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Abstract

A group of bijections G acting on a set X is said with �xed points (abbreviated as

gaf from the french "groupe à point �xe") if any element of G has at least one �xed

point. The G group is called globally �xed (abbreviated as gag) if there is x ∈ X �xed

by all elements of G. The group G is said �xating if any subgroup of G which is a

gaf is automatically a gag. The article explores which groups are �xating. The situation

depends on the assumptions made on the group of bijections and on the support set X.

For example the group of isometries of the Euclidean space Rn is �xating for n 6 3 but no

longer for n > 4. The case of isometries of elliptic and hyperbolic spaces is also considered,

as well as that of isometries of some discrete sets.
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1 Introduction

It is easy to �nd a group of bijective transformations, each having a �xed point but without
a common �xed point: for instance, in the symmetric group of {1, 2, 3, 4, 5}, the subgroup
generated by the cycle (123) and the double transposition (12)(45), or the group of rotations
of the two dimensional sphere, or the group of homeomorphisms of the unit disk. Such a group
will be called eccentric. Beside the existence of a �xed point for each bijection of the group,
which additional information would allow to conclude to the existence of a common �xed point?
This additional information can be the invariance of a geometric structure, the commutativity
of the group or another algebraic property, the uniqueness of the �xed point for each nontrivial
bijection, or a combination of the former informations.

The invariance of a geometric structure can often be stated as follows: The group of bijec-
tions is a subgroup of a larger group G. The fact that this information implies the existence
of a common �xed point can be seen as a property of the larger group G. We shall say that a
group G of bijections of a set X is �xating if it contains no eccentric subgroup.

To our knowledge, the notion of �xating group has not been considered in earlier works.
Notice that this notion is not intrinsic to the group but depends on the action as a group of
bijections. The aim of this paper is to explore which are �xating groups of bijections and, to a
lesser extent, to �nd some su�cient conditions for a group of bijection to have a global �xed
point.

About �xating group, we shall see that many things can happen, depending on the nature
and the dimension of the set X, and on the nature of the bijections. We have paid particular
attention to isometry groups of some classical spaces.

When X is a metric space, IsomX denotes the group of isometries of X. If moreover X
can be oriented, Isom+X denotes the subgroup of isometries preserving the orientation. Given
an integer n > 1, we denote Rn the n-dimensional Euclidean space, Zn the lattice of integer
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points in Rn, Hn the n-dimensional hyperbolic space, Sn the n-dimensional sphere, and RPn the
n-dimensional projective space (we chose to use the exponent n for cartesian products only).
Our results about these spaces are the following.
. The groups IsomRn and Isom+Rn are �xating if and only if n 6 3.
. The groups IsomHn and Isom+Hn are �xating if n 6 3, and non�xating if n > 5. When
n = 4, the question is open.

One could think that, for each family of spaces Fn = Rn, Hn, Sn or Zn, there exists a critical
integer n0 such that the isometry group of Fn is �xating if and only if n 6 n0. This holds for
Rn (with n0 = 3) and Hn (with n0 = 3 or 4) but neither for Sn nor for Zn:
. The group Isom+ Sn is �xating if and only if n = 1 or 3.
. The group IsomZn is �xating for all n > 1, whether Zn is equipped with the Euclidean norm
or the L1 norm.

An important ingredient for the existence of global �xed points is the median inequality,
see formula (1) at the beginning of Section 4. This inequality holds in Euclidean or hyperbolic
spaces, but neither in spheres nor in projective spaces.

This inequality has been introduced by F. Bruhat and J. Tits in [5] and their result is: If a
metric space (E, d) is complete and if the median inequality holds, then each isometry group
with a bounded orbit admits a global �xed point, see Theorem 4.3 and Corollary 4.4.

Moreover, we show that an isometry group G in a complete metric space is �xating provided
it has a normal �xating subgroup H such that G/H is cyclic, see Corollary 4.8. This is the
reason why IsomRn and Isom+Rn are �xating for the same dimension n; the same holds for
IsomHn and Isom+Hn. The median inequality is crucial for this result: We shall see that
Isom+ S3 is �xating while IsomS3 is not. Indeed,
. The group IsomSn is �xating if and only if n = 1.

About the projective space, we obtain:
. The group IsomRPn is �xating if and only if n = 1;
. The group Isom+RPn is �xating if n = 1, and not if n = 2 or n > 4. We do not know
whether Isom+RP3 is �xating or not.

Another important ingredient is the existence of some free subgroups in the linear group.
It is used to construct eccentric groups. A very general result by A. Borel [4] ensures this
existence, although some elementary results lead to explicit examples that are enough for our
need.

The article is organized as follows. Section 2 is devoted to notations and some preliminary
results. Section 3 is about a�ne groups and Section 4 about isometry groups. Isometry groups
of classical spaces are studied in details in Section 5: �rst in Euclidean spaces, then in hyperbolic
spaces and at last in elliptic spaces. Section 6 is devoted to results in discrete spaces. We �rst
deal with permutation groups, then with IsomZn, and at last with some graphs. Concerning
graphs, we �rst present a result by J.-P. Serre about �xed points of �nitely generated isometry
groups of trees [20], then we extend this result to a family of colored graphs. Section 7 provides
exercises; the solutions are given in Appendix 8.4. Appendix 8.1 is a short introduction to
hyperbolic geometry and Appendices 8.2 and 8.3 give details of some proofs.

We leave several questions open. It may happen that some answers are already in the
existing literature, or that the reader solves some of them. In that case, we would be grateful
to the reader who will inform us!

2 Preliminaries

2.1 Notations

Groups. Given a group G, we denote H 6 G to say that H is a subgroup of G and H EG to
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say that H is a normal subgroup of G.
If A is a subset of a group G, the subgroup of G generated by A is denoted by 〈A〉. When

A contains a small number of elements, we will omit the braces. Thus we have

〈f, g〉 =
⋂

f,g∈H6G

H =
{
f i1gj1 . . . f ingjn ; n ∈ N, ik, jk ∈ Z

}
.

We call cyclic a group, �nite or not, generated by a single element.
The commutator of f and g is [f, g] = f−1g−1fg.
For a set X, BijX denotes the group of bijections of X.

Metric spaces. In a metric space (X, d), an isometry f : X → X is a bijection such that
d(f(x), f(y)) = d(x, y) for all x, y ∈ X. As already said in the introduction, IsomX is the
group of isometries of X, and Isom+X is the sub-group of those preserving the orientation if
X is orientable.

For an element x ∈ X and a real number r > 0, B(x, r) = {y ∈ X ; d(x, y) < r} denotes
the open ball of center x and radius r and B′(x, r) = {y ∈ X ; d(x, y) 6 r} is the corresponding
closed ball. Given two points a and b of X, Med (a, b) denotes the mediator of a and b:

Med (a, b) = {c ∈ X ; d(a, c) = d(b, c)}.

A�ne and Euclidean Spaces. Given an a�ne bijection f : Rn → Rn,
−→
f is the associated

linear map de�ned by
−→
f (x) = f(x)− f(0). The mapping f 7→

−→
f is a morphism of groups. In

particular, we have [
−→
f ,−→g ] =

−−→
[f, g].

Similarly, if F is an a�ne subspace of Rn, then
−→
F denotes the associated vector subspace.

For a subset A ⊂ Rn, we denote by Aff A the a�ne space generated by A, i.e. the intersection
of all a�ne subspaces of Rn containing A. If A = {a1, . . . , an}, we shall write Aff (a1, . . . , an)
instead of Aff

(
{a1, . . . , an}

)
.

Hyperbolic Spaces. We will use the model of the upper half-space with the Poincaré metric,
see Appendix 8.1.

2.2 GAF, GAG and �xating group

A group of bijections (X,G) is the data of a set X and a subgroup G of BijX. Given a bijection
g : X → X, its set of �xed points is

Fix g = {x ∈ X ; g(x) = x}.

A group of bijections (X,G) is called a �xed point group (abbreviated as gaf) if Fix g is not
empty for all g ∈ G. We say that (X,G) is a group with global �xed points (in short, a gag) if

FixG :=
⋂
g∈G

Fix g 6= ∅.

A gaf which is not a gag is called eccentric. With the above vocabulary, we say that (X,G)
is �xating if, for any subgroup H 6 G, we have

(X,H) gaf ⇔ (X,H) gag,

i.e. if it does not contain any eccentric subgroup. Note that any subgroup of a �xating group is
�xating. We shall omit the set X when the context is clear. In the same way, we will say that
an action ρ of a group G on a set X is �xating if (X, ρ(G)) is a �xating group of bijections.
We will use the following result several times.
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Proposition 2.1. Let f, g be two bijections on a set X.

a. If f and g commute, then g(Fix f) = Fix f .

b. If Fix f is a singleton {x0}, then x0 ∈ Fix g for any g commuting with f .

c. Let G be a group of bijections on X and let HEG. For all g ∈ G, we have g(FixH) = FixH.

Proof. a. If x ∈ Fix f then g(x) = g(f(x)) = f(g(x)) hence g(x) ∈ Fix f . This proves
g(Fix f) ⊆ Fix f . Besides, g−1 also commutes with f , so g−1(Fix f) ⊆ Fix f . We then obtain
Fix f = g(g−1(Fix f)) ⊆ g(Fix f), hence the equality.

b. Results from item a.

c. Let g ∈ G. It is enough to show that g(x) ∈ Fixh for all x ∈ FixH and all h ∈ H; this
will imply g(FixH) ⊆ FixH. Then, application to g−1 yields the desired equality. For such a
x and such a h, we have k = g−1hg ∈ H, hence x ∈ Fix k. Therefore we have g(x) = g(k(x)) =
h(g(x)), hence g(x) ∈ Fixh. �

We immediately deduce from item b a �rst su�cient condition for a group of bijections to
be a gag.

Proposition 2.2. Let G be a group of bijections on X. If G is Abelian and if there exists
f0 ∈ G having a single �xed point, then G is a gag.

We will see in Section 3 that each of the words �Abelian� and �unique� is needed.

Let us end this section with remarks of an algebraic nature.

1. The concept ��xating� is compatible with the product: If (X1, G1) and (X2, G2) are two
�xating groups of bijections, it is easily checked that the action of the product group G1 ×G2

on X1 ×X2 is �xating.

2. The notion ��xating�, however, is not compatible with the induction of Frobenius [10].
Precisely, let G be a group, H a subgroup of G, and R a system of class representatives modulo
H. An action ofH on a set Y induces an action ofG onX = R×Y de�ned by g(r, y) = (r′, h(y))
where r′ ∈ R and h ∈ H are uniquely determined by gr = r′h.

Section 6.1 on permutation groups provides an example where the action (Y,H) is �xating,
but the induced action is not. We consider the group G of permutations of {1, 2, 3, 4, 5} and
H the subgroup of permutations �xing 5, seen as acting on Y = {1, 2, 3, 4}. As system of
representatives, we choose ri = (i 5) (the transposition) for 1 6 4 and r5 = id.

On the one hand, (Y,H) is �xating by Proposition 6.1. On the other hand, (X,G) is not:
Let K be the subgroup of G generated by the permutations (123) and (12)(45). One �nds

K = {id, (123), (132), (12)(45), (13)(45), (23)(45)},

Fix (12)(45) = {(r3, 5)}, Fix (13)(45) = {(r2, 5)}, Fix (23)(45) = {(r1, 5)}, and Fix (123) =
Fix (132) = {(r4, 4), (r4, 5), (r5, 4), (r5, 5)}. hence K is an eccentric subgroup of (X,G).

3. The notion ��xating� strongly depends on the set on which the group acts. In Exercise 7.2,
we introduce an intrinsic notion of globalization: A group is said to be super-�xating if, for any
set X and any morphism ρ : G→ BijX, the pair (X, ρ(G)) is �xating. This notion �nally has
a rather limited interest: The result of Exercise 7.2 is that a group is super-�xating if and only
if it is cyclic (�nite or not). On the other hand, the additive group Q is �nitely super-�xating
in the following sense: If X is a �nite set and ρ : Q → BijX a morphism, then (X, ρ(Q)) is
�xating, cf. Exercise 7.3.
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3 Groups of a�ne bijections

The a�ne structure is the most fundamental of the geometric structures. It is therefore natural
to begin our study with groups of a�ne bijections of Rn. The results are rather negative except
in dimension one.

Proposition 3.1. The group of a�ne bijections of R is �xating.

Proof. Let H be a group of a�ne bijections of R which is a gaf. Since an a�ne bijection of R
di�erent from the identity has at most one �xed point, it is enough to prove that H is Abelian,
then to apply Proposition 2.2. If f and g are in H then the commutator [f, g], which also has a
�xed point, is not a nontrivial translation. Since the linear group on R is Abelian, it can only
be the identity. �

The commutativity of the linear group and the uniqueness of the �xed points are the two
ingredients of the previous proposition. Both ingredients are characteristic of the dimension
one. In larger dimension, adding only one of the hypotheses � commutativity or uniqueness
of the �xed points � is not enough to prove that a gaf is a gag as shown in Examples 3.2
and 3.3 below.

Example 3.2. Let a ∈ R \Q and let f, g be the a�ne transvections of R2 given by

f(x, y) = (x+ y + 1, y) and g(x, y) = (x+ ay, y).

Then the group G = 〈f, g〉 is Abelian and eccentric.

Proof. It is straightforward that G is Abelian. For (m,n) ∈ Z2 \{(0, 0)}, we have fmgn(x, y) =(
x+ (m+ na)y+m, y

)
, hence Fix (fmgn) is nonempty: It is the straight line Dm,n of equation

y = −m
m+na

. It follows that G is a gaf. We also have Dm,n ∩Dm′,n′ = ∅ as soon as mn′ 6= m′n,
hence G is not a gag. �

Remarks.

1. If R2 is equipped with the discrete distance, given by d(a, b) = 1 if a 6= b and d(a, a) = 0, then
the group G of the previous example is an eccentric Abelian group of isometries. Example 4.10
of the next section is an example of an eccentric and Abelian group of isometries in a Hilbert
vector space of in�nite dimension. On the other hand, Theorem 4.9 shows that there does not
exist any eccentric Abelian group of isometries of an Euclidean or hyperbolic space of �nite
dimension.

2. The above shows that the group of a�ne bijections of Rn (with n > 1) is �xating if and only
if n = 1: For n > 3, just complete the previous maps f and g by the identity on the last n− 2
components, as will be done in the proof of Proposition 5.6.

Example 3.3. Let b ∈ R2 \ {0} and let f, g ∈ BijR2 be the a�ne bijections

f : x 7→
−→
f (x) and g : x 7→ −→g (x) + b,

where
−→
f and −→g are the elements of SL(2,R) with matrices

Mat (
−→
f ) = A =

(
0 1
−1 3

)
Mat (−→g ) = B =

(
−1 −1

5 4

)
.

Then the group G1 = 〈f, g〉 is eccentric. More precisely, every element of G1\{id} has a unique
�xed point but G1 is not a gag.

We recall that SL(2,Z) is the set of 2 by 2 matrices with integer coe�cients and determinant
equal to 1. The proof is based on the following two results.
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Lemma 3.4. ([16] Chapter VIII) Let G0 be the subgroup of SL(2,Z) generated by the matrices
A and B above. Then G0 is free and any matrix M ∈ G0 \ {I} has a trace di�erent from 2.

The proof is in Appendix 8.2. We deduce that 1 is not an eigenvalue of M for any matrix
M ∈ G0 \ {I}, since detM = 1.

Lemma 3.5. Let h be an a�ne bijection on Rn such that 1 is not an eigenvalue of
−→
h . Then

Fixh is a singleton.

Proof. We have h(x) = x⇔ x−
−→
h (x) = h(0)⇔ x = (id−

−→
h )−1(h(0)). �

Proof of Example 3.3. Let h ∈ G1 \{id} and let γ1, γ′1 . . . γr, γ
′
r ∈ Z, all nonzero except possibly

γ1 and γ′r, such that h = fγ1gγ
′
1 · · · gγ′r . We have

−→
h =

−→
f γ1−→g γ′1 · · · −→g γ′r 6= id, so

−→
h does not

have 1 as eigenvalue according to Lemma 3.4, hence h has a unique �xed point by Lemma 3.5.
However, there is no �xed point common to all elements of G1 since the �xed points of f and
g are distinct. �

To �nish this section, let us recall two classical results on the existence of global �xed points
for groups or sets of a�ne applications. The �rst result is the Markov-Kakutani theorem and
the second is the Kakutani theorem, see [13, 7, 18, 12]. These two results require a compactness
assumption and an additional hypothesis. Exercise 7.12 presents a �nite version of these results.
It is due to R. Antetomaso [1].

Theorem 3.6. (Markov-Kakutani, see for example [18] Theorem 5.23, p.140) Let K be a
convex compact nonempty subset of a separated topological vector space E, and let G be a set
of a�ne and continuous maps that commute and leave K stable. Then K ∩FixG is nonempty.

Theorem 3.7. (Kakutani, cf. [18] Theorem 5.11, p.127) Let K be a compact convex subset
of a locally convex topological vector space E and G be an equicontinuous group of a�ne
bijections leaving K stable. Then K ∩ FixG is nonempty.

The literature contains a large number of recent works containing supplements and extensions
of these results. Among these, below is a complement to Theorem 3.6 due to Anzai and
Ishikama [2]: Under the assumptions of Theorem 3.6, with moreover E locally convex, if G is
a �nitely generated group, G = 〈T1, . . . , Tn〉, then, for all αj ∈ ]0, 1[ satisfying

∑n
j=1 αj = 1, we

have Fix
(∑n

j=1 αjTj
)

= FixG.

The theorem below can be deduced from Theorem 3.7 but we give an independent proof.

Theorem 3.8. A group of a�ne bijections of Rn having a bounded orbit is a gag.

Proof. Let G be such a group and let x be an element of Rn whose orbit Ox = {f(x) ; f ∈ G}
is bounded. Let K be the closed convex hull of Ox. Like Ox, K is invariant by all maps
f ∈ G. Let F = Aff K, the a�ne subspace generated by K. The interior of K relative to F is
nonempty, hence λF (K) > 0, where λF denotes the Lebesgue measure of F (In the case where
K is a singleton, λF is the counting measure). Since K is compact, we also have λF (K) < +∞.
The maps f ∈ G are a�ne, so send the measure λF on a multiple of itself. Since they send
K on K, they preserve λF . The centroid of K for the restriction of λF to K, de�ned by

1
λF (K)

∫
K
xdλF (x), is therefore �xed by all f ∈ G. �
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4 Groups of isometries

4.1 The median inequality

The Bruhat-Tits �xed point theorem [5] gives a su�cient condition for a group of isometries on
a metric space to be a gag: It is enough that the space satis�es the median inequality below
and that the group has a bounded orbit.

De�nition 4.1. We say that a metric space (X, d) satis�es the median inequality if

∀x, y ∈ X ∃m ∈ X ∀z ∈ X d(z,m)2 6 1
2

(
d(z, x)2 + d(z, y)2

)
− 1

4
d(x, y)2. (1)

It is easy to prove that the point m is unique and that d(x,m) = d(y,m) = 1
2
d(x, y), cf. Exer-

cise 7.4. We say that m is the midpoint of {x, y} and we write it m(x, y).
When X is a Euclidean space, or more generally a pre-Hilbert space, (1) is actually an

equality, called the parallelogram identity, and m is the usual midpoint of the segment [x, y],
cf. Exercise 7.5.a. Conversely, it is known that a normed vector space satisfying (1) is necessarily
pre-Hilbert, cf. Exercise 7.5.b.

A combinatorial tree with its usual distance does not satisfy (1) (an edge has no midpoint)
but its realization as a real metric space satis�es it. Trees are also the only graphs with this
property. Complete Riemannian manifolds which are simply connected and with a negative
sectional curvature, especially hyperbolic spaces with their usual distance, satisfy (1), see [5].
This is a consequence of the comparison theorem of Rauch [8], cf. Exercise 7.6.

The median inequality makes it possible to associate a single center with any bounded
subset of a complete metric space. Let (X, d) a metric space and A be a nonempty bounded
subset of X. For every x ∈ X, let

r(x,A) = inf{r > 0 ; A ⊆ B′(x, r)} = sup{d(x, a) ; a ∈ A}.

We de�ne the radius of A by
rA = inf{r(x,A) ; x ∈ X}.

If there exists x0 ∈ X such that rA = r(x0, A), we will say that x0 is a center of A. In this case,
the closed ball B′(x0, rA) is a ball circumscribed to A.

Lemma 4.2. [5] If (X, d) is a complete metric space satisfying (1), then any nonempty bounded
subset of X has a unique center.

Proof. Let A be a nonempty bounded subset of X, let x, y ∈ X and let m be the midpoint of
{x, y}. Writing (1) for all a ∈ A, we get

d(m, a)2 6 1
2

(
d(x, a)2 + d(y, a)2

)
− 1

4
d(x, y)2

6 1
2

(
r(x,A)2 + r(y, A)2

)
− 1

4
d(x, y)2,

from which we successively deduce

r2A 6 r(m,A)2 6 1
2

(
r(x,A)2 + r(y, A)2

)
− 1

4
d(x, y)2,

and
1
2
d(x, y)2 6 r(x,A)2 + r(y, A)2 − 2r2A. (2)

We deduce the uniqueness of a possible center: If x and y are centers of A, then r(x,A) =
r(y, A) = rA, and (2) implies x = y.

To prove the existence, let (xn)n∈N be a sequence such that r(xn, A) tends to rA as n tends
to +∞. Taking x = xn and y = xn+p in (2), we obtain

1
2
d(xn, xn+p)

2 6 r(xn, A)2 + r(xn+p, A)2 − 2r2A → 0
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uniformly in p as n goes to in�nity. Thus the sequence (xn)n∈N is Cauchy, therefore has a limit
` verifying r(`, A) = rA, hence ` is a center of A. �

The Bruhat-Tits �xed point theorem is stated as follows.

Theorem 4.3. [5] Let G be a group of isometries of a complete metric space (X, d) verifying
the median inequality (1). If there is a nonempty bounded subset of X which is invariant by
all the elements of G, then G is a gag.

Proof. Let A be a nonempty bounded subset of X, invariant by any g ∈ G, and let a be
the center of A. Then, for all g ∈ G, g(B′(a, rA)) = B′(g(a), rA) is the ball circumscribed to
g(A) = A, therefore by uniqueness of the center, g(a) = a. As a consequence a ∈ FixG, hence
G is a gag. �

We immediately deduce the

Corollary 4.4. Let G be a group of isometries of an Euclidean or hyperbolic space. If G has
a bounded orbit, then G is a gag.

Some of the following results will be used in Section 5.

De�nition 4.5. Let (E, d) be a complete metric space verifying (1). A subset C of E is called
half-convex if, for all x, y ∈ C, the midpoint of {x, y} is in C.

It can be easily shown that a half-convex closed subset of a normed vector space is convex in
the usual sense.

The following proposition asserts the existence and uniqueness of an �orthogonal projection�
on the set of �xed points of a group of isometries. We split it into three statements, each having
its own interest. We recall that d(x,A) = infa∈A d(x, a).

Proposition 4.6. Let (E, d) be a complete metric space verifying (1).

a. If C ⊂ E is a closed half-convex part of E then, for all x ∈ E, there exists a unique y ∈ C
such that D(x,C) = d(x, y). This point is denoted by y = πCx.

b. If g is an isometry of E, then Fix g is closed and half-convex.

c. If G is a group of isometries of E, then FixG is closed and half-convex.

Proof. a. Let us put δ = d(x,C). By de�nition, for any ε > 0, there is y ∈ C such that
d(x, y) < δ + ε. If z ∈ C also satis�es this inequality, since d

(
x,m(y, z)

)
> δ, (1) then gives

d(y, z)2 6 8δε+ 4ε2. (3)

For each n ∈ N∗, let yn ∈ C be such that d(x, yn) < δ+ 1
n
. According to the above, the sequence

(yn)n∈N∗ thereby de�ned is Cauchy, hence converges to a point y ∈ C satisfying d(x, y) = δ;
this proves the existence. Inequality (3) also proves the uniqueness.

b and c. Easy veri�cation. �

Theorem 4.7. Let (E, d) be a complete metric space verifying (1), let G be a group of
isometries of E and let H EG be such that G/H is cyclic. If G is a gaf and H a gag, then
G is a gag.

Proof. Let ε ∈ G be such that εH generates G/H. Denote F = FixH. Since H is normal in
G, we have g(F ) = F for all g ∈ G according to Proposition 2.1.c, in particular ε(F ) = F .

Let x ∈ Fix ε. By uniqueness of the orthogonal projection and since ε is an isometry, one
has ε(πFx) = πε(F )ε(x) = πFx, hence πFx ∈ Fix ε. Since G = 〈ε,H〉, we obtain πFx ∈ FixG.
�
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Corollary 4.8. Let (E, d) be a complete metric space satisfying (1) and let H EG 6 IsomE
be such that G/H is solvable and �nite. If H is �xating, then G is �xating. In particular a
group of isometries of E is �xating as soon as it contains a �xating subgroup of index 2.

Proof. We �rst assume that the quotient G/H is cyclic. Let G1 6 G be a gaf; then H1 =
G1 ∩ H is a gaf, therefore a gag since H is �xating. Besides, G1/H1 is isomorphic to a
subgroup of G/H, therefore cyclic, hence G1 is a gag according to Theorem 4.7.

Since �nite Abelian groups are products of cyclic groups, under the hypothesis G/H solvable
and �nite, there is a �nite sequence H = H0 E · · · EHn = G such that, for each i = 1, . . . , n,
the quotient Hi/Hi−1 is cyclic. The result is then successively applied to the cyclic quotients.

For the last assertion, if H is a subgroup of G of index 2, then H is normal in G and G/H
is cyclic of order 2. �

Remarks.

1. Our proof is not valid if G/H is only supposed to be solvable. The right notion in our context
is G/H polycyclic [19], that is, G/H admits a �nite sequence {e} = H0E · · ·EHn = G/H with
Hi/Hi−1 cyclic. We do not know whether our result holds when G/H is only assumed solvable
and of �nite type.

2. The fact that the ambient space satis�es (1) is essential: We will see in Section 5.3 that
Isom+ S3 is �xating, while IsomS3 is not.

4.2 Solvable subgroups: The Euclidean and hyperbolic cases

We �x an integer n > 0. The notation Fn will indicate either the Euclidean space Rn, or the
hyperbolic space Hn. We will use that Fn satis�es (1).

Theorem 4.9. Let G be an Abelian group of isometries of Fn. If G is a gaf, then G is a gag.

Proof. We proceed by induction on the dimension n. For n = 0 the result is trivial. Now, let
n > 1 and assume the property true for all k < n.

If G = {id}, we are done. Otherwise, let f ∈ G \ {id}. Then F = Fix f is a strict subspace
(a�ne or hyperbolic) of Fn, of dimension k < n. Let g ∈ G. As f and g commute, we have
g(F ) = F according to Proposition 2.1.a. So for all g ∈ G, the restriction of g to F , denoted
by g|F , is well de�ned from F to F and is an isometry of F which is itself isometric to Fk.

By hypothesis, Fix g is nonempty. Let xg ∈ Fix g and set yg = πFxg. Since g is an isometry
and by uniqueness of the orthogonal projection, we have g(yg) = Πg(F )g(xg) = ΠFxg = yg.
Thus, for every g ∈ G, g|F has at least one �xed point yg.

Let GF = {g|F ; g ∈ G}. Then GF is a gaf on a space of dimension k < n, hence is a gag
by the induction hypothesis. Since FixGF = F ∩ FixG, we deduce that FixG is nonempty,
hence G is a gag. �

The following example shows that the �nite dimension is necessary.

Example 4.10. Let E = `2(N,R), the space of square summable real sequences; it is a Hilbert
space. Let hk be the symmetry of center 1 on the k-th component, i.e. the isometry of E
de�ned by

hk(x0, x1, . . . ) = (x0, . . . , xk−1, 2− xk, xk+1, . . . ).

Let Gn = 〈h0, . . . , hn〉 and let G =
⋃
n∈NGn. It is immediate that G is Abelian. Let (en)n∈N

denote the canonical basis of E and sn =
∑n

k=0 ek. We have sn ∈ Fix f for all f ∈ Gn, so G is
a gaf. By contradiction, if G were a gag and if x = (x0, x1, . . . ) ∈ FixG, then for all n ∈ N
we would have xn = 1, but the constant sequence equal to 1 is not in E, hence G is eccentric.

Theorem 4.9 can be generalized by changing the word �Abelian� into �solvable�.
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Theorem 4.11. Let G be a solvable group of isometries of Fn. If G is a gaf, then G is a gag.

Proof. Recall that a group G is said solvable if there is a �nite and growing sequence of
subgroups, {eG} = H0EH1E · · ·EHp = G (i.e. each normal in the next one) such that all the
quotients Hk+1/Hk are Abelian. The solvability index of G is the smallest integer p > 0 with
this property. This integer is reached for example by taking the sequence of derived groups: We
put G0 = G and, for k > 0, Gk+1 = G′k = [Gk, Gk], the group generated by the commutators of
Gk. Finally, we choose Hk = Gp−k.

The proof is by induction on the solvability index of G. The property is trivially true for
p = 0. Assume its truth for any group of solvability index p− 1 and let us show it for G.

Let G1 = [G,G]. Since G is a gaf, G1 is a gaf, hence a gag by the induction hypothesis,
hence F = FixG1 is nonempty. Since G1 is normal in G, we have g(F ) = F for all g ∈ G.

Now the group G/G1 acts naturally on F : If g = {gh ; h ∈ G1} is an element of G/G1 and
if x ∈ F , then g(x) := g(x) does not depend on the choice of the representative g ∈ g since
h(x) = x for all h ∈ G1.

We claim that the pair (F,G/G1) is a gaf. Indeed, since G is a gaf, if g ∈ G and x ∈ Fix g
then, as in the proof of Theorem 4.9, by uniqueness of the orthogonal projection, the projection
πFx is also in Fix g. As a consequence, F ∩ Fix g 6= ∅, which gives Fix g 6= ∅ for all g ∈ G/G1

seen as isometry of F .
Since G/G1 is an Abelian group and F is a space (Euclidean or hyperbolic) of �nite dimen-

sion, G/G1 is a gag according to Theorem 4.9. Any �xed global point x ∈ F of G/G1 is then
�xed by any element of G, so G is itself a gag. �

5 Groups of isometries of the classical spaces

In the whole Section 5, n is a strictly positive integer.

5.1 The Euclidean case

Recall that IsomRn is the group of isometries of Rn equipped with the usual Euclidean distance,
and Isom+Rn is the subgroup of those preserving the orientation. It is known that the elements
of IsomRn are a�ne applications, cf. Exercise 7.9. In this Section 5.1, we prove the following
result.

Theorem 5.1. The group IsomRn is �xating if and only if n 6 3.

We leave in Exercise 7.1 to the reader the pleasure to show that IsomR2 is �xating. We will
show successively that IsomR3 is �xating, then Isom+R4 is non�xating, which will imply that
IsomRn is not �xating for n > 4.

The case of the dimension 3

Let us recall that the elements f ∈ Isom+ R3 such that Fix f 6= ∅ are either the identity or
the rotations around an axis Fix f . Those with an empty set of �xed points are the translations
and the screw dispacements, or more concisely screws (a screw is the Abelian product of a
rotation r and a translation of nonzero vector parallel to the axis of r).

The following lemma is a key step to prove that IsomR3 is �xating. We will have this same
step in the proof that the group of isometries of the hyperbolic space of dimension 3 is �xating,
see Lemma 5.13.

Lemma 5.2. If f, g ∈ Isom+ R3 are such that Fix f ∩ Fix g = ∅, then there is h ∈ 〈f, g〉 such
that Fixh = ∅.
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Proof. If Fix f , Fix g or Fix (f−1g) is empty, we are done. Otherwise, let a ∈ Fix (f−1g) and
let b = f(a) = g(a). We have b 6= a since Fix f ∩ Fix g = ∅. So for all c ∈ Fix f we have
d(a, c) = d(f(a), f(c)) = d(b, c). Therefore Fix f is in Med (a, b), the mediator plane of a and
b. The same holds for Fix g. Since Fix f ∩ Fix g = ∅, Fix f and Fix g are two parallel lines.

It follows that
−−→
[f, g] = id. If f and g were commuting, we would have f(Fix g) = Fix g by

Proposition 2.1.a, in contradiction with f 6= id. It follows that [f, g] is a nontrivial translation,
hence Fix [f, g] = ∅. �

Proposition 5.3. The group IsomR3 is �xating.

Proof. According to Corollary 4.8, it su�ces to show that Isom+R3 is �xating. Let G 6
Isom+R3 be a gaf. We must show that FixG 6= ∅. Lemma 5.2 already implies Fix f∩Fix g 6= ∅
for all f, g ∈ G.

We call half-turn a symmetry about a straight line, called axis. We will use the following
fact: If the product of two half-turns is a half-turn, then their axes are orthogonal and secant.

If G \ {id} contains only half-turns then, either G = {id, f} where f is a half-turn, or
G = {id, f1, f2, f3} where f1, f2, f3 are three half-turns of axes orthogonal and pairwise secant,
so secant all three in one point, hence G is a gag.

We assume now that there exists f ∈ G \ {id} that is not a half-turn. If Fix g = Fix f for
all g ∈ G \ {id}, we have �nished: FixG = Fix f 6= ∅. It is now assumed that there exists
g ∈ G \ {id} such that Fix g 6= Fix f . Then Fix f and Fix g are two straight lines crossing at
some point denoted by ω. Set P = Aff (Fix f ∪ Fix g), the a�ne plane containing Fix f and
Fix g.

P

�
�
�
�
�
�
�
�
�
�
�
�
�

Fixh

hhhhhhhhhhhhhhhh
Fix g

B
B
B
B
B
B
B
B
B
BB

Fix f

r
b r

ω

We will be done if we show that ω ∈ FixG. By contradiction, otherwise, let h ∈ G be such
that ω /∈ Fixh. Since Fix f ∩ Fixh and Fix g ∩ Fixh are nonempty, we have Fixh ⊂ P . Let
a ∈ R3 be such that f(a) = b ∈ Fix g ∩ Fixh. We have b ∈ P and b /∈ Fix f , but f is not a
half-turn, so a /∈ P . Let g̃ = f−1gf . We have g̃(a) = a and g̃(ω) = ω, hence Fix g̃ = Aff (a, ω),
which is a disjoint line of Fixh, a contradiction. �

Remark. This result can also be proved by copying the proof of Lemma 5.14.

The case of the higher dimensions

Proposition 5.4. The group Isom+R4 is non�xating. As a consequence, the group IsomR4

is non�xating.

Proof. We reproduce below the construction by Wagon [23] of a free subgroup of rank 2 in
SO4 whose action on the sphere S3 is without �xed point. Let θ ∈ R be such that cos θ
is transcendent, for example θ = 1, and let σ and τ be the elements of SO4, of matrices
respectively

S4 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ

 and T4 =


cos θ 0 0 − sin θ

0 cos θ − sin θ 0
0 sin θ cos θ 0

sin θ 0 0 cos θ

 .
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Lemma 5.5. ([23] Theorem 5.2, p.53) The subgroup G0 of SO4 generated by σ and τ is free.
Moreover, 1 is not an eigenvalue of any element of G0 \ {id}.

For the convenience of the reader, we have written the proof in Appendix 8.3.

Now choose the a�ne rotations σ and τ̃ : x 7→ τx+a with a 6= 0, for example a = (1, 0, 0, 0).
Let G = 〈σ, τ̃〉 the subgroup of Isom+R4 generated by σ and τ̃ . Then G is free and Fix g is a
singleton for all g ∈ G. Since Fixσ ∩ Fix τ = ∅, we deduce that G is eccentric. �

Remark. The existence of free subgroups of SL(2,R) and SO4 whose elements, apart from
identity, never admit 1 as eigenvalue, is the essential ingredient of constructions of eccentric
subgroups of a�ne applications or of a�ne isometries (Example 3.3 and Proposition 5.4). We
have used explicit examples of such subgroups. These subgroups, although sometimes di�cult
to exhibit, are not exceptional. Indeed, it can be shown thanks to the Baire theorem that, if G
is a closed subgroup of GL(n,R), then the set of pairs of elements of G generating a free group
is either empty or contains a dense Gδ, i.e. a countable intersection of dense open subsets of
G × G. The same result holds with the additional constraint on the eigenvalue 1. Let us add
that A. Borel has proved a very general result encompassing the constructions we used, see [4]:

If G is a semi-simple linear algebraic group de�ned on R, then the set of n -tuples of G(R)n

generating a free group contains a dense Gδ subset.

Proposition 5.6. For any integer n > 4, the group IsomRn is non�xating.

Proof. For n > 5, just complete by idn−4 on the last n− 4 components: Let σn and τn be the
elements of Isom+Rn of matrices

Sn =

(
S4 0
0 idn−4

)
and Tn =

(
T4 0
0 idn−4

)
and let G = 〈σn, τ̃n〉 be the subgroup of IsomRn generated by σn and τ̃n : x 7→ τnx + a with
a ∈ Rn \ {0}. It is easy to check that G is free and eccentric. �

The case of non Euclidean norms.

Let us endow Rn with an arbitrary norm, and let G denote the group of isometries associated
with this norm. According to the Mazur-Ulam theorem, the elements of G are a�ne maps,
cf. [14] or Exercise 7.11 and its solution. The group

−→
G of the linear parts of the elements of

G is closed and bounded in the vector space of endomorphisms of Rn, so
−→
G is compact. By a

classical argument, we can construct a scalar product which is invariant by the elements of
−→
G .

Therefore G can be seen as a subgroup of IsomRn and G is thus �xating if n 6 3. When n > 4,
Proposition 5.6 does not allow to conclude and indeed G may be �xating for some norms:

Proposition 5.7. Let N be a norm on Rn and let G be the group of isometries associated

with N . If the linear group associated with
−→
G is �nite, then G is �xating. In particular, if N

is one of the usual Np norms with p ∈ [1,+∞] \ {2}, then G is �xating.

Proof. Let H be a subgroup gaf of G. Since the only translation in H is id, the morphism
ϕ : H →

−→
G, f 7→

−→
f is injective, so H is �nite. We check that the point ω = 1

|H|
∑

h∈H h(
−→
0 )

is �xed by all elements of H, hence H is a gag.
If N = Np then

−→
G contains all the permutations of the axes, so a scalar product invariant

by the elements of
−→
G is necessarily proportional to the usual Euclidean scalar product. The

Euclidean unit sphere touches the unit ball forNp exactly at the vertices of the hyper-octahedron

E = {±−→e 1, . . . ,±−→e n}. The set E is invariant by
−→
G , so

−→
G is �nite. �
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5.2 The hyperbolic case

We use the Poincaré model of the half-space: Hn = R>0 × Rn−1 endowed with the Poincaré
metric given by ds2 = 1

x2n

∑n
i=1 dx

2
i , cf. Appendix 8.1 for details.

Theorem 5.8. If n 6 3, then IsomHn is �xating. If n > 5, then IsomHn is non�xating.

We conjecture that the group IsomH4 is non�xating.

We will show �rst that IsomHn is non�xating if n > 5, then that IsomH2 and IsomH3 are
�xating. The case n = 1 is obvious.

The case of dimensions higher than 5

Proposition 5.9. For any n > 5, the group IsomHn is non�xating.

Proof. With each isometry of the Euclidean space of dimension n−1, we associate an isometry
of the hyperbolic space of dimension n in the following way: If f is an isometry of Rn−1

then the map F : Rn−1 × R>0 → Rn−1 × R>0 de�ned by F (x, t) = (f(x), t) is an isometry
of Hn. The mapping f ∈ IsomRn−1 7→ F ∈ IsomHn is a morphism of groups and we have
FixF = Fix f × R>0. Therefore the image by this morphism of an eccentric subgroup of
IsomRn−1 is an eccentric subgroup of IsomHn. Since, for n > 5, IsomRn−1 is non�xating,
IsomHn is non�xating. �

The case of dimension 2

Although this case can be deduced from the 3-dimensional case (cf. Exercise 7.8) we chose
to present proofs speci�c to the dimension 2 because they are more elementary and are a
good introduction into hyperbolic geometry. We use the model of the complex half-plane
H2 = {z ∈ C ; Im z > 0}. The positive isometries of H2 are the homographies

ha,b,c,d : z 7→ az + b

cz + d
with a, b, c, d ∈ R, ad− bc = 1.

The other isometries ofH2, called negatives, are the homographies composed with the symmetry
z 7→ −z. The group Isom+H2 of positive isometries is called the Möbius group. We recall that
the mapping

Φ : Isom+ H2 → PSL(2,R), ha,b,c,d 7→ {M,−M} with M =

(
a b
c d

)
is an isomorphism of groups. We call matrices associated with an isometry h the elements of
Φ(h). We de�ne the trace of an isometry h by trh = |trM | where M ∈ Φ(h). We will use the
following result, the proof of which is in Appendix 8.1.4.

Lemma 5.10. Let h ∈ Isom+H2 \ {id}.

a. We have Fixh 6= ∅ if and only if trh < 2. Moreover, in that case, Fixh is a singleton.

b. In the case where Fixh = {i}, the associated matricesM and −M ∈ Φ(h) are the orthogonal

matrices R
(
θ
2

)
=

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
and R

(
θ
2

+π
)
. We then say that h is a rotation of center

i and angle θ ∈ R/(2πZ), and we will denote h = rθ.

c. In the general case, if Fixh = {z0} and if ϕ ∈ Isom+H2 is such that ϕ(i) = z0, then ϕ
−1hϕ

�xes i, hence is a rotation rθ, and the angle θ does not depend on the choice of ϕ. We will
say that h is a rotation of center a and angle θ.
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d. For every x > 0 and every θ ∈ R/(2πZ), the rotation of center ix and angle θ is associated

with the matrices ±

(
cos θ

2
−x sin θ

2

x−1 sin θ
2

cos θ
2

)
.

An element h ∈ Isom+H2 is called elliptic if trh < 2, parabolic if trh = 2, and hyperbolic if
trh > 2.

We divided by 2 the angle in the matrices so that the angle de�ned in the statement above
corresponds to the usual notion of angle: The rotation rθ : z 7→ cz−s

sz+c
with c = cos θ

2
and

s = sin θ
2
turns approximately the points very close to its center i by an angle θ and not θ

2
.

In addition, we will use that two segments of H2 of the same length are positively isometric:
If x, y, x′, y′ ∈ H2 are such that d(x, y) = d(x′, y′), then there exists f ∈ Isom+H2 such that
f(x) = x′ and f(y) = y′; see Section 8.1.4 for a proof.

As a preliminary, we show the following result.

Lemma 5.11. If f, g ∈ Isom+H2 are such that Fix f ∩ Fix g = ∅, then there exists h ∈ 〈f, g〉
such that Fixh = ∅.
Proof. If Fix f or Fix g is empty, we are done. Now we assume that Fix f and Fix g are
nonempty. Thus f and g are two rotations of centers a and b respectively, with a 6= b. Below
we prove that tr [f, g] > 2, yielding Fix [f, g] = ∅ by Lemma 5.10.a.

Let us start by sending a and g(a) into iR: Let ϕ ∈ Isom+H2 and x ∈ ]0,+∞[ \{1} be such
that ϕ(a) = i and ϕ(g(a)) = ix. Set f̃ = ϕfϕ−1 and g̃ = ϕgϕ−1. We have [f, g] = ϕ−1[f̃ , g̃]ϕ,
hence tr [f, g] = tr [f̃ , g̃].

Now we write the commutator of f̃ and g̃ in the form [f̃ , g̃] = f̃h, with h = g̃f̃−1g̃−1.
The isometry f̃ is the rotation of center i and angle θ 6= 0; it is associated with the matrices

±
(

cos t − sin t
sin t cos t

)
with t = θ

2
6≡ 0 mod π. The isometry h is conjuguated to f̃−1, hence has

an angle −θ, and �xes the point ix. By Lemma 5.10.d, it follows that h is associated with

the matrices ±
(

cos t x sin t
−x−1 sin t cos t

)
. As a consequence, the product f̃h is associated with the

matrices

±
(

cos2 t+ x−1 sin2 t (x− 1) cos t sin t
(1− x−1) cos t sin t x sin2 t+ cos2 t

)
.

We then have

tr [f, g] = tr f̃h = 2 cos2 t+ (x+ x−1) sin2 t > 2. �

The proof of Lemma 5.11 is based on the computation of a trace. A geometric proof is also
available by an adaptation of the proof of Lemma 5.13 in the sequel.

Proposition 5.12. The group IsomH2 is �xating.

Proof. By Corollary 4.8, it is enough to prove that Isom+H2 is �xating. Let G 6 Isom+H2 be
a gaf; we have to prove that G is a gag. If G = {id}, the result is obvious. We now assume
G 6= {id}. By Lemma 5.11, all elements of G \ {id} are rotations of the same center, hence G
is a gag. �

Remarks.

1. Ironically, the Möbius group acting on R̂ instead of H2 is non�xating, in spite of a lower
dimension, cf. Exercise 7.7.

2. One can also deduce Proposition 5.12 from the forthcoming Corollary 5.15, cf. Exercise 7.8.

The case of the dimension 3

We start with the hyperbolic analogue of Lemma 5.2 on Isom+R3.
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Lemma 5.13. Let f, g ∈ Isom+H3. If Fix f ∩ Fix g = ∅, then there exists h ∈ 〈f, g〉 such that
Fixh = ∅.

Proof. The proof is done in several steps by proving that one of the isometries f , g, f−1g,
gfg−1f−1, or gfgf−1 has no �xed point.

Let h = f−1g. If Fix f , Fix g, or Fixh is empty, we are done; otherwise, let x0 ∈ Fixh.
We have f(x0) = g(x0) and, since Fix f ∩ Fix g is empty, one has f(x0) = g(x0) 6= x0. Let
P0 = Med (x0, f(x0)); it is a hyperbolic plane by Lemme 8.6. Since f and g are isometries,
Fix f and Fix g are included in P0.

We claim that Fix g∩f(Fix g) is empty. Otherwise, let x1 ∈ Fix g be such that y1 = f(x1) ∈
Fix g. According to Lemma 8.10, the sets of �xed points of elements of Isom+H3 are hyperbolic
lines when they are nonempty. Therefore, according to Lemma 8.8 on the projections, there is
a single point z1 = πFix fx1 realizing the distance from x1 to Fix f . The three points x1, y1, and
z1 are distinct since Fix f ∩ Fix g is empty.

Let γ denote the geodesic passing through x1 and z1. Since x1 and Fix f are in the plane
P0, γ is a hyperbolic line of the plane P0, orthogonal to Fix f in z1 according to Lemma 8.8.
Since f(x1) ∈ Fix g ⊂ P0, the plane P0 is stable by f . Therefore f(γ) is a hyperbolic line of
P0. It is also orthogonal to Fix f in z1 because f preserves angles. As a result, f(γ) = γ and
the restriction of f to γ is a symmetry of center z1. Since y1 = f(x1) ∈ f(γ) = γ, y1 is the
symmetric on γ of x1 with respect to z1. It follows that γ = Fix g, and therefore z1 belongs to
Fix g and Fix f , in contradiction with Fix f ∩ Fix g empty.

Let g̃ = fgf−1; it is a hyperbolic rotation of the same angle θ as g up to the sign (the angle
is only de�ned up to the sign). We have Fix g̃ = f(Fix g) so Fix g̃ ∩ Fix g = ∅ from above.
As before, if Fix (gg̃−1) is empty we have �nished; otherwise, with x1 ∈ Fix (gg̃−1), the plane
P = Med (x1, g(x1)) contains Fix g and Fix g̃.

We will show that Fix (gg̃) or Fix (gg̃−1) is empty.
Let σP be the re�ection about the plane P . According to Lemma 8.12, there is a hyperbolic

plane S containing the line Fix g and making an angle ± θ
2
with P such that g = σSσP .

Since Fix g̃ is also included in P , we can �nd two hyperbolic planes S̃ and S̃ ′, containing
Fix g̃ and making the angles ± θ

2
with P . According to Lemma 8.12, g̃ or g̃−1 = σPσS̃. It can

be assumed without loss of generality that g̃ = σPσS̃; then we have g̃−1 = σPσS̃′ .

We claim that at least one of the intersections S∩ S̃ or S∩ S̃ ′ is empty. Indeed, conjugating
by an element of IsomH3 if necessary, we can assume that Fix g is a vertical half-line of endpoint
a in the horizontal plane ∂H3; P and S are then vertical half-planes containing the half-line
Fix g. The boundary of P is an a�ne line ∆ of the horizontal plane that contains a as well as
the endpoints b and c of the hyperbolic line Fix g̃ (it may occur that the hyperbolic line Fix g̃
has only one endpoint; it is then vertical and the sequel becomes simpler). Since the hyperbolic
lines Fix g and Fix g̃ do not cross, the points b and c are on the same side of a on the line ∆,
so one of the points, say b, is between a and c. Let V be the vertical plane containing b and
parallel to the plane S. Since the angles of the hyperbolic planes S̃ and S̃ ′ with the plane P
are ± θ

2
, one of the planes S̃ or S̃ ′ is tangent to V . Suppose it is S̃; if this is not the case, simply

replace g̃ by g̃−1. The plane S̃ does not cross S because it is located on one side of V and its
closure contains c while S contains a. We have gg̃ = σSσPσPσS̃ = σSσS̃.

We conclude by showing that Fix (σSσS̃) is empty. By contradiction, otherwise let x ∈
Fix (σSσS̃), hence σS(x) = σS̃(x). Since FixσS̃ ∩FixσS = S ∩ S̃ = ∅, we would have σS(x) 6= x,
hence the hyperbolic planes S and S̃ would both be included in the plane Med (x, σS(x)), so
would coincide, in contradiction with S ∩ S̃ = ∅. �

Lemma 5.14. Let G 6 Isom+H3 be such that Fix f ∩ Fix g 6= ∅ for all f, g ∈ G. Then G is a
gag.
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Proof. If Fix f = Fix g for all f, g ∈ G \ {id}, we are done. Otherwise, let f, g ∈ G \ {id} with
Fix f 6= Fix g, let Π be the hyperbolic plane containing the hyperbolic lines Fix f and Fix g
and let ω ∈ Π be the point of intersection of these lines. It remains to prove that ω ∈ Fixh for
all h ∈ G. By contradiction, otherwise, let h ∈ G be such that ω /∈ Fixh, let α be such that
Fix f ∩ Fixh = {α}, and let β such that Fix g ∩ Fixh = {β}. Therefore we have α 6= β and
α, β ∈ Π ∩ Fixh, hence Fixh ⊂ Π. By the way, we have shown

∀k ∈ G (ω /∈ Fix k ⇒ Fix k ⊂ Π). (4)

With the same h, let δ ∈ Fix (fh) \ {α}. We have δ /∈ Fixh (otherwise δ ∈ Fix f ∩ Fixh,
but δ 6= α) hence Fixh ⊂ Med (δ, h(δ)). Similarly Fix f = Fix f−1 ⊂ Med (δ, f−1(δ)) =
Med (δ, h(δ)), which yields Med (δ, h(δ)) = Π. It follows that δ /∈ Π, hence Fix (fh) 6⊂ Π. Now
the contraposition of (4) implies ω ∈ Fix (fh), but this implies ω ∈ Fixh, a contradiction. �

Corollary 5.15. The group IsomH3 is �xating.

Proof. Since Isom+H3 is a subgroup of index 2 of IsomH3, by Corollary 4.8, it su�ces to prove
that Isom+ H3 is �xating. Let G 6 Isom+H3 be a gaf. According to Lemma 5.13, we have
Fix f ∩ Fix g 6= ∅ for all f, g ∈ G, hence G is a gag by Lemma 5.14. �

5.3 The spherical case

The sphere Sn is endowed with the spherical distance d(x, y) = arccos〈x | y〉. Since the function
arccos is bijective, the isometries of Sn for the spherical distance coincide with the isometries of
Sn for the distance induced by the Euclidean distance of Rn+1. It is known that an isometry of Sn
is the restriction to Sn of a vector isometry of Rn+1, see [3], Chap.18 or Exercise 7.13. Precisely,
if On+1 denotes the group of vector isometries of Rn+1, then we have a group isomorphism

ϕ : On+1 → IsomSn

which maps any element f ∈ On+1 to its restriction to Sn. We have Fix f = {−→0 } if and only if
Fixϕ(f) = ∅. By abuse of language, we will say that a subgroup G of On+1 is a gaf, resp. a
gag, resp. eccentric, if its image ϕ(G) is a gaf, resp. a gag, resp. an eccentric subgroup of
IsomSn.

Theorem 5.16. The group IsomSn is �xating if and only if n = 1.
The group Isom+ Sn is �xating if and only if n = 1 or n = 3.

Observe that Corollary 4.8 does not apply here because the median inequality does not hold in
elliptic spaces. The proof of Theorem 5.16 is split into several parts.

For n = 1, the only gaf of IsomS1 are the trivial group {id} and the groups {id, s} where
s is a re�ection in a line, which are obviously gag.

Proposition 5.17. If n > 2, then IsomSn is non�xating.

Proof. We use the framework of On+1. Let us start with n = 2. Let (
−→
i ,
−→
j ,
−→
k ) be an

orthonormal basis of R3. Let f, g, h ∈ O3 be the vector isometries of matrices respectively
Mat f = diag(1,−1,−1), Mat g = diag(−1, 1,−1) and Math = diag(−1,−1, 1). The set
G = {id, f, g, h} is a group isomorphic to the Klein group (Z/2Z)2: We have f 2 = g2 = h2 = id,
fg = gf = h, gh = hg = f and hf = fh = g. We therefore have Fix k 6= {−→0 } for all k ∈ G
but FixG = {−→0 }.

For n > 3, we complete the matrices of f and g by −1 and the matrix of h by 1: In an
orthonormal basis, one chooses Mat f = diag(1,−1, . . . ,−1), Mat g = diag(−1, 1,−1, . . . ,−1),
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and Math = diag(−1,−1, 1, 1, . . . , 1). We check that {id, f, g, h} is still isomorphic to the
Klein group, and that it is eccentric. �

Let us now treat the case Isom+ Sn. The isomorphism ϕ : On+1 → IsomSn induces by
restriction an isomorphism from SOn+1 into Isom+ Sn, which will be denoted by the same
letter.

Proposition 5.18. If n is even, then Isom+ Sn is eccentric.

Proof. Let g ∈ Isom+ Sn and let f = ϕ−1(g) ∈ SOn+1. All the eigenvalues of f are of modulus
1 and their product is equal to 1. Moreover, if λ is an eigenvalue of f then λ too, with the same
multiplicity. Since n+ 1 is odd, we deduce that 1 is an eigenvalue of f , hence Fix f 6= {−→0 }. It
follows that Isom+ Sn is a gaf, but is obviously not a gag. �

It remains to treat the case n odd. For n = 1, Isom+ S1 is obviously �xating. We now treat
the case n > 5, and we will end up with n = 3.

Proposition 5.19. If n is odd and n > 5, then Isom+ Sn is non�xating.

Proof. We consider the space SOn+1 and we take again the example of the proof of Proposi-
tion 5.17, replacing 1 by I2 and −1 by −I2:

For n = 5, let f, g, h ∈ SO6 be the isometries of block diagonal matrices respectively
Mat f = diag(I2,−I2,−I2), Mat g = diag(−I2, I2,−I2) and Math = diag(−I2,−I2, I2). We
verify that {id, f, g, h} is isomorphic to the Klein group and eccentric.

For n odd, n > 7, we complete the matrices of f and g by −I2 and the matrix of h by I2,
and the group {id, f, g, h} is still isomorphic to the Klein group and eccentric. �

Proposition 5.20. The group Isom+ S3 is �xating.

Proof. By contradiction, let G 6 SO4 be an eccentric group. An element of G \ {id} has a
plane (i.e. a subspace of dimension 2) of �xed points.

Step 1. One has Fix f ∩ Fix g 6= {−→0 } for all f, g ∈ G.

Let −→u ∈ Fix (f−1g) \ {−→0 } (which is nonempty, as G is a gaf). If −→u ∈ Fix f ∩Fix g, we are
done. Otherwise, we have f(−→u ) = g(−→u ) 6= −→u . Then Fix f and Fix g are two planes included in
the hyperplane (i.e. three dimensional subspace) Med (−→u , f(−→u )), hence intersect each other.

Now set f0 ∈ G \ {id}. Since FixG = {−→0 }, there exists g0 ∈ G \ {id} such that Fix f0 6=
Fix g0. From step 1, Fix f0 ∩ Fix g0 is a straight line denoted by D, and Fix f0 + Fix g0 is a
hyperplane denoted by H.

Step 2. For all f ∈ G \ {id}, one has Fix f ⊂ H.

Indeed, let h0 ∈ G be such that Fixh0 does not contain D. Such a h0 exists since FixG =
{−→0 }. We have Fix f0 6= Fix g0 6= Fixh0. From step 1, Fix f0 ∩ Fixh0 is a straight line
denoted by D′, and Fix g0 ∩ Fixh0 is a straight line denoted by D′′. We have D′ 6= D′′

(otherwise D′ = D′′ = D, in contradiction with D 6⊂ Fixh0) and Fixh0 is two dimensional,
hence Fixh0 = D′ + D′′ ⊂ H. By the way, notice that the three straight lines D, D′, and D′

are not coplanar (otherwise we would have Fix f0 = Fix g0 = Fixh0), hence H = D+D′ +D′′,
so that f0, g0 and h0 play symmetrical roles. Now, let f ∈ G\{id}. Therefore Fix f , which is a
plane, cannot contain at the same time D, D′ and D′′ hence, from the above, Fix f is included
in one of the three subspaces Fix f0 + Fix g0, Fix g0 + Fixh0 or Fixh0 + Fix f0, which in fact all
three coincide with H.

Let ∆ denote the line orthogonal to H: ∆ = H⊥.

Step 3. One has f(∆) = ∆ for all f ∈ G.
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Otherwise, let f ∈ G be such that f(∆) 6= ∆ and let g ∈ G \ {id} be arbitrary. Let us
show that (Fix g)⊥ = ∆ + f(∆). We have ∆ ⊂ (Fixh)⊥ for all h ∈ G \ {id} and, since f is
an isometry, f(∆) ⊂ (f(Fixh))⊥. For h = f−1gf , this gives f(∆) ⊂ (f(Fixh))⊥ = (Fix g)⊥.
Therefore ∆ + f(∆) ⊂ (Fix g)⊥, which have the same dimension, hence the equality. Since this
holds for all g ∈ G \ {id}, we get FixG = (∆ + f(∆))⊥ 6= {−→0 }, a contradiction.

To sum up, we found a hyperplane H such that, for all f ∈ G \ {id}, Fix f ⊂ H and
f(H⊥) = H⊥. It follows that the restriction of f toH⊥ is−id, thus the only possible eigenvalues
of f are 1 and −1, hence f 2 = id for all f ∈ G, so G is Abelian (we have id = f 2g2 = (fg)2

hence, simplifying, fg = gf for all f, g ∈ G).
Since G is Abelian, the elements of G are diagonalizable in a common basis, denoted by

B = (
−→
i ,
−→
j ,
−→
k ,
−→
` ), with 1 and −1 as double eigenvalues (these are positive isometries of

R4). Consider the endomorphisms f1, f2 and f3 whose matrices in the basis B are respectively
diag(1, 1,−1,−1), diag(1,−1, 1,−1), and diag(1,−1,−1, 1). Thus G is a subgroup of G0 =
{±id,±f1,±f2,±f3}.

The list of the sixteen subgroups of G0 splits into

. eleven gag: {id}, {id, fn} with 1 6 n 6 3, {id,−fn} with 1 6 n 6 3, {id, f1, f2, f3} which
�xes

−→
i , {id, f1,−f2,−f3} which �xes

−→
j , {id,−f1, f2,−f3} which �xes

−→
k , {id,−f1,−f2, f3}

which �xes
−→
` ,

. and �ve containing −id hence not gaf: {id,−id}, {id, fn,−id,−fn} with 1 6 n 6 3,
and G0.

As a consequence G0 contains no eccentric subgroup, a contradiction. �

5.4 The projective case

Usually, RPn is the set of vector lines of Rn+1. In this article, we identify RPn with the quotient
of Sn by the equivalence relation

x ∼ y ⇔ x = y or x = −y.

For x ∈ Sn, we write ẋ = {x,−x} the corresponding class in RPn. Given ẋ = {x,−x} and
ẏ = {y,−y} in RPn, the distance between ẋ and ẏ is then given by d(ẋ, ẏ) = arccos |〈x | y〉|,
where 〈x | y〉 is the scalar product between x and y.

Given an isometry f of Sn and x ∈ Sn, the class of f(x) in RPn is the same as f(−x) =
−f(x), so we can de�ne a function from RPn to RPn, denoted by ψ(f), which maps ẋ = {x,−x}
to the class of f(x). It is known that the mapping

ψ : IsomSn → IsomRPn

de�ned in this manner is a surjective morphism, of kernel {±id}; cf. [3], Chap.19. Thus
the group IsomRPn is the image of IsomSn by ψ, and similarly Isom+RPn is the image of
Isom+ Sn by ψ. When n is even, −id : Sn → Sn reverses the orientation, so Isom+RPn is equal
to IsomRPn.

Theorem 5.21. The group IsomRPn is �xating if and only if n = 1.
The group Isom+RPn is �xating if n = 1 and non�xating if n is odd and greater than or equal
to 5.

Remarks.

1. We do not know whether Isom+RP3 is �xating or not.
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2. Notice that the rotations of RP2 have a single �xed point. Thus the rotation group RP2 is
another example of a non�xating group, which is not Abelian and such that all elements have
a single �xed point. This completes Example 3.3.

Proof. It is easy to check that IsomRP1 is �xating.
If n is even and ḟ = ψ(f) ∈ IsomRPn, then the matrix of f , seen as the vector isometry

of Rn+1, is odd-sized, so always admits 1 or −1 as eigenvalue, hence there exists x ∈ Sn such
that f(x) ∈ {x,−x}. Thus any isometry of RPn has at least one �xed point ẋ, but no point of
RPn can be �xed by all the elements of IsomRPn. The group IsomRPn is therefore eccentric
itself, hence non�xating.

We now study the case n odd. For n = 5, set

I =

(
1 0
0 1

)
and R =

(
0 −1
1 0

)
,

and consider the isometries f, g, h of S5 whose matrices are the following block diagonal matrices

Mat f = diag(I, R,R), Mat g = diag(R, I,R) and Math = diag(R,R, I).

These are positive isometries. Let G5 denote the subgroup of Isom+ S5 generated by f, g and
h. One �nds for G5 the following group of order 32:

G5 = {diag(±I,±I,±I), diag(±I,±R,±R), diag(±R,±I,±R), diag(±R,±R,±I)}

and ones checks that its image ψ(G5) in Isom+RP5 is eccentric. The veri�cation is somewhat
tedious but without di�culty. It follows that Isom+RP5 is non�xating, hence IsomRP5 neither.

For n odd, n > 7, we consider the positive isometries f, g, h of Sn whose matrices are
the block diagonal matrices: Mat f = diag(I, R, . . . , R), Mat g = diag(R, I,R, . . . , R) and
Math = diag(R,R, I, R, . . . , R). We verify similarly that the image ψ(Gn) of the subgroup
Gn of Isom+ Sn generated by f, g and h is eccentric, so neither Isom+RPn nor IsomRPn are
�xating.

It remains to treat the case n = 3. Let f, g ∈ IsomS3 of matrices

Mat f =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 and Mat g =


0 0 0 −1

1 0 0 0

0 −1 0 0

0 0 1 0

 .

For simplicity, we write f and g as signed permutations: f = (1 2 3 4) and g = (1 2 − 3 − 4).
The computation gives fg = (1 3)(2 − 4) = −gf and f 2 = (1 3)(2 4) = −g2. Therefore the
group generated by ±f and ±g is

G3 = {±id,±f,±f 2,±f 3,±g,±fg,±f 2g,±f 3g}.

By looking one by one all the elements ofG3, we easily check that ψ(G3) is eccentric in IsomRP3,
hence IsomRP3 is non�xating. We did not �nd any eccentric subgroup of Isom+RP3, nor were
we able to adapt to the projective case the proof that Isom+ S3 is �xating (Proposition 5.20).
�

6 Group acting on discrete sets

6.1 Symmetric groups

The aim of this section is the following result.
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Proposition 6.1.

a. The symmetric group Sn acting on {1, . . . , n} is �xating if and only if n 6 4.

b. The alternating group An of even permutations acting on {1, . . . , n} is �xating if and only
if n 6 4.

Proof. a. We split the proof for the symmetric group into �ve steps. We use the decomposition
in cycles with disjoint supports. A cycle of order n is called a n-cycle.

Step 1: Sn is �xating when n 6 3. For n = 1 and n = 2, there is nothing to do since there
is no nontrivial subgroup. For n = 3, the nontrivial subgroups of S3 are A3 = 〈(123)〉, which
is not a gaf, and the three subgroups of order 2 generated by each transposition, which are
gag, hence S3 has no eccentric subgroup.

Step 2: S4 is �xating. Let G 6 S4 be a gaf. So G contains neither double-transposition nor
4-cycle (since these permutations have no �xed point), so G \ {id} contains only transpositions
and/or 3-cycles. Two cases occur.

. If G contains no 3-cycle, then G = {id, τ} where τ is a transposition, and we are done.

. If G contains a 3-cycle γ, say γ = (123), let us show by contradiction that FixG = {4}.
Otherwise there exists g ∈ G such that g(4) 6= 4, say g(4) = 1. If g = (14), then
gγ = (1234), which has no �xed point. If g is a 3-cycle, say g = (124), then gγ = (14)(23),
which has no �xed point either.

Step 3: S5 is non�xating. Let G = 〈f, g〉 with f = (123) and g = (12)(45). We verify that
G = {id, f, f 2, g, h, k} with h = fg = (13)(45) and k = gf = (23)(45), and that G is eccentric.

Remark. We can see G as (S3×S2)+, the set of even permutations acting separately on {1, 2, 3}
and on {4, 5}. We also can interpret G as the group of isometries of the �double tetrahedron�,
i.e. the hexahedron obtained by gluing two regular isometric tetrahedra on one of their faces.

Step 4: S6 is non�xating. Let G = 〈f, g〉 with f = (12)(34) and g = (12)(56). We verify that
G = {id, f, g, h} with h = (34)(56), and that G is eccentric.

Remark. Here too, G can be interpreted as a set of even permutations: those acting separately
on {1, 2}, on {3, 4}, and on {5, 6}, and also as a group of isometries: the half-turns of axes the
coordinate axes in R3.

Step 5: Sn is non�xating when n > 7. Let G = 〈f, g〉 with f = (123)(6 . . . n) and g =
(12)(45)(6 . . . n). We check that G is eccentric.

b. For n 6 4, An is �xating, as a subgroup of a �xating group. For n = 5 and n = 6, both
eccentric subgroups built in steps 3 and 4 are precisely subgroups of A5, resp. A6, which shows
that A5 and A6 are non�xating. For n > 8, n even, the cycle (6 . . . n) is even, so the eccentric
subgroup of step 5 is still in An. For n > 9, n odd, the cycle (7 . . . n) is even, so we complete
as in step 5, but with the group of step 4 : we choose G = 〈f, g〉 with f = (12)(34)(7 . . . n) and
g = (12)(56)(7 . . . n). We verify that G is an eccentric subgroup of An. We leave to the reader
the most interesting case A7, see Exercise 7.15. �

Remark. Proposition 6.1 shows that the groups Sn and An are not �xating when n > 4. Some
of their subgroups might be �xating. For example, when Fq is a �nite �eld with q elements and
d is an integer, the group G = GL(d,Fq) acts naturally on X = Fdq \ {0} and can be identi�ed
to a subgroup of the group SX of permutations of X. We do not know whether G is �xating
except in trivial cases and the case G = GL(3,F2) which is not �xating, see exercise 7.16.
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6.2 Isometries of Zn

Let n > 1 be an integer. We equip Zn with the Euclidean norm, denoted ‖ ‖. Any arbitrary f ∈
IsomZn can be extended into an isometry of Rn, denoted by the same letter, cf. Exercise 7.14
and its solution.

Theorem 6.2. The group IsomZn is �xating.

Proof. By contradiction, let G be an eccentric subgroup of IsomZn with n minimal.

Step 1: G is �nite.
Let Cn = {x = (x1, . . . , xn) ; xi = −1, 0 ou 1} be the unit hypercube in Zn. Since the only
translation of G is id, the morphism from G to Isom Cn, which maps any isometry f to its
linear part

−→
f , is injective. Now Isom Cn is �nite, so G is �nite, too.

Let N denote the cardinal of G and ω the centroid of the orbit of
−→
0 by G, i.e. ω =

1
N

∑
f∈G f(

−→
0 ).

Step 2: All coordinates of ω are congruent to 1
2
modulo 1.

Indeed, ω is �xed by all the elements of G. Since G is eccentric, ω /∈ Zn. Let

Ω = {x ∈ Zn ; ‖ω − x‖ = d(ω,Zn)}.

Let I =
{
i ∈ {1, . . . , n} ; ∃x, y ∈ Ω, xi 6= yi

}
. We have ωi ≡ 1

2
mod 1 ⇔ i ∈ I. Indeed, if

x, y ∈ Ω are such that xi 6= yi, then |xi − yi| = 1 and |xi − ωi| = |yi − ωi| = 1
2
. Conversely, if

ωi ≡ 1
2

mod 1 and x ∈ Ω, then xi = ωi ± 1
2
and the point y with the same coordinates as x

except the i-th equal to ωi ∓ 1
2
is also in Ω. In summary, we have

Ω =
{

(x1, . . . , xn) ∈ Zn ; xi = ωi ± 1
2
if i ∈ I and xi = [ωi] if i /∈ I

}
,

Let [ωi] be the integer closest to ωi (unique since ωi 6≡ 1
2

mod 1 when i /∈ I). Let E = Zn∩Aff Ω.
It is a � lattice� isometric to Zk, where k is the cardinal of I. Precisely, let us set Ei = Z if
i ∈ I and Ei = {[ωi]} otherwise; then we have E = E1 × · · · × En. For all f ∈ G we have
f(Ω) = Ω, so f(Aff Ω) = Aff Ω, and in addition f(Zn) = Zn, so f(E) = E. This allows to
de�ne GE, the set of the restrictions to E of the elements in G. These are isometries of E.
Since G is not a gag, GE is not a gag either. Moreover, for all f ∈ G and all x ∈ Fix f , the
orthogonal projection πEx is also in Fix f , so that GE is a gaf. By minimality of n, we deduce
that k = n, hence I = {1, . . . , n}.

Step 3: One is reduced to ω =
−→
0 and one changes Zn into (2Z + 1)n.

Let ϕ : Zn → (2Z+ 1)n be the map de�ned by x 7→ 2x− 2ω and let f ∈ G. Then the isometry
f̃ = ϕfϕ−1 �xes

−→
0 and maps (2Z + 1)n into (2Z + 1)n. In addition, a small calculation shows

that f̃ =
−→
f , the linear part associated with f , so ϕ also globally �xes the lattice Zn, and the

entries of its matrix are only 0, 1 or −1.

To avoid multiple notations, we still denote by G the conjugate of G by ϕ. For each f ∈ G,
the matrix of f is thus a matrix of a signed permutation: Mat f = (ai,j)16i,j6n with, on each
row and each column, one and only one nonzero entry ai,j, equal to 1 or −1.

Step 4: The diagonal coe�cients of Mat f are never −1.
Since G is a gaf, Fix f is a nonempty subset of (2Z + 1)n. Let x = (x1, . . . , xn) ∈ Fix f . It is
an element of (2Z + 1)n, hence xi 6= 0 for all i = 1, . . . , n. If ai,i 6= 0, the i-th coordinate of the
equality f(x) = x gives ai,ixi = xi, hence ai,i = 1.

Denote by σ : G → Sn, f 7→ σf the function which maps f of matrix (ai,j)16i,j6n to the
permutation matrix (|ai,j|)16i,j61. This is clearly a group homomorphism, which is injective by
Step 4 (its kernel is reduced to id).

21



Step 5: Towards the construction of a global �xed point.
Let (e1, . . . , en) denote the canonical basis of Rn and consider the two relations on {1, . . . , n}:
i ∼ j if there exists f ∈ G such that f(ei) ∈ {ej,−ej},
i ≈ j if there exists f ∈ G such that f(ei) = ej.

It is easy to check that they are equivalence relations. Let p be the number of classes for
the relation ∼. For each k = 1, . . . , p, the class Ck for ∼ is partitioned into two classes for ≈
(possibly, one of the classes is empty). Let C+

k be one of these classes (arbitrarily chosen) and
put C−k = Ck \ C+

k . Denote

C+ = C+
1 ∪ · · · ∪ C+

p and C− = C−1 ∪ · · · ∪ C−p .

According to Step 4, given i ∼ j, the equality f(ei) = ej is not possible for one f ∈ G and
g(ei) = −ej for another, so we have i ≈ σf (i)⇔ f(ei) = eσf (i).

Let f ∈ G be �xed and denote

C++
f = C+ ∩ σ−1f (C+), C+−

f = C+ ∩ σ−1f (C−),

C−+f = C− ∩ σ−1f (C+), C−−f = C− ∩ σ−1f (C−).

Thus we have f(ei) = eσf (i) when i ∈ C
++
f ∪ C−−f and f(ei) = −eσf (i) when i ∈ C

+−
f ∪ C−+f .

We also have
C+ = C++

f ∪ C+−
f , C− = C−+f ∪ C−−f

and
σf (i) ∈ C+ ⇔ i ∈ C++

f ∪ C−+f , σf (i) ∈ C− ⇔ i ∈ C+−
f ∪ C−−f .

Step 6: The point x = (x1, . . . , xn) de�ned by xi = 1 if i ∈ C+ and xi = −1 if i ∈ C− is �xed
by all elements of G.
Indeed, for any f ∈ G, we have

f(x) = f
( ∑
i∈C+

ei

)
− f

( ∑
i∈C−

ei

)
=

( ∑
i∈C++

f

eσf (i) −
∑
i∈C+−

f

eσf (i)

)
−
( ∑
i∈C−−f

eσf (i) −
∑
i∈C−+

f

eσf (i)

)
=

∑
σf (i)∈C+

eσf (i) −
∑

σf (i)∈C−
eσf (i)

=
∑
j∈C+

ej −
∑
j∈C−

ej = x.

So that, FixG would be nonempty, a contradiction. �

6.3 Isometries of trees

All the results of this section are taken from J.-P. Serre's book [20]. A combinatorial tree X is a
simple undirected graph, connected and without cycles. The following fundamental property is
easy to check: Given two vertices P and Q, there exists an unique injective path joining them.
We denote by [P,Q] this path and by d(P,Q) its length, i.e. the number of its edges. The map
d : X ×X → N is the combinatorial distance on X and (X, d) is a discrete metric space. Two
vertices are joined by an edge if and only if their distance is 1. We recall that an isometry of
X is a bijection of X that preserves the distances.

Lemma 6.3. Let s be an isometry with at least one �xed point. Then, for every vertex x of
X, the distance d(x, s(x)) is even and the midpoint z of the path [x, s(x)] is a �xed point of s.
Moreover, z is the unique element of Fix s such that d(x, z) = d(x,Fix s).
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Proof. The uniqueness of the geodesic path between two vertices, and the fact that the image
of an injective path by the isometry s is an injective path with the same length, ensure that
Fix s is connected, hence is a subtree of X.

If x ∈ Fix s then the statement is clear. Suppose that x /∈ Fix s. Then there exists b ∈ Fix s
such that n = d(x,Fix s) = d(x, b) > 1. If b were not unique, one could construct a nontrivial
cycle thanks to the connectivity of Fix s. Let [x0, x1,x2, . . . , xn] be the geodesic path joining b =
x0 to x = xn. By de�nition of b, s(xi) 6= xi for all i > 0. The two paths [x, b] = [xn, xn−1, . . . , x0]
and [b, s(x)] = [x0, s(x1), s(x2), . . . , s(xn)] have no common vertex except x0 = b. Indeed, if
xj = s(xi) with i 6= j, one could construct a path of length strictly smaller than n, joining b
either to x or to s(x). It follows that the geodesic path [x, s(x)] is the concatenation of the
geodesic paths [x, b] = [xn, xn−1, . . . , x0] and [b, s(x)] = [x0, s(x1), s(x2), . . . , s(xn)]. Therefore,
the distance d(x, s(x)) is even and b is the midpoint of [x, s(x)]. �

Theorem 6.4. [20] If G is a �nitely generated group of isometries of X which is a gaf, then
G is a gag. Moreover, FixG is a nonempty subtree of X.

Proof. We proceed by induction on the number of generators of G. Suppose G is generated
by an isometry s that �xes a vertex, and a subgroup G0 having a global �xed point x0. If
s(x0) 6= x0 then, according to Lemma 6.3, the midpoint z of the geodesic path [x0, s(x0)] is a
�xed point of s. Similarly, for all t ∈ G0, st has a �xed point and [x0, s(x0)] = [x0, s(t(x0))].
Therefore, z is �xed by all the isometries belonging to the set sG0. Since s and sG0 generate
G, the point z is �xed by G. �

Remark. The assumption � G is �nitely generated� is necessary. Indeed, let [x0, x1, . . . ] be
an in�nite geodesic path in a tree X. Let k be an integer and put

N(k) = {s ∈ IsomX ; ∀` > k, s(x`) = x`}.

The sequence (N(k))k∈N is an nondecreasing sequence of subgroups of IsomX whose intersection
is a subgroup of G. Any element s in G admits �xed points but, in general, there is no
global �xed point (except in some special cases where the tree is �liform without symmetry).
Especially, when X is a homogeneous tree of degree > 3, the group G has no global �xed point
and so IsomX is non�xating. In fact, the group G admits a kind of �xed point at in�nity: the
equivalence class of geodesic paths ending as [x0, x1, . . . ].

We now give an explicit condition to obtain a gaf operating on a tree.

Proposition 6.5. Let f and g be two isometries of a tree. Assume that f , g and h = fg have
�xed points. Then any element of the group generated by f and g has �xed points.

Proof. It is enough to show that Fix f meets Fix g. If Fix f ∩ Fix g = ∅, let [P,Q] be the
geodesic joining Fix f to Fix g. According to Lemma 6.3, P is the midpoint of the geodesic
[Q, f(Q)]. Also f(Q) = f(g(Q)) = h(Q) and, as Fixh is nonempty, Lemma 6.3 also implies P
to be �xed by h. We deduce fg(P ) = P , thus g(P ) = f−1(P ) = P , contradicting P /∈ Fix g.
�

Bounded orbits in a tree

The median inequality (1) almost holds for combinatorial trees, but an edge has no midpoint!
This is why isometries whose �xed points should be midpoints of edges play a special role.

Lemma 6.6. If X is a �nite tree, then there exists either a vertex �xed by every element of
IsomX, or an edge stable by every element of IsomX.
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Proof. We proceed by induction on the number of vertices. If there are one or two vertices, the
result holds. If there are strictly more than two vertices, the set of the vertices of X having at
least two neighbors is a nonempty subtree X ′, stable by the elements of IsomX. Since there is
at least one vertex that has a single neighbor in a �nite tree, the induction assumption can be
applied to X ′. �

De�nition 6.7. An isometry g of X is called an inversion if there exists an edge {a, b} such
that g(a) = b and g(b) = a.

Proposition 6.8. Let X be a tree whose all vertices have a �nite degree. Let G be a subgroup
of IsomX without inversion. If G has a bounded orbit, then G has a global �xed point.

Proof. Suppose G has a bounded orbit ∆. Consider the set T (∆) of vertices in X that are in
a geodesic joining two vertices of ∆. Since ∆ is �nite, T (∆) is �nite, too. In addition, T (∆)
is the smallest subtree containing ∆, the convex hull of the orbit. Since an isometry sends a
geodesic segment on a geodesic segment, the subtree T (∆) is stable by the elements of IsomX.
Therefore, according to Lemma 6.6 applied to T (∆), there is either a vertex or an edge invariant
by all elements of G. If an edge {a, b} is stable by G, then necessarily G �x a and b, because
G does not contain an inversion. �

The following result is an easy consequence.

Corollary 6.9. An isometry of �nite order of a tree which is not an inversion has a �xed point.

Application. Consider the Schwartz group G de�ned by two generators a and b related by
the relations aA = bB = (ab)C = 1, where A, B and C are integers greater than or equal to 2.
Any action by isometries without inversion of G on a tree X has a global �xed point. Indeed,
according to Proposition 6.8 about �nite orbits, each isometry of X determined actions of a, b
and ab has �xed points. Then, thanks to Proposition 6.5, we conclude that the group generated
by a and b has a global �xed point.

By a similar argument, Serre proves that the group SL(3,Z) has the same property: Each
action by isometries of G on a tree has a global �xed point.

Generalization. One can de�ne a notion of Λ-tree where Λ is a totally ordered Abelian
group. Then Theorem 6.4 still holds [15].

6.4 Questions about isometries in �nite graphs

Let X = (S,A) be a simple unoriented connected graph. The set S of its vertices is equipped
with the distance d de�ned by the minimum number of edges joining vertices. Several simple
and natural questions arise in this context:

1. Which are the �nite graphs whose isometry group is �xating?

2. Which are the �nite groups admitting a generating system de�ning a Cayley graph whose
isometry group is �xating?

3. Find in�nite families of graphs whose isometry group is �xating.

The �rst two questions are ambitious and probably di�cult. On the other hand, the third
question admits simple partial answers.

Consider the complete graph Kn on n vertices. Its isometry group is the symmetric group
Sn. Therefore, according to Proposition 6.1, it is �xating if and only if n 6 4.

Let Cn be the graph associated with the n-dimensional hypercube {0, 1}n of Rn. The set of
vertices of Cn is {0, 1}n and the edges are the pairs of vertices of which exactly one coordinate
di�ers.
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Proposition 6.10. The group Isom Cn is �xating for all integer n > 1.

Proof. The proof is analogous, in simpler form, to that of Theorem 6.2 on Zn. We prove that
an isometry of Cn extends in a unique way to Rn in an isometry for the Euclidean norm, cf.
Exercise 7.14. The center of the cube ω = (1

2
, . . . , 1

2
) is �xed by all the isometries of the cube.

Conjugating by the map x 7→ 2x − 2ω, we reduce to the case where the isometries are linear
maps whose matrices are matrices of signed permutations. We �nd that the matrices of the
isometries of a subgroup gaf never have −1 on the diagonal, which implies the existence of a
global �xed point as in Steps 5 and 6 of the proof of Theorem 6.2. �

6.5 A result about in�nite graphs

Let X = (S,A) be a simple undirected connected graph whose edges are colored. The color of
an edge is given by a map with values in a color set C, de�ned on the set A of edges. Recall
that a cycle is called simple if no edge occurs more than once, and elementary if no vertex
occurs more than once except the beginning and the end. It is easy to see that an elementary
cycle of length at least 3 is simple and that a cycle, simple or not, always contains at least one
elementary cycle. We make the following assumptions:

• The edges of an elementary cycle of the graph all have the same color,

• For each c ∈ C, the connected components of the partial graph Xc, obtained by keeping
only the edges of color c, are complete graphs.

For every c ∈ C, we will call any connected component of the partial graph Xc a cell of color c.
Each edge of X belongs to a single cell.

Note that the Cayley graph of the free product of two groups G1 and G2 satis�es the above
assumptions if we choose (G1∪G2)\{e} for set of generators and if one colors the edges {w,wg},
g ∈ G1, in blue and the others in red.

Here is a generalization of Theorem 6.4 on �nitely generated groups of isometries of trees.

Theorem 6.11. Suppose that each cell of the graph X has at most 4 vertices. Let G be a
�nitely generated subgroup of IsomX. If G is a gaf then G is a gag.

Observe that the hypothesis about the cardinality of the cells is necessary: If X is a complete
graph with at least �ve vertices then, according to Proposition 6.1, IsomX contains an eccentric
subgroup. It is the same for the Cayley graph of the free product of two groups of which one at
least has more than �ve elements. The proof of Theorem 6.11 needs some preliminary lemmas.

Lemma 6.12. Given two vertices x and y of the graph X, there is a unique path joining them
such that two consecutive edges on this path never have the same color. Moreover, this path is
the only geodesic from x to y. Therefore, a path is a geodesic if, and only if, two consecutive
edges never have the same color.

Proof. Let x and y be in S. Since X is connected, there is a path joining x to y, and therefore
at least one geodesic. Since the cells of the graph are complete graphs, this geodesic cannot
have two consecutive edges of the same color, hence the existence.

For the uniqueness, let us �rst notice that all the vertices of a path verifying the color
change property of the edges, are distinct. Indeed, if two vertices of the path coincided, then
an elementary cycle could be extracted. By assumption on X, all the edges of this cycle have
the same color, contradicting the property of color change.

If two distinct paths [a0 = x, . . . , am = y] and [b0 = x, . . . , bn = y] join x to y and satisfy
the property of color change, then there is an integer i > 0 such that ai = bi and ai+1 6=
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bi+1. Consider the �rst vertex aj in the path [ai+1, . . . , am] which also belongs to the path
[bi+1, . . . , bn]. So we have aj = bk for some k > i. The integer k is chosen minimal. By choice of
j and k, the vertices of the path [ai, ai+1, . . . , aj = bk, bk−1, . . . , bi = ai] are all distinct, except
the two ends. This cycle has at least three edges (otherwise ai+1 = bi+1), it is elementary and
has at least two colors, a contradiction. �

Lemma 6.13. Let s be an isometry of X having at least one �xed point and let x be a
vertex of X that is not a �xed point of s. Let F be the set of points y ∈ Fix s such that
d(x, y) = d(x,Fix s).

a. Then F is included in a cell whose color is the one from the last edge of the geodesic going
from x to any element of F .

b. Moreover:

(i) If d(x, s(x)) is even, then the midpoint z of the geodesic joining x to s(x) belongs to
F .

(ii) If d(x, s(x)) is odd, then F is included in the cell Y containing the middle edge [a, b]
of the geodesic going from x to s(x). In addition, s(Y ) = Y and s(a) = b.

Proof. a. Let u and v be two points in F . Consider the geodesics [u0 = x, . . . , un = u] and
[v0 = x, . . . , vn = v] (with n = d(x,Fix s)). Since s is an isometry that �xes u and v, it �xes
each vertex of the geodesic [w0 = u, . . . , wm = v] joining u to v. Let i be the smallest integer
such that ui = vi and ui+1 6= vi+1. We verify, as in the proof of Lemma 6.12, that the three
branches of geodesics [ui, . . . , un = u], [u, . . . , v] and [vn, . . . , vi = ui] form an elementary cycle.
Therefore, all the edges of this cycle have the same color c and the vertices u and v are joined
by an edge of color c. We conclude by noticing that c is the color of the edge [un−1, un].

b. Let u be a point in F and let [u0 = x, . . . , un = u] be the geodesic joining x to u. According
to item a, F is included in a cell Y whose color c is that of the edge [un−1, un]. Consider the
image [s(x), . . . , s(un) = u] of this geodesic by s. Let c′ the color of the edge [s(un−1), u].

(i) If c 6= c′ then [u0, . . . , un = s(un), s(un−1), . . . , s(u0) = s(x)] is a geodesic since the colors
of two consecutive edges of this path are never the same. Hence it is the geodesic joining x to
s(x). The length of this geodesic is 2n and its midpoint is u ∈ F .
(ii) If c = c′ then s(un−1) is a vertex of Y which is complete, so [un−1, s(un−1)] is also an edge Y .
Two consecutive edges of the path [u0, . . . , un−1, s(un−1), . . . , s(u0)] never have the same color.
Hence, this path is the geodesic joining x to s(x). By construction, the length of this geodesic
is odd and its middle edge [un−1, s(un−1)] is of color c. It remains to prove that s(Y ) = Y . Let
y be a vertex of Y . The image by s of the triangle un−1uy is a triangle that contains the edge
[s(un−1), u] which is an edge of Y . Therefore the image of this triangle is a triangle of Y , hence
s(y) is a vertex of Y . �

Proof of Theorem 6.11. We proceed by induction on the number of generators of G. Suppose
that G is generated by an isometry s which �xes at least one vertex and a subgroup G0 with a
global �xed point x0. If s(x0) = x0, we have �nished. Otherwise, consider the geodesic going
from x0 to s(x0). Observe that it is also the geodesic going from x0 to st(x0) = s(x0) for any
t ∈ G0.

If this geodesic has an even length then, according to Lemma 6.13, its midpoint z is a �xed
point of s but also of all st, t ∈ G0. Since s is injective, s(t(z)) = z = s(z) implies t(z) = z, so
z is a �xed point of t. Thus z is a global �xed point of G.

If this geodesic has an odd length, then again according to Lemma 6.13, the cell Y containing
the middle edge of this geodesic is stable by all st, t ∈ G0. It is therefore stable by G. In
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addition, the cell Y contains �xed points of st. Therefore, the group H of restrictions to Y of
elements of G is a gaf. Now IsomY is the group of permutations of the vertices of Y and by
hypothesis the cell Y has at most 4 vertices so, according to Proposition 6.1, IsomY is �xating.
Therefore H is a gag, hence G is a gag, too. �

7 Exercises

Exercise 7.1. Show that the group IsomR2 is �xating.

Exercise 7.2. A group is called super�xating if, for any set X and any morphism ρ : G →
BijX, the couple (X, ρ(G)) is �xating. By considering the action of a group on all of its
nontrivial parts, show that a group is super�xating if and only if it is cyclic (�nite or not).

Exercise 7.3. Show that the additive group Q is �nitely super�xating in the following sense:
If X is a �nite set and ρ : Q→ BijX a morphism, then (X, ρ(Q)) is �xating.

Exercise 7.4. Prove that, in a metric space verifying the median inequality (1), the point m
is unique and satis�es d(x,m) = d(y,m) = 1

2
d(x, y).

Exercise 7.5. Let (E, ‖ ‖) be a normed vector space verifying the median inequality (1).

a. Prove that E satis�es the so-called parallelogram identity

∀x, y ∈ E ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
. (5)

b. Deduce that E is a pre-Hilbert space (a result of M. Frechet, P. Jordan and J. von Neuman [9,
11]).

Exercise 7.6. According to the comparison theorem of Rauch [8], the classical cosine law
becomes an inequality in hyperbolic trigonometry: In a hyperbolic triangle of side lengths
a, b, c and angle γ opposite to the side of length c, we have

a2 + b2 − 2ab cos γ = c2. (6)

From this inequality, show that Hn satis�es the median inequality (1).

Exercise 7.7. On the set R̂ = R ∪ {∞}, consider the Möbius group

M(R̂) =
{
ϕ : R̂→ R̂, x 7→ ax+b

cx+d
; a, b, c, d ∈ R, ad− bc = ±1

}
.

Show that this group is non�xating. Hint: Consider the matrices A and B from Example 3.3
and use Lemma 8.16.

Exercise 7.8. Using only the fact that IsomH3 is �xating, prove that IsomH2 is �xating.

Exercise 7.9. Show that a map, a priori surjective or not, from Rn to Rn which preserves the
Euclidean distance is an a�ne bijection of Rn.

Exercise 7.10. Show that a function between two normed vector spaces which is continuous
and preserves the midpoints is a�ne.

Exercise 7.11. Mazur-Ulam theorem. The statement is inspired by [22].

Let E be a real normed vector space.
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a. Let a, b ∈ E and m be the midpoint of [a, b]. Let Wa,b the set of isometries of E �xing a
and b and let λ = sup{‖g(m)−m‖ ; g ∈ Wa,b}.

(i) Prove that λ 6 ‖a− b‖.
(ii) Let sm be the symmetry of center m, i.e. such that sm(x) = 2m − x for all x ∈ E.

For g ∈ Wa,b, we set g∗ = sm g
−1sm g. Prove that ‖g∗(m)−m‖ = 2‖g(m)−m‖.

(iii) Show that any isometry that �xes a and b �xes m.

b. Let f be an isometry of E.

(i) Let a, b ∈ E. Denote by m the midpoint of [a, b] and by m′ the one of [f(a), f(b)].
Prove that h = sm f

−1sm′ f ∈ Wa,b and deduce that f(m) = m′.

(ii) Prove that f is a�ne.

Exercise 7.12. Kakutani Theorem in �nite dimension. This exercise is inspired by R. An-
tetomaso [1]. Let E be a normed vector space of �nite dimension, G a compact subgroup of
GL(E), and K a nonempty compact convex subset of E. We assume that g(K) ⊆ K for all
g ∈ G and we aim to show that (K,G) is a gag.

a. Let ‖ ‖2 be the Euclidean norm on E. For any x ∈ E, we set ‖x‖ = sup{‖g(x)‖2 ; g ∈ G}.
Show that this de�nes a strictly convex norm on E, for which every element of G is an
isometry.

b. Let f be an endomorphism of E such that f(K) ⊆ K. Let x1 ∈ K and let (xn)n>0 be the
sequence de�ned by xn+1 = f(xn). Considering the sequence (σn) of Cesàro means of the
sequence (xn), show that f has a �xed point in K.

c. For g ∈ G, denote Vg = {x ∈ K ; g(x) 6= x}. By contradiction, assume that, for every
x ∈ K, there exists g ∈ G satisfying g(x) 6= x.

(i) Show that there exist g1, . . . , gN ∈ G such that K ⊂ Vg1 ∪ · · · ∪ VgN .
(ii) Show that there exists a ∈ K such that (g1 + · · ·+ gN)(a) = Na.

(iii) Show that gk(a) = a for all k ∈ {1, . . . , N}. Conclude.

Exercise 7.13. The isometries of the sphere extend into isometries of the Euclidean space.
We equip the sphere Sn with the spherical distance d(x, y) = arccos〈x | y〉. We want to prove
that every isometry of Sn is the restriction of a unique isometry of Rn+1 endowed with the
Euclidean distance. Let f be an isometry of Sn.

a. Show that f preserves the scalar product.

b. We de�ne f̃ on Rn+1 by f̃(x) = ‖x‖f
(
x
‖x‖

)
if x 6= 0 and f̃(0) = 0. Show that f̃ preserves

the scalar product.

c. Conclude.

Exercise 7.14. Extension of an isometry.
Let A be a subset of Rd and set E = Aff A, the a�ne subspace generated by A. We endow A
with the Euclidean distance induced by that of Rd. We want to show that any isometry of A
is the restriction of a unique a�ne isometry of E.

We know that there are a0, . . . , an ∈ A such that E = Aff (a0, . . . , an), where n = dimE.
Thus, every point x ∈ E is written in a unique way x =

∑n
i=0 λi(x)ai, with

∑n
i=0 λi(x) = 1.

The numbers λi(x) are the barycentric coordinates of x. Let f be an isometry of A.
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a. Show that, for all i, j ∈ {0, . . . , n}, we have 〈f(ai)−f(a0) | f(aj)−f(a0)〉 = 〈ai−a0 | aj−a0〉.

b. We de�ne f̃ on E by f̃(x) =
∑n

i=0 λi(x)f(ai). Prove that f̃ is an isometry.

c. Show that f̃ extends f . Conclude.

Exercise 7.15. The alternating group A7 is non�xating.
In step 3 of the proof of Proposition 6.1, we built an eccentric subgroup of S5 using permutations
which act separately on {1, 2, 3} and on {4, 5}, thanks to the following key point. The group
S3 has a normal subgroup (the alternating group A3) which has the following two properties:

. The quotient S3/A3 is isomorphic to Z/2Z.

. Any element of S3 \ A3 has at least one �xed point.

We then obtained an eccentric subgroup G = 〈f, g〉 of S5 by taking for f an element of A3 on
{1, 2, 3} and the identity on {4, 5}, and for g an element of S3 \A3 on {1, 2, 3} and an element
of S2 without �xed point on {4, 5}. Use a similar construction to build an eccentric subgroup
of A7.

Exercise 7.16. The action of the group GL(3,F2) on X = F3
2 \ {0} is not �xating.

Let denote (e1, e2, e3) the canonical basis of F3
2 and for a ⊂ {1, 2, 3}, let denote ea =

∑
i∈a ei.

So that X = {ea : a 6= ∅}. Let f and g be the elements of GL(3,F2) de�ned by

f(e1) = e2, f(e2) = e3, f(e3) = e1 and g(e1) = e123, g(e2) = e2, g(e3) = e3.

and G = 〈f, g〉. Finally denote Y = {e1, e2, e3, e123} and Z = {e23, e13, e12}.

a. Show that f and g induce even permutations on X.

b. Show that the map which sends h ∈ G to its restriction on Y , induces an injective morphism
from G in the group of permutations SY of Y .

c. Show that, if the restriction of h ∈ G to Y is a double transposition, then its restriction to
Z is the identity.

d. Deduce that the action of GL(3,F2) is not �xating. Observe that we have an alternative
proof of the fact that A7 is not �xating.

8 Appendices

8.1 A short introduction to hyperbolic geometry

Let n > 2 be an integer. A model of the n-dimensional hyperpolic space is the upper half-space

Hn = {(x1, . . . , xn) ∈ Rn ; xn > 0}

endowed with the Poincaré metric

ds2 =
1

x2n

(
dx21 + · · ·+ dx2n

)
.

A calculation shows that the geodesic distance associated with the Riemannian metric is given
by

d(x, y) = argcosh

(
1 +
‖x− y‖2

2xnyn

)
(7)

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
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Theorem 8.1.([6], Theorem 9.3) The geodesics in Hn are the half-lines (a�ne lines) and the
half-circles (Euclidean circles), the endpoints of which are in the horizontal hyperplane

∂Hn = {(x1, . . . , xn) ∈ Rn ; xn = 0},

and orthogonal to this hyperplane at their endpoints.

8.1.1 The isometry group of Hn.

The similarity transformations (similarities for short), the inversions with respect to spheres,
and the re�ections through a�ne hyperplanes, act on R̂n = Rn ∪ {∞} and form a subgroup
of the group of homeomorphisms of R̂n. This subgroup is call the Möbius group of R̂n and
is denoted by M(R̂n). The inversions and the re�ections are enough to generate the Möbius
group. The restrictions to the upper half-space of some elements of the Möbius group give rise
to the isometry group of Hn:

Theorem 8.2.([17], Theorem 4.6.2) The isometry group IsomHn is the group of the restrictions
to Hn of the Möbius transformations ϕ such that ϕ(Hn) = Hn. It is generated by the re�ections
through spheres centered at points in ∂Hn and vertical hyperplanes.

All results we need follow from this theorem, from the theorem about geodesics and from the
formula giving the distance.

A �rst consequence of Theorem 8.2 is that a similarity ϕ : Rn → Rn such that ϕ(Hn) = Hn

induces an isometry of Hn. Conversely, since the only elements in M(R̂n) that �x ∞ are the
similarities ([17], Theorem 4.3.2), we have the following result.

Corollary 8.3. If an isometry f of Hn is the restriction of a map f̂ in M(R̂n) which �xes ∞,

then the restriction f̂ to Rn is a similarity in Rn.

A second consequence of Theorem 8.2 is that isometries of Hn are smooth. On the one hand, it
follows that the Poincaré metric is invariant. On the other hand, it follows that the sign of the
Jacobian of an isometry is constant. This latter fact leads to the usual decomposition of the
group IsomHn. It is the union of the subgroup Isom+Hn of isometries with positive Jacobian
and its complementary Isom−Hn.

8.1.2 Subspaces of Hn.

A hyperbolic subspace of Hn is a subset X of Hn of one of the following form:

. the empty set, dimX = −1,

. a single point, dimX = 0,

. the intersection of Hn with a vertical a�ne subspace A, dimX = dimA,

. the intersection of Hn with a vertical a�ne subspace A and a sphere S centered at a point
of ∂Hn, dimX = dimA ∩ S (A = Rn is permitted).

By abuse of language, subspaces of dimension 1 will be called lines and those of dimension 2
planes. Using that the image of a sphere by an inversion, the pole of which is in the sphere, is
an a�ne subspace, we see that a p-dimensional hyperbolic subspace is isometric to

{(x1, . . . , xn) ∈ Hn ; x1 = x2 = · · · = xn−p+1 = 0}

and therefore to Hp. By de�nition, the geodesics are the lines of the hyperbolic space. Moreover,
a hyperbolic subspace is totally geodesic, which means that if it contains two points x and y,
then it contains the geodesic joigning x à y.
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Lemma 8.4. Every intersection of hyperbolics subspaces in Hn is a hyperbolic subspace.

Proof. Every intersection of spheres and/or a�ne subspaces is a sphere S (or an a�ne subspace
if there is no sphere) of the a�ne subspace A generated by the intersection. Observe that this
subspace A can be empty or reduced to a single point. We need to check that, if the a�ne
subspaces are all vertical, if the spheres are centered in ∂Hn, and if dimA > 1, then A is vertical
and the center of S belongs to ∂Hn. If the intersection is de�ned by at least two hyperbolic
subspaces then it is included in a vertical hyperplane. Since such a hyperplane is isometric to
Hn−1, the result follows by induction on n. �

Lemma 8.5. Let H be a subspace of Hn and x a point not in H. The dimension of the smallest
subspace containing H and x is dimH + 1.

Proof. Consider f an isometry that sends H onto the intersection of Hn with a vertical a�ne
subspace A of dimension p = dimH. The smallest hyperbolic subspace containing A∩Hn and
f(x) is A′ ∩Hn where A′ is the a�ne subspace generated by A and f(x), which is of dimension
p+ 1. �

Lemma 8.6. Let a and b be two distinct points in Hn. Then the set Med (a, b) of points
equidistant from a and b, is a hyperplane of Hn.

Proof. By (7), a point x is in Med (a, b) if and only if

d(x, a) = argcosh

(
1 +
‖x− a‖2

2xnan

)
= d(x, b) = argcosh

(
1 +
‖x− b‖2

2xnbn

)
,

therefore if and only if
‖x− a‖2

2xnan
=
‖x− b‖2

2xnbn
.

In the case where an = bn, we get a vertical hyperplane. In the case where an 6= bn, we get a
half-sphere the center of which is in ∂Hn. Indeed, the coe�cient of xn vanishes in the cartesian
equation of the sphere, bn‖x− a‖2 − an‖x− b‖2 = 0. �

Lemma 8.7. If f is a isometry of Hn then Fix f is a hyperbolic subspace.

Proof. By Lemma 8.4, there exists a smallest hyperbolic subspace H containing Fix f . Let
x ∈ H be arbitrary. By contradiction, if f(x) 6= x then Med (x, f(x)) is a hyperplane which
contains Fix f , hence Fix f ⊂ F = H∩Med (x, f(x)), but F does not contain x; this contradicts
the minimality of H. Therefore, x = f(x); this proves Fix f = H. �

Lemma 8.8. Let D be a line in Hn and x ∈ Hn. There exists an unique point y ∈ D such that

d(x, y) = d(x,D) := inf{d(x, z) : z ∈ D}.

Moreover, if x /∈ D, then the geodesic through x and y = πDx is orthogonal to D.

Recall that the Poincaré metric is conformal to the Euclidean metric, hence the orthogonality
relations are equivalent for these two metrics.

Proof. By compactness, the distance from x to D is realized: There exists y ∈ D such that
d(x,D) = d(x, y). The point x and the line D are included in the hyperbolic plane P . On the
one hand, the geodesic from x to y is included in P . On the other hand, this plane is isometric
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to the hyperbolic plane H2. Therefore we can suppose that x and D are in H2. Thanks to
another isometry, we can suppose that D = {ti ; t > 0}. Denoting x = a+ bi, we have

d(x, ti) = argch

(
1 +

a2 + (b− t)2

2bt

)
.

A calculation shows that the function t→ a2+(b−t)2
2bt

reaches its minimum at t =
√
a2 + b2, hence

πDx = i
√
a2 + b2. The geodesic joigning x to its projection is the half-circle of center 0 and

radius
√
a2 + b2, which is indeed orthogonal to D. �

Corollary 8.9. If F is a hyperplane of Hn and x is in Hn, then there exists a unique point
πFx ∈ F such that

d(x, πFx) = inf{d(x, z) ; z ∈ F} = d(x, F ).

Moreover, if x /∈ F , then the geodesic going through x and πFx is orthogonal to F .

Proof. By compactness, the minimal distance is reached in at least one point. If two distinct
points y, z ∈ F give this minimal distance, then these two points also give the minimum distance
from x to D, where D is the geodesic going through y and z, since D ⊂ F . This contradicts
Lemma 8.8. This Lemma also implies that the geodesic from x to πFx is orthogonal to all the
lines going through πFx and included in F , hence is orthogonal to F . �

8.1.3 Isometries of H3.

The next lemma asserts that an angle and an axis are associated with a positive isometry of
H3 which has �xed points.

Lemma 8.10. Let f ∈ Isom+ H3. Assume Fix f 6= ∅ and f 6= id.

a. Then Fix f is a hyperbolic line.

b. There exists an angle θ such that for all x ∈ Fix f , the di�erential df(x) is a rotation with
angle ±θ and with axis the a�ne line tangent to Fix f .

Proof. a. Let x ∈ Fix f . The di�erential df(x) is a positive isometry of R3, hence a rotation
with an eigenvector −→u . Consider the geodesic D through x of direction −→u . It is invariant by
f , and f has a point �x in D, hence D ⊂ Fix f . If D were strictly included in Fix f then
Fix f would contain a hyperbolic plane. The di�erential of f at a point of this plan would be
a rotation with two independent eigenvectors; hence it would be the identity. It follows that f
would be the identity, a contradiction, hence Fix f = D.

b. Conjugating by an isometry, we can restrict ourself to the case where D is a vertical line.
By Corollary 8.3, f is the restriction of a similarity. Since f has a half-line of �xed points, f
is the restriction of a rotation r of axis D. The di�erential of f along this axis is then always
equal to −→r or to its inverse. �

With the same method, one easily proves the following statement.

Lemma 8.11. Let f ∈ Isom−H3. If Fix f 6= ∅, then Fix f is a hyperbolic plane and f is a
re�ection through this plane.

Our last statement concerning isometries of H3 is the following.

Lemma 8.12. Let f ∈ Isom+H3. Assume that Fix f 6= ∅. Denote D the axis of f and θ its
angle. Let P1 and P2 be two hyperbolic planes of intersection D, and let σP1 and σP2 be the
re�exions through the planes P1 and P2. Denote ∂P1 and ∂P2 the circles or lines determined
by these planes in ∂H3. If ∠(∂P1, ∂P2) = ± θ

2
mod π then f = σP2σP1 or σP1σP2 .
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Proof. As in the previous proof, thanks to a conjugacy by an isometry, we can assume that D
is a vertical half-line. It follows that P1 and P2 are vertical planes and that f , σP1 and σP2 are
similarities and hence isometries of R3. Since the relation about angles remains true up to the
sign, we have f = σP2σP1 or σP1σP2 . �

8.1.4 Isometries of H2.

The hyperbolic plane H2 is identi�ed with the upper half-plane {z ∈ C ; Im z > 0}. With this
identi�cation, by Theorem 8.2, the positive isometries of H2 are the conformal transformations
of the upper half-plane, i.e., the maps h : H2 → H2 of the form

h(z) = ha,b,c,d(z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1.

The negative isometries are obtained by composing the positive isometries with the re�ection
z 7→ −z.
Lemma 8.13. If x, y, x′, y′ ∈ H2 are such that d(x, y) = d(x′, y′), then there exists f ∈
Isom+H2 such that f(x) = x′ and f(y) = y′.

Proof. It is enough to prove the statement in the case where x′ = i and y′ = it, with t > 1. The
homography h ∈ Isom+H2 de�ned by h(z) = 1

Imx
(z − Rex) sends x to i. Let −→u be the unit

vector, tangent at x to the geodesic going from x to y. By composing with a homography of
the form r(z) = cos θ z−sin θ

sin θ z+cos θ
which �xes i, we can suppose that the di�erential of rh at x sends −→u

to i. The isometry rh maps the geodesic segment joining x to y onto a geodesic segment of the
same length starting at i with initial speed i, hence included in the imaginary axis. Therefore
rh(y) = it where t is the unique real number > 1 such that d(i, it) = d(x, y) = d(x′, y′) hence
rh(y) = y′. �

Proof of Lemma 5.10.

a. The search of the �xed points of h = ha,b,c,d leads to the equation

cz2 + (d− a)z − b = 0, (8)

the discriminant of which is ∆ = (d− a)2 + 4bc = (a+ d)2 − 4 = (trh)2 − 4.
So, if trh < 2 then h has a unique �xed point a ∈ H2 (the other root of equation (8), the

conjugate, is not in H2). The isometry h is elliptic and a is the center of h.
If c = 0 or if trh = 2 then equation (8) has a unique root in R = R ∪ {∞}, hence h has no

�xed point. The isometry h is parabolic. This case contains the case c = a− d = 0.
If c 6= 0 and trh > 2 then (8) has two roots in R, hence h has no �xed point. The isometry

h is hyperbolic.

b. The condition ha,b,c,d(i) = ai+b
ci+d

= i implies a = d and b = −c. The condition ad − bc = 1

then implies that there exists θ ∈ R such that a = cos θ
2
and b = sin θ

2
.

c. If ϕ and ψ ∈ Isom+H2 send i to z0 ∈ Fixh then, denoting ϕ−1hϕ by rθ, ϕ−1ψ by rα (these
are elements of Isom+ H2 �xing i, hence rotations), we obtain

ψ−1hψ = ψ−1ϕrθϕ
−1ψ = r−1α rθrα = rθ = ϕ−1fϕ.

d. The rotation of center ix and angle θ is f = ϕrθϕ
−1, where ϕ ∈ Isom+H2 sends i to ix. Let

us choose ϕ = ha,b,c,d with a =
√
x, b = c = 0 and d = 1√

x
, i.e. the homography associated with

the matrix M(x) =

(√
x 0

0 1/
√
x

)
. Then the matrices associated with ϕrθϕ−1 are ±M with

M = M(x)−1R
(
θ
2

)
M(x) =

(
cos θ

2
x sin θ

2

−x−1 sin θ
2

cos θ
2

)
.

�
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8.2 Proof of Lemma 3.4

Let T = {M ∈ SL(2,Z) ; trM = 3}. We �rst prove the following preliminary result.

Lemma 8.14. Let M ∈ T .

a. One has M−1 ∈ T .

b. (i) For any integer n > 1, one has Mn = αnM − αn−1 I, with α0 = 0, α1 = 1, and
αn = 3αn−1 − αn−2 for n > 2.

(ii) The sequence (αn)n∈N takes its values in N and strictly increases. Moreover, for any
n ∈ N, it holds αn+1 − αn > 2n and αn > 2n − 1.

c. For any integer n > 1, one has trMn > 2n+1 − 1.

Proof. Item a results from the fact that

M =

(
a b
c d

)
⇒ M−1 =

(
d −b
−c a

)
.

Item b (i) is proved by induction. It is obvious for n = 1 and also for n = 2 (i.e. M2 = 3M − I)
by the Cayley-Hamilton theorem. Next, if we assume that Mn−1 = αn−1M − αn−2 I for some
n > 2, then

Mn = αn−1M
2 − αn−2M = (3αn−1 − αn−2)M − αn−1 I = αnM − αn−1 I.

For item b (ii), an easy induction shows that αn > 0 for all n ∈ N. Therefore, we have

αn+1 − αn = 2αn − αn−1 > 2(αn − αn−1) > 2n(α1 − α0) = 2n,

hence

αn = αn − α0 =
n−1∑
k=0

(αk+1 − αk) >
n−1∑
k=0

2k = 2n − 1.

For item c, considering the above, for any n > 1, one has

trMn = tr (αnM − αn−1 I) = 3αn − 2αn−1 = αn + 2(αn − αn−1) > 2n+1 − 1.

�

Let G0 be the subgroup of SL(2,Z) generated by the matrices

A =

(
0 1
−1 3

)
and B =

(
−1 −1

5 4

)
.

The matrices A and B (as well as their inverses A−1 and B−1) are elements of T . We will show
that any matrix M ∈ G0 \ {I} has a trace di�erent from 2, which is equivalent to saying that
1 is not an eigenvalue of M (since detM = 1), i.e. that M − I is invertible.

Let ε : R → {−1, 1} denote the sign fonction, i.e. ε(x) = 1 if x > 0, and ε(x) = −1
if x < 0. Let � denote the product order on SL(2,Z): We write X � Y if xij > yij for
all i, j ∈ {1, 2}. It is a partial order, compatible with the addition and the multiplication.
Especially for X, Y,X ′, Y ′ ∈ SL(2,Z), one has

X � Y � 0 and X ′ � Y ′ � 0 ⇒ XX ′ � Y Y ′.

We also have X � Y ⇒ trX > trY.

The following is inspired by [16], VIII 26, pp.158�162, and proves Lemma 3.4.
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Lemma 8.15. For k, l ∈ Z∗, one has

ε(kl)A kB l �
(

5 0
0 1

)
. (9)

Proof. Note �rst that

A−1 =

(
3 −1
1 0

)
B−1 =

(
4 1
−5 −1

)
AB =

(
5 4

16 13

)
and that

AB−1 =

(
−5 −1
−19 −4

)
A−1B =

(
−8 −7
−1 −1

)
and A−1B−1 =

(
17 4
4 1

)
.

Now let k, l > 1. With the notation of Proposition 8.14.b, one has

A kB l = (αk A− αk−1 I)(αlB − αl−1 I)

= αkαlAB − αkαl−1A− αk−1αlB + αk−1αl−1 I

=

(
5αkαl + αk−1αl + αk−1αl−1 4αkαl − αkαl−1 + αk−1αl

16αkαl + αkαl−1 − 5αk−1αl 13αkαl − 3αkαl−1 − 4αk−1αl + αk−1αl−1

)
.

Therefore, since the sequence (αn) strictly increases and α0 = 0, we obtain

A kB l �
(

5 0
0 6

)
. (10)

In the same way, always for k, l > 1, we have

A kB−l =

(
αk−1αl−1 − 4αk−1αl − 5αkαl −αkαl−1 − αk−1αl − αkαl
αkαl−1 + 5αk−1αl − 19αkαl αk−1αl−1 − 3αkαl−1 + αk−1αl − 4αkαl

)

A−kB l =

(
αk−1αl−1 − 3αkαl−1 + αk−1αl − 8αkαl αkαl−1 + αk−1αl − 7αkαl

−αkαl−1 − 5αk−1αl − αkαl αk−1αl−1 − 4αk−1αl − αkαl

)

A−kB−l =

(
αk−1αl−1 − 3αkαl−1 − 4αk−1αl + 17αkαl αkαl−1 − αk−1αl + 4αkαl

−αkαl−1 + 5αk−1αl + 4αkαl αk−1αl−1 + αk−1αl + αkαl

)
from which one draws the inequalities

−A kB−l �
(

5 0
0 3

)
− A−kB l �

(
7 0
0 1

)
and A−kB−l �

(
10 0
0 1

)
.

This and (10) give the desired result. �

Lemma 8.16. Let m > 1 be an integer and k1, . . . km, l1, . . . lm, be nonzero integers, except
possibly k1 and lm. Then the matrix M = A k1B l1 . . . A kmB lm satis�es |trM | > 3.

Proof. If m = 1, then (k1, l1) 6= (0, 0), and the result follows from Proposition 8.14.c if k1l1 = 0,
and from (9) if k1 and l1 are both nonzero, since then

|tr (A k1B l1)| = ε(k1l1)tr (A k1B l1) > 6.

Now suppose m > 2.
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. If k1 and sm are nonzero, then

|trM | = tr
(
ε(k1l1)A

k1B l1 × · · · × ε(kmlm)A kmB lm
)
> tr

(
5m 0
0 1

)
= 5m + 1 > 3.

. If k1 = sm = 0, then

trM = tr (B l1A k2B l2 . . . A km) = tr (A k2B l2 . . . A kmB l1)

and we fall in the previous case.

. If k1 = 0 and sm 6= 0, then

trM = tr (B l1A k2B l2 . . . A kmB lm) = tr (A k2B l2 . . . A kmB lm+l1).

If lm + l1 6= 0, we fall into one of the previous cases (depending on whether m = 2 or
m > 2). If lm + l1 = 0, then

trM = tr (A k2B l2 . . . A km) = tr (A k2+kmB l2 . . . A km−1B km−1)

and we iterate until we are reduced to an already considered case.

. If k1 6= 0 and sm = 0, then

trM = tr (A k1B l1 . . . A km) = tr (A k1+kmB l1 . . . A km−1B km−1)

and we proceed as above. �

8.3 Proof of Lemma 5.5

Let w be a nontrivial word of G0 = 〈σ, τ〉 of length ` > 1, i.e. an element w = a1 . . . a`, with
ai ∈ {σ, σ−1, τ, τ−1} and aiai+1 6= id for all i ∈ {1, . . . , `− 1}. The word w has one of the four
forms σ± · · · τ±, τ± · · ·σ±, σ± · · ·σ± or τ± · · · τ±. The second form comes down to the �rst by
considering w−1 instead of w, and the last two forms can be reduced to one of the �rst two by
conjugation, unless w is simply a power of σ or τ , or a conjugate of such a power, in which case
the result comes from θ /∈ πQ. So we just have to show that 1 is not an eigenvalue of w when
w = σ± · · · τ±. A simple induction shows that w has a matrix of the form

P −Q −R −S
Q P −S R
R S P −Q
S −R Q P


where P,R are polynomials in cos θ with integer coe�cients, and Q,S are products of such
polynomials with sin θ.

Since w is orthogonal, we have P 2 + Q2 + R2 + S2 = 1. A simple computation then shows
that the characteristic polynomial of w is λ4 − 4Pλ3 + (4P 2 + 2)λ2 − 4Pλ+ 1.

We show below that the degree of P is equal to `, the length of w. If 1 were an eigenvalue
of w, we would have 4P 2 − 8P + 4 = 0, a contradiction since cos θ is transcendent.

In the sequel, the notation � indicates that only the term of highest degree in cos θ has been
retained. Using cosmθ � 2m−1 cosm θ and sinmθ � 2m−1 cosm−1 θ sin θ, and denoting cos θ by
c and sin θ by s, we get, with ε = ±1 and δ = ±1

σεm � 2m−1cm−1


c −εs 0 0
εs c 0 0
0 0 c −εs
0 0 εs c

 τ δk � 2k−1ck−1


c 0 0 −δs

0 c −δs 0
0 δs c 0
δs 0 0 c

 .

36



Multiplying both and using s2 = 1− c2 � −c2, we get

σεmτ δk � A(m, k, ε, δ) = 2m+k−2cm+k−1


c −εs −εδc −δs

εs c −δs εδc
εδc δs c −εs
δs −εδc εs c

 .

Let us denote w = σε1m1τ δ1k1 · · ·σεnmnτ δnkn with εi, δi = ±1 and mi, ki > 1; thus the length of
w is ` = m1 + k1 + · · ·+mn + kn.

We assert that, for every integer n > 1, there exist ξn, µn, ζn and νn equal to ±1 such that
ξnζn = µnνn and

w � An = 2`−n−1c`−1


ξnc −µns −ζnc −νns
µns ξnc −νns ζnc
ζnc νns ξnc −µns
νns −ζnc µns ξnc

 .

By induction on n, let us show that this is indeed the case. For n = 1, this is because
A1 = A(m1, k1, ε1, δ1) and because we have ξ1 = 1, µ1 = ε1, ζ1 = ε1δ1, and ν1 = δ1.

Now assume that the property holds for an integer n > 1 and let us check it for n+ 1. One
sees that AnA(mn+1, kn+1, εn+1, δn+1) � An+1 with

ξn+1 = 1
2
(ξn + εn+1µn − εn+1δn+1ζn + δn+1νn)

µn+1 = 1
2
(εn+1ξn + µn + δn+1ζn − εn+1δn+1νn)

ζn+1 = 1
2
(εn+1δn+1ξn + δn+1µn + ζn − εn+1νn)

νn+1 = 1
2
(δn+1ξn + εn+1δn+1µn − εn+1ζn + νn).

From these equalities, it is easily shown that ξn+1ζn+1 = µn+1νn+1. It remains to check that
ξn+1, µn+1, ζn+1, νn+1 are equal to ±1. Noticing that ζn = ξnµnνn, one obtains

ξn+1 = 1
2
(ξn + εn+1µn + δn+1νn − εn+1δn+1ξnµnνn) = ±1

since, in general, if a, b, c are equal to ±1, then a+ b+ c− abc = ±2. In the same way, we show
that µn+1, ζn+1 and νn+1 are equal to ±1, which completes the proof.

8.4 Solutions of the exercices

Exercise 7.1. From Corollary 4.8, it is enough to show that Isom+R2 is �xating. Let G 6
Isom+R2 be a gaf. If G = {id}, then G is obviously a gag. Otherwise, let f ∈ G \ {id}.
Then f is a rotation of center a ∈ R2 and nonzero angle. Let g ∈ G \ {id} be arbitrary; g is

a rotation of center b ∈ R2 and nonzero angle. In addition we have
−−→
[f, g] = id, thus [f, g] is

the translation of vector
−−−→
cf(c), with c = g(a). Since G is a gaf, Fix [f, g] is not the emptyset,

hence f(c) = c, then c = a, g(a) = a, and a = b. Therefore, all the elements of G \ {id} are
rotations of center a. I follows that FixG = {a} 6= ∅ and G is a gag.

Exercise 7.2. Let G = 〈g〉, let X be an arbitrary set and ρ : G → BijX be a morphism.
We have ρ(G) = 〈ρ(g)〉. Let H 6 ρ(G). Then H is cyclic, generated by some h, hence
FixH = Fixh. If H is a gaf, then Fixh 6= ∅, hence FixH 6= ∅, too, hence H is a gag.
Conversely, let G be a noncyclic group. Let us act G by multiplication on the left on the set
X = P(G) \ {∅, G} of nontrivial subsets of G: Let ρ : G → BijX be de�ned by ρ(g)(A) =
gA = {ga ; a ∈ A}. For every g ∈ G the subset 〈g〉 is nontrivial since G is noncyclic, and 〈g〉
is �xed by ρ(g), hence ρ(G) itself is a gaf, but ρ(G) has no global �xed point: Given A ∈ X,
let a ∈ A and b /∈ A. Since b = (ba−1)a, we have b ∈ ρ(ba−1)(A) hence ρ(ba−1)(A) 6= A. Thus
(X,G) is eccentric, therefore non�xating.
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Exercise 7.3. Denote ρ(Q) = {g1, . . . , gn}. Let ri = pi
qi
∈ Q such that ρ(ri) = gi, with pi and

qi relatively prime, and denote by M the least common multiple of the qi. Then ρ(Q) is cyclic,
generated by ρ

(
1
M

)
, hence �xating by Exercise 7.2.

Exercise 7.4. Taking z = x, then z = y in (1), we obtain d(x,m) and d(y,m) 6 1
2
d(x, y). The

triangular inequality d(x, y) 6 d(x,m) + d(m, y) yields the equalities. If m′ is another point
satisfying (1) then, applying (1) with z = m′, and using d(x,m′) = d(y,m′) = 1

2
d(x, y), we get

d(m,m′) 6 0, hence m = m′.

Exercise 7.5. Theorem of M. Frechet, P. Jordan and J. von Neuman [9, 11].

a. In a normed vector space, due to the fact that m = 1
2
(x+ y), the median inequality (1) for

z = 0 reads as ‖x + y‖2 6 2
(
‖x‖2 + ‖y‖2

)
− |‖x − y‖2. Rewritten with x = 1

2
(a + b) and

y = 1
2
(a− b), this yields the opposite inequality.

b. Set 〈x | y〉 = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
. It is enough to verify that 〈 | 〉 is a positive de�nite

symmetric bilinear form. Easily, we have 〈x | y〉 = 〈y |x〉, 〈x |x〉 > 0 and
(
〈x |x〉 = 0⇒ x =

0
)
. It remains to prove that 〈x+ x′ | y〉 = 〈x | y〉+ 〈x′ | y〉 and 〈λx | y〉 = λ〈x | y〉.

First, we have 〈0 | y〉 = 0. By using (5), we get

〈x+ x′ | y〉+ 〈x− x′ | y〉
= 1

4

(
‖x+ x′ + y‖2 + ‖x− x′ + y‖2 − ‖x+ x′ − y‖2 − ‖x− x′ − y‖2

)
= 1

2

(
‖x+ y‖2 + ‖x′‖2 − ‖x− y‖2 − ‖x′‖2

)
= 2〈x | y〉.

For x′ = x, we obtain 〈2x | y〉 = 2〈x | y〉.
For x = 1

2
(a + b) and x′ = 1

2
(a − b), we deduce 〈a | y〉 + 〈b | y〉 = 〈a + b | y〉. Therefore

〈kx | y〉 = k〈x | y〉, �rst for integer k, then for rational k, �nally for real k by continuity of
the norm.

Exercise 7.6. Let xyz be a hyperbolic triangle and m the midpoint of the geodesic segment
from x to y. Let α = ∠zmx and β = ∠zmy ∈

]
0, π

2

[
; one has α+β = π

2
hence cosα+cos β = 0.

For short, denote by ab the geodesic distance between two points a and b. The cosine inequality
for the triangle myz is: mz2 + my2 − 2mz.my cosα 6 yz2. By using my = 1

2
xy, we obtain

mz2 + 1
4
xy2 −mz.xy cosα 6 yz2. In the same way, one has mz2 + 1

4
xy2 −mz.xy cos β 6 xz2.

By adding both inequalities, we get 2mz2 + 1
2
xy2 6 xz2 + yz2, which indeed corresponds to the

median inequality (1).

Exercise 7.7. Let f : x 7→ 1
−x+3

and g : x 7→ −x−1
5x+4

; f and g have distinct �xed points.
Let k1, l1, . . . , km, lm be relative integers all nonzero, except possibly k1 and lm. The product
h = fk1gl1 · · · fkmglm is of the form h : x 7→ ax+b

cx+d
with ad− bc = 1. Looking for a �xed point of

h leads to the equation cx2 + (d− a)x− b = 0, whose discriminant is ∆ = (a + d)2 − 4. From
Lemma 8.16, one has |a+ d| > 3, hence h still has a �xed point. Therefore, the group 〈f, g〉 is
eccentric.

Exercise 7.8. Let G be a gaf of IsomH2. Let us identify H3 with R × H2. For any
g ∈ G, let ϕ(g) : H3 → H3, (x, y) 7→ (x, g(y)). We easily check that ϕ(g) ∈ IsomH3 and
Fixϕ(g) = R×Fix g 6= ∅. Thus H := ϕ(G) is a gaf of IsomH3, hence a gag since IsomH3 is
globalizing, and FixH is of the form R × A. We obtain FixG = A 6= ∅, hence G is a gag of
IsomH2.

Exercise 7.9. Let f : Rn → Rn preserving the Euclidean distance. The equality

〈x | y〉 = 1
2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
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shows that the function g : x 7→ f(x)−f(0) preserves the scalar product: One has 〈g(x) | g(y)〉 =
〈x | y〉 for every x, y ∈ Rn. Thus, for every x, y ∈ Rn and every λ ∈ R, we have

‖g(x+ λy)− g(x)− λg(y)‖2 = ‖g(x+ λy)‖2 + ‖g(x)‖2 + λ2‖g(y)‖2−
2〈g(x+ λy) | g(x)〉 − 2λ〈g(x+ λy) | g(y)〉+ 2λ〈g(x) | g(y)〉

= ‖x+ λy‖2 + ‖x‖2 + λ2‖y‖2−
2〈x+ λy |x〉 − 2λ〈x+ λy | y〉+ 2λ〈x | y〉

= ‖x+ λy − x− λy‖2 = 0.

Therefore, g is linear, hence f is a�ne. Since g preserves the Euclidean distance, it is injective;
since we are in �nite dimension, g is surjective. It is the same with f .

Exercise 7.10. Let E be a normed vector space and f : E → E a continuous function such
that

∀a, b ∈ E, f
(
1
2
(a+ b)

)
= 1

2

(
f(a) + f(b)

)
. (11)

Let g : E → E, x 7→ f(x)− f(0). Then g is continuous and satis�es (11) and g(0) = 0. Since
g(x) = g

(
1
2
(0 + 2x)

)
= 1

2
g(2x), we can rewrite (11) as

∀a, b ∈ E, g(a+ b) = g(a) + g(b).

It follows that g(ax) = ag(x) for all a ∈ N, then for all a ∈ Q, �nally for all a ∈ R by continuity
of g and by density of Q in R, hence g is linear, hence f is a�ne.

Exercice 7.11. Mazur-Ulam Theorem [22].

a. (i) Let g ∈ Wa,b. One has

‖g(m)−m‖ 6 ‖g(m)− g(a)‖+ ‖a−m‖ = 2‖a−m‖ = ‖a− b‖,

hence λ 6 ‖a− b‖.
(ii) Let g ∈ Wa,b. Since sm is an isometry which �xes m, one has

‖g∗(m)−m‖ = ‖sm g−1sm g(m)−m‖ = ‖g−1sm g(m)−m‖
= ‖sm(g(m))− g(m)‖ = 2‖g(m)−m‖.

(iii) From the above, on the one hand λ is �nite, and on the other hand, for all g ∈ Wa,b,
since sm permutes a and b, we have g∗ ∈ Wa,b, hence 2‖g(m)−m‖ 6 λ, hence 2λ 6 λ,
hence λ = 0. As a consequence, we have g(m) = m for all g ∈ Wa,b.

b. (i) One has h(a) = sm f
−1sm′(f(a)) = sm f

−1(f(b)) = sm(b) = a. Similarly one proves
h(b) = b, hence h ∈ Wa,b, therefore from a one has h(m) = m.
It follows that f−1sm′f(m) = sm(m) = m, then sm′(f(m)) = f(m). Since sm′ admits
m′ as unique �xed point, one has f(m) = m′.

(ii) From item (i), for all a, b in E, we have f(1
2
(a + b)) = 1

2
(f(a) + f(b)). Since f is

continuous, we deduce that f is a�ne by Exercise 7.10.

Exercise 7.12. Kakutani Theorem in �nite dimension [1].

a. One easily checks that ‖ ‖ is a norm. In order to prove that ‖ ‖ is strictly convex on E, we
consider x, y ∈ E such that x 6= −→0 and y /∈ R+x. Then we have, for all g ∈ G, g(x) 6= −→0
and g(y) /∈ R+g(x). Put ϕ(g) = ‖g(x)‖2 + ‖g(y)‖2 − ‖g(x) + g(y)‖2. The function ϕ is
continuous and takes positive values on the compact set G, hence bounded below by some
δ > 0. Thus, for all g ∈ G, ‖g(x) + g(y)‖2 6 ‖g(x)‖2 + ‖g(y)‖2 − δ 6 ‖x‖+ ‖y‖ − δ hence,
taking the supremum: ‖x+ y‖ 6 ‖x‖+ ‖y‖ − δ.
Finally ‖g(x) − g(y)‖ = suph∈G ‖hg(x) − hg(y)‖2 = supk∈G ‖k(x) − k(y)‖2 = ‖x − y‖ since
G is a group, showing that every element of G is an isometry.
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b. Since K is convex, the Cesàro mean σn = 1
n
(x1 + · · ·+ xn) is in K. By compactness, there

exists a subsequence (σnk
)k∈N tending to some a ∈ K. We have

f(σnk
) = 1

nk
(x2 + · · ·+ xnk+1) = σnk

− 1
nk

(xnk+1 − x1),

hence the sequence (f(σnk
))k∈N tends to a, too. Since f is an endomorphism on a �nite

dimensional space, f is continuous, hence (f(σnk
))k∈N tends to f(a), from which we deduce

that f(a) = a.

c. Given g ∈ G, set Vg = {x ∈ K ; g(x) 6= x} and assume by contradiction that, for all x ∈ K,
there exists g ∈ G such that g(x) 6= x.

(i) Since an isometry is continuous, each Vg is an open subset of K. By assumption, K
is the union of the Vg, g ∈ G, hence by compactness ther exist g1, . . . , gN ∈ G such
that K = Vg1 ∪ · · · ∪ VgN .

(ii) Let f = 1
N

(g1 + · · ·+ gN). By convexity, one has f(K) ⊆ K, hence there exists a ∈ K
such that f(a) = a by item b.

(iii) One has ‖Na‖ = ‖g1(a) + · · ·+ gN(a)‖ 6 ‖g1(a)‖+ · · ·+ ‖gn(a)‖ = N‖a‖ because the
gk are isometries, threrefore the inequality is an equality, hence the gk(a) are positively
collinear by strict convexity of the norm, hence all equal, hence all equal to a. As a
consequence, the point a would be in none of the Vgk , a contradiction.

Exercise 7.13. Isometries of the sphere.

a. For all x, y ∈ Sn, one has 〈f(x) | f(y)〉 = cos d
(
f(x), f(y)

)
= cos d(x, y) = 〈x | y〉.

b. For x or y = 0, one has
〈
f̃(x) | f̃(y)

〉
= 0 = 〈x | y〉. For x and y 6= 0, one has

〈
f̃(x) | f̃(y)

〉
= ‖x‖ ‖y‖

〈
f
(
x
‖x‖

) ∣∣ f( y
‖y‖

)〉
= ‖x‖ ‖y‖

〈
x
‖x‖

∣∣ y
‖y‖

〉
= 〈x | y〉.

c. Firstly, we have

‖f̃(x)‖2 =
〈
f̃(x)

∣∣ f̃(x)
〉

= 〈x |x〉 = ‖x‖2

for all x ∈ Rn+1. Then for all x, y ∈ Rn+1

‖f̃(x)− f̃(y)‖2 = ‖f̃(x)‖2 + ‖f̃(y)‖2 − 2
〈
f̃(x) | f̃(y)

〉
= ‖x‖2 + ‖y‖2 − 2〈x | y〉 = ‖x− y‖2,

By Exercise 7.9, f̃ est also surjective � hence an isometry � and a�ne. Since f̃(0) = 0,
f̃ is linear, hence it is determined by its values on a subset spanning Rn+1, for instance Sn,
hence the uniqueness.

Exercise 7.14. Extension of an isometry.

a. One has 〈f(ai) − f(a0) | f(aj) − f(a0)〉 = ‖f(ai) − f(a0)‖2 + ‖f(aj) − f(a0)‖2 − 1
2
‖f(ai) −

f(aj)‖2 = ‖ai − a0‖2 + ‖aj − a0‖2 − 1
2
‖ai − aj‖2 = 〈ai − a0 | aj − a0〉.
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b. One has

‖f̃(x)− f̃(y)‖2 =
∥∥∥ n∑
i=0

(
λi(x)− λi(y)

)
f(ai)

∥∥∥2
=
∥∥∥ n∑
i=0

(
λi(x)− λi(y)

)(
f(ai)− f(a0)

)∥∥∥2
=

n∑
i=0

n∑
j=0

(
λi(x)− λi(y)

)(
λj(x)− λj(y)

)
〈f(ai)− f(a0) | f(aj)− f(a0)〉

=
n∑
i=0

n∑
j=0

(
λi(x)− λi(y)

)(
λj(x)− λj(y)

)
〈ai − a0 | aj − a0〉

=
∥∥∥ n∑
i=0

(
λi(x)− λi(y)

)
(ai − a0)

∥∥∥2 = ‖x− y‖2.

By Exercise 7.9, f̃ is also surjective, hence f̃ is an isometry.

c. Of course we have f̃(ai) = f(ai) for all i ∈ {0, . . . , n}, by uniqueness of the barycen-
tric coordinates. Let a ∈ A; from above, one has ‖f̃(a) − f(ai)‖ = ‖a − ai‖ for all
i ∈ {0, . . . , n}, hence ‖f̃(a) − f(ai)‖ = ‖f(a) − f(ai)‖ since f is an isometry of A. Thus
f(ai) ∈ Med

(
f(a), f̃(a)

)
for all i ∈ {0, . . . , n}, but Med

(
f(a), f̃(a)

)
is an a�ne subspace,

hence f̃(a) =
∑n

i=0 λi(a)f(ai) ∈ Med
(
f(a), f̃(a)

)
, hence f̃(a) = f(a), hence f̃ indeed ex-

tends f . Since isometries of an a�ne space are a�ne maps by Exercise 7.9, f̃ is a�ne, and
it is the only a�ne map of Aff (a0, . . . , an) taking the values f(ai) at points ai, hence the
uniqueness.

Exercice 7.15. The alternating group A7 is non�xating.
The group A4 has a subgroup isomorphic to the Klein group,

K = {id, (12)(34), (13)(24), (14)(23)},

such that:

. The quotient A4/K is isomorphic to Z/3Z.

. Any element of A4 \K has at least one �xed point (these are all cycles of order 3).

An eccentric subgroup G = 〈f, g〉 of A7 is then obtained by taking two even permutations
which act separately on {1, 2, 3, 4} and on {5, 6, 7}: for f an element of K on {1, 2, 3, 4} and
the identity on {5, 6, 7}, say f = (12)(34), and for g an element of A4 \K on {1, 2, 3, 4} and
an element of A3 without �xed point on {5, 6, 7}, say g = (123)(567). We obtain for G a
12-element semi-direct product of K and A3.

Any elements of G whose restriction to {1, 2, 3, 4} has no �xed point, i.e. is in K, is the
identity on {5, 6, 7}, so all the elements of G have a �xed point, but f and g have no common
�xed point.
Exercise 7.16. The action of the group GL(3,F2) on X = F3

2 \ {0} is not �xating.
Identify X to {1, . . . , 7} with

ei → i, e123 → 4, e23 → 5, e13 → 6, e12 → 7.

With this identi�cation, we obtain f = (1, 2, 3)(5, 6, 7) and g = (1, 4)(6, 7) which are two even
permutations.
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Since the elements of G are linear and Y generates the vector space F3
2, if the restriction to

Y of h ∈ G is the identity then h is the identity. In addition f and g send Y in Y so the map
which sends h to its restriction to Y , is a one to one morphism from G to SY .

As Fix f ∩ Fix g = ∅, to prove that the action of G is eccentric, it is enough to check that
Fixh 6= ∅ for all h in G . Since the elements h ∈ G induce even permutations acting separately
on Y and Z, it su�ces to show that if the restriction of h to Y is a double transposition, then
its restriction to Z is the identity.

We observe that

(fg)2 = (1, 2)(3, 4)

(gf)2 = (1.3)(2.4)

(fgf)2 = (1.4)(2.3)

which shows that the action of G is eccentric.
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