+1,ti ) + var(γ′ti ,Ti ,Ti−1
)) = 0

k−1∑

i=0

(var(γti ,Ti−1,Ti ) + var(γTi ,ti ,ti+1)) +
k−1∑

i=0

(var(γ′Ti ,ti+1,ti ) + var(γ′ti ,Ti ,Ti−1
)) = 0

k−1∑

i=0

(var(γti ,Ti−1,Ti ) + var(γTi ,ti ,ti+1)) =
k−1∑

i=0

(var(γ′Ti ,ti ,ti+1
) + var(γ′ti ,Ti−1,Ti

)),

hence

2π =
k−1∑

i=0

var(γs,Ti−1,Ti ) =
k−1∑

i=0

var(γ′s,Ti−1,Ti
).

It follows that the circuits ofΓ′ are simple curves. Thus, the tangency triangles are the faces of a segment trian-
gulation ofS. It remains to prove that this latter triangulation has the same topology asT (S). Since the adjacency
relations of a triangle and of its tangency triangle are the same, the only thing to prove is that the cyclic ordering at
each vertex is unchanged. But it is an easy consequence of (4). �

p'T1,s
s

t1

t2

t3

p'T2,s

p'T1,t1

p'T1,t2

p'T2,t2

p'T2,t3

pT1,t1

pT1,s

pT1,t2

pT2,s

pT2,t2

pT2,t3

Figure 12: Illustration of Step 3 of the proof of Theorem 6.

Theorem 6 enables to test whether a segment triangulation has the topology of the segment Delaunay triangulation
by checking the topologic legality of its edges. On the one hand, the topologic legality test of a given edge can be
done in constant time since the only operations needed are computing the tangency points of a circle with three sites,
checking the orientation of a polygon with (at most) four sides, and testing whether a line segment meets the interior
of a circle. On the other hand, from Theorem 3, the number of edges in a segment triangulation is linear with the
number of sites. Hence:

Corollary 1. It can be checked in linear time whether a given segment triangulation has the same topology as the
segment Delaunay triangulation.

4. Flip algorithm

4.1. Segment triangulations of S -polygons

Each step of the flip algorithm that will be presented in Section 4.2 performs local modifications inside a subset
of the current segment triangulation that is anS-polygon. So we first generalise the concept of segment triangulation
to S-polygons (see Figures 13(a) and 13(b)).
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Actually, when the intersection of anS-polygon andS is a finite point set, a segment triangulation of this polygon
is nothing more than a classical triangulation of the polygon.

In the following, U always refers to anS-polygon, and we denote byS′ the set of connected components of
S′ = U ∩ S.

Definition 9. A segment triangulationT of U (with respect to S ) is a partition of U in disjoint sites, edges, and faces
such that:
(i) Every face ofT is an open triangle whose vertices are in three distinct sites of S′ and whose open sides do not
intersectS′,
(ii) No face can be added without intersecting another one,
(iii) The edges ofT are the (possibly two-dimensional) connected components of U \ (F ∪ S′), where F is the union
of the faces ofT .

(c)(b)(a)

σ

Figure 13: AnS-polygonU (a), a segment triangulation ofU (b), and a segment Delaunay triangulation ofU (c). The circleσ is tangent to four
connected components ofU ∩ S.

Theorem 7. The number of faces of a segment triangulation of U depends only on the couple(U,S).

Proof. Let T be a segment triangulation ofU. As in Definition 3, a combinatorial mapM can be associated with
T . Moreover, using the same method as in proof of Proposition 1, M is planar. The faces ofM match the faces of
T together with the connected components of the complement ofU in R

2. SinceM is planar, making use of Euler’s
relation, the result can be easily proved in the same way as Theorem 3. �

We can now define the segment Delaunay triangulation of anS-polygonU (see Figure 13(c)). In the following,
we say that a pointq ∈ U is visible(relatively toU andS) from a pointp ∈ U if the open segment ]p, q[ is included
in U \ S.

Definition 10. 1. Let t be a closed triangle included in U with vertices inS. The interior of t is a Delaunay triangle of
U (with respect toS) if there exists a point p in the interior of t such that the interior of the circumcircle of t contains
no point ofS visible from p.
2. A segment triangulation of U is Delaunay if all its faces are Delaunay triangles.

It should be noted that the circumcircle of a Delaunay triangle t contains no point ofS visible from any point int.
This can be proved using Corollary 2.

We can also remark that the concept of Delaunay triangle usedin this definition is very close to the one used in
the classical definition of a constrained Delaunay triangulation [17, 7].
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Theorem 8. Every S -polygon admits a segment Delaunay triangulation.

This result will be a consequence of Theorems 11 and 12 of Subsection 4.3. Note that a segment Delaunay
triangulation of anS-polygonU is not necessarily unique since four connected components of U∩Smay be cocircular
even ifS is in general position (see Figure 13(c)).

4.2. Description of the flip algorithm

In this section, we give a flip algorithm that transforms any segment triangulation ofS in a segment triangulation
that has the same topology as the segment Delaunay triangulation of S.

The inputs of the flip algorithm are a segment triangulation of S and a queue that contains all edges of the
triangulation.

One step of the algorithm goes as follows. The edgee at the head of the queue is popped. LetPe be the closure
of the union ofe and of its at most two adjacent triangles:Pe is called the input polygon ofe (see Figure 14 (b) and
(f)). Clearly,Pe is anS-polygon and since it meets at most four sites, the Delaunay triangles ofPe can be computed
in constant time. The triangulation ofPe is then replaced with a Delaunay triangulation ofPe. This gives rise to a new
segment triangulation ofS (it is a consequence of Theorems 7 and 8). Finally, the edge replacinge is pushed at the
tail of the queue.

If this step changes the topology of the current segment triangulation, we say that the processed edgee has been
flipped.

Beside the queue, the algorithm maintains the number of topologically illegal edges in the current triangulation.
Notice that after the flip of an edgee, only the legality of the new edge and of the at most four edgesadjacent toPe

has to be checked.
The algorithm ends when all edges are topologically legal. From Theorem 6, it means that the resulting segment

triangulation ofS has the same topology as the segment Delaunay triangulationof S.

(a)

e1

e2

e3

(g)(e)

e1

e2

e3

(f)

(c)

e3

(d)

e1

e2

e3

(b)

e3

(i)(h)

e1

e2

e3

e1

e1

Figure 14: The flip algorithm transforms the given segment triangulation (a) in a segment triangulation (h) that has the same topology as the
segment Delaunay triangulation (i).
The topology in (a) and the topology in (h) differ only by the flip ofe1, which is the only illegal edge of (a). However, the edgee1 of (a) cannot be
immediately flipped because its input polygon is not convex.So, the legal edgese3 ande2 have to be processed beforee1 becomes flippable.
In (b), the algorithm considers the input polygonPe3 of the edgee3. Then, in (c), it computes the segment Delaunay triangulation of Pe3 and this
gives rise to a new segment triangulation in (d). In the same way, the processing of the edgee2 leads to (e). Finally, the edgee1 can be flipped (f,
g), which leads to (h).
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In case of point set triangulations, when an illegal edge is processed by the flip algorithm, it is flipped to a new
legal edge, and the illegal edge will never reappear. Since there are finitely many possible edges, the flip algorithm
reaches the Delaunay triangulation after a finite number of steps. Our flip algorithm looks very close to this classical
flip algorithm, but we can not use the same idea to prove its convergence because of some important differences (see
Figure 14):
– Even if an edge is not flipped, its geometry may change,
– some illegal edges cannot be flipped,
– a new constructed edge is not necessarily legal.

For point set triangulations, another way to prove the convergence of the flip algorithm to the Delaunay triangu-
lation, is to lift the point set on the three-dimensional paraboloidz = x2 + y2. It is well known that the downward
projection of the lower convex hull of the lifting is the Delaunay triangulation of the point set. Conversely, every other
triangulation lifts to a non convex polyhedral surface above the lower convex hull. Now, it is enough to notice that an
edge flip brings down the polyhedral surface.

We will use the same approach to prove that our flip algorithm always reaches a segment triangulation that has
the same topology as the segment Delaunay triangulation. Atfirst, for everyS-polygonU, the lower convex hull
of the lifting of U ∩ S on the paraboloid is defined with the help of locally convex functions and we show that it
projects down to the segment Delaunay triangulation ofU (Theorem 12). Then, we define the lifting of any segment
triangulation that is not Delaunay (Definition 12) and we show that the lifting of the segment Delaunay triangulation
is lower than or equal to the lifting of any other segment triangulation (Theorem 13). In order to show the correctness
of the algorithm, we prove that, after a step of the algorithm, the lifting of the resulting segment triangulation is lower
than or equal to the lifting of the segment triangulation before this step (Theorem 14). This leads to prove that the
sequence of steps builds a sequence of segment triangulations that converges to the segment Delaunay triangulation
(Theorem 14). It remains to see that, after a finite number of steps, the segment triangulation constructed by the flip
algorithm has the same topology as the segment Delaunay triangulation (Corollary 3).

4.3. Locally convex functions and segment triangulations

By using locally convex functions, we define and characterize the lifting on a paraboloid inR3 of a segment
triangulation and of a segment Delaunay triangulation.

Recall that, ifV is a subset ofR2, a functionφ : V → R is locally convex if the restriction ofφ to each segment
included inV is convex (see for example [3]). We define now the lower convexhull of a function, which we shall use
instead of the usual lower convex hull of a subset inR

3. Note that it corresponds to this usual lower convex hull when
the domainV is convex.

Definition 11. Let L(V) be the set of functionsφ : V → R that are locally convex on V. Given a real-valued function
f defined on V∩ S, the lower convex hull of f on(V,S) is the function fV,S defined on V by

fV,S(x) = sup{φ(x) : φ ∈ L(V), ∀y ∈ V ∩ S, φ(y) ≤ f (y)}.

In the following, the above definition will be used on anS-polygonU with the functionf : R
2 → R defined by

f (x, y) = x2 + y2. The main aim of this subsection is to explain that the function fU,S determines a segment Delaunay
triangulation ofU (see Figure 15). Next theorem gives information about the value of the functionfU,S at a pointp.
For every pointp in U, we denote byvisp the closure of the set of points ofSvisible fromp, that is, the closure of the
set of pointsq in S such that the open segment ]p, q[ is included inU \ S. The convex hull ofvisp is denoted byVp.

For the sake of readability, intermediate lemmas and long proofs are postponed to Subsection 4.4.

Theorem 9. Every point p of U belongs to a closed convex subset of U where the function fU,S is affine and whose
extreme points are one, two, or three points ofS. Moreover fU,S(p) = fVp,visp(p).

Corollary 2. Let t be a triangle included in U with vertices inS. fU,S is affine on t if and only if t is a Delaunay
triangle of U.
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U

Figure 15: AnS-polygonU and the graph offU,S. U is decomposed into two triangles and infinitely many line segments wherefU,S is affine. The
triangles are Delaunay triangles ofU and the union of the segments forms the five edges of the segment Delaunay triangulation ofU.

Proof. Suppose thatfU,S is affine ont. Let p be any point in the interior oft andq ∈ Sp. Denoteh : R
2 → R the affine

function equal tofU,S on t. The functionfU,S is convex on [p, q] and is equal toh on a neighborhood ofp. Therefore
fU,S ≥ h on [p, q]. Since fU,S = f onS, f (q) = fU,S(q) ≥ h(q). Henceq is not in the region ofR2 where f < h, which
is precisely the interior of the circumcircle of the triangle t.

Conversely, suppose thatt is a Delaunay triangle. We begin by the caseU = conv(S). There exists a pointp
in the interior oft such that the interior of the circumcircle oft contains no point ofS visible from p. Consider the
affine functionht : R

2 → R which is equal tof on the vertices of the trianglet. SinceU is convex, the interior of the
circumcircle contains no point ofS. Thereforeht ≤ f on S. It follows that fU,S ≥ ht on the entire setU. On the other
hand,fU,S = f = ht on the vertices oft. Thus, by convexity,fU,S ≤ ht on t. It follows that fU,S = ht on t.

In the general case, ift is a Delaunay triangle ofU then, by definition, it is also a Delaunay triangle ofVp

with respect tovisp. Hence, by the convex case,fVp,visp is affine ont. By the previous Theorem, we havefU,S(p) =
fVp,visp(p). SincefU,S is locally convex, we havefU,S ≤ fVp,visp on t. Now, p is in the interior oft, thereforefU,S = fVp,visp

on t. �

The next step consists in showing thatU can be partitioned into maximal convex subsets where the function fU,S
is affine (see Figure 15). Actually, whenU = conv(S), these subsets are the downward projections of the relative
interiors of the lower faces of the convex hull of the liftingof S on the paraboloid{z= x2 + y2}. In the general case:

Theorem 10. Let p be a point of U and denote byCp the set of all relatively open convex subsets of U containingp
where fU,S is affine.
1. There is a maximal element Cp in Cp, i.e., Cp ∈ Cp and, for every C∈ Cp, C ⊂ Cp.
2. Cp has finitely many extreme points, which are all inS, and fU,S is affine onCp.
3. The collection of all sets Cp, p ∈ U, forms a partition of U.

Theorem 11. Let T be a set of triangles that decompose all the two-dimensional Cp, p ∈ U\S, and whose vertices
are extremal points of Cp. Then the interiors of the triangles of T are the faces of a segment triangulation of U.

Such a triangulation is said to beinducedby fU,S. Then, from Corollary 2,

Theorem 12. A segment triangulation of U is induced by fU,S if and only if all its triangles are Delaunay.

As a consequence, the graph of the functionfU,S is the lifting of a segment Delaunay triangulation on the
paraboloid. We define now the lifting of any segment triangulation and show that it is above the lifting of a seg-
ment Delaunay triangulation.
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Definition 12. LetT be a segment triangulation of U. The function fU,S,T : U → R is defined in the following way:
– fU,S,T (p) = f (p) if p is a point ofS,
– fU,S,T (p) = fe,S(p) if p is in an edge e ofT ,
– fU,S,T (p) = ft,S(p) if p is in a face t ofT .

Theorem 13. For every segment triangulationT of U, fU,S ≤ fU,S,T .

Proof. Let V be a closed subset ofU. The inclusionV ⊂ U implies bothV ∩ S⊂ U ∩ Sand fU,S is locally convex on
V. It follows that fU,S ≤ f on V ∩ S and thereforefU,S ≤ fV,S on V. Using this last inequality withV the closure of a
face or of an edge ofT , we getfU,S ≤ fU,S,T . �

4.4. Proofs of the main results

4.4.1. Proof of Theorem 9
Lemma 3. Let p, q, r be three points in U such that:
– There exists a ball B(p, ε) centered at p with radiusε > 0 such that B(p, ε) ∩ conv({p, q, r}) is included in U,
– The two open segments]p, q[ and]p, r[ are included in U\S,
– The interior of the triangle t= conv({p, q, r}) contains no point u ofS such that the segment[p, u] is included in U.
Then, the triangle t is included in U.

Proof. Let E be the set of pointsx in to ∩ ∂U with [p, x] ⊂ U. The only thing to prove is thatE = ∅. Suppose on the
contrary thatE , ∅. By the third hypothesis,E ∩ S = ∅. Furthermore, sinceE ⊂ ∂U, each pointx in E must be in a
boundary segment ]s1, s2[ of U with s1, s2 in S and ]s1, s2[∩S = ∅. Now, it is easy to see that a segment included in
U cannot cross such a boundary segment; therefore ]s1, s2[ crosses neither ]p, q[ nor ]p, r[. It follows that s1 or s2 is
in to. Since there are only finitely many such boundary segments, there is an endpoints ∈ S∩ to of such a segment
where the affine functionϕ defined byϕ(p) = 0 andϕ(q) = ϕ(r) = 1 is minimal. By hypothesis, the segment [p, s]
is not included inU and therefore it must contain a pointx in E. Finally, the inequalitiesϕ(si) ≤ ϕ(x) < ϕ(s), which
hold for one of the two pointss1 or s2 associated withx, contradict the definition ofs. �

Lemma 4. Let p be in Uo\S and let H be a closed half space such that p∈ ∂H. Then there exists a point q∈ S\H
such that[p, q[ is included in U\S.

Proof. Moving on a half line from the pointp in the open half planeR2\H, we can find a pointu ∈ S∪ ∂U such that
u ∈ R

2\H and [p, u[⊂ U\S. If u ∈ S, we are done. Otherwise, there exists a boundary segment ]s1, s2[ containing
u and such thats1, s2 ∈ S and ]s1, s2[∩S = ∅. At least one of the two pointss1 and s2 is in R

2\H. Suppose it is
s = s1. Let v be the point ofS in the trianglet = conv({p, u, s}) such that the anglêupv is minimal. The triangle
t′ = conv({p, u, v}) contains no point ofS except on the line (p, v). If the segment [p, v[ is included inU, we are done.
Otherwise there is a pointr of ∂U in the segment [p, v] such that [p, r[ is included inUo. As before, if [p, r] meetsS,
we are done. Otherwise there exists a boundary segment ]r1, r2[ with r1, r2 ∈ S andr ∈]r1, r2[. One of the two points
r1, r2 must be inside the trianglet′, which contradicts the definition ofv. �

Lemma 5. Let f : R
n → R be a convex function, let U be a subset ofR

n, let A be a closed convex subset ofR
n, let

φ : A→ R be a convex function, and let W be a connected component of Ao ∩ U. Assume thatφ ≥ f on A and that
φ = f on∂A. Then the function g: U → R defined by

g =

{
f on U\W
φ on W

is locally convex on U.

Proof. Let p andq be two points ofU such that the segment [p, q] is included inU. Let us show that the restriction
g|[p,q] of g to [p, q] is convex. If [p, q] does not meetW, theng|[p,q] = f on [p, q] andg|[p,q] is convex on [p, q]. Note that
I = [p, q] ∩W is an interval. Indeed, letr, s be two points ofW ∩ [p, q]. SinceAo is convex, [r, s] is included inAo.
Moreover [r, s] ⊂ [p, q] ⊂ U, thus [r, s] ⊂ U ∩ Ao. By definition of a connected component, [r, s] is included inW.
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Denoter ands the endpoints ofI .
1. Suppose thatr, s ∈ ∂A. By definition of the function,g|[p,q] = f on [p, r], φ on [r, s], and f on [s, q]. If r = s, then
g|[p,q] = f on [p, q] andg|[p,q] is convex on [p, q]. If r , s, on the one hand, the functionφ is convex andφ ≥ f on [r, s],
on the other hand,f (r) = φ(r), therefore the right derivative ofg|[p,q] is non decreasing on [p, s[. It follows that g|[p,q]

is convex on [p, s[. In the same way, using the left derivative, we show thatg|[p,q] is convex on ]r, q] which shows that
g|[p,q] is convex on [p, q].
2. Suppose thatr, s ∈ Ao. Let us show thatr = p ands = q. Suppose on the contrary that [p, r[, ∅. Sincer ∈ Ao,
there existsr ′ ∈ [p, r[ such that [r ′, r] ⊂ Ao. Now, [r ′, r] ⊂ [p, q] ⊂ U, therefore [r, r ′] ⊂ U ∩ Ao. It follows thatr and
r ′ are in the same connected component ofU ∩ Ao andr cannot be an endpoint ofI . By the same way of reasoning,
we prove thats= q. Thereforeg|[p,q] = φ on [p, q], and thusg|[p,q] is convex.
3. Suppose thatr ∈ ∂A ands ∈ Ao. In this case, we show as in second case thats= q and the result follows as in the
first case. �

Proof of Theorem 9.
Convex case.Assume thatU = conv(S). Consider the liftingE = {(x, f (x)) : x ∈ S} of S and the convex hull

K = conv(E). The set of all lower points ofK is the graph of a convex functionϕ : U → R. The convexity off
implies thatϕ = f on S, thusϕ ≤ fU,S. It is not difficult to prove thatϕ is affine on any downward projectionG of a
lower faceF of K . Moreover, sincef is strictly convex,E is the set of extreme points ofK . It follows that the set
ext(G) of extreme points ofG which are the projection of the extreme points ofF, is included inS. Now, we know
that fU,S = ϕ on ext(G), fU,S is convex andϕ is affine onG, thereforefU,S = ϕ on G. It follows that for any point
p ∈ U, there is a closed convex subsetG of U containingp such thatfU,S is affine onG andext(G) ⊂ S.
In the case of a pointp in the interior ofU, it is possible to strengthen the last conclusion: togetherwith the setG there
exists an affine functionh : R

2 → R equal to fU,S on G and lower than or equal tof on S. This can be easily seen
using a supporting plane ofK containing (p, ϕ(p)). We shall use this fact later in the proof.

General case.If p is in S or in ∂U, the proof of the Theorem is easy and we leave it to the reader.Let p ∈ Uo\S.
Consider the convex setVp = conv(visp) instead ofU. We proceed in five steps.

Step 1. We prove that p is in the interior of Vp = conv(visp).
If p < Vo

p, there exists a supporting closed half planeH such thatp ∈ ∂H andVp ⊂ H. By Lemma 4, there exists a
point q ∈ S\H such that [p, q[⊂ U\S. Thereforeq ∈ visp and we have bothq ∈ visp ⊂ H andq ∈ S\H, which is
impossible.

Step 2. There exists an affine function hp on R
2 and a subset Sp of visp such that hp ≤ f on visp, f = hp on Sp and

p ∈ conv(Sp) (hence fVp,S = hp on conv(Sp).
The existence ofSp follows from the convex case of the theorem used withVp = conv(visp) instead ofU and with
visp instead ofS.

Step 3. We prove that conv(Sp) ⊂ U.
Denote byC the set of pointsq ∈ conv(Sp) such that [p, q] ⊂ U. We would like to show thatC = conv(Sp). Since
each pointq in Sp is also inC, it is enough to prove thatC is convex. Letq andq′ be inC. If q, q′ andp are on the
same line then [q, q′] ⊂ [p, q] ∪ [p, q′] ⊂ U, therefore [q, q′] ∈ C. It remains to study the case whereq, q′ andp are
not on the same line. Sincep is not inS, p is not inSp, hence by strict convexity off , f (p) < hp(p). Again, the strict
convexity of f implies that (conv({p, q, q′})\{q, q′} is included in{x ∈ R

2 : f (x) < hp(x)}. Moreoverhp ≤ f on visp,
thus (conv({p, q, q′})\{q, q′} cannot contain a points ∈ S such that [p, s[⊂ U\S. Making use of Lemma 3, we get that
conv({p, q, q′}) ⊂ U; it follows that [q, q′] ∈ C andC = conv(Sp).

Step 4. We prove that fU,S ≤ hp on conv(Sp).
It simply comes from the convexity offU,S on conv(Sp) which is included inU and from the equalityfU,S = f = hp

onSp.
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Step 5. We prove that fU,S = hp on conv(Sp).
This is the main step of the proof and it needs Lemma 5. LetA be the convex subset ofR

2 where f ≤ hp. Sincep is
not in S, p is not inSp, and by strict convexity off , we havef (p) < hp(p). It follows thatp is in the interiorAo of A.
Let W be the connected component ofU ∩ Ao that containsp. By Lemma 5, the functiong : U → R defined by

g =

{
f on U\W
hp on W

is locally convex onU. If we can prove thatg ≤ f onS∩U then fU,S ≥ g and sinceSp ⊂ {hp = f } andconv(Sp)\Sp ⊂
W, fU,S ≥ g = hp onconv(Sp). We now prove thatg ≤ f onS∩ U.
It is enough to show thatW does not contain any point ofS. Suppose on the contrary that there exists a pointq ∈ S∩W.
SinceW is arcwise connected, there exists a pathγ joining p to q in W. By continuity, the distanceδ = d(γ, ∂A) is
strictly positive.
Let Aδ = {x ∈ A : d(x, ∂A) ≥ δ}. ObviouslyAδ is closed and it is easy to see that it is convex. Let us show that
Aδ ∩W is closed. Indeed, ifx ∈ Aδ ∩W, thenx ∈ U. It follows that there exists a ballB(x, r) with r > 0 such that
Ux = B(x, r)∩U is star shaped fromx and thus connected. ThereforeWx = Ux ∩ Ao is also star shaped fromx. Since
B(x, r) ∩W ∩ Aδ is not empty and is included inWx, Wx contains at least one point ofW. Therefore by definition of
connected components,Wx ⊂W andx ∈W which implies thatAδ ∩W is closed.
It follows that there exists a shortest pathγδ joining p to q in Aδ ∩W. For all x in U\S, there existsr > 0 such that
U∩B(x, r) is convex, therefore for allx in Aδ∩W\S, there existsr > 0 such thatAδ∩W∩B(x, r) is convex. It follows
that the pathγδ is straight on the parts where it does not meetS. Let q′ be the first point ofS encountered byγδ. The
segment [p, q′] is in Aδ ∩W and [p, q′[ does not contain any point ofS, it follows thatq′ ∈ visp. But q′ ∈ Aδ ⊂ Ao,
thus by strict convexity off , f (q′) < hp(q′) which contradicts the definition ofhp.

At last, by Caratheodory theorem,Sp can be chosen with two or three points. �

Note that, in case ofU = conv(S), the first step of the proof shows thatfU,S is lower semi continuous. Moreover,
the main geometric fact aboutU, used in the proof of the Theorem, is that for all points ofp in U\S, there exists a
ball B(p, r) such thatU ∩ B(p, r) is convex. This is the reason why the Theorem may be hard to extend in higher
dimensions.

4.4.2. Proof of Theorem 10
Lemma 6. Let p0, p1, q0, q1 be four points of U such that:
– The segments[p0, p1] and[q0, q1] are included in U,
– The intersection]p0, p1[∩]q0, q1[ contains at least one point p,
– The function fU,S is affine on both segments[p0, p1] and[q0, q1].
Then the quadrilateralQ = conv({p0, p1, q0, q1}) is included in U and fU,S is affine onQ.

Proof. If the four pointsp0, p1, q0, andq1 are on the same line, then the result is obvious. Otherwise, from the
hypotheses, the pointp is in the interior ofQ. Let hp be the affine function equal tofU,S at p0, p1, andq0. Since fU,S
andhp are affine on [p0, p1] and since they are equal atp andq0, it means that they are equal on the entire segment
[q0, q1]. Consequently,hp and fU,S are equal on [p0, p1] and on [q0, q1].

The applicationf is strictly convex,fU,S(p0) ≥ f (p0), fU,S(p1) ≥ f (p1) and fU,S is affine on [p0, p1], therefore
fU,S(p) > f (p) andp < S.

Let us show that the interiorω of Q dose not contain a point ofS visible from p. Let q be a point ofω such
that [p, q] ⊂ U. Sincep < S, there exists a convex neighbourhood ofp in U. Sincep ∈]p0, p1[∩]q0, q1[ and since
p0, p1, q0 are not on the same line, the convex neighbourhood ofp in U necessarily contains two points of [p0, p1] and
two points of [q0, q1], which are the vertices of a quadrilateral that containsp in its interior and that is included in the
convex neighbourhood ofp in U. Thus, there existsε > 0 such that the ballB(p, ε) is included inU. Consequently,
there exists a pointq′ ∈ B(p, ε) such thatp ∈]q′, q[ and such thatq′ is the barycenter of two pointsp2, q2 that are
respectively in the segments [p0, p1] ∩ B(p, ε) and [q0, q1] ∩ B(p, ε). Sinceq′ ∈ [p2, q2] ⊂ U, since fU,S is convex on
[p2, q2], and sincehp is affine on [p2, q2], we havefU,S(q′) ≤ hp(q′). Moreover, the equalityfU,S(p) = hp(p) and the
convexity of fU,S on [q′, q] implies that fU,S(q) ≥ hp(q). Now,q ∈ ω, hp ≥ f on p0, p1, q0, q1, and f is strictly convex,
thushp(q) > f (q). As a consequence,fU,S(q) > f (q) andq < S.
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Sinceω contains no point ofSvisible fromp, Lemma 3 shows that the four trianglesconv({p, p0, p1}), conv({p, p0, q0}),
conv({p, p1, q0}) andconv({p, q0, q1}) are included inU, thereforeQ is included inU. The convexity offU,S onQ and
the equality offU,S andhp on [p0, p1] ∪ [q0, q1] show thatfU,S = hp onQ. �

Using standard arguments, one can show:

Lemma 7. Let C1 and C2 be two relatively open convex subsets ofR
n. If the intersection C1 ∩C2 is not empty, then

conv(C1 ∪C2) is relatively open.

Proof of Theorem 10.
Assume first thatp < S. Observe thatCp is non empty since{p} ∈ Cp.

Step 1. Let us show that, ifC0 andC1 are inCp, thenconv(C0 ∪C1) is in Cp. We can assume thatC0 andC1 are not
reduce to{p}. From Lemma 7, we know thatconv(C0 ∪C1) is relatively open.
First, we prove that, for allp0 in C0 and allp1 in C1, [p0, p1] ⊂ U, and thatfU,S is affine on [p0, p1]. If p0 or p1 is equal
to p, the result is obvious, thus we can assume thatp0 , p andp1 , p. SinceC0 andC1 are relatively open, there exists
q0 ∈ C0 andq1 ∈ C1 such thatp is in ]p0, q0[ and in ]p1, q1[. By Lemma 6, the quadrilateralQ = conv({p0, p1, q0, q1})
is included inU and fU,S is affine onQ. Hence [p0, p1] ⊂ U and fU,S is affine on [p0, p1]. It remains to show thatfU,S
is affine on each segment [a, b] ⊂ conv(C0 ∪C1). The pointa is in a segment [a0, a1] and the pointb is in a segment
[b0, b1] with a0, b0 in C0 anda1, b1 in C1. The segment [a, b] is included in the quadrilateralR = conv({a0, b0, a1, b1}).
We have just proved that all the segments [x, y] with x ∈ [a0, b0] and y ∈ [a1, b1] are included inU and that fU,S
is affine on each of them. Furthermore, by definition,fU,S is affine on [a0, b0] and [a1, b1]. This implies thatfU,S is
affine on the four trianglesconv({a0, b0, a1}), conv({a0, b0, b1}), conv({a0, a1, b1}), andconv({b0, a1, b1}), and thusfU,S
is affine onR and [a, b].

Step 2. Let us show thatCp = conv(∪C∈CpC) is relatively open. By step 1,Cp is included inU and fU,S is affine on
Cp. So the only thing to show is thatCp is relatively open. IfCp is contained in a straight line, thenCp = ∪C∈CpC and
it is clear thatCp is relatively open.
Suppose thatCp is two-dimensional. FixC0 andC1 which are not included in the same straight line. For each point
q in Cp, there exists at most three elementsC2,C3 andC4 in Cp such thatq ∈ conv(C2 ∪ C3 ∪ C4). Therefore
q ∈ conv(∪4

i=0Ci) which is open inR2 by Lemma 7.

Step 3. Cp contains no point ofS. Indeed, ifq is in Cp ∩ S, then f (q) = fU,S(q). The strict convexity off implies
that, on any segment ]r, s[ containingq, f cannot be lower than or equal to an affine functionh such thath(q) = f (q).
Since f ≤ fU,S and sincefU,S is affine onCp, this leads to a contradiction.

Step 4. Let us show that the extreme points ofCp are all inS. Let q be an extreme point ofCp. The pointq is
the limit of a sequence (qn)n≥0 of points inCp. By Theorem 9, for eachn, there existsan, bn andcn in S such that
tn = conv({an, bn, cn}) is included inU, qn ∈ tn, and fU,S is affine ontn. By step 3,qn is neither equal toan, to bn nor
to cn. Hence, we can suppose thatqn is in relint(tn), by removing, if necessary one of the pointsan, bn or cn. Making
use of step 1 withqn instead ofp, we see thatC′p = conv(Cp∪ relint(tn)) is included inU and thatfU,S is affine onC′p.

HenceC′p is in Cpand thereforerelint(tn) is included inCp andtn is included inCp.

Now, Since the pointsan, bn andcn are inS∩Cp, extracting a subsequence, we can assume that the sequences(an)n≥0,
(bn)n≥0 and (cn)n≥0 converge toa, b andc in S∩ Cp. Extracting once more a subsequence, we can suppose that the
sequences of barycentric coefficients ofqn converge. It follows thatq is a barycenter of three pointsa, b andc, which
belong toS∩Cp. Sinceq is an extreme point ofCp, we haveq = a = b = c, which shows thatq is in S.

Step 5. Let h : R
2→ R be an affine function such thath = fU,S onCp. Let us show thatfU,S = h onCp.

Let q be inCp and let (qn)n≥0 be a sequence of point inCp converging toq. As in step 4, there exists three converging
sequences (an)n≥0, (bn)n≥0 and (cn)n≥0 in S such that for alln, tn = conv({an, bn, cn}) is included inU, qn = αnan +

βnbn + γncn ∈ tn, and fU,S is affine ontn. As in step 4, we can also suppose that the sequences (αn)n≥0, (βn)n≥0 and
(γn)n≥0 converge toα, β andγ. Thusq = αa+ βb+ γc. By convexity,
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fU,S(q) ≤ α fU,S(a) + β fU,S(b) + γ fU,S(c)

= α f (a) + β f (b) + γ f (c).

Since fU,S is affine ontn, fU,S(qn) = αn f (an) + βn f (bn) + γn f (cn), hence

lim
n→∞

fU,S(qn) = α f (a) + β f (β) + γ f (c).

Sinceh is continuous,h(q) = limn→∞ h(qn) = α f (a) + β f (b) + γ f (c) ≥ fU,S(q). Moreover,fU,S is convex onCp and
fU,S = h onCp, hencefU,S ≥ h onCp and fU,S(q) ≥ h(q).

Step 6. Since f is strictly convex, each segments ∈ S can contain one point ofCp at most. Thus, by step 4, there are
finitely many extreme points.
To finish the proof, we have to consider the casep ∈ S. Making use of the strict convexity off , we show as in step 4,
that the setCp contains only one element :{p}.
At last, we haveCx = Cp for all x ∈ Cp, which shows that, for allp and q in U, we have eitherCp = Cq or
Cp ∩Cq = ∅. �

4.4.3. Proof of Theorem 11
Lemma 8. fU,S is continuous on U∩ S.

Proof. Let p be inU ∩ S. Since fU,S(p) = f (p) and sincef ≤ fU,S, it is enough to prove that there existsr > 0 and a
continuous functiong defined on the neighborhoodV = U ∩ B(p, r) such thatg(p) = f (p) and fU,S ≤ g on V. Since
U is anS-polygon, we can findr > 0 such thatB(p, r) ∩ U is an union of radius of the ballB(p, r). The functionf is
bounded from above onU by a constantM. By Theorem 9, the functionfU,S is also bounded from above byM onU.
Let g be the function defined onR2 by

g(x) = fU,S(p) +
M − fU,S(p)

r
‖x− p‖ .

The three following properties hold:
– g is affine on each half line whose endpoint isp,
– g = M ≥ fU,S on the boundary ofB(p, r),
– g(p) = fU,S(p).
Since fU,S is locally convex,fU,S ≤ g on each radius ofB(p, r) included inU. Henceg ≥ fU,S on B(p, r) ∩U. �

Lemma 9. For all ε > 0, there existsδ > 0 such that for all p′ ∈ S and all segment[q, r] such that :
– d(p′, [q, r]) ≤ δ,
– q, r ∈ S, ]q, r[⊂ U\S,
– fU,S is affine on[q, r],
we have d(p′, q) or d(p′, r) ≤ ε.

Proof. Suppose on the contrary that there existsε > 0, a sequence (pn)n∈N of points ofU\S, a sequence (p′n)n∈N of
points ofS and a sequence of segments [qn, rn] such that:
– d(pn, p′n)→ 0 whenn→ ∞,
∀n ∈ N,
– qn, rn ∈ S, ]qn, rn[⊂ U\S, pn ∈]qn, rn[,
– fU,S is affine on [qn, rn],
– d(p′n, qn) andd(p′n, rn) ≥ ε.
We can assume thatd(pn, p′n) ≤ ε2. For alln ∈ N, pn = (1− λn)qn + λnrn whereλn is in [0, 1]. Moreover, for alln in
N, d(pn, qn) andd(pn, rn) ≥ ε2. Now, pn − qn = λn(rn − qn), thus

ε

2
≤ d(pn, qn) = λnd(rn, qn) ≤ λn diamU
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andλn ≥ ε
2 diamU . In the same way, 1− λn ≥ ε

2 diamU . Extracting subsequences, we can suppose that the sequences
(pn)n∈N, (p′n)n∈N, (qn)n∈N and (rn)n∈N converge to the pointsp, p′, q andr. Since the sequenced(pn, p′n) goes to 0, we
havep = p′ ∈ S. By assumption, the functionf is strictly convex and continuous, thus

α = inf{(1− λ) f (x) + t f (y) − f ((1− λ)x+ ty) : x, y ∈ U, d(x, y) ≥ ε, λ, 1− λ ≥ ε

2 diamU
}

is strictly positive. Sincep ∈ S, by the previous lemma, the functionfU,S is continuous atp. At the same time,f
is continuous atp, therefore there existsβ > 0 such that ∀x ∈ U, d(x, p) ≤ β =⇒

∣∣∣ fU,S(x) − fU,S(p)
∣∣∣ ≤ α

4 and
| f (x) − f (p)| ≤ α4 . Forn sufficiently large,d(pn, p) ≤ β, hence

∣∣∣ fU,S(pn) − fU,S(p)
∣∣∣ ≤ α

4
,

| f (pn) − f (p)| ≤ α
4
.

On the one hand, sincefU,S(p) = f (p), we get
∣∣∣ fU,S(pn) − f (pn)

∣∣∣ ≤ α2 . On the other hand,

f (pn) = f ((1− λn)qn + λnrn) ≤ (1− λn) f (qn) + λn f (rn) − α
= (1− λn) fU,S(qn) + λn fU,S(rn) − α
= fU,S((1− λn)qn + λnrn) − α
= fU,S(pn) − α,

thus fU,S(pn) − f (pn) ≥ α, which contradicts the inequality
∣∣∣ fU,S(pn) − f (pn)

∣∣∣ ≤ α2 . �

Proof of Theorem 11.
Let T be the set of triangles induced byfU,S andA be a connected component of (U\S)\∪t∈T to. We have to prove

thatV = A meets at most two sites ofS. Suppose on the contrary thatV\A is the union ofk ≥ 3 disjoints segments
S1,S2,S3, ...,Sk included inS. For 1≤ i, j ≤ k, denoteAi j the set ofa ∈ A such thatCa =]p′i , p

′
j[ with p′i ∈ Si and

p′j ∈ S j whereCa is defined in Theorem 10. SinceV\S = A is connected, it is enough to prove that for all couples

(i, j), Ai j is open inA. Let a be inAi j . Let ρ = min{d(Sl ,Sm) : l , m}. Considerε = 1
4 min{ρ, d(a, p′i ), d(a, p′j)} and

δ > 0 associated withε by the previous lemma. We can assume thatδ < ε/2.
Let I be the set of points inCa whose distances to the endpointsp′i andp′j are≥ ε. The setI is a segment [ai, a j]

which does not meetS, hence there existsα > 0 such thatIα = {x ∈ R
2 : d(x, I ) ≤ α} does not meetS. Since the

distances froma to the endpoints ofI are greater thanε, there existsβ > 0 such that:
a segment [q, r] whose endpoints are inS, that does not meetCa, and that is at a distance≤ β from a, contains a point
qi at a distance≤ δ/2 fromai and a pointq j at a distance≤ δ/2 froma j (see Figure 16).

p'i
I

Iα

p'j
aj

ai
a

q

r
qi

qj

a'
B(a,β)

Figure 16: Illustration of the existence ofβ.

To see it, note that the endpoints of the segment [q, r] cannot lie inIα and if [q, r] is very close toa, then [q, r] is
almost parallel toCa.

Let a′ be a point ofA such thatd(a, a′) ≤ β. Let us show thatCa′ =]q, r[ whereq ∈ Si andr ∈ S j . By the choice
of β, Ca′ =]q, r[ must contain a pointqi at a distance≤ δ/2 fromai and a pointq j at a distance≤ δ/2 froma j .

Consider the segment [q, qi]. This segment is included in [q, r], which is almost parallel to [p′i , p
′
j], therefore either

it contains a pointp at a distance≤ δ from p′i or it is included in the ballB(p′i , ε + δ) . In the first case, we use the
previous lemma with [q, r] and p′ = p′i , it follows thatCp, which is equal toCa′ , has one of its endpoint at a distance
≤ ε from p′i and therefore,q ∈ Si . In the second, cased(p′i , q) ≤ ρ/2, henceq ∈ Si . In the same way we show that
r ∈ S j . Finally, A∩ B(a, β) ⊂ Ai j andAi j is open inA. �
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4.5. Convergence of the flip algorithm
Lemma 10. Let t be a triangle of a segment triangulationT of U and let h be the affine function equal to f at the
vertices of t. The function fU,S,T = h on∂t.

Proof. Let a andb be two vertices oft, and letebe the edge ofT such that ]a, b[⊂ e. Since [a, b] ⊂ e, fe,S ≤ f[a,b],S on
[a, b]. On the one hand, by definition,fU,S,T = fe,S one, and thus also on ]a, b[. On the other hand, clearly,f[a,b],S = h
on ]a, b[. It follows that fU,S,T ≤ h on ]a, b[. Hence,fU,S,T ≤ h sur∂t.

Let f ′U,S,T be the function equal toh on ∂t and equal tofU,S,T everywhere else inU. From the last inequality, we
can see that the functionf ′U,S,T is locally convex on the closures of the edges ofT . Since f ′U,S,T ≤ f on S, it follows
that f ′U,S,T ≤ fU,S,T on the edges. Hence,f ′U,S,T = fU,S,T on∂t. �

Lemma 11. The function fU,S,T is continuous.

Proof. Let p be a point ofU ∩ S. There is a finite number of edgese1, ..., em of T whose closure containsp. In the
same way, there is a finite number of trianglest1, ..., tn of T whose closure containsp. Since the closures of the other
edges and triangles ofT do not containp, there exists a real numberr > 0 such that all these triangles and edges are
at distance≥ r from p. Consequently,

U ∩ B(p, r) ⊂ S∪ e1 ∪ ... ∪ em∪ t1... ∪ tn.

Now, from Lemma 8, the functionsfei ,S and the functionsfti ,S are continuous atp, thus fU,S,T is continuous atp.
Moreover,fU,S,T is continuous on each face ofT and it is easy to see thatfU,S,T is also continuous on each edge.

By Lemma 10, we see thatfU,S,T is continuous on every side of a triangle ofT . It follows that fU,S,T is continuous.�

Definition 13. LetT be a segment triangulation of S and let U= conv(S). The slope ofT is defined as follows :

σ(T ) = sup{ fU,S,T (p) − fU,S,T (q)

d(p, q)
: p ∈ U \ S, q ∈ U ∩ S, [p, q] ⊂ U}.

Proposition 2. If T is a segment triangulation of S , thenσ(T ) < +∞.

Proof. We first show thatfU,S,T is piecewiseC1 and that the partial derivatives offU,S,T are bounded on each piece.
The pieces are given by the triangulationT . We know thatfU,S,T is affine on each face ofT , this means that

the partial derivatives offU,S,T exist and are constant on each face. The case of edges is less obvious, they need to
be decomposed. The closure of each edge is an union of finitelymany triangles and trapezoids. Furthermore, these
triangles and theses trapezoids are union of segments wherefU,S,T is affine (see Figure 17). We study separately the
cases of triangles and of trapezoids.

(a) (b)

Figure 17: An edge of a segment triangulation (a) is a finite union of triangles and trapezoids, which are union of segmentswhere fU,S,T is affine.

Cases of triangles.Consider a trianglet = conv(O,A, B) included in the closure of an edge such thatO is in a site
S1 ∈ S, A andB are in the same siteS2 ∈ S, and fU,S,T is affine on each segment [O, q] with q in [A, B]. In the frame

(O,
−→
i =
−−→
OA,
−→
j =
−−→
OB), a pointp of coordinates (x, y) is in t if, and only if, x, y ≥ 0 andx+ y ≤ 1. Since the pointq of

coordinates 1
x+y(x, y) is in [A, B], fU,S,T is affine on [O, q], thus

fU,S,T (p) = (1− (x+ y)) fU,S,T (O) + (x+ y) fU,S,T (q)

= (1− (x+ y)) fU,S,T (O) + (x+ y) f (q).
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In the frame (O,
−→
i ,
−→
j ), we get

fU,S,T (x, y) = (1− (x+ y)) fU,S,T (0, 0)+ (x+ y) f (
x

x+ y
,

y
x+ y

).

Therefore, the functionfU,S,T isC1 on t\{O}. In the frame (O,
−→
i ,
−→
j ), the functionf is of the form

f (x, y) = Ax2 + 2Bxy+Cy2 + ax+ by+ c

whereA, B,C, a, b andc are real numbers. Simple computations show that for (x, y) , (0, 0) in t,

fU,S,T (x, y) = ax+ by+
Ax2 + 2Bxy+Cy2

(x+ y)

and
∂ fU,S,T
∂x

= a− Ax2 + 2Bxy+Cy2

(x+ y)2
+

2Ax+ 2By
(x+ y)

.

Sincex andy are non negative, we get
∣∣∣∣∣
∂ fU,S,T
∂x

(x, y)
∣∣∣∣∣ ≤ |a| + 3 max(|A| , |B| , |C|).

In the same way, for all (x, y) ∈ t, (x, y) , (0, 0),
∣∣∣∣∣
∂ fU,S,T
∂y

(x, y)
∣∣∣∣∣ ≤ |b| + 3 max(|A| , |B| , |C|).

Case of trapezoids.We can choose the frame (O,
−→
i ,
−→
j ) such that a point of coordinates (x, y) is in the trapezoidt

iff x, y ≥ 0 anda ≤ x+ y ≤ b whereb ≥ a > 0. A point in t of coordinates (x, y) lies in the segment whose end points
are (x+ y, 0), (0, x+ y) and fU,S,T is affine on this segment. Therefore,

fU,S,T (x, y) =
x

x+ y
fU,S,T (x+ y, 0)+

y
x+ y

fU,S,T (0, x+ y)

=
x

x+ y
f (x+ y, 0)+

y
x+ y

f (0, x+ y).

It follows that fU,S,T isC1 on t.
Since there are finitely many such triangles and trapezoids,we can find a constantM in R such that

∣∣∣∣∣
∂ fU,S,T
∂x

(p)
∣∣∣∣∣ ,
∣∣∣∣∣
∂ fU,S,T
∂y

(p)
∣∣∣∣∣ ≤ M

for all p in a trapezoid or in a triangle (except its vertices) associated withT . Finally, by the mean value theorem, the
previous inequalities and the continuity offU,S,T imply that, for all p, q ∈ U such that the segment [p, q] is included
in U,

fU,S,T (p) − fU,S,T (q)

|p− q| ≤ M.

�

In the following, we denote byθ(T ) the minimum angle of the triangles ofT .

Proposition 3. There exists a positive constant c depending only on f , S and U, and such that, for every segment
triangulationT of U,

θ(T ) ≥ c
max(1, σ(T ))

.
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Proof. Let∆ = conv({p1, p2, p3}) be a triangle ofR2. For 1≤ i ≤ 3, denotehi the length of the altitude throughpi , and
ai the lenght of the opposite side. We define the flatness of the triangle∆ by f lat(∆) = max(a1

h1
, a2

h2
,

a3
h3

). The flatness of

a segment triangulationT of U is f lat(T ) = max{ f lat(∆) : ∆ ∈ T }. It is not difficult to prove thatθ(∆) ≥ 1
3
√

3
π

f lat(∆)
.

Consequently, it is enough to show that there exists a positive constantC depending only onf , S andU, and such
that, for every segment triangulationT of U,

f lat(T ) ≤ C max(1, σ(T )).

Let ∆ be a triangle of a segment triangulation ofU, and leth be the only affine function equal tof at the vertices
of ∆. Set

σ(∆) = sup{h(p) − f (q)
d(p, q)

: p ∈ ∆\S, q ∈ S∩ ∆}.

Note that, if∆ ∈ T , thenσ(∆) ≤ σ(T ). Thus, it is enough to prove that, for every triangle∆ of a segment
triangulation ofU,

f lat(∆) ≤ C max(1, σ(∆)).

Let ∆ = conv(p, q, r) be a triangle of a segment triangulation ofU. Sincep, q andr are in distinct segments ofS,
there existsl0 > 0 depending only onS such thatd(p, q), d(q, r), d(r, p) ≥ l0. Suppose that the angle at the vertexr
of ∆ is maximal and denotes the foot of the altitude throughr.

If two angles of∆ are greater thanπ3 , it means that one of the angles atp or atq is greater thanπ3. It follows that

d(r, s) ≥ (sin π3)l0 ≥
√

3
2 l0. Now, if D = diam(U), we haved(p, q) ≤ D. Thus,

f lat(∆) =
d(p, q)
d(r, s)

≤ D
√

3
2 l0
≤ 2D

l0
.

If only one angle of∆ is greater thanπ3, it must be the angle atr. In this case, we haves ∈ [p, q] et d(p, s), d(q, s) ≥
(cosπ3)l0 = 1

2 l0. Sets= (1− t)p+ tq. Sinced(p, q) ≤ D, we have

l0
2D
≤ t ≤ 1− l0

2D
.

Denote
m= min{(1− t) f (p) + t f (q) − f ((1− t)p+ tq) :

p, q ∈ U, d(p, q) ≥ l0,
l0

2D
≤ t ≤ 1− l0

2D
}.

Since f is strictly convex,m is strictly positive. Furthermore, sincef is uniformly continuous onU, there exists
δ > 0 such thatd(x, y) ≤ δ implies | f (x) − f (y)| ≤ m

2 . Sincef lat(∆) = d(p,q)
d(r,s) andd(p, q) ≤ D, we havef lat(∆) ≤ D

d(r,s) .
If d(r, s) ≥ δ, then

f lat(∆) ≤ D
d(r, s)

≤ D
δ
.

Otherwise, whend(r, s) ≤ δ, we have

f (r) ≤ f (s) +
m
2

(7)

= f ((1− t)p+ tq) +
m
2

(8)

≤ (1− t) f (p) + t f (q) −m+
m
2

(9)

≤ h(s) − m
2

(10)

hence

σ(∆) ≥ h(s) − f (r)
d(s, r)

≥ m
2d(r, s)

≥ m
2D

f lat(∆).

Finally, f lat(∆) ≤ C max(1, σ(∆)) with C = D max(2
l0
, 1
δ
, 2

m). �
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The algorithm starts with a segment triangulationT0 of U = conv(S) and computes a sequenceT1,T2, ...,Tn, ... of
new triangulations.

Theorem 14. The sequence of functions( fconv(S),S,Tn)n∈N decreases to fconv(S),S as n goes to infinity.

Corollary 3. There exists an integer N such that, for all integers n≥ N, the triangulationTn has the same topology
as the segment Delaunay triangulation of S .

Proof of Theorem 14.
Set fn = fconv(S),S,Tn. The first thing to prove is that the sequence (fn)n∈N is decreasing. Atn-th stage, the algorithm

is performed with the edgeen at the head of the queue. Denotet1, t2 the two triangles adjacent toen (or t1 the
unique triangle adjacent toen) anda1, ..., am, m ≤ 4, the other edges adjacent to the trianglesti . The input polygon is
Pn = en ∪ t1 ∪ t2 (or en ∪ t1). The algorithm computes a triangulationQn of Pn induced byfPn,S. Let us denote the
elements ofQn by:
– t′1 andt′2 the new triangles (ort′1),
– bi the edge ofQn adjacent toai , 1 ≤ i ≤ m,
– en+1 the new edge that replacesen.
The new edges ofTn+1 areen+1 and the edgesa′i = ai ∪ bi, 1 ≤ i ≤ m. By Theorem 13, sincet1, t2, anden are included
in Pn, we havefn ≥ fPn,S on Pn. Now, fPn,S = fPn,S,Qn, thereforefn+1 = fPn,S,Qn = fPn,S ≤ fn on t′◦1 ∪ t′◦2 ∪ en+1. It
remains to show thatfn+1 ≤ fn ona′i , i = 1, ...,m. On the one hand, sinceai ⊂ a′i , fn+1 = fa′i ,S

≤ fai ,S = fn onai . On the
other hand, sincebi ⊂ a′i , fn+1 = fa′i ,S

≤ fbi ,S
= fPn,S ≤ fn onbi . Therefore,fn+1 ≤ fn on t′◦1 ∪ t′◦2 ∪ en+1 ∪ a′1 ∪ ... ∪ a′m,

which implies fn+1 ≤ fn onconv(S). By the way, we have proved the inequalitiesfn+1 ≤ fPn,S ≤ fn on Pn.
It follows that the sequence of functions (fn)n∈N decreases to a functiong : conv(S)→ R. The only thing to show

is thatg is locally convex.
Sinceg ≥ f onconv(S) andg = f onS, it suffices to show thatg is convex on any open segment ]p0, p1[ included

in the interior ofconv(S) and that does not meetS. Let p be a point of such a segment ]p0, p1[. The theorem will
be proved if we can show that there exists a ballB(p, ε) centered atp with radiusε > 0 and infinitely many integers
n such thatIp,ε =]p0, p1[∩B(p, ε) is included either in a triangle ofTn or in the input polygonPn. Indeed, for these
integersn, either fn or fPn,S is convex onIp,ε, and sincefn+1 ≤ fPn,S ≤ fn on Pn, the functiong is a limit of a sequence
of convex functions onIp,ε.

The inequalityfn+1 ≤ fn implies thatσ(Tn+1) ≤ σ(Tn), therefore

θ(Tn) ≥ c
max(1, σ(Tn))

≥ c
max(1, σ(T0))

for all integersn. Thus the angles of any trianglet generated by the algorithm are bounded from below by a constant
c0 > 0. Now, it is not difficult to see that there is a positive real numberε such that, ift is a triangle generated by the
algorithm and ift meets the segmentIp,ε, then the length of the segment ]p0, p1[∩t is greater than 2ε.

Case 1: Suppose that, at the stepn0, p lies in an edgee of the segment triangulationTn0. While the topological
edgee is not at the head of the queue, the geometrical edgee is increasing. At a later stage, the algorithm will be
performed with the segment triangulationTn1 and the edgee, which still containsp. By the choice ofε, the only
triangles ofTn1 that can meetIp,ε are the trianglest1 andt2 adjacent to the edgee. Since the length of the segment
]p0, p1[∩ti is greater than 2ε, Ip,ε is included ine∪ t1 ∪ t2. This means thatIp,ε ⊂ Pn1.

Case 2: Suppose that, at the stepn0, p lies in a trianglet of the segment triangulationTn0. If Ip,ε is included int,
we are done. Otherwise,Ip,ε meets an edgee adjacent tot. As in Case 1,Ip,ε is included in the input polygonPn1 at
the stagen1 ≥ n0 whene is treated.

In all cases, we have shown that there exists infinitely many integersn such thatIp,ε is included inPn or in a
triangle ofTn. �

Proof of Corollary 3.
The set of topologies of all the segment triangulations ofS is finite. Hence, if the corollary does not hold, then a

non Delaunay topology would appear infinitely many times. Therefore, it is enough to prove that, if for an increasing
sequence of integers (kn)n∈N, the triangulationsTkn have the same topology, then it is the topology of the segment
Delaunay triangulation.
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We can always suppose that, given a topological trianglet, its geometrical representationstkn in Tkn converge
to a trianglet∞ whenn goes to infinity (just take subsequences ofTkn). The set of all these trianglest∞ defines
a segment triangulationT∞. It is clear that the triangulationT∞ has the same topology as theTkn. The function
fconv(S),S = limn→∞ fconv(S),S,Tkn

must be affine on each of these trianglest∞. Therefore, all the triangles ofT∞ are
Delaunay triangles andT∞ is the segment Delaunay triangulation ofS. �

5. Conclusion

The aim of this paper was to show that the segment Delaunay triangulation can be constructed by a flip algorithm
in finitely many steps. The precise complexity of the algorithm seems difficult to estimate since we do not know of
any quantitative measure of the improvement of the triangulation after a step of the algorithm. However, we have
applied our algorithm to triangualtions of 1,000 to 40,000 randomly generated segments. The initial triangulations
have been obtained from constraint triangulations build bya sweep algorithm [11]. On these examples, the number of
steps of the algorithm is nearly linear with the number of sites (about 340 steps per site). About 3/4 of the steps seems
useless in the sense that they do not modify the current triangulation (neither by a flip, nor by a triangle shift). This
is because all the edges are systematically processed by themain loop of the algorithm. If one wants to improve the
practical performances of the algorithm, one should establish a priority ordering of the edges.

In case of point sets, the Delaunay triangulation is the one that maximizes the smallest angle of its triangles [21].
The proof of the convergence of our flip algorithm also uses the control of the angles of the triangles. Moreover, the
three-dimensional lifting of the segment Delaunay triangulation is below the lifting of any other segment triangulation.
These are two strong hints that make us believe that the segment Delaunay triangulation should have some optimal
angular properties.

In recent years, particular attention has been paid to the study of the Voronoi diagram of a set of line segments
in three dimensions [18], [20], [15], ... However, the topology of this diagram is really known only for a set of
three lines [13]. The definition of segment triangulation extends to three dimensions: Its three-dimensional regions
are tetrahedrons having their vertices on four distinct segments. The right knowledge of these triangulations will
fairly facilitate the investigations about the three-dimensional segment Voronoi diagram, since it is dual to such a
triangulation.

The three-dimensional extension is certainly a difficult problem; it will be easier to consider first more general
convex sites in the plane. We believe that some of the resultsgiven in this paper can be extended to this more general
setting.
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