
Best simultaneous Diophantine approximations and
multidimensional continued fraction expansions

Nicolas Chevallier

January 2013

Abstract
The �rst goal of this paper is to review the properties of the one dimensional continued frac-

tion expansion that can be recovered or partially recovered using only the best approximation
property. The second goal is to study some multidimensional continued fraction expansions of
the same kind as Lagarias�multidimensional expansion. We complete Lagarias result about
convergence and explain how the LLL algorithm can be used to de�ned such an expansion.

1 Introduction

Given an irrational number � there exists a unique sequence a0 2 Z; a1 > 0; a2 > 0; ::: of integers
such that the sequence of irreducible fractions

p0
q0
= a0;

p1
q1
= a0 +

1

a1
;
p2
q2
= a0 +

1

a1 +
1
a2

; :::

converges to �. This sequence of fractions, called the continued fraction expansion of �, enjoys
many remarkable properties, and since Jacobi�s �rst extension, many tries have been made to
de�ne multidimensional generalizations. Most of these generalizations start with one of the three
following properties of the continued fraction expansion.

1. The sequence (an)n�0 can be easily computed from the iterates of the Gauss map T : ]0; 1[!
[0; 1[, x 7! f 1xg where fyg 2 [0; 1[ is the fractional part of y.

2. For all n 2 N, det
�
pn pn+1
qn qn+1

�
= �1 (unimodularity property).

3. The set of denominators qn, n � 0, is the set of integers q � 1 such that, 81 � k < q;
d(kx;Z) > d(qx;Z) (best approximation property).

Property 1 leads to classical multidimensional continued fraction expansions such as Jacobi-
Perron�s expansion, Brun�s expansion, Selmer�s expansions....
Poincaré ([Poi]) introduced a geometric viewpoint which enlightens the unimodularity property.

Many works use this geometric viewpoint, e.g., Brentjes de�ned a multidimensional continued
fraction expansion of an element � in Rd as a sequence of Zd+1-bases, the positive cone of which
contains the half-line R+(�; 1). One basis is deduced from the previous one by adding to one of
the basis vectors an integer multiple of another basis vector (see [Bren]).
Fewer works start with Property 3 which leads to best simultaneous Diophantine approxima-

tions. Lagarias was the �rst to study best Diophantine approximations for their own sake. This
article is in line of the works of Lagarias and has two goals. The �rst one is to review positive and
negative results about the properties of the one-dimensional continued fraction expansion that can
be recovered in higher dimensions using only the best approximation property. The second goal is
to explain the links between three objects.

1. Best Diophantine approximations,

2. The action of the diagonal �ow

gt =

�
etId 0
0 e�dt

�
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on the space of lattices GL(d+ 1;R)=GL(d+ 1;Z),

3. Multidimensional continued fraction expansions, with a special emphasis on Lagarias�multidi-
mensional continued fraction expansion.

The article is divided into two parts. The �rst part which is reduced to Section 2 is devoted to best
simultaneous Diophantine approximations of an element � in Rd and the second part, i.e. Sections
3, 4, 5 and 6, is devoted to the results using lattices in the spaces Rd+1 to study the Diophantine
properties of �. All the results of the �rst part are well-known as well as many of the results of the
second part. In the second part, we adopt a more general presentation than Lagarias, we complete
his convergence result, and we give a multidimensional expansion based on Lagarias�ideas and the
LLL algorithm.
In the �rst part, we choose to include most of the easy proofs. They depend only on the Dirichlet

pigeonhole principle and on the triangle inequality but these proofs are dispersed in many papers.
In the second part, the new results and the essential results leading to Lagarias� expansion are
proven.
At last, we must say that nothing about best Diophantine approximations to a linear form or

to a set of linear forms will be found in this paper.

2 Best Diophantine approximations

2.1 De�nitions

Let N be a norm on Rd, let d(:; :) denote the distance associated with N and denote by B(a; r)
and B0(a; r) the open and closed balls of center a and radius r.

De�nition 1 Let � 2 Rd.
1. A positive integer q is a best simultaneous Diophantine approximation denominator of � (asso-
ciated with the norm N) if

8k 2 f1; :::; q � 1g; d(q�;Zd) < d(k�;Zd):

2. An element (P; q) in Zd � Z is a best Diophantine approximation vector of � if q is a best
simultaneous Diophantine approximation denominator of � and if

N(q� � P ) = d(q�;Zd):

For short, we will always write best Diophantine approximation instead of best simultaneous
Diophantine approximation denominator.
If � =2 Qd, the set of best Diophantine approximations of � is in�nite. Ordering this set, we

obtain a sequence q0 = q0(�) = 1 < q1 = q1(�) < ::: < qn = qn(�) < :::. When d = 1, by
the best approximation property, the integers q0; q1; :::; qn; ::: are the denominators of the ordinary
continued fraction expansion of �. The only slight di¤erence is that in the ordinary continued
fraction expansion it can happen that q0 = q1 = 1. In this case, the indices are shifted by one.

Notation. We shall always denote by (qn = qn(�))n�0 the sequence of best approximations
associated with � in Rd by De�nition 1. We also denote by rn = rn(�) the distance from qn� to
Zd, and by Pn = Pn(�) the point in Zd such d(qn�; Pn) = rn. With these notations, (Pn; qn) is a
best Diophantine approximation vector. The remainder vector qn� � Pn is denoted by "n.

The most obvious drawback of De�nition 1 is that the sequence (qn)n�0 depends on the norm
as soon as the dimension is not 1 (see Section 2.4 for an inequality between best Diophantine
approximations associated with two di¤erent norms). Despite this drawback, a weak form of many
properties of the one dimensional continued fraction can be recovered using only De�nition 1.

2.1.1 Alternative de�nitions

Some authors use other de�nitions of best approximation vectors. These de�nitions, however, are
essentially the same as De�nition 1.
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For instance, there is a de�nition using an auxiliary norm k:kRd+1 on Rd+1. The norms N and
k:kRd+1 are usually chosen to be the Euclidean norms or the sup norms. A nonzero vector (P; q)
in Zd �N� is a best approximation vector of � in Rd if, for each nonzero vector (A; b) in Zd+1, we
have

k(A; b)kRd+1 < k(P; q)kRd+1 ) N(b� �A) > N(q� � P )
and

k(A; b)kRd+1 = k(P; q)kRd+1 ) N(b� �A) � N(q� � P ):

Lemma 2 For all � in Rd, there exists a positive real number � such that for all (P; q) 2 Zd �N�
with N(q� � P ) � �, the two de�nitions of best approximation vector are equivalent.

Proof. To compare the two de�nitions, observe that the sequence of best approximation vectors
with respect to the �rst de�nition is given by the successive minima of the function

'(T ) = minfN(A� b�) : (A; b) 2 Zd � N�; q � Tg

as the real number T increases to in�nity and that the sequence of best approximation vectors
with respect to the second de�nition is given by the successive minima of the function

'(T ) = minfN(A� b�) : (A; b) 2 Zd � N�; k(A; b)kRd+1 � Tg:

Therefore, the lemma will be proved if we can �nd a positive real number � such that

k(A; b)kRd+1 � k(X; y)kRd+1 , b � y

for all integer vectors (A; b) and (X; y) with b; y nonnegative and N(A� b�), N(X � y�) � �. To
prove this property, �rst, normalize the norm k:kRd+1 by k(�; 1)kRd = 1. Next the equivalence of
norms shows that there exists a positive real number � such that N(X) � � implies k(X; 0)kRd+1 �
1
3 . Now, since (X; y) = y(�; 1)+ (X� y�; 0), the norm k(X; y)kRd+1 lies between jyj� 1

3 and jyj+
1
3

for each vector (X; y) with N(X � y�) � �. Thus, k(A; b)kRd+1 � k(X; y)kRd+1 , b � y for all
integer vectors (A; b) and (X; y) with b; y nonnegative and N(A� b�), N(X � y�) � �. �
It follows that the two de�nitions give rise to the same sequence of best approximation vectors

up to a �nite number of terms. The �rst de�nition has the advantage of not depending on an
auxiliary norm and the denominators clearly depend only on �mod Zd.
Another de�nition is the one given in Brentjes�book ([Br]). Let h : Rd+1 ! R be a linear

form such that h(�; 1) > 0 and let N be a norm on Rd. A nonzero vector (P; q) 2 Zd+1 is a best
approximation vector of � if for all nonzero (A; b) in Zd+1,

h(A; b) < h(P; q)) N(b� �A) > N(q� � P )

and
h(A; b) = h(P; q)) N(b� �A) � N(q� � P ):

On the one hand, De�nition 1 corresponds to Brentjes�de�nition with h(X; y) = y. On the other
hand it is easy to show that there exists a positive real number � such that both de�nition are
equivalent for the vectors (P; q) in Zd+1 with N(q� � P ) � �. Just use the equality h(X; y) =
h(X � y�; 0) + yh(�; 1) together with the same way of reasoning as above. Observe that now �
depends on 1

h(�;1) .

2.1.2 A few historical points

To our knowledge, C.A. Rogers in 1951 [Rog] was the �rst to de�ne best Diophantine approxima-
tions associated with the sup norm; he noticed that two consecutive remainder vectors qn� � Pn
and qn+1� � Pn+1 cannot lie in the same quadrant. This initial work on remainder vectors has
been continued by V. T. Sós and G. Szekeres [SóSz], and by N. Moshchevitin [Mosh2].
In �Introduction to Diophantine Approximation�[Cas], J. W. S. Cassels de�nes the continued

fraction expansion of a real number starting with the best approximation property. Then, he derives
the unimodularity and constructs the Gauss map using only the best approximation property. As
we will see in the next section, this program cannot be realized in dimension � 2.

3



The study of best Diophantine approximations in higher dimensions actually begins in 1979
with the works of J. C. Lagarias [Lag1,2,3,4,5]. He de�nes best Diophantine approximations for
any norm and studies the unimodularity property, the growth rate of the denominators and their
computational complexity. Besides these works, he also de�nes best Diophantine approximations
to a set of linear forms. Later in 1994, he proposes a geodesic multidimensional continued fraction
expansion.
Negative results about unimodularity are due both to Lagarias and N. Moshchevitin [Mosh3,4]

who disproved a conjecture of Lagarias (see also the survey [Mosh1]).

2.1.3 Best approximations are good approximations

Many authors implicitly use best Diophantine approximations, especially through the following
lemma which shows that best Diophantine approximations are indeed good approximations. They
are at least of the quality provided by the Dirichlet pigeonhole principle. The inequality in the
lemma may be seen as an alternative to the Dirichlet theorem.

Lemma 3 There exists a constant CN depending only on the norm N such that for all � 2 Rd,
and for all n 2 N,

qn+1r
d
n � CN :

Proof. We prove the lemma for the sup norm N = N1; the general case is easily deduced
from the norms equivalence. In the d-dimensional torus Td = Rd=Zd, the open balls B1(k�; rn2 ),
k = 0; :::; qn+1� 1 are disjoint, therefore the sum of their volumes is less than 1. Since rn � 1

2 , the
volume of each of these balls is rdn and therefore qn+1r

d
n � 1. �

Remark. When n is large enough, i.e. such that rn < d(0;Zdnf0g), using the Minkowski convex
body theorem, it can be proven that the constant CN depends only on the volume of the unit ball
associated with the norm N .

2.2 Unimodularity and primitiveness

The multidimensional continued fraction expansions based either on a generalized Gauss map or
on the unimodularity property are closely related. On the one hand, the classical d-dimensional
continued fraction expansions admit geometric de�nitions using bases of Zd+1. On the other hand,
the generalized Gauss maps are piecewise unimodular Möbius transformations and hence their
iterates de�ne sequences of bases of Zd+1. Let us see that the relations with best simultaneous
Diophantine approximations cannot be as simple. Fix a norm N on Rd. For � = (�1; :::; �d) 2 Rd
and n 2 N, set

Dn =

0BBB@
pn;1 � � � pn+d;1
...

...
...

pn;d � � � pn+d;d
qn � � � qn+d

1CCCA
where the columns of Dn are d + 1 consecutive best approximation vectors of �. We would like
to know whether detDn = �1. Note that detDn = �1 if and only the d + 1 consecutive best
approximation vectors (Pn; qn); :::; (Pn+d; qn+d) form a basis of GL(d+1;Z). One can wonder if for
k � d+1, k consecutive best approximation vectors are primitive, i.e., they are R-linearly indepen-
dent and they form a Z-basis of the intersection of Zd+1 with the vector subspace they generate. It
is clear that one best approximation vector is primitive and that two best approximation vectors
are never collinear. The only other positive result is:

Lemma 4 A pair of two consecutive best approximation vectors (Pn; qn) and (Pn+1; qn+1) is always
primitive.

Proof. Suppose there exists (P; q) = a(Pn; qn) + b(Pn+1; qn+1) in Zd+1 such that (a; b) 2]0; 1[2.
Considering the two points (P; q) and (Pn; qn)+(Pn+1; qn+1)�(P; q), we can suppose that a+b � 1.
Therefore, 0 < q < qn+1 and N(q��P ) � arn+ brn+1 < rn which shows that qn and qn+1 are not
consecutive. �
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This lemma has been used inside proofs by several authors, see for instance [Cheu] or [Roy]. It
may happen that three consecutive best approximation vectors are linearly dependant, see Lagarias�
theorem below. It follows that the above lemma cannot be extended to more than two consecutive
best approximation vectors.
In the 2-dimensional case, if dimQ[1; �1; �2] = 3, there always exist in�nitely many integers

n such that rankDn = 3. Indeed, suppose detDn = 0 for all n large enough. Since two best
approximation vectors are never collinear, the subspace spanned by two consecutive best ap-
proximation vectors is independent of n for large n. The vector (�; 1) is in this subspace F
for (�; 1) = limn!1

1
qn
(pn;1; pn;2; qn). Since F contains two linearly independent integer vectors,

dimQ[1; �1; �2] = 2.
The key argument of the previous way of reasoning is that two best approximation vectors

are not collinear. In the 3-dimensional case this argument is not strong enough to prove that if
detDn = 0 for all n large enough, then the space spanned by three consecutive best approximation
vectors is independent of n. There is no way to circumvent this problem as shown by the following
two results.

Theorem 1 ([Lag4]). For any norm, there exists � = (�1; :::; �d) 2 Rd such that dimQ[1; �1; :::; �d] =
d+ 1 and for all integers n there exists an integer k such that

detDk = detDk+1 = ::: = detDk+n = 0:

Theorem 2 ([Mosh3,4]). Assume N is the sup norm and d � 3. There exists an uncountable
family of � = (�1; :::; �d) in Rd such that dimQ[1; �1; :::; �d] = d+ 1 and

rank(Dn) � 3

for all n large enough.

The Moshchevitin theorem disproves the following conjecture due to Lagarias.
For all � 2 RdnQd the two properties are equivalent:
- dimQ[1; �1; :::; �d] � r,
- there exists an integer k0 = k0(�;N) such that for all k � k0, rank(Dk) � r.
Lagarias proved that these two properties are equivalent for r = 2.

These two negative results show that best simultaneous Diophantine approximations do not
de�ne an unimodular multidimensional continued fraction expansion. It is necessary to add inter-
mediate approximations or to delete some of them.
After these bad news, we continue with positive results.

2.3 Periodic expansions

Let p � 1 be an integer. The positive solution of the equation x2 + px � 1 = 0 is in the interval
[0; 1[ and it is readily seen that

x =
1

p+ x
=

1

p+ 1
p+x

:::

Thus, x = [0; p; :::; p; :::] and the sequence (qn)n�0 of denominators of the continued fraction ex-
pansion of x is such that

q0 = 1; q1 = p; qn+1 = pqn + qn�1

for all n � 1. An analogous result holds for best Diophantine approximations in the two-
dimensional case.

Theorem 3 ([Hu,Me]). Let P (x) = x3 + bx2 + ax � 1 be an integer polynomial. Suppose that
P has a unique real root � and that (a � 0 and 0 � b � a + 1) or (b = �1 and a � 2). Then
there exists a Euclidean norm on R2 (Rauzy�s norm) such that the sequence of best Diophantine
approximations of � = (�; �2) satis�es

q0 = 1; q1 = a; q2 = a
2 + 1; qn+3 = aqn+2 + bqn+1 + qn:
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The Lagrange theorem about periodic expansions can also be partially extended to best Dio-
phantine approximations in R2. We want to �nd a formulation of periodicity without using
the partial quotients. Observe that if the real number x in [0; 1[ has a periodic expansion x =
[0; a1; :::; an; :::] = [0; a1; :::; ak], then for all positive integers of the form n = kl+i with i 2 f1; :::; kg,
one has �

pn
qn

�
=

�
0 1
1 a1

�
:::

�
0 1
1 an

��
0
1

�
= Al

�
pi
qi

�
where pn

qn
are the convergents of x. Thus, the whole sequence of best approximation vectors of x

is given by the �rst k best approximation vectors and the powers of the integer matrix A.

Theorem 4 ([Chev2]). Let P (x) = x3 + bx2 + ax � 1 be an integer polynomial. Suppose that P
has an unique real root � and that a; b � 0. Then there exists a Euclidean norm on R2 and a �nite
number of best approximation vectors of � = (�; �2), Xi = (Pi; qi), i = 1; :::;m, such that the set8<:

0@ 0 0 1
1 0 0
a 1 b

1An�
Pi
qi

�
: n 2 N; i = 1; :::;m

9=;
is included in the set of best approximations of � and is equal to this set up to a �nite number of
elements.

It is very likely that some similar results hold for some polynomials of higher degrees.

2.4 Growth rate of best Diophantine approximations

2.4.1 Lower bound.

Let � be in RdnQd. In the one dimensional case, the recurrence relation qn+1 = an+1qn + qn�1
implies that qn+1 � qn+ qn�1 � 2qn�1. It follows that the denominator qn increase at a geometric
rate.
In higher dimension, Lagarias has proved that the inequality qn+2d � qn+1 + qn holds for best

approximation associated with the sup norm ([Lag 3]). The weaker inequality qn+2d � 2qn is
easy to obtain: by the pigeonhole principle, one of the 2d �quadrants� of Rd contains at least
two of the remainder vectors qn+k� � Pn+k, k = 0; :::; 2d. The distance between these two vectors
qn+k1��Pn+k1 and qn+k2��Pn+k2 , is at most rn, therefore, by de�nition of the best Diophantine
approximations, qn+k2 � qn+k1 � qn. �
The following inequality and its nice proof are due to Lagarias.

Theorem 5 ([Lag3]). For any norm on Rd, for all � 2 RdnQd, and for all n 2 N,

qn+2d+1 � 2qn+1 + qn:

Proof. Assume on the contrary that qn+2d+1 < 2qn+1 + qn. Among the integers 0; 1; :::; 2d+1,
there are at least two of them, i < j, such that

(Pn+i; qn+i) = (Pn+j ; qn+j) mod 2:

The vector (P; q) = 1
2 (Pn+j � Pn+i; qn+j � qn+i) has integer coordinates and

0 < q � 1

2
(qn+2d+1 � qn) < qn+1:

But,

N(P � q�) � 1

2
(N(Pn+j � qn+j�) +N(Pn+i � qn+i�))

� 1

2
(rn+1 + rn) < rn
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which contradicts the de�nition of qn+1. �

The inequality qn+2d+1 � 2qn+1 + qn implies that

lim inf
n!1

q1=nn � t

where t is the maximal root of the equation t2
d+1

= 2t+ 1. So the sequence (qn)n increase at least
at the geometric rate tn. Note that the lower bound t does not depend on the norm. The optimal
value for this lower bound is known only for d = 1. See [Mosh5] for some improvements of the
value of t.
There are similar results about rn whose proofs are easy:

Proposition 5 ([Chev5], [Lag1]). For the sup norm, for all � 2 RdnQd, and for all n 2 N,

rn+3d �
1

3
rn:

2. For any norm on Rd, for all � 2 RdnQd, and for all n 2 N,

rn+3d �
1

2
rn:

This proposition allows to compare the growth rate of the sequences of best Diophantine ap-
proximations associated with two norms.

Corollary 6 ([Chev5]). Suppose that Rd is endowed with two norms N and N 0. Denote by
(qn)n�0 and (q0n)n�0 the best Diophantine approximations associated with the norms N and N 0.
There exists a constant k depending only on the norms N and N 0 such that for all � 2 RdnQd, and
for all n 2 N, there exists m 2 N such that

qn � q0m � qn+k:

2.4.2 Upper bound.

In the following, �almost all�always refers to the Lebesgue measure on Rd.
In the one dimensional case, the following theorem due to Levy shows that almost surely, best

Diophantine approximations grow at most at the rate of a geometric progression (independently
from Levy, Khinchin proved an inequality strong enough to ensure the same geometric growth
rate).

Theorem 6 For almost all � in R, limn!1
1
n ln qn =

�2

12 ln 2 .

In higher dimensions, the following weaker result holds.

Theorem 7 ([Chev3,4]). There exists a constant CN depending only on the norm N such that,
for almost all � 2 Rd,

lim sup
n!1

1

n
ln qn � CN :

Actually, this result has been proved for the sup norm or the Euclidean norm, but by Corollary
6, given two norms N1 and N2, there exists a constant C = C(N1; N2) such that the number of
best Diophantine approximations associated with N1 between two consecutive best Diophantine
approximations associated with N2, is at most C. Thus the geometric growth rates for the norm
N1 and N2 are equivalent.
In [Chev3], the above theorem is derived from an asymptotic estimate by W. M. Schmidt [Schm]

of the number of solutions of some Diophantine inequalities (actually, a less general result due to
Susz is enough). In [Chev1] the result is proved for best Diophantine approximations to a set
of linear forms. The proof follows a di¤erent way because it seems that there is no appropriate
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generalization of Schmidt�s result to simultaneous approximations to a set of linear forms. As in
many works, the proof uses the action of the diagonal matrices�

e(n�d)tId 0
0 e�dtIn�d

�
on the homogeneous space SL(n;R)=SL(n;Z) (n = d+ the number of linear forms) and some
ergodic theory. Up to a renormalization, this diagonal action is the same as the diagonal action
used by Lagarias to de�ne his multidimensional expansion (see below).

2.5 Extension of the Borel-Bernstein Theorem

Theorem 8 (Borel-Bernstein). Let (�n) be a sequence of positive integers.
1. If

P
n�1

1
�n

< +1, then for almost all real number � = [a0; a1; :::; an; :::], there are �nitely
many integers n such that an � �n.
2. If

P
n�1

1
�n
= +1; then for almost all real number � = [a0; a1; :::; an; :::], there are in�nitely

many integers n such that an � �n.

In order to generalize this theorem to higher dimensions, we need to de�ne the partial quotients
associated with the best Diophantine approximations. In the one dimensional case, it is well-known
that the partial quotients a0; :::; an; ::: of a real number can be recovered from the denominators or
from the remainders, rn(x) = jqn(x)x� pn(x)j:

an = b
qn(x)

qn�1(x)
c = brn�2(x)

rn�1(x)
c

(bxc denote the integer part of the real number x). This suggests two de�nitions of the partial
quotients of � in Rd

an(�) = b
qn(�)

qn�1(�)
c or bn(�) = b

rn�2(�)

rn�1(�)
cd

(the integer part is not really important). Therefore, we have two natural de�nitions of partial
quotients. The only simple (known) relation between an and bn is:

qn+1
qn

� brn�1
rn

c

for the sup norm. However, the coe¢ cients bn seem to have a stronger geometrical meaning than
the coe¢ cients an: each bn is the quotient of the volume of two balls in the torus Td. Furthermore,
the Borel-Bernstein theorem can be stated in all dimensions with bn.

Theorem 9 ([Chev3]). Let (�n) be a nondecreasing sequence of positive real numbers.
1. If

P
n�1

1
�n

< +1, then for almost all � in Rd, there are �nitely many integers n such that�
rn�1(�)
rn(�)

�d
� �n.

2. If
P

n�1
1
�n
= +1, then for almost all � in Rd, there are in�nitely many integers n such that�

rn�1(�)
rn(�)

�d
� �n.

Note that in the previous theorem it is necessary to assume that the sequence (�n) is nonde-
creasing while this assumption is not needed in the Borel-Bernstein Theorem.

2.6 Badly approximable and singular vectors, and lower bound of qn+1rdn
Recall that a vector � in Rd is badly approximable if

lim inf
q!1

q
1
d d(q�;Zd) > 0;

and that � is singular (Khinchin) if

lim
N!1

N1=dminfd(k�;Zd) : k = 1; :::; Ng = 0:
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These two de�nition are easy to formulate with best Diophantine approximations:
- � is badly approximable if and only if lim infn!1 qnr

d
n > 0.

- � is singular if and only if limn!1 qn+1r
d
n = 0.

The well-known inequality qn+1rn � 1
2 shows that singular vectors do not exist when d = 1.

Their existence in dimension � 2 was proven by Khinchin. Y. Cheung shows that the Hausdor¤
dimension of singular pairs is 4

3 ([Cheu]) and one important ingredient of its proof is the above
characterization of singular pairs.
In the one dimensional case it is well-known that badly approximable numbers are exactly the

real number with bounded partial quotients. The transcription using the partial quotients an and
bn introduced in the previous subsection is less clear. If � is badly approximable, then the sequences
of partial quotients (an) and (bn) are bounded but the converse does not hold. For instance one
can take a badly approximable real number x and take the pair � = (x; 0) which is not badly
approximable.

One of the striking di¤erences between the higher dimensions and the dimension one is the
existence of singular vectors. As shown by Khinchin, singular vectors � = (�1; :::; �d) exist even
if we require dimQ[1; �1; :::; �d] = d + 1. This phenomenon implies that an inequality of the form
qn+1r

d
n � c > 0 can hold for all � with dimQ[1; �1; :::; �d] = d+ 1, only if d = 1. In fact, most � in

Rd, d � 2, are both �regular�and �singular�:

Theorem 10 Suppose that Rd is equipped with the sup norm.
1. ([Chev3]) If d � 2, then for almost all � in Rd,

lim inf
n!1

qn+1r
d
n = 0:

2. There exists a constant c = c(d) > 0 such that for almost all � in Rd,

lim sup
n!1

qn+1r
d
n � c:

One can wonder whether there are other ways to extend the one-dimensional inequality qn+1rn �
1
2 to higher dimensions. Cheung found such an extension (see next subsection) however the geomet-
rical meaning of this extension is not as clear as a lower bound on qn+1rdn. In the two-dimensional
case, a positive lower bound on

qn+1rnrn�1

would have a quite clear geometrical meaning. In [Chev4] it is proven that, for the sup norm and
for all � = (�1; �2) in R2 such that dimQ[1; �1; �2] = 3,

qn+1rnrn�1 �
1

100

for in�nitely many integers n. Nevertheless, the set of � in R2 such that

lim inf
n!1

qn+1rnrn�1 = 0

contains a countable intersection of dense open subsets in R2. In the three dimensional case the
situation is even worse, for there exists � = (�1; �2; �3) in Rd with dimQ[1; �1; �2; �3] = 4 and

lim
n!1

qn+1rnrn�1rn�2 = 0

(see [Chev3]).

2.7 Lattice in Rd and subgroup associated with a best Diophantine ap-
proximation

Let N be a norm on Rd and let � be in Rd. In this subsection, we give a few easy properties which
give some geometric information about the set

En = f0; �; :::; (qn � 1)�g+ Zd:

9



Let (Pn; qn) be the best approximation vector associated with qn and let "n = qn� � Pn be the
remainder vector. The rational approximation associated with qn is

�n =
1

qn
Pn = � �

"n
qn
:

In the torus Td = Rd=Zd, we have qn�n = 0, hence the subgroup h�ni generated by �n is �nite.
The lifting of this subgroup in Rd is the lattice

�n = Z�n+Zd = f0; �n; :::; (qn � 1)�ng+ Zd:

Since qn is a best Diophantine approximation of �, �n is a good approximation of �! Therefore
the lattice �n is closed to the set En, and the study of the geometrical properties of �n should
enlighten those of En. It is worth noting that in the one-dimensional case, the situation is crystal
clear : there is only one subgroup in T1 with a given cardinality or equivalently, only one lattice in
R with a given determinant. In higher dimensions, the geometry of a lattice is no longer determined
by its determinant, the successive minima are needed to know quantitative informations about the
geometry of a lattice. The existence of singular � in dimension � 2 is strongly related to this
observation.

The following properties give the connections between �n and En. They are easy to prove (see
below) and are often used inside proofs. Recall that the �rst minimum �1(�) of a lattice � is the
minimum of the lengths of the nonzero vectors of �. Note that �1(�) depends on the norm N used
to compute the length of the vectors.

P1. In the torus Td, the set f0; �; :::; (qn� 1)�g and the subgroup h�ni generated by �n are close:

8k 2 f0; :::; qn � 1g; dTd(k�; k�n) � rn(�)

(hence, the Hausdor¤ distance between f0; �; :::; (qn � 1)�g and h�ni is smaller than rn).
P2. The minimal distance between two points of the subgroup h�ni, or equivalently between two
points in the lattice �n, is of the same order of size as the distances between two points of the set
En:

1

2
rn�1(�) � �1(�n) � 2rn�1(�)

where �1(�n) is the �rst minimum of �n. Moreover

�1(�n) � N(qn�1�n � Pn�1) � 4�1(�n)

P3. 8k 2 f1; :::; qn � 1g; k�n 6= 0modZd, hence the cardinality of the subgroup h�ni is qn.
P4. det�n = 1

qn
.

P5. ([Cheu]) Let �n = (�n;1; :::; �n;d) be the vector of Rd whose coordinates are the determinants

�n;i = det

�
pn�1;i pn;i
qn�1 qn

�
i = 1; :::; d. Then

1

2
N(�n) � qnrn�1 � 2N(�n):

Proof. P1. In the torus Td, for k � qn,

dTd(k�n; k�) = dRd(k(� +
"n
qn
); k� + Zd) � k

qn
N("n) � N("n) = rn:

P2 and P3. Let k be in f1; :::; qn � 1g. We want to bound below dTd(k�n; 0). We have

dTd(k�n; 0) = dTd(k(� �
"n
qn
); 0) = dRd(k(� �

"n
qn
);Zd)

� dRd(k�;Zd)� dRd(k�; k� � k
"n
qn
)

� rn�1 �
k

qn
N("n):

10



Since in the torus qn�n = 0, the distances dTd((qn � k)�n; 0) and dTd(k�n; 0) are equal, hence we
can assume that k � qn

2 . We have then

dTd(k�n; 0) � rn�1 �
k

qn
N("n) � rn�1 �

rn
2
� rn�1

2
:

It follows both that k�n 6= 0modZd for all k 2 f1; :::; qn � 1g and that

�1(�n) = minfN(u) : u 2 �nnf0gg
= dTd(0; f�n; 2�n; :::; (qn � 1)�ng)

� rn�1
2
:

Since 1 � qn�1 < qn, qn�1�n � Pn�1 is a nonzero vector of �n. Therefore

�1(�n) � N(qn�1�n � Pn�1)
� N(qn�1(�n � �)) +N(qn�1� � Pn�1)
� rn + rn�1 � 2rn�1;

which also implies that, N(qn�1�n � Pn�1) � 2rn�1 � 4�1(�n).
P4. det�n = 1

qn
for card�n=Zd = cardh�ni = qn.

P5. We have

�1(�n) � N(qn�1�n � Pn�1) = N(qn�1
Pn
qn
� Pn�1) =

1

qn
N(�n)

hence by P2, qnrn�1 � 2N(�n).
Moreover

N(�n) = N(qnPn�1 � qn�1Pn)
= qnqn�1N(�n�1 � �n)
� qnqn�1(N(�n�1 � �) +N(�n � �))

= qnqn�1(
rn�1
qn�1

+
rn
qn
) � 2qnrn�1:

�
Remark. In dimension one, since �n = 1

qn
Z, the inequalities

�1(�n) � N(qn�1�n � Pn�1) � 4�1(�n)

become
1 � jqnPn�1 � qn�1Pnj � 4:

Therefore, these inequalities may be seen as an extension of the well-known relation qnpn�1 �
qn�1pn = �1.
Property P5 also extends the well-known one dimensional inequality qnrn�1 � 1

2 , for in that case,
�n = �1. Actually, Cheung gives the slightly better lower bound (qn + qn�1)rn�1 � �n which is
easily deduced from the above proof.

2.8 Extension of the Legendre theorem

The Legendre theorem asserts that if x is a real number and if pq is a fraction such that
���x� p

q

��� < 1
2q2

then p
q is a convergent of x. Using the lattices introduced in the previous section, this result can

be generalized.

Proposition 7 ([Cheu]) Suppose that Rd is endowed with any norm N . Let X = (P; q) be a
primitive element in Zd+1 with q > 0. Call �X the lattice

Z
P

q
+ Zd:

1. If � is in the closed ball B0(Pq ;
�1(�X)
2q ) then X is a best approximation vector of �.

2. Conversely, if X is a best approximation vector of � then � is in the ball B0(Pq ;
2�1(�X)

q ).

11



Note that, if d = 1, then �1(�X) = 1
q , hence the �rst point of the proposition is exactly the

Legendre theorem. We give the proof of this result which relies only on the triangle inequality.
Proof. 1. Suppose that � is in the ball B(Pq ;

�1(�X)
2q ). Then for all a 2 f1; :::; q � 1g and all b in

Zd,
N(a� � b) � N(aP

q
� b)� aN(� � P

q
):

Since X is primitive, aPq � b 6= 0, and therefore N(a
P
q � b) � �1(�X). It follows that

N(a� � b) � �1(�X)� a
�1(�X)

2q
>
�1(�X)

2
:

Using again that N(� � P
q ) �

�1(�X)
2q , we get

N(a� � b) > N(q� � P )

therefore q is a best approximation of �. To see that (P; q) is best approximation vector it remains
to see that, if P 0 is in Zd, then N(q� � P 0) � N(q� � P ). Now

N(q� � P 0) � N(qP
q
� P 0)� qN(� � P

q
)

� N(P 0 � P )� �1(�X)
2

and if P 0 6= P then N(P 0 � P ) � �1(�X), thus N(q� � P 0) � �1(�X)
2 � N(q� � P ).

Conversely, if (P; q) = (Pn; qn) is a best approximation vector of �, then by Property P2, N(� �
Pn
qn
) = 1

qn
rn � 1

qn
rn�1 � 1

qn
2�1(�n). �

2.9 Dual lattice

All the result of this subsection can be found in [Chev5]. We assume that Rd is endowed with the
standard Euclidean norm k:k.
In Subsection 2.7 we have seen that the lattices �n associated with the sequence of best ap-

proximations (qn) of an element � in Rd are well-suited to study the sets

En = f0; �; :::; (qn � 1)�g+ Zd:

If we want to study the transition between the sets En and En+1, i.e., the sets

f0; �; :::; q�g+ Zd

with qn � q < qn+1, the dual lattice

��n = fx 2 Rd : 8y 2 �n; x:y 2 Zg

(the dot denote the scalar product) provides an important geometric information. Let x�n be the
shortest vector of �n. The net of hyperplanes Hn = fx 2 Rd : x:xn 2 Zg is the tightest net of
hyperplanes that contains �n. By the property P1, the set En is close to the net of hyperplanesHn.
The distance dn between two consecutive hyperplanes of Hn is 1

kx�nk
, and we can use Minkowski

theorem on minima of a lattice to bound above kx�nk. Recall that the k-th minimum �k(�) of a
lattice � is the in�mum of the set of r � 0 such that the ball B(0; r) contains k linearly independent
vectors of �. By the Minkowski theorem,

kx�nk
d
= �1(�

�
n)
d � �1(��n):::�d(��n)� det��n = qn;

hence
kx�nk � q1=dn ; dn �

1

q
1=d
n

12



(we have use the standard notation a� b meaning that a � Cb where C is a constant depending
only on certain parameters, here the dimension). Property P1 shows that the closeness of En to
Hn compared with dn is bounded above by q

1=d
n rn (up to a multiplicative constant).

The vector x�n allows to regroup best approximations : either x
�
n 2 ��n+1, or x�n =2 ��n+1. In the

two cases described below, we assume that qnrdn is small.
Case 1: x�n 2 ��n+1. En+1 is still close to Hn, hence all the points q�, q < qn+1 are close to

Hn. More precisely, for all q < qn+1,

d(q�:x�n;Z)� q1=dn rn+1:

Case 2: x�n =2 ��n+1. At the time q = qn�1 the trajectory f0; �; :::; q�g+ Zd is close to Hn. It
can be proved that when q increases from qn to qn+1, the points q� + Zd �ll the gap between the
hyperplanes of Hn. This gap between the hyperplanes is �lled in a very simple way: the trajectory
moves away from En by small jumps. Indeed, for all a < qn, and k = 0; :::; [

qn+1
qn
],

(kqn + a)� = a� + kqn(� � �n)
� a� + k"n mod Zd

where "n = qn� � Pn and k"nk = rn(�).

We have seen in the Subsection 2.6 that the one-dimensional inequality qn+1rn � 1
2 is di¢ cult

to extend to higher dimensions. However the use of the shortest vector x�n enables to prove a
partial extension of this inequality.

Theorem 11 There exists a positive constant c(d) such that, for all � 2 Rd such that dimQ[1; �1; :::; �d] =
d+ 1, then either qnrdn(�) � c(d) or qn+1d(x�n:�;Z) � c(d) for in�nitely many n.

3 Lattices in Rd+1 associated with � in Rd

For each � in Rd, consider the lattice
�� =M�Zd+1

where

M� =

�
I ��T
0 1

�
2 SL(d+ 1;R):

The �ow (gt)t2R de�ned by

gt =

�
etId 0
0 e�dt

�
2 SL(d+ 1;R);

acts on the lattice �� by left multiplication. Since for (P; q) 2 Zd�Z, gtM�

�
P
q

�
=

�
et(P � q�)
e�dtq

�
,

a short vector of gt�� provides a good rational approximation of �.
Some authors consider the action of the matrices

hs =

�
Id 0
0 s

�
;

s > 0, instead of the matrices gt. However, since with s = e�(d+1)t, we have hs = e�tgt, the
two lattices hs�� and gt�� are homothetic. Thus �nding short vectors in one of these lattices is
equivalent to �nding short vectors in the other. The advantage of gt over hs is that all the lattices
gt��, t 2 R, are in the space of unimodular lattices SL(d+1;R)=SL(d+1;Z), and that this space
has �nite Haar measure which allows to use tools from ergodic theory. On the other hand, some
calculations are slightly simpler with hs than with gt and the map s > 0 7�! hsM�M

T
� hs, can be

interpreted as a geodesic in the space of positive de�nite quadratic forms (see [Lag1]). This is the
reason why we shall use both hs and gt in what follows.
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3.1 Euclidean norms

Assume that k:kRd and k:kRd+1 are the standard Euclidean norms on Rd and Rd+1. The Next
lemma connects best approximation vectors of � with shortest vectors of the lattices hs��; it is
due to Lagarias [Lag 1].

Lemma 8 ([Lag1]). If vs = (Ps � qs�; sqs) is a shortest vector of hs�� and if qs > 0, then qs is a
best Diophantine approximation of �.

Proof. If q is an integer between 1 and qs � 1 then for all K 2 Zd,

k(k� � q; sq)kRd+1 � kvskRd+1

hence
kK � q�k2Rd + q

2s2 � kPs � qs�k2Rd + q
2
ss
2

and therefore
kK � q�k2Rd > kPs � qs�k

2
Rd :

�
With the hypothesis of the previous lemma, it is easy to prove that if s > t > 0 then qs � qt.

This lemma is the main observation leading to a weak form of Lagarias multidimensional expan-
sion:
For each s > 0, compute the shortest vector (Ps; qs) of hs��. The set of qs is a subsequence of
the sequence of all best Diophantine approximations of �.
These best Diophantine approximations are called Hermite best Diophantine approximations
([Lag1]). We denote by (hm)m�0 the increasing sequence of Hermite best Diophantine approx-
imations and by Hm the corresponding best Diophantine approximation vectors. The subsequence
(hm)m�0 is generally a strict subsequence of the sequence of all best Diophantine approximations
(qn)n�0, even for d = 1 ([Hum]). However, the following properties proved in [Chev1] show that the
sequence of Hermite best Diophantine approximations is not a too sparse subsequence of (qn)n�0.
1. There exists a constant m0 depending only on the dimension d such that for all � in Rd and

all integers m, the cardinality of the set of n with

hm < qn < hm+1

is at most m0.
2. There exists a constant C depending only on the dimension d such that for � in Rd and all

integers m,
hm+1d(hm�;Zd)d � C:

3. There exists a positive constant c depending only on the dimension d such that for � in Rd
and all best Diophantine approximation qn of �, there exists a Hermite best Diophantine approxi-
mation hm such that

c d(hm�;Zd) � d(qn�;Zd) � d(hm�;Zd):

These three properties can be deduced from a lemma due to Cheung (see the next subsec-
tion) together with inequalities that connect best Diophantine approximations associated with two
di¤erent norms.
If d = 1, Hermite proved that for all integers n

rank (Hn;Hn+1) = 2

(two best approximation vectors are never collinear!).
If d = 2, it can happen that

rank(Hn;Hn+1;Hn+2) < 3

([Lag1]). Consequently, the unimodularity property does not hold for the sequence (Hn)n�0.
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3.2 Cheung�s norm.

Y. Cheung introduces a notion of best approximants in a lattice (or even in a discrete set) that
is very naturally connected to best approximations vectors. His idea is to work with a sup norm
instead of the Euclidean norm. With this norm, the shortest vectors of the lattices hs��, s 2 R,
are more closely related to best approximations vectors of � than with Euclidean norms. As seen
in the previous subsection, with the standard Euclidean norms, shortest vectors of hs�� are always
associated with a best approximation vectors of � while best approximations vectors are not always
associated with a shortest vectors. With the sup norm introduced by Cheung, both direction works.
The only point is to choose adequately the shortest vector of hs�� in case of a nonunique shortest
vector. This can be done with the help of minimal vectors de�ned below.

We suppose that Rd is endowed with a norm N .
Notations. Let X = (U; v) be in Rd�R. The height of X is jXj = jvj and the box B0Rd(0; N(U))�
[� jXj ; jXj] is denoted by B(X).

De�nition 9 Let � be a lattice in Rd+1. A vector X in � is a minimal vector of � (with respect
to the norm N) if X = (U; v) 6= 0 and if the only nonzero vectors in � \ B(X) are in the two
(d� 1)-spheres f(A; b) 2 Rd+1 : N(A) = N(U) and v = � jXjg.

When Rd+1 is endowed with the norm Nc de�ned by

Nc(U; v) = max(N(U); jvj);

the connection between minimal vectors and shortest vector of a lattice in Rd+1 is simple: in a
given lattice there is at least one shortest vector of the lattice that is minimal, and if X = (U; v)

is minimal in a lattice �, then X is a shortest vector of the lattice gt� with t(X) = 1
d+1 ln

jvj
N(U)

(if v = 0 or N(U) = 0, it is to understand that X is a shortest vector of gt� when t is in a
neighborhood of �1 or +1). Moreover if a vector X = (U; v) in � is a �robust�shortest, i.e. if
gtX is a shortest in gt� for all t in a neighborhood of t(X), then X is a minimal vector.
The connection between minimal vectors and best approximations is also simple:

Lemma 10 For � in Rd, the set of minimal vectors with nonzero height of the lattice �� is exactly
the set of all M�V

T where
V = (P; q)

ranges in the set of all best approximation vectors of � such that

N(q� � P ) < d(0;Zdnf0g):

Proof. Let V = (P; q) be a non zero vector in Zd+1 and X =M�V
T .

Suppose that V is a best approximation vector of � such that N(q� � P ) < d(0;Zdnf0g). Let
W = (U; v) be a non zero vector in Zd+1. If Y =M�W

T is in B(X) then jvj � q and N(v��U) �
N(q��P ), hence v 6= 0. Since V is a best approximation vector the two previous inequalities must
be two equalities which shows X is minimal with non zero height. Conversely suppose that X is
minimal vector of �� with non zero height. If W = (U; v) is in Zd+1 is such that jvj < q then by
minimality, N(v��U) > N(q��P ), which shows that X is a best approximation vector of � with
N(q� � P ) < d(0;Zdnf0g). �

It is worth noting that the inequality qn+1rdn � c may be stated with minimal vectors:

Lemma 11 Let � be a lattice in Rd+1 and X = (U; v) and X 0 two minimal vectors of �. Suppose
that jXj < jX 0j and that X and X 0 are two consecutive minimal vectors, i.e., there is no minimal
vector the height of which is in the interval ] jXj ; jX 0j [. Then

jX 0jN(U)d � 2d+1=vd

where vd is the volume of the ball BRd(0; 1) associated with the norm N .
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Proof. Since X and X 0 are consecutive minimal vectors the interior of the box

B(X;X 0) = BRd(0; N(U))� [� jX 0j ; jX 0j]

contains no nonzero point of �. Consequently, by the Minkowski convex body theorem, the volume
of this box is � 2d+1. �

Y. Cheung has also found the following nice dynamical interpretation of the minimal vectors
of a lattice (see also W.M. Schmidt and L. Summerer, [Schm, Sum]) . Let � be a lattice in Rd+1
and consider the function

��(t) = ln�1(gt�); t 2 R;

where �1 is the �rst minimum with respect to the norm Nc, i.e. the length of a shortest vector.
The function �� is piecewise a¢ ne with two slopes and is entirely given by the minimal vectors:

Proposition 12 Let � be a lattice in Rd+1. For all minimal vector X = (U; v) in � there exists
an interval I(X) that contains the time

t(X) =
1

d+ 1
ln

jvj
N(U)

in its interior such that:
- two intervals I(X) are either equal or have disjoint interiors,
- the union of all the intervals I(X) is R, and
- for all minimal vector X = (U; v) and all t in I(X),

��(t) = lnNc(gtX) =

�
�dt+ ln jvj ; if t � t(X)
t+ lnN(U); if t � t(X) :

3.3 Computation of best Diophantine approximations with the lattice
hs��.

J. C. Lagarias studied ([Lag2]) the complexity of the computation of best Diophantine approxima-
tions. Here we only explain one method to compute them.
By the Lagarias lemma, a shortest vector of hs�� gives rise to a best Diophantine approximation

of �. The LLL algorithm (sees Section 6) is likely to be the most e¢ cient way to compute such
a vector (see e.g. [G,L,S] for LLL algorithm). Assume that Rd is endowed with the Euclidean
norm k:k. Use the LLL algorithm with the lattice hs�� as input, the output is a �reduced�basis
(e1; :::; ed) of hs�� whose �rst vector is almost a shortest vector of hs�� :

ke1k � 2(d�1)=2�1

where �1 is the �rst minimum of hs��. It seems that, in practice, the length of the vector e1 is
often very close to �1 which means we have a very good Diophantine approximation of �. In order
to obtain a shortest vector of hs�� it is possible to use the following result due to Babai ([Ba]):
for all k 2 f1; :::; dg, the sinus of the angle between ek and the subspace generated by the other
vectors of the basis, is � (

p
3=2)d.

It follows that, if the absolute value of one of the coordinates of a vector X in hs�� is > ( 2p3 )
d,

then its norm is > �1. Therefore, the shortest vector of hs�� is among the vectors X =
Pd

i=1 xiei
with jxij � ( 2p3 )

d, i = 1; :::; d. So, (2� 2p
3
)d

2

computations are enough to �nd this shortest vector.

4 Multidimensional expansions and lattices reduction

4.1 General de�nition

Interpreting the lattices in Rn as points in GL(n;R)=GL(n;Z), a reduction theory for lattices is
given by a subset Bn in GL(n;R) which contains a fundamental domain for the right action of
GL(n;Z); that is, for all matrix M in GL(n;R) there exists P in GL(n;Z) such that MP 2 Bn.
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A matrix in Bn has to be seen as a good basis of the underlying lattice. Matrices in Bn must
enjoy some geometrical properties depending on the aim of the reduction theory, e.g., the vectors
of the basis must be as short as possible. To such a set of reduced matrices, one can associated a
multidimensional expansion :

De�nition 13 Let Bd+1 be a subset of GL(d+1;R) which contains a fundamental domain for the
right action of SL(d+ 1;Z). Let � 2 Rd. A Bd+1-expansion of � is a map Q = Q� : s 2]0;+1[!
Q(s) 2 GL(d+ 1;Z) such that hsM�Q(s) 2 Bd+1 for all s.

Expansions are associated with any classical sets of reduced bases, e.g. Minkowski reduced
bases, Korkine-Zolotarev reduced bases, Lovasz reduced bases, Siegel domains, etc...
The de�nition of the matrices hsM� shows that the elements of the last row of the matrices Q(s)
are the denominators of the expansion.
The desired properties of such an expansion are:

E1. Uniqueness or �niteness : for each s > 0, there is only one possible choice for Q(s) or �nitely
many possible choices.
E2. Convexity : for a given matrix P in GL(d+1;Z), the set of s such that P = Q(s) is as simple
as possible, e.g., one interval.
E3. Convergents may be associated with the expansion.

E4. s 7�! Q(s) provides a strongly convergent expansion of � : denoting
�
Pi(s)
qi(s)

�
the columns

of Q(s),
lim
s!0

maxfkqi(s)� � Pi(s)k : 1 � i � d+ 1g = 0

for all � = (�1; :::; �d) such that dimQ[1; �1; :::; �d] = d+ 1.
E4bis. The �rst column of Q(s) is a best approximation vector of �.
E5. Positivity: if s > s0, then the positive cone spanned by the columns of Q(s) contains the
positive cone spanned by the columns of Q(s0).

We will see that the Lagarias expansion conciliates all these properties except the last one, while
it is known that classical multidimensional continued fraction expansions such as Jacobi-Perron
algorithm, Brun algorithm,... are not strongly convergent but are positive.

4.2 Lexicographically reduced bases

Lagarias expansion is de�ned with a set reduced matrices slightly smaller that the set Mn of
Minskowski reduced bases. The reduced bases are called lexicographically reduced bases. In fact
lexicographically reduced bases correspond to Hermite reduced quadratic forms (see [Tam1]).
Rn is endowed with the Euclidean norm k:k.

De�nition 14 A basis (e1; :::; en) of Rn is lexicographically reduced if the vector of norms

(ke1k ; :::; kenk)

is minimal for the lexicographical order among all vectors of norms associated with the bases of
� = Ze1 � :::� Zen.

It is not di¢ cult to show by induction that each lattice � admits a lexicographically reduced
basis. Consequently, the set Ln of lexicographically reduced bases contains a fundamental domain.
The aim of this de�nition is to obtain bases with vectors as short as possible. Since a shortest

vector of a lattice may be extended into a basis, the �rst vector of a lexicographically reduced basis
is a shortest vector of �. Recall that a basis e1; :::; en of a lattice � in Rn is Minkowski reduced if
for i = 1; :::; n, ei is a vector of minimal length among the vectors x in � such that

(e1; :::; ei�1; x)

may be extended into a basis of �. Clearly, lexicographically reduced bases are Minkowski re-
duced. The above de�nition is not the one given by Lagarias who considers the minimum for the
lexicographical order only among Minkowski reduced bases. The next lemma is easy and connects
the above de�nition with Lagarias�de�nition.
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Lemma 15 For each basis (f1; :::; fn) of the lattice �, there exists a Minkowski reduced basis
(e1; :::; en) of � such that

(ke1k ; :::; kenk) � (kf1k ; :::; kfnk)
for the lexicographical order.

In all dimensions, the interiorM�
n ofMn is included in Ln which in turn is included inMn and

it is known that Ln =Mn for n � 6 while Ln 6=Mn for n > 6 (see [Tam]). A quite simple example
due to H.W. Lenstra shows that there exist Minkowski reduced bases that are not lexicographically
reduced in dimension d = 13 (see [Lag1]).

4.3 De�nition of the Lagarias expansion

De�nition 16 Suppose that Rd and Rd+1 are endowed with the Euclidean norms k:kRd and
k:kRd+1 . Let � be in Rd. The Lagarias expansion of � is the expansion s ! Q�(s) associated
with the set Ld+1 of lexicographically reduced bases.

By de�nition, for all s > 0, the columns of hsM�Q�(s) form a lexicographically reduced basis of
Rd+1, hence the �rst column of hsM�Q�(s) is a shortest vector of the lattice hs�� and by Lagarias
lemma this �rst column is a best approximation vector of �.
Actually, Lagarias gives a more precise de�nition based on the main theorem Section 4.6.

4.4 Convexity properties of the Lagarias expansion

To see that E2 holds for Lagarias expansion, it is necessary to move Ln=d+1 in the space S+n of
symmetric positive de�nite matrices with the map

' : GL(n;R)! S+n
:M !M tM

The next statement is proved in [Lag 1], and is a folklore result when stated withMn.

Theorem 12 Qn = '(Ln) is a convex set.

Remark. It is clear that if q is quadratic form in Qn then for all � > 0, �q is in Qn, hence Qn is a
convex cone. Thanks to the fact that the set of Minskowski reduced quadratic forms can be de�ned
by �nitely many linear inequalities (see [Waer]), we see that the convex cone Qn has �nitely many
faces. When n � 6, Tammela [Tam1] gives all the inequalities de�ning the faces of Qn.
Notation. Let � be in Rd. For each Q in GL(d + 1;Z), let I(Q) denote the set of real numbers
s > 0 such that hsM�Q 2 Ld+1.
The next result is proved in [Lag1]. We give its proof which is simple.

Theorem 13 1. For all matrix Q in GL(d+ 1;Z), I(Q) is an interval.
2. Let Q and Q0 be in GL(d+ 1;Z).
a. Then either I(Q) = I(Q0) or I(Q) \ I(Q0) contains at most one element.
b. If I(Q)\ I(Q0) contains at least 2 elements, then Q and Q0 have the same last row up to signs.

Proof. 1. For s > 0, denote by Bs the diagonal matrix (1; :::; 1; s). For all � in Rd and all s > 0,
we have hsM� = BsM1(�) 2 GL(d+ 1;R). Now, s 2 I(Q) means that the quadratic form

'(hsM�Q) = Q
tM t

1(�)Bs2M1(�)Q

is in Qd+1. Since '(hsM�Q) is an a¢ ne function of s2, and since Qd+1 is convex, the set of positive
real numbers s2 such that '(hsM�Q) 2 Qd+1 is an interval. Thus I(Q) is an interval.
2. Let Q;Q0 2 GL(d + 1;Z) such that I(Q) \ I(Q0) contains at least two elements s1 6= s2.

Denote by (Pi; qi) the i-th column of Q and by (P 0i ; q
0
i) the i-th column of Q

0. By de�nition of
lexicographically reduced bases, the length of these two columns are equal, hence for s 2 fs1; s2g,

kPi � qi�k2Rd + s
2q2i = kP 0i � q0i�k

2
Rd + s

2q02i :

Therefore jqij = jq0ij and kPi � qi�k
2
Rd = kP 0i � q0i�k

2
Rd . It follows that I(Q) = I(Q

0). �
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4.5 Finiteness property of expansions

Following Lagarias, we will show that the �niteness and the convergence of an expansion depend
only on the following property of the reduction set :

De�nition 17 A subset R of GL(n;R) is a Hermite domain if there exists a constant C such
that, for any matrix M in R with columns (e1; :::; en),

ke1kRn ::: kenkRn � C jdet(e1; :::; en)j :

The matrices in GL(n;R) will be identi�ed with the bases of Rn by taking the columns of
the matrices. The sets Mn of Minkowski reduced matrices, Ln of the lexicographically reduced
matrices, of Lovász reduced matrices, Siegel domain, etc... are Hermite domain. A proof thatMn

is a Hermite domain can be found in [Waer]. If a basis (e1; :::; en) in a Hermite domain is such that

ke1kRn � ke2kRn � ::: � kenkRn

then the Minkowski minima theorem implies that

kekkRn � C
0�k(�)

where � is the lattice spanned by the vectors e1; :::; en and �k(�) is the k-th minimum of �. The
constant C 0 depend only on C and the constant involved in Minkowski�s theorem. The same
conclusion remains true if one assume that

kek+1kRn � � kekkRn

where � is a �xed positive real number.
Remark. The union of the images of a Hermite domain by the maps induced by all the permu-
tations of the rows is another Hermite domain with the same constant C.

Assumption about Hermite domain: In what follows we will always assume that the columns
of a matrix in a Hermite domain are reordered in such a way that their norms increase. This is
not a real restriction and this leads to simpler statements.

Theorem 14 Let R be a Hermite domain in GL(d + 1;R). Let � be in Rd. For all b > a > 0,
there exist �nitely many matrices Q in GL(d+1;Z) such that the basis hsM�Q is in R for at least
one s 2 [a; b].

Proof. Consider a matrix Q in GL(n;Z) such that hsM�Q is in R for some s 2 [a; b]. Let
e1; :::; ed+1 be the columns of hsM�Q. Since R is a Hermite domain,

keikRd+1 � 2C�i(hs��) � C�d+1(hs��)

for i = 1; :::; d + 1, where �i(hs��) is the i-th minimum of hs��. Now for all t � b, the last
minimum �d+1(hs��) is � 1 + b + k�kRd . Thus, with ei = (Vi; vi), we get khsM�eik2Rd+1 =
kVi � vi�k2Rd + s2v2i � C2max2(1; b). Since s � a, jvij � Cmax(1; b)=a and V is in the union of
balls [jvj�max(1;b)C=aB(v�;max(1; b)C). Therefore the number of matrices Q such that hsM�Q is
in R for at least one s 2 [a; b], is �nite. �

Theorem 15 Let � be in Rd. For all s0 > 0, there exist �nitely many matrices Q in GL(n;Z)
such that the basis hsM�Q is lexicographically reduced for at least one s � s0.

Proof. By the previous theorem, it is enough to consider the case s > s0 = 1. For every
nonzero V in Zd+1, we have khsM�V kRd+1 � 1 and, if the last coordinate of V is nonzero then
khsM�V kRd+1 > 1. Therefore all the lexicographically reduced bases are of the form:
- the �rst d vectors are �hsM�ei = �ei where i � d and ei is the i-th vector of the canonical basis
of Rd+1,
- the last vector is hsM�V where V = �(p1; :::; pn; 1) and pi is such that jpi � �ij is minimal.
As a result, the number of such bases is �nite. �
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4.6 Main theorem for the Lagarias expansion

From the previous Theorems, it follows immediately that:

Theorem 16 (Main theorem) If � =2 Qd, there exists an in�nite sequence 1 = s�1 > s0 >
s1 > ::: > sn > ::: going to 0 and a sequence of matrices Q0; :::; Qn; ::: 2 GL(d + 1;Z) such that
]sn; sn�1[= I(Qn)

o.

The sequence of matrices (Qn)n�0 is not uniquely de�ned but, by Theorem 13, the last row is
unique up to signs. The sequence of matrices (Qn)n�0 is the Lagarias expansion of �. The partial
quotients associated with the sequence (Qn)n�0 are de�ned by Q

�1
n�1Qn. Since Md+1Qn�1 \

Md+1Qn 6= ;, there are only �nitely many possible partial quotients (see [Waer]). Thus it is an
additive expansion. To obtain a multiplicative expansion it su¢ ces to keep only the matrices Qn
at the times n where the �rst column of Qn changes. It should be noticed that there are Hermite
domains R such that there exist in�nitely many matrices Q in SL(nZ) with RQ \R 6= ;.

5 Convergence

Let R be a subset of GL(d + 1;R) containing a fundamental domain. For all � 2 Rd denote for
s > 0

Q�(s) =

�
P1(s) � � � Pd+1(s)
q1(s) � � � qd+1(s)

�
an R-expansion of �.

5.1 Strong convergence

The classical multidimensional continued fraction expansions are weakly convergent but most of
them have been shown to be not strongly convergent (see [Br] for the case of Jacobi-Perron�s
algorithm or Brun�s algorithm). However, the Lagarias expansion is strongly convergent and
Lagarias proof allows to show the more general result:

Theorem 17 Let R be a Hermite domain in GL(d+1;R) containing a fundamental domain. Let
� be in Rd, let s! Q(s) be an R-expansion associated with � in Rd. If dimQ[1; �1; :::; �d] � r, then
the �rst r columns of the matrix Q�(s) strongly converge to �:

lim
s!0

maxfkqi(s)� � Pi(s)k : 1 � i � rg = 0:

Proof. The i-th column of hsM�Q�(s) is (Pi(s)� qi(s)�; sqi(s))T . Since R is a Hermite domain,
one has

k(Pi(s)� qi(s)�; sqi(s))kRd+1 � C�s;i(�)

where �s;i(�) is the i-th minimum of the lattice hs�� = hsM�Zd+1. Thus, it is enough to prove
that

lim
s!0

�s;r(�) = 0:

We will use the dual lattice ���(s) = fY 2 Rd+1 : 8X 2 hs��; X:Y 2 Zg. The following lemma
is standard (see e.g. [Schm]). If � be a lattice in Rn and �� its dual lattice, then the minima of
both lattices satisfy

1 � �i��n+1�i � (n+ 1)!

Consequently, it is enough to prove that the minimum ��s;d+2�r of �
�
�(s) goes to in�nity when s

goes to zero. Suppose on the contrary that, there exists a sequence (sn)n going to 0 such that for
all n, ��sn;d+2�r � K. The lattice �

�
�(s) is spanned by the rows of the matrix

(hsM�)
�1 =

�
I s�1�
0 s�1

�
;
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hence for all n, there exist (An;i; bn;i) 2 Zd+1, i = 1; :::; d + 2 � r, linearly independent such that
the vector

vn;i = (An;i; bn;i)(hsnM�)
�1 = (An;i;

1

sn
(bn;i +An;i:�))

has a norm � K. If sn � 1, then
kAn;ikRd � K

and
jbn;ij � K + jAn;i:�j � K 0

where K 0 does not depend on n. Extracting a subsequence, we can assume An;i = Ai and bn;i = bi
for all n with (Ai; bi) linearly independent, i = 1; :::; d+ 2� r. Therefore,

jbi +Ai:�j � Ksn:

Now, sn ! 0 hence bi+Ai:� = 0, i = 1; :::; d+2�r which contradicts the assumption dimQ[1; �1; :::; �d] �
r. �
In the Lagarias expansion, the �rst column of the matrix Q(s) is always a good approximation

because it is a best approximation vector of �. In the more general case of an a expansion associated
with a Hermite domain, the �rst column of Q(s) is also a good approximation.

Proposition 18 If R is a Hermite domain in GL(d + 1;R) containing a fundamental domain,
then there exists a constant C such that for all � in Rd and all s > 0,

kq1(s)� � P1(s)k jq1(s)j1=d � C:

Proof. Let s be a positive real number. By de�nition of a Hermite domain there exists a constant
c such that

k(P1(s)� q1(s)�; sq1(s))kRd+1 � c�1(hs��):

By the Minkowski minima theorem, �1(hs��)� det(hs��)
1

d+1 = s
1

d+1 . It follows that

s jq1(s)j � s
1

d+1

and
kP1(s)� q1(s)�kRd � s

1
d+1 :

Suppose �rst that kP1(s)� q1(s)�kRd � s jq1(s)j. We then have

kP1(s)� q1(s)�kRd jq1(s)j
1=d � s jq1(s)j1+1=d � 1:

Suppose now that kP1(s)� q1(s)�kRd > s jq1(s)j. Set t =
kP1(s)�q1(s)�kRd

jq1(s)j . There exists a vector

(P0; q0) in Zd � N such that

k(P0 � q0�; tq0)kRd+1 = �1(ht��):

Let us prove that

k(P1(s)� q1(s)�; tq1(s))kRd+1 � 2c k(P0 � q0�; tq0)kRd+1 :

Now by de�nition of t,

k(P1(s)� q1(s)�; tq1(s))kRd+1 =
p
2 kP1(s)� q1(s)�kRd

hence the converse inequality

k(P1(s)� q1(s)�; tq1(s))kRd+1 > 2c k(P0 � q0�; tq0)kRd+1

would implies that

max(kP0 � q0�kRd ; tq0) <
1

2c

p
2 kP1(s)� q1(s)�kRd ;
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and since s < t, we would have

k(q0� � P0; sq0)kRd+1 �
p
2max(kq0� � P0kRd ; sqo)

�
p
2max(kq0� � P0kRd ; tqo)

<
1

c
kq1(s)� � P1(s)kRd � �1(hs��)

which is impossible.
The calculation of the �rst case with t instead of s allows to conclude. �

5.2 A general negative result

Some general negative results about convergence are known. For instance, Grabiner proved that
no sequence of re�ned triangulations made of Farey simplices can be strongly convergent (see [Gr]).
Here we prove that, for general expansions, strong convergence can be arbitrarily slow when the
rate is measured with the maximum of the denominators involved in the matrices of the expansion.
In fact this rate does not depend on the expansion.

Proposition 19 Let '(1); '(2); :::; '(q); ::: be a positive function going to zero. Then there exists
� in Rd such that
- dimQ[1; �1; :::; �d] = d+ 1,
- for all sequence of matrices (Qn)n in GL(d+ 1;Z) with jQnj = maxd+1i=1 jqi;nj ! 1,

maxfkqi;n� � Pi;nk : 1 � i � d+ 1g � '(jQnj)

for n large enough.

Proof. Let ! : [0;+1[!]0;+1[ be a positive function such that limt!1 !(t) = 0 and !( 1
4'(q) ) �

1
4q for all integers q � 1. Such a function exists: just assume that ' is nonincreasing by replacing
'(q) by maxk�q '(k) and set

!(t) =
1

4q

for t 2] 1
4'(q�1) ;

1
4'(q) ]. By the Khinchin theorem on singular linear forms there exists � in Rd

such that dimQ[1; �1; :::; �d] = d + 1 and such that for all T large enough there exist a nonzero
q� = (q�1 ; :::; q

�
d) in Zd and p� in Z such that

kq�kRd � T

and
jq�:� + p�j � !(T ):

Fix n and T = 1
4'(jQnj) . Choose (q

�; p�) associated with T by Khinchin�s theorem. Let s be the
positive real number de�ned by

kq�kRd =
1

s
jq�:� + p�j :

The vectors (Pi � qi�; sqi) = (Pi;n � qi;n�; sqi;n), i = 1; :::; d + 1, form a basis of the lattice hs��
hence one of them, say (Pi0 � qi0�; sqi0), is not in the hyperplane de�ned by the linear form

l�(x; y) = q�:x+
1

s
(q�:� + p�)y:

Since l� is in the dual lattice (hs��)�, we have

jl�((Pi0 � qi0�; sqi0))j � 1:

Therefore (by Cauchy Schwarz inequality)

k(Pi0 � qi0�; sqi0)kRd+1 �
1(q�; 1s (q�:� + p�))Rd+1

� 1

2 kq�kRd
:
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Now, jsqi0 j =
jq�:�+p�j
kq�kRd

jqi0 j �
!(T )jQnj
kq�k and !(T ) = !( 1

4'(jQnj) ) �
1

4jQnj , hence

jsqi0 j �
1

4 kq�kRd

which implies

kPi0 � qi0�kRd �
1

4 kq�kRd
� 1

4T
= '(jQnj):

�
A natural question arises :

Let '(1); '(2); :::; '(q); ::: be a positive function going to zero. Does there exist � in Rd such that
- dimQ[1; �1; :::; �d] = d+ 1,
- for all sequence of matrices (Qn)n in GL(d+ 1;Z) with mind+1i=1 jqi;nj ! 1,

maxfkqi;n� � Pi;nk
'(jqi;nj)

: 1 � i � d+ 1g � 1

for n large enough?

5.3 Almost everywhere convergence

By the previous proposition it is not possible to improve the convergence rate for all �, but what
about the convergence rate for almost all � in Rd? For classical multidimensional expansions such
as Jacobi Perron, there are improvements, but not of the convergence rate provided by the Dirichlet
theorem. For instance, in their deep paper [Br, Gu], A. Broise and Y. Guivarc�h prove that the
second characteristic exponent �2 of the two-dimensional Jacobi-Perron algorithm is negative.
Denoting by (Pn; qn) the n-th integer vectors computed by the Jacobi-Perron algorithm, A. Broise
and Y. Guivarc�h�s result implies that for almost all � in R2,

lim
n!1

1

n
ln kqn� � Pnk = �2 < 0

(see [Lag6]). Since the sequence 1
n ln qn also converges to the �rst characteristic exponent �1 for

almost all � in R2, we obtain
lim
n!1

kqn� � Pnk q�n = 0

almost everywhere, for any � < ��2
�1
. On the other hand, A. Broise and Y. Guivarc�h prove that

the characteristic exponents are distinct for all d � 2. Since the sum of the exponents is 0, this
implies that �2�1 > �

1
d . It follows that there exists an exponent � <

1
d such that

lim
n!1

kqn� � Pnk q�n = +1

for almost all � in Rd. A. Broise and Y.Guivarc�h prove that the same result holds for Brun�s
algorithm and they claim that their proof can be adapted to other multidimensional algorithms.
In the case of an expansion associated with a Hermite domain, the rate of convergence is very

close to the optimal rate: there is only a logarithmic extra factor.

Theorem 18 If R is a Hermite domain in GL(d+ 1;R) containing a fundamental domain, then
for almost all � in Rd

lim sup
s!0

d+1
max
i=1

kqi(s)� � Pi(s)kRd
jqi(s)j1=d

ln2=d jqi(s)j
� 1:

Proof. In this proof, the minima of lattices in Rd+1are de�ned with respect to the Cheung�s norm
associated with the Euclidean norm:

k(x; y)kc = max(kxkRd ; jyj)
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By the Khinchin-Groshev theorem, for almost all � in Rd and all c � 0, there exist only �nitely
many nonzero vectors (q�; p�) in Zd � Z such that

jq�:� + p�j � c

kq�kdRd ln
2 kq�kRd

:

Note that it is the easy part of the theorem depending only on the Borel-Cantelli lemma.
We prove the theorem by contradiction. We assume that we can �nd � in Rd for which the following
three properties hold:
- dimQ[1; �1; :::; �d] = d+ 1,
- for all c � 0, there exist only �nitely many nonzero vectors (q�; p�) in Zd�Z for which the above
inequality holds, and
- there are a sequence (sn)n of positive real numbers going to zero and a sequence (in)n in f1; :::; d+
1g such that

kqin(sn)� � Pin(sn)kRd
jqin(sn)j

1=d

ln2=d jqin(sn)j
> 1:

Extracting a subsequence, we can suppose that in = k for all n (it is just for sake of simplicity).
To avoid too heavy notations, we drop the index k and set Pn = Pk(sn) and qn = qk(sn), and we
assume qn � 0.
Case 1: kPn � qn�kRd � snqn.
Since �d+1(hsn��) � �k(hsn��), we have

�1((hsn��)
�)� 1

�k(hsn��)
:

Choose (q�n; p
�
n) in Zd � Z such that (q�n; p�n)(hsnM�)

�1 is a shortest vector of the dual lattice
(hsn��)

�. We have

max(kq�nkRd ;
1

sn
jq�n:� + p�nj)�

1

�k(hsn��)
:

It follows that

jq�n:� + p�nj kq�nk
d
Rd ln

2 kq�nk
d
Rd

� sn
�k(hsn��)

� 1

�dk(hsn��)
� (� ln�k(hsn��) + C)2

where C is a constant independent of n. Making use of the assumption kPn � qn�kRd � snqn, we
obtain

jq�n:� + p�nj kq�nk
d
Rd ln

2 kq�nk
d
Rd �

kqn� � PnkRd (� ln�k(hsn��) + C)2

qn�
d+1
k (hsn��)

:

Since R is a Hermite domain, �k(hsn��)� k(qn� � Pn; snqn)kc = kqn� � PnkRd . Moreover by the
strong convergence theorem, kqn� � PnkRd goes to zero when n goes to in�nity, hence

jq�n:� + p�nj kq�nk
d
Rd ln kq

�
nk
d
Rd �

kqn� � PnkRd (� ln kqn� � PnkRd)2

qn kqn� � Pnkd+1Rd

for n large enough. By de�nition of the sequence (sn)n, qn kqn� � PnkdRd � ln
2 qn, hence

jq�n:� + p�nj kq�nk
d
Rd ln

2 kq�nk
d
Rd �

1

ln2 qn
(� ln ln

2 qn

q
1=d
n

)2 � 1:

Case 2: kqn� � PnkRd < snqn.
Set tn =

kPn�qn�kRd
qn

. Let us see how the k-th minimum of hs�� behave when s decrease from sn

to tn. Consider a vector Y in Rd+1 and two times s � t > 0. The following property is easy to
check:

khsY kc
khtY kc

� s

t
:
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We use this property with s = sn > t = tn. Let Y1; :::; Yk be k linearly independent vectors in
M�Zd+1 such that

k
max
i=1

khtnYikc = �k(htn��)

and set X =M�(Pn; qn)
T .

If khtnXkc � a�k(htn��) for some a � 1, then

khsnXkc =
sn
tn
khtnXkc �

sn
tn
a�k(htn��)

=
sn
tn
a

k
max
i=1

khtnYikc :

Now by the above property, khtnYikc �
tn
sn
khsnYikc, hence

khsnXkc �
sn
tn
a

k
max
i=1

khtnYikc

� a k
max
i=1

khsnYikc � a�k(hsn��):

Since khsnXkc � �k(hsn��), it follows that �k(htn��)� khtnXkc = kPn � qn�kRd which enables
to use the calculation of the �rst case with tn instead of sn. So the same conclusion holds:

jq�n:� + p�nj kq�nk
d
Rd ln

2 kq�nk
d
Rd � 1:

The constant involved in � depends only on the constant of the Hermite domain R.

By our assumption, there are only �nitely many di¤erent vectors (q�n; p
�
n)n�0. Since dimQ[1; �1; :::; �d] =

d+ 1, there is a positive constant � such that for all n,

1

sn
jq�n:� + p�nj) �

�

sn

hence �1((hsn��)
�) � �

sn
, but by the Minkowski minima theorem, we have

�1((hsn��)
�)� (det(hsn��)

�)1=(d+1) =
1

s
1=(d+1)
n

which contradicts the previous inequality when n is large enough. �

6 A multidimensional continued fraction expansion using
the LLL algorithm

Consider the linear map

h =

�
Id 0
0 1

2

�
2 GL(d+ 1;R):

Note that h = h1=2 where (hs)s>0 is the multiplicative group de�ned in Section 3. For � in Rd,
consider the sequence of lattices

�n = h
n��; n 2 N:

A continued fraction expansion (Qn)n�0 of � is deduced from the LLL algorithm as follows:

- Start with a basis Q0 of Zd+1 such that M�Q0 is an LLL-reduced basis of �0 = ��.

- For all integers n, the matrix Qn+1 is such that hn+1M�Qn+1 is the LLL-reduced basis of �n+1
computed by the LLL algorithm with initial basis hn+1M�Qn.

This expansion is implicitly proposed by Lagarias in [Lag 1] and [Lag 2]. Since the domain
of LLL-reduced basis is a Hermite domain (see the point 2 below), this expansion is strongly
convergent and the previous theorem on almost everywhere convergence holds for this expansion.
The only point we want to add is that this expansion is �truly an algorithm�.
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Proposition 20 The number of steps needed to compute the basis Qn+1 with the LLL algorithm
starting with the basis Qn, is bounded above by a constant C that depends only on d.

Before proving this Proposition we need to recall some facts about the LLL algorithm. We
follow [G,L,S] pages 139-146.
Let (b1; :::; bk) be a basis of Rk. Call (b�1; :::; b�k) the Gram-Schmidt orthogonalization of (b1; :::; bk).

The basis (b1; :::; bk) is proper if
bj = b

�
j +

X
i<k

�j;ib
�
i

with j�j;ij � 1
2 , 1 � i < j � k. The basis (b1; :::; bk) is LLL-reduced if it is proper and if for all

j = 1; :::; n� 1, b�j+1 + �j+1;jb�j2Rk � 3

4

b�j2Rk :
(the constant 3

4 might be change in any constant � 2]0; 1[). Here k:kRk stands for the standard
Euclidean norm on Rk. Let (b1; :::; bk) be an LLL-reduced basis and � = �kj=1Zbj the lattice
spanned by the basis (b1; :::; bk). The following two properties of LLL-reduced bases are the most
important one:

1. kb1kRk � 2(k�1)=2�1(�),

2. kb1kRk ::: kbkkRk � 2k(k�1)=4 det�.

Besides, the following two facts are also known and are easily deduced from the de�nition of reduced
bases:

3.
b�jRk � p2b�j+1Rk , j = 1; :::; k � 1,

4. kbjkRk � 2(j�1)=2
b�jRk , j = 1; :::; k.

We shall also need of the following easy lemma.

Lemma 21 If (b1; :::; bk) is a LLL reduced basis of Rk, then for j = 1; :::; k,

kbjkRk � 2
k=2�j(�)

where � = �kj=1Zbj.

Proof. Let x1; :::; xj be j linearly independent vectors in �. One at least of these vectors has a
nonzero coordinate over bj ; :::; bk, say xj =

Pl
i=1 aibi with l � j and al 6= 0. Since xj =

Pl
i=1 a

�
i b
�
i

with a�l = al, we have

kxjk2Rk � jalj
2 kb�l k

2
Rk

� kb�l k
2
Rk � 2

�(k�j) b�j2Rk
� 2�(k�j)2�(j�1) kbjk2Rk
� 2�k kbjk2Rk :

Therefore
kbjkRk � 2

k=2�j(�):

�
The LLL algorithm proceed as follows. Start with a basis (b1; :::; bk) of a lattice � in Rk.

Step I: for j = 2; :::; n, and given j, for i = 1; :::; j � 1, replace bj by bj � d�j;icbi where d�j;ic is
the integer nearest to �j;i.

Step II: if there is a subscript j such that
b�j+1 + �j+1;jb�j2Rk < 3

4

b�j2Rk then interchange bj
and bj+1 and go to step I.
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The �rst step doesn�t change the product of Gram determinants

P (b1; :::; bk) =
kY
p=1

det(bi:bj)1�i;j�p

=
kY
j=1

b�j2(n�j+1)Rk

while each interchange decreases P (b1; :::; bk) by a factor < 3
4 . This is the key observation to bound

above the number of steps of the LLL algorithm.

The Gram determinants are naturally associated with the Grassmann algebra, it is the reason
why it is convenient to use Malher�s theory of compound sets. The result below is a particular
case of the Malher theorem which can be found in [Schm]. Actually it is stated in terms of
parallelepipeds and integer points, but the equivalence of norms, allows us to state it with the
standard Euclidean norm and a general lattice in Rk.
Let p be an integer in f1; :::; kg. The Grassmann algebra ^pRk is equipped with the Euclidean

structure de�ned by the Gram determinants,

kx1 ^ ::: ^ xpk2^pRk = det(xi:xj)1�i;j�p:

For a lattice � in Rk, denote ^p� the lattice in ^pRd+1 spanned by the vectors x1 ^ :::^ xp, when
x1; :::; xp range in �. A particular case of the Malher theorem is:

There is a constant C1 depending only on the dimension k such that for any lattice � in Rk and
any p 2 f1; :::; kg,

�1(�):::�p(�) � C1�1(^p�):

We are now able to prove the proposition.
Proof. Suppose that Qn = (b1;n; :::; bd+1;n) is a basis of Zd+1 such that the basis

(u1; :::; ud+1) = (h
n(M�b1;n); :::; h

n(M�bd+1;n))

is an LLL reduced basis of �n = hn(��). The vectors

(v1; :::; vd+1) = (h(u1); :::; h(ud+1))

form a basis of �n+1 = h(�n). By de�nition of the expansion, the LLL algorithm is used to �nd
a reduced basis of �n+1 starting with the basis (v1; :::; vd+1). By the key observation, to bound
above the number of steps, it is enough to bound above the product of Gram determinants

P (v1; :::; vd+1) =
d+1Y
p=1

det(vi:vj)1�i;j�p

and to compare it with the product

Pmin(�n+1) =
d+1Y
p=1

(�1(^p�n+1))2

because this last product is a lower bound of P (e1; :::; ed+1) when (e1; :::; ed+1) ranges over all the
basis of �n+1. On the one hand, it is clear that the map ^ph does not increase the norms, and
therefore

det(vi:vj)1�i;j�p = kv1 ^ ::: ^ vpk^pRd+1
= k^ph(u1 ^ ::: ^ up)k^pRd+1
� ku1 ^ ::: ^ upk^pRd+1 = det(ui:uj)1�i;j�p;

hence
P (v1; :::; vd+1) � P (u1; :::; ud+1):

27



On the other hand, it is clear that the map ^ph�1 increases the norms by a factor of at most 2. It
follows that

�1(^p�n) = �1(^ph�1(^p�n+1)) � 2�1(^p�n+1)

for p = 1; :::; d+ 1. Therefore

Pmin(�n+1) � 2�2(d+1)Pmin(�n):

By the Malher theorem, we have

Pmin(�n) �
d+1Y
p=1

(
1

C1

pY
j=1

�j(�n))
2;

together with the above lemma this imply that

Pmin(�n) �
d+1Y
p=1

(
1

C1

pY
j=1

2�(d+1) kujkRd+1)
2

=
1

C2

d+1Y
p=1

(

pY
j=1

kujkRd+1)
2

� 1

C2
P (u1; :::; ud+1)

� 1

C2
P (v1; :::; vd+1)

where the constant C2 depends only on the dimension. By the key observation about the number
of interchanges, it follows that the number of interchanges is smaller than

ln P (v1;:::;vd+1)Pmin(�n+1)

ln 43

which is bounded above by a constant depending only on d. �
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