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Abstract. Our aim is to construct a complex continued fraction algorithm finding
all the best Diophantine approximations to a complex number. Using the sequence
of minimal vectors in a two-dimensional lattice over the ring of Gaussian integers, we
obtain an algorithm defined on a submanifold of the space of unimodular two-dimensional
Gauss lattices. This submanifold is transverse to the diagonal flow. The correspondence
between the minimal vectors and the best Diophantine approximations ensures that our
algorithm reaches its goal. A byproduct of the algorithm is the best constant for the
complex version of Dirichlet’s theorem about approximations of complex numbers by
quotients of two Gaussian integers.

1. Introduction

Let us start with a very brief and partial account of the history of complex continued
fractions (see [28], [29] or [30] for detailed historical accounts). Since the pioneering works
[27], [17] and [18] of N. Michelangeli in 1887, Adolf Hurwitz in 1888 and Julius Hurwitz in
1895, complex continued fractions have been considered by many authors during the 20th
century and at the beginning of the 21st century. Adolf Hurwitz considered continued
fractions with partial quotients in a “system” S ⊂ C and the work of Julius Hurwitz
used the (1 + i)Z[i] subring of the ring of Gaussian integers, see also [25]. An important
contribution of Adolf Hurwitz concerned the continued fractions associated with the ring
of Gaussian integers using the nearest Gaussian integer (we refer to it as Adolf Hurwitz
continued fraction). In his 1888 article, Adolf Hurwitz showed the non-trivial fact that
the sequence of moduli of the denominators of such a continued fraction is increasing.
In 1973, R. Lakein [23] studied complex continued fractions associated with the rings
of integers of the quadratic number fields Q[

√
−1], Q[

√
−3], Q[

√
−7] and Q[

√
−11] (the

imaginary quadratic fields with Euclidean rings of integers). For instance, he proved that
the convergents associated with the Adolf Hurwitz continued fraction algorithm are best
approximations for all complex numbers not in a countable family of lines and circles. At
about the same time, in 1975, A. Schmidt proposed an algorithm based on the concept
of Farey sets, very different from the A. Hurwitz continued fraction algorithm, see [31].
In 1985, A. Tanaka proposed a complex continued fraction algorithm ([32]) which turned
out to be a new version of the Julius Hurwitz continued fraction algorithm, see [28].
More recently, D. Hensley produced complex numbers, solutions of irreducible quartic
equations over Q[i], with a bounded, not ultimately periodic sequence of “Adolf Hurwitz”
partial quotients, see [14]. In 2014, S. G. Dani and A. Nogueira, [7], proposed a general
approach to complex continued fractions associated with the ring of Gaussian integers.
Their approach has been taken up by other authors. In 2019, H. Ei, S. Ito, H. Nakada
and R. Natsui studied the construction of the natural extension of the Hurwitz complex
continued fraction map, see [10]. Beside they proved a “Legendre’s theorem” for Adolf
Hurwitz continued fractions. Also, in 2018, the PHD thesis of G. G. Robert [30] gave an
almost complete overview of known results and many interesting new results.
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In this work we propose a lattice approach to complex continued fractions associated
with the ring of Gaussian integers. In particular, we address the question of finding all
the best approximations of a complex number.

The lattice approach goes back to C. Hermite ([15]) and G. Voronöı ([33]). In a se-
quence of works, among which [19, 20, 21], J. C. Lagarias studied the best simultaneous
Diophantine approximations and clearly stated the connections with the shortest vectors
in lattices [19], see also [5].

Our starting point comes from the ordinary real continued fractions. In the space of
dimension two unimodular lattices, SL(2,R)/ SL(2,Z), let us consider the subset of lattices
whose two minima with respect to the sup norm are equal. It is known that the first return

map on this subset induced by the left action of the diagonal flow gt =

(
et 0
0 e−t

)
, t ∈ R, is

a two-fold extension of the natural extension of the Gauss map x→ {1/x} (see [6], see also
[11] where another version of the natural extension is given). Observe that the ergodicity
of the diagonal flow implies the ergodicity of the first return map. In the complex case,
we shall use the exact same idea where the space SL(2,R)/ SL(2,Z) is replaced by the
space SL(2,C)/ SL(2,Z[i]) of unimodular lattices in C2. Like in the real case, we shall
exploit two basic correspondences:

• The correspondence between pairs of consecutive minimal vectors in a lattice and
the intersection of the orbits of the flow gt with the transversal

T = {Λ ∈ SL(2,C)/ SL(2,Z[i]) : λ1(Λ) = λ2(Λ)}
where the minima are associated with the sup norm in C2 (see Lemma 26, notice
that λi(Λ), i = 1, 2 are the complex minima of the lattice Λ, see definition 38 in
the appendix). Actually, we shall use a slightly smaller transversal (see section 6).
• The correspondence between best approximations and minimal vectors (see Propo-

sition 9).

More precisely, for each lattice Λ over the ring of Gaussian integers in C2, let us consider
the set of minimal vectors in Λ, i.e., the nonzero vectors u = (u1, u2) ∈ Λ such that for
any nonzero z = (z1, z2) ∈ Λ,

|z1| ≤ |u1| and |z2| ≤ |u2| ⇒ |z1| = |u1| and |z2| = |u2|.
Let us order these minimal vectors according to the moduli of their second coordinate.
It is not difficult to prove that when u = (u1, u2) and v = (v1, v2) are two consecutive
minimal vectors in this sequence, then the interior of the cylinder

C(u, v) = {(z1, z2) : |z1| ≤ max(|u1|, |v1|), |z2| ≤ max(|u2|, |v2|)|}
does not contain any nonzero element of Λ (see Lemma 4). Then, we can find a real
number t such that the action of gt transforms the cylinder C(u, v) into a cylinder of the
same width and height. For this value t, the action of gt on u and v gives two new vectors
u′ and v′ with sup norms |u′|∞ = |v′|∞ = λ1(gtΛ) = λ2(gtΛ). Thus, the new lattice gtΛ is
in the transversal T .

For a lattice of the shape

Λθ =

(
1 −θ
0 1

)
Z[i]2,

the sequence of minimal vectors gives all the best approximation vectors of the complex
number θ, see Proposition 9. Thanks to the aforementioned work of R. Lakein, we know
that the convergents associated with θ by Adolf Hurwitz’s continued fraction expansion
are best approximations for almost all θ ∈ C. Thus, the sequence of convergents of
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Adolf Hurwitz’s continued fraction expansion of θ is given by a subsequence of the se-
quence of minimal vectors of the lattice Λθ. So we can consider the transversal together
with the first return map like a complex continued fraction map in the space of lattices
SL(2,C)/ SL(2,Z[i]).

An important difference with the real case is that two consecutive minimal vectors are
no longer necessarily primitive. Our first significant result is

Theorem 1. If u and v are two consecutive minimal vectors of a lattice over the ring
of Gaussian integers Λ in C2, then the sublattice Z[i]u + Z[i]v is of index 1 or 2 in Λ.
Furthermore, when Z[i]u+ Z[i]v is of index two,

Λ = 〈u, v〉J
def
= {gu+ hv : (g, h) ∈ Z[i]2 ∪ J2}

where J = 1
1+i

Z[i] \ Z[i].

Observe that, in the case of index two, the lattice Λ is like a centered cubic lattice,
where the index two ideal 2Z in Z is replaced by the index two ideal (1 + i)Z[i] in Z[i].

Our second result is about the geometry of numbers for two-dimensional lattices over
the ring of Gaussian integers. It is the counterpart in the complex case of the easy result:

If u = (u1, u2) and v = (v1, v2) are two linearly independent vectors in R2 then the
interior of the rectangle
R(u, v) = {(x1, x2) : |x1| ≤ max(|u1|, |v1|), |x2| ≤ max(|u2|, |v2|)|}
contains no nonzero vector of the lattice Zu+ Zv iff u,v and u± v are not in the interior
of R(u, v).

Theorem 2. Let u = (u1, u2) and v = (v1, v2) be two vectors in C2 such that |u1| > 0,
|u1| ≥ |v1|, |v2| > 0 and |v2| ≥ |u2|.

(1) Zero is the only element of Z[i]u+ Z[i]v in the interior of the cylinder

C(u, v) = {(z1, z2) : |z1| ≤ |u1|, |z2| ≤ |v2|}

iff gu+ hv /∈
o

C(u, v) for all nonzero g, h ∈ Z[i]2 with |g| × |h| ≤
√

2.
(2) Zero is the only element of 〈u, v〉J in the interior of the cylinder C(u, v) iff gu +

hv /∈
o

C(u, v) for all (g, h) ∈ J2 with |g| = |h| = 1√
2
.

The proof of this theorem depends only on elementary geometry, but is not as simple as
in the real case. We use a computer to rule out many cases. We shall also give a variant
of this result with strict inequality and a slightly more precise corollary, see section 4.

Next theorem explains how to compute inductively the sequence of minimal vectors of
a lattice over the ring of Gaussian integers in C2. Let us equip C2 with the lexicographic
preorder

(x1, x2) ≺ (y1, y2)

iff |x2| < |y2| or |x2| = |y2| and |x1| ≤ |y1|.

Theorem 3 (Continued fraction algorithm). Let u = (u1, u2) and v = (v1, v2) be two
consecutive minimal vectors in a unimodular lattice Λ with |u2| < |v2|. Let w1 = v1

u1
and

w2 = u2

v2
. If w1 6= 0 then there exists v′ ∈ Λ a minimal vector such that v and v′ are two

consecutive minimal vectors and

• if detC(u, v) = 1, then v′ is any vector that is minimal for the preoder ≺ in the set

E1 =
{
z = −au+ gv : a ∈ {1, 1 + i}, g ∈ Z[i], | a

w1
− g| < 1

}
.
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Moreover with u′ = v = (u′1, v
′
2w
′
2) and v′ = −au+ gv = (u′1w

′
1, v
′
2), we have

w′1 = g − a

w1

, w′2 =
1

g − aw2

.(1)

• if detC(u, v) = 1 + i, then v′ is any vector that is minimal for the preoder ≺ in the
set

E2 =
{
z = − 1

1+i
(u+ v) + gv : g ∈ Z[i], | 1

(1+i)w1
+ 1

(1+i)
− g| < 1

}
.

Moreover with u′ = v = (u′1, v
′
2w
′
2) and v′ = −au+ gv = (u′1w

′
1, v
′
2), we have

w′1 = g − 1
(1+i)w1

− 1
(1+i)

, w′2 =
1

g − 1
(1+i)

w2 − 1
(1+i)

.(2)

The set E1 in the above theorem has eight elements at most and E2 has four elements
at most because there are at most four Gaussian integers g such that |g − w| < 1 for a
given complex number w. Therefore, the map

TG : (w1, w2)→ (w′1, w
′
2)

is easy to compute. This map is the core of the first return map in the transversal,
see Theorem 9. In fact, the minimal vectors u′ and v′ can be easily computed because
u′1 = u1w1, v′2 = v2/w

′
2 and as explained before, it is possible to bring the lattice Λ in the

transversal using the flow gt and the two consecutive minimal vectors u′ and v′.
In the first case of Theorem 3, the new consecutive minimal vectors u′, v′ have index 1

or 2 (determinant 1 or 1 + i) because by Theorem 1 two consecutive minimal vectors have
index 1 or 2. In the second case of Theorem 3, the new consecutive minimal vectors u′, v′

have index 1 because u, v have index 2 and it is not possible for two consecutive pairs of
minimal vectors u, v and u′ = v, v′ to have both index 2, see Proposition 20. It is worth
noticing that the proof of this latter proposition uses Theorem 2.

The map TG might have some links with the natural extension of the Adolf Hurwitz
map studied in [10]. Indeed, TG could be the natural extension of the unknown algorithm
that computes all the best approximations of complex numbers while the map defined by
H. Ei, S. Ito, H. Nakada and R. Natsui is the natural extension of the Hurwitz map which
gives only a subsequence of the sequence of best approximations (see again [23]).

In the first case of Theorem 3 with a = 1, the condition | a
w1
− g| < 1 is the condition

considered by Dani and Nogueira to define an approximation sequence, see [7]. In Theorem
3, the second variable controls the choice among the possible Gaussian integers g.

It is not that easy to have an explicit description of the transversal or of the domain
of definition of TG. However, with a good choice of the parametrization, this domain
becomes a finite union of products of subsets in the complex plane whose boundaries
are arcs of circle, see Figure 3 in subsection 4.3. The domain of definition can be found
thanks to Theorem 2, see section 4 where a description of the domain is given. We also
give the invariant measure of the first return map of the flow gt in the transversal. The
open transversal is parametrized with three parameters θ, w1, w2 where θ ∈ [0, π/2] and
(w1, w2) is in an open set included in D2 = {z ∈ C : |z| < 1}2.

Theorem 4 (Invariant measure). Using the parametrization of the transversal (see section
6), the measure ν induced by the Haar measure in SL(2,C)/ SL(2,Z[i]) and the flow gt,
has the density

h(θ, w1, w2) =
32

|1− w1w2|4
with respect to the Lebesgue measure of [0, π/2]× D2.
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The constant 32 depends on our choice of the normalization of the Haar measure.
A byproduct of our work is the exact value of the one-dimensional complex Dirichlet

constant. To the best of our knowledge this constant was unknown.

Theorem 5 (Complex Dirichlet constant). For every complex number z and for every
real number Q ≥ 1, there exist two Gaussian integers p and q such that{

0 < |q| < Q,

|qz − p| ≤
√

2
3−
√

3
× 1

Q
,

where
√

2
3−
√

3
= 1√

6−3
√

3
= 1.115355 . . . . Furthermore the set of complex numbers z for

which the constant
√

2
3−
√

3
can be improved, is of zero Lebesgue measure.

In fact, the optimality of the constant is slightly stronger.

Theorem 5 bis. For almost all θ ∈ C, all C <
√

2
3−
√

3
and all T ≥ 1, there exists Q ≥ T

such that the system {
0 < |q| < Q,
|qz − p| ≤ C × 1

Q
,

has no solution with p, q ∈ Z[i].

The essential ingredient of the proof of these latter theorems is Corollary 19 of Theorem
2 about the geometry of numbers (or the explicit description of the transversal). With

this description we can show that the best Dirichlet constant is bounded above by
√

2
3−
√

3
.

To see that this constant is the best possible constant for almost all θ ∈ C we use an
additional tool, the ergodicity of the diagonal flow gt.

It should be noticed that the complex version of Hurwitz best constant 1√
5

is known.

In 1925, Lester Ford [12] proved that for all irrational complex numbers z there exist
infinitely many Gaussian integers p and q 6= 0 such that |z− p

q
| < 1√

3|q|2 . The constant 1√
3

is the best possible. Ford’s proof did not use continued fractions and in 1975 R. Lakein
gave a new proof of this result using complex continued fractions (see [24]).

The paper is organized as follows. We begin by some preliminaries on lattices over the
ring of Gaussian integers, minimal vectors, the sequence of minimal vectors associated with
a lattice and the relation between minimal vectors and best Diophantine approximations.
Next, we prove the theorem about the index of consecutive minimal vectors. In the
next section, we prove the geometry of numbers’ result, a more explicit version of this
result (see Corollary 19) and an example showing that two linearly independent minimal
vectors can both be successors of the same minimal vector. Thanks to Theorem 2, we
prove that two consecutive pairs of consecutive minimal vectors cannot have both index
2, see Proposition 20.

Next, we define the transversal and a parametrization of the transversal, then we give
explicit formulas for the first return map in the transversal, see Theorem 3 and 9. Then,
we prove Theorem 4 about the density of the measure induced by the flow. Finally,
we prove Dirichlet’s theorem. We finish the paper by two more small sections and an
appendix. In the first of these sections we explain how the Gauss reduction algorithm
of basis in two-dimensional lattices can be used to find two consecutive minimal vectors.
The second section is devoted to a few open questions. The appendix is devoted to some
basic facts about lattices over the ring of Gaussian integers.
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2. Preliminaries

2.1. Notations. We collect the notations that we shall use.

• |z| is the modulus of the complex number z and arg z ∈ [0, 2π) its argument.

• If E is a subset in C, E and
o

E denote its closure and its interior. Although we are
working with complex numbers there should not be any confusion between closure
and conjugate. Most of the time “the bar” will be used for the closure.
• D denote the open unit disk in C. D(a, r) denote the closed disk of center a ∈ C

and radius r and D(a, r) the open disk of center a and radius r.
• C(a, r) denote the circle of center a ∈ C and radius r.
• |(z1, z2)|∞ = max(|z1|, |z2|) is the sup norm on C2 and B∞(x, r) is the closed ball

of radius r and center x in C2 associated with the sup norm.
• Let a and b be two non-negative real numbers and u = (u1, u2) and v = (v1, v2)

be vectors in C2. We define the cylinders

C(a, b) = {(x, y) ∈ C2 : |x| ≤ |a|, |y| ≤ |b|},
C(u) = C(|u1|, |u2|),

C(u, v) = C(max(|u1|, |v1|),max(|u2|, |v2|)),
C1(a) = {(z1, z2) ∈ C2 : |z1| ≤ a},
C2(a) = {(z1, z2) ∈ C2 : |z2| ≤ a}.

• When C(u, v) has nonempty interior, C(u, v) is the unit ball of a norm |.|u,v defined
on C2. Observe that for any x = (x1, x2) ∈ C2,

|x|u,v = max( |x1|
max(|u1|,|v1|) ,

|x2|
max(|u2|,|v2|)).

• Un = {z ∈ C : zn = 1} is the group n-th roots of unity in C.
• D8 is the group of isometries acting on C generated by the multiplications by

elements in U4 and by conjugation.
• (x1, x2) ≺ (y1, y2) iff |x2| < |y2| or |x2| = |y2| and |x1| ≤ |y1| is the lexicographic

preorder on C2.
• When A is a subset of C or C2, A∗ = A \ {0}.
• Z[i] = Z + iZ, I = (1 + i)Z[i] and J = 1

1+i
(Z[i] \ I).

• For u, v ∈ C2, 〈u, v〉J
def
= {gu+ hv : (g, h) ∈ Z[i]2 ∪ J2}

• We shall use also the following sets

C ={z ∈ C : |z| < 1, arg z ∈ [0, π
4
]}

D ={w ∈ C : |z| < 1, d(w2, 1) > 1, d(w2, 1− i) > 1},

T ={w ∈ C : |z| < 1, d(w2, 1) >
√

2, d(w2,−i) >
√

2},
F ={(1, 1), (1,−i), (1, 1− i), (1, 1 + i), (1 + i, 1)}.
S =[−1

2
, 1

2
) + [−1

2
, 1

2
)i

• For θ ∈ C,

Mθ =

(
1 −θ
0 1

)
, Λθ = MθZ[i]2.
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• When A is a commutative ring with unit 1A, SL(2, A) is the set of 2× 2 matrices
with entries in A and determinant 1A.
• λ1(Λ, ‖.‖,C) and λ2(Λ, ‖.‖,C) are the two complex minima of a Gauss lattice Λ

in C2 associated with the norm ‖.‖, see definition 38.
• The space of unimodular lattices in C2

Ω2 = SL(2,C)/ SL(2,Z[i]).

• The transversal T is defined in subsection 6.1 and T ′, T1, T2 are defined in sub-
section 6.2.
• The negligible set N is defined in subsection 6.2.
• The parametrizations Ψk(θ, w1, w2) are defined in Proposition 27 in subsection 8.1.
• The sets W1 and W2 are defined in subsection 8.3.
• The sets W ′

1 and W ′
2, the map TG and the coefficients ak(w1, w2) are defined in

subsection 8.4.

2.2. The set of unimodular Gauss lattices in C2.

Definition 1. Let E be a finite dimensional C-vector space. A subset Λ in E is a Gauss
lattice if it is a Z[i]-submodule of E, if it is a discrete subset of E and if it generates the
vector space E.

Let Ω2 be the set of Gauss lattices Λ in C2 that admits a basis (u, v) with determinant
in U4 = {±1,±i}. By definition, Λ = MZ[i]2 where M is the matrix with columns u and
v. Changing u to ±u or to ±iu, we can assume that M ∈ SL(2,C). Next proposition is
clear.

Proposition 2. The map

M SL(2,Z[i]) ∈ SL(2,C)/ SL(2,Z[i])→MZ[i]2 ∈ Ω2

is well defined and is bijective.

Thanks to the proposition, we can identify Ω2 and SL(2,C)/ SL(2,Z[i]) and use results
from ergodic theory. For t ∈ R, consider the matrices

gt =

(
et 0
0 e−t

)
.

The flow (gt)t∈R acts on Ω2 by left multiplication :

gtΛ = {gtx : x ∈ Λ} = gtMZ[i]2 ∼= gtM SL(2,Z[i]).

2.3. Minimal vectors. The notion of minimal vector goes back to Voronöı, see [33].
He used minimal vectors to find units in cubic fields. The Voronöı algorithm has been
generalized by Buchmann to find units in some quartic and quintic fields, see [2, 3]

Definition 3. Let Λ be a Gauss lattice in C2.

• A nonzero vector u = (u1, u2) ∈ Λ is a minimal vector in Λ if for every nonzero
v ∈ Λ, v ∈ C(u) = {(z1, z2) : |z1| ≤ |u1|, |z2| ≤ |u2|} ⇒ |v1| = |u1| and |v2| = |u2|.
• Two minimal vectors u = (u1, u2) and v = (v1, v2) are equivalent if C(u) = C(v).
• Two minimal vectors u = (u1, u2) and v = (v1, v2) are consecutive iff |u2| < |v2|

and there is no minimal vector w = (w1, w2) such |u2| < |w2| < |v2|.
Remark 1. Following Buchmann ([2, 3]), we could have define the minimal vectors using
the preoder u � v iff |u1| ≤ |v1| and |u2| ≤ |v2| for u, v be in C2. With this preorder,
the minimal vectors of a Gauss lattice Λ in C2 are the minimal elements in (Λ \ {0},�).
Observe that the lexicographic order ≺ is also used by Buchmann in the same papers.
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Remark 2. If u = (u1, u2) and v = (v1, v2) are two minimal vectors in a lattice Λ ⊂ C2

and if |v2| > |u2|, then by definition, |u1| > |v1|. Therefore, there exist complex numbers
w1 and w2 unique such that u = (u1, v2w2) and v = (u1w1, v2). Moreover |w1|, |w2| < 1.

We collect a few easy lemmas about minimal vectors.

Lemma 4. Two minimal vectors u = (u1, u2) and v = (v1, v2) in a Gauss lattice Λ ⊂ C2

are consecutive iff |u2| < |v2| and the only lattice point in the interior of C(u, v) is zero.

Proof. Let u = (u1, u2) and v = (v1, v2) be two minimal vectors with |u2| < |v2|. If the set
o

C(u, v)∩Λ \ {0} is nonempty, then it is finite and there is a w = (w1, w2) minimal in this
set for the lexicographic preorder ≺. On the one hand, w is minimal in Λ. On the other
hand, |w1| < |u1| and |w2| < |v2| and since u is a minimal vector we have |w2| > |u2|.
Hence u and v are not consecutive.

Conversely, if u and v are not consecutive there is a minimal vector w with |u2| <
|w2| < |v2|. Since w is minimal |u1| > |w1|, hence w ∈

o

C(u, v) ∩ Λ. �

Next lemma is clear.

Lemma 5. Let Λ be a Gauss lattice in C2 and let u be a minimal vector in Λ.

• All minimal vectors v ∈ Λ such that u and v are consecutive, are equivalent.
• If u′ and v are minimal vectors such that u is equivalent to u′, and u and v are

consecutive, then u′ and v are consecutive.

Next lemma is useful to construct minimal vector in lattice.

Lemma 6. Let Λ be a Gauss lattice in C2 and let r be a positive real number. Let C be
the infinite cylinder C1(r) = {(z1, z2) : |z1| ≤ r} or its interior.

• The set C∩Λ\{0} is nonempty and admits a minimal element for the lexicographic
order.
• If u is a minimal element for the lexicographic order in the set C ∩ Λ \ {0}, then
u is minimal in Λ.

Proof. Since r > 0, by Minkowski convex body theorem C ∩ Λ \ {0} is nonempty. Let
C2(ρ) = {(z1, z2) : |z2| ≤ ρ}. If v = (v1, v2) is in C ∩ Λ \ {0}, then C ∩ Λ \ {0} ∩ C2(|v2|)
is finite and nonempty and so C ∩ Λ \ {0} ∩ C2(|v2|) must contain a minimal element
u for the lexicographic preorder. This element u is also minimal in C ∩ Λ \ {0} for the
lexicographic preorder.

If w = (w1, w2) ∈ C(u) ∩ Λ \ {0} then w ≺ u and w ∈ C. Since u is minimal for the
lexicographic order we also have u ≺ w which implies |u2| = |w2| and |w1| = |v1|, hence u
is minimal in Λ �

2.4. The sequence of minimal vectors. Given a Gauss lattice Λ in C2, the set of
minimal vectors can be arranged in a sequence (Xn(Λ))n∈IΛ = (z1,n, z2,n)n∈IΛ where IΛ

is an interval in Z such that the sequence (|z2,n|)n∈IΛ is increasing and each minimal
vector is equivalent to a minimal vector of the sequence. This sequence might be finite,
infinite one sided or two sided. Two minimal vectors are consecutive if and only if they
are equivalent to two consecutive terms of the sequence (Xn(Λ))n∈IΛ . For all n ∈ IΛ,
let denote rn(Λ) = |z1,n| and qn(Λ) = |z2,n|. The three following results are standard in
the frame work of best Diophantine approximations and continued fractions. The second
inequality of the first item gives an upper bound of the Dirichlet complex constant. The
lemma will not be used in the sequel.
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Lemma 7. Let Λ be a lattice in C2 and let (Xn(Λ))n∈IΛ be the sequence of minimal vectors
of Λ.

(1) If n and n+ 1 ∈ IΛ, then 1
2
| detC(Λ)| ≤ qn+1(Λ)rn(Λ) ≤ 4

π
| detC(Λ)|.

(2) If n and n+ 14 ∈ IΛ, then qn+14(Λ) ≥ Cqn(Λ) where C = 1
2
(1 + cos(2π

7
)) > 1.1234

(3) If n and n+ 70 ∈ IΛ, then rn+70(Λ) ≤ 1
2
rn(Λ).

Proof. 1. Making use of Minkowski convex body theorem with the cylinder C(Xn(Λ), Xn+1(Λ))
and the lattice Λ, we obtain that (πqn+1(Λ)rn(Λ))2 ≤ 16| detR(Λ)|, thus qn+1(Λ)rn(Λ) ≤
4
π
| detC(Λ)|. Since the minimal vectors Xn(Λ) = (z1,n, z2,n) and Xn+1(Λ) = (z1,n+1, z2,n+1)

are linearly independent, | detR(Xn(Λ), Xn+1(Λ))| is a positive integer multiple of | detR(Λ)|.
It follows that | detC(Xn(Λ), Xn+1(Λ))| ≥ | detC(Λ)| and then

2qn+1(Λ)rn(Λ) ≥ |z1nz2,n+1|+ |z2nz1,n+1|
≥ | detC(Xn(Λ), Xn+1(Λ))| ≥ | detC(Λ)|.

2. This is a standard application of the pigeonhole principle. Given r > 0 and C ′ < C,
7 closed disks of radius 1

2
r are enough to cover a disk of radius r and 8 open disks of

radius 1
2
r are enough to cover a closed disk of radius C ′r. The first covering result is very

well known and easy, the second is due to G. Fejes Toth, [9]. It follows that 7 × 8 = 56

translates of the semi-open box B1 = D(0, 1
2
rn(Λ)) ×

o

D(0, 1
2
qn(Λ)) can cover the box

B2 = C(rn(Λ), C ′qn(Λ)) for any C ′ < C. Now if qn+14(Λ) < Cqn(Λ) then all the 4×15 = 60
points of the set U4{Xn(Λ), . . . , Xn+14(Λ)} are in the box B2 = C(rn(Λ), C ′qn(Λ)) with

C ′ = qn+14(Λ)
qn(Λ)

, so at least two of them are in the same translate of the box B1. It follows

that their difference is in the box 2B1 which contradicts that Xn(Λ) is a minimal vector.
3. We use twice the pigeonhole principle. We can split C in eight angular sector C1, . . . , C8

such that if z and z′ are in the same angular sector then |z−z′| ≤ max(|z|, |z′|). Consider
the 57 minimal vectors Xn(Λ) = (z1n, z2n), . . . , Xn+56(Λ) = (z1,n+56, z2,n+56). There is a
sector Ci that contains at least seven of the z1j, say for the j ∈ J . Since rj(Λ) ≤ r = rn(Λ)
for j ∈ J and card J ≥ 7, there exists k 6= j in J such that |z1k − z1j| ≤ 1

2
r. Therefore,

the vector X = Xk(Λ)−Xj(Λ) = (x1, x2) is such that |x1| ≤ 1
2
r and |x2| = |z2k − z2j| ≤

2 max(|z2k|, |z2j|) ≤ 2qn+56(Λ). The cylinder C(X) contains a minimal vector Xi which is
one of Xn(Λ), . . . , Xn+56+14(Λ) so we are done. �

2.5. Minimal vectors and Diophantine approximations.

Definition 8. Let θ be a complex number. A pair (p, q) ∈ Z[i] is a best approximation
vector of θ if |q| > 0 and for all (a, b) ∈ Z[i]2,{

0 < |b| < |q| ⇒ |p− qθ| < |a− bθ|
0 < |b| ≤ |q| ⇒ |p− qθ| ≤ |a− bθ| .

Proposition 9. Let θ be a complex number and consider the lattice Λθ defined by

Λθ =

(
1 −θ
0 1

)
Z[i]2 = MθZ[i]2.

Then X =

(
x
y

)
= Mθ

(
p
q

)
∈ Λθ is a minimal vector with y 6= 0 iff (p, q) is a best

Diophantine approximation vector of θ.

In the multidimensional real setting, Lagarias proved that a shortest vector of the
lattice gtΛθ is associated with a best Diophantine approximation of θ, see [19]. His result
was stated for the Euclidean norm instead of the sup norm. That is why some best
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approximations are not associated with a shortest vector even in the one-dimensional
case.

Proof. Suppose that X =

(
x
y

)
is a minimal vector with y 6= 0. If a and b are two

Gaussian integers with 0 < |b| < |y = q|, then Y =

(
a− bθ
b

)
/∈ C(X) which implies

|a− bθ| > |p− qθ|. If |b| = |q| and if Y ∈ C(X) then |a− bθ| = |p− qθ|.
Conversely, if (p, q) is a best Diophantine approximation vector of θ, then for any

nonzero (a, b) ∈ Z[i]2, Y =

(
a− bθ
b

)
∈ C(X) implies{
|a− bθ| ≤ |p− qθ|
|b| ≤ |q| .

If b 6= 0 this in turn implies |a − bθ| = |p − qθ| and |b| = |q| by definition of best

approximation vectors. If b = 0 and a 6= 0 then |a| ≥ 1 >
√

2
2
≥ |p − qθ|, hence

Y /∈ C(X). �

3. Proof of Theorem 1, index of lattices spanned by two consecutive
minimal vectors

Let I be the ideal in Z[i] generated by 1+ i, i.e. I = (1+ i)Z[i] and let J = 1
1+i

(Z[i]\I).
Theorem 1 is a consequence of the following proposition.

Proposition 10. Let Λ be a Gauss lattice in C2. Suppose that u = (u1, u2) and v =

(v1, v2) are two linearly independent minimal vectors in Λ and such that
o

C(u, v)∩Λ = {0}.
Call L the lattice spanned by u and v. Then

(1) 1
4

detR(Λ) ≤ |u1|2|v2|2 ≤ 16
π2 detR(Λ),

(2) L has index 1 or 2: [Λ : L] = | detR(L)|
|detR(Λ)| = 1 or 2.

(3) If L has index 2, then

Λ = {au+ bv : (a, b) ∈ Z[i]2 ∪ J2}

and (U = u, V = 1
1+i

(u+ v)) and (U ′ = 1
1+i

(u+ v), V ′ = v) are two bases of Λ.

When u and v are two consecutive minimal vectors, we shall say that [L : Λ] is the index
of the two consecutive minimal vectors u and v.

Proof. Since u and v are minimal vectors, we can suppose |u2| ≤ |v2| and |v1| ≤ |u1|
w.l.o.g.. By Minkowski convex body theorem,

Vol(C(u, v)) = π2|u1|2|v2|2 ≤ 24| detR(Λ)| = 24| detC(Λ)|2.

Now | detC(Λ)| ≤ | detC(L)| ≤ 2|u1||v2|, hence

| detR(L)| ≤ 4|u1|2|v2|2 = 4
Vol(C(u, v))

π2
≤ 64| detR(Λ)|

π2
.

Therefore,
| detR(L)|
| detR(Λ)|

≤ 64

π2
= 6.48 . . .

Therefore, [Λ : L] ≤ 6. Since this index is the square of the modulus of a Gaussian integer,
it is the sum of two squares and cannot be 3 or 6.
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By Theorem 11 about basis in Z[i]-modules, there exist a basis U, V of Λ and Gaussian
integers a, b and c such that {

u = aU
v = bU + cV.

We have V = − b
c
U + 1

c
v. Since u is primitive in Λ, a must be a unit in Z[i]. By changing

U to a−1U , we can suppose a = 1.
Since [Λ : L] = |c|2, the only possible values for |c|2 are 1, 2, 4 or 5. We have to exclude

the values 4 and 5.
Suppose that |c| = 2. Again by changing V to zV where z is a unit, we can suppose

c = 2 w.l.o.g. There exists a Gaussian integer g such that |g− b
c
| ≤ 1√

2
. Since |cg−b| ≤

√
2,

|cg− b| = 0, 1 or
√

2. If cg− b = 0 then V + gU = 1
c
v ∈ Λ, but this is not possible for v is

primitive. If |cg− b| = 1, consider the vector w = V + gU = cg−b
c
u+ 1

c
v ∈ Λ. Since u and

v are minimal, either |u1| > |v1| and |v2| > |u2| or |u1| = |v1| and |v2| = |u2|. In the first
case, by convexity, w would be in the interior of the cylinder C(u, v) which is not possible
by assumption. In the second case, the linear independence implies (cg− b)u 6= v, so that
one of the coordinates of (cg−b)u and of v are not equal, and therefore the corresponding
coordinate of w would be strictly smaller which contradicts the minimality of u and
v. If |cg − b| =

√
2, then the inverse z of cg−b

c
is a Gaussian integer and the vector

w′ = zw − u = z
c
v is in Λ. But this is impossible for | z

c
| < 1 and v is primitive.

Suppose that |c| =
√

5. There is 8 possible values for c. By changing V to zV where z
is a unit, or by considering the image of Λ by the map (z1, z2)→ (z1, z2), we can suppose
that c = 2 − i. We can also suppose that |b| ≤ 1√

2
|c| by changing V to V + gU where g

is a Gaussian integer such that | b
c
− g| ≤ 1√

2
. So |b| ≤

√
5√
2
. Now |b|2 is an integer, hence

|b|2 = 0, 1 or 2. The case b = 0 is not possible for v is minimal. If |b| = 1, then | b
c
|+ |1

c
| < 1

and V = − b
c
u+ 1

c
v would be in the interior of C(u, v).

It remains to consider the cases b = 1 + i, 1− i,−1− i and −1 + i. Since b = z(1 + i)
with z ∈ U4, the vector

w = V + ziu = −z(1 + i)
2 + i

5
u+

2 + i

5
v + ziu = z

−1 + 2i

5
u+

2 + i

5
v

is in Λ and in the interior of C(u, v) for the sum of the moduli of the coefficients of u and
v is < 1. So |c| =

√
5 is not possible and we conclude that |c| = 1 or

√
2.

If |c| = 1, L = Λ.
Suppose that |c| =

√
2. We have {

u = U
v = bU + cV

and by changing V to zV for some z ∈ U4, we can suppose that c = 1 + i. There is a
Gaussian integer g such that b = g(1 + i) or g(1 + i) + 1. Changing V to V + gU , we can
suppose that b = 0 or 1. Again b 6= 0 since v is primitive, hence b = 1. Solving in U, V ,
we obtain {

U = u
V = 1

c
(−u+ v)

and for all g, h ∈ Z[i]

gU + hV =
cg − h
c

u+
h

c
v.
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On the other hand, c ∈ I, hence either cg − h and h are both in I or cg − h and h are
both in Z[i] \ I, which implies that

Λ = {gU + hV : (g, h) ∈ Z[i]2} ⊂ {g′u+ h′v : (g′, h′) ∈ Z[i]2 ∪ J2}.

The reverse inclusion also holds because if (g′, h′) = 1
c
(p, q) with p, q ∈ Z[i] \ I, then

g′u+ h′v = 1
c
(p+ q)U + qV ∈ Λ. �

4. Geometry of numbers, proof of Theorem 2

Our aim is to prove Theorem 2. In fact we shall prove the following two theorems,
the first is just a reformulation of Theorem 2 using the norm |.|u,v instead of the cylinder
C(u, v). The norm is defined by

|x|u,v = max( |x1|
max(|u1|,|v1|) ,

|x2|
max(|u2|,|v2|)) for x = (x1, x2) ∈ C2.

Theorem 6 (Theorem 2a). Let u = (u1, v2w2) and v = (u1w1, v2) be two vectors in C2

with |u1|, |v2| > 0 and |w1|, |w2| ≤ 1.

(1) If |gu + hv|u,v ≥ 1 for all nonzero g, h ∈ Z[i] with |g| × |h| ≤
√

2, then |z|u,v ≥ 1
for all nonzero z ∈ Z[i]u+ Z[i]v.

(2) If |gu + hv|u,v ≥ 1 for (g, h) ∈ J2 with |g| = |h| = 1√
2
, then |z|u,v ≥ 1 for all

nonzero z ∈ 〈u, v〉J .

The next theorem deals with strict inequality and is useful to determine the open
transversal.

Theorem 7 (Theorem 2b). Let u = (u1, v2w2) and v = (u1w1, v2) be two vectors in C2

with |u1|, |v2| > 0 and |w1|, |w2| < 1.

(1) If |gu + hv|u,v > 1 for all nonzero g, h ∈ Z[i] with |g| × |h| ≤
√

2 then |z|u,v > 1
for all nonzero z ∈ (Z[i]u+ Z[i]v) \ U4u ∪ U4v.

(2) If |gu + hv|u,v > 1 for the four vectors (g, h) = ( 1
1+i
, α

1+i
), α ∈ U4, then |z|u,v > 1

for all nonzero z ∈ 〈u, v〉J \ U4u ∪ U4v.

The proof of these two theorems are very similar and based on many case distinctions.
The first case distinction is made on the location of w1 in the unit disk.

Let C = {z ∈ C : |z| < 1, arg z ∈ [0, π
4
]}. The first case distinction is w1 ∈ C̄ (the

closure of C) or in iC̄ or in −C̄ or in −iC̄ or in the conjugates of one of these sets. Thanks
to the following subsection about symmetries these eight cases reduce to the single case
w1 ∈ C̄.

The same reduction will also be helpful for computing the Dirichlet constant in the
Theorem 5.

4.1. Symmetries, reduction to the case w1 ∈ C̄. Let denote Un = {z ∈ C : zn = 1}
the group n-th roots of unity in C and let denote D8 the group of isometries acting on C
generated by the multiplications by elements in U4 and by conjugation.

Proposition 11. Let u = (u1, v2w2) and v = (u1w1, v2) be in C2. Assume that |w1|, |w2| ≤
1 and |u1|, |v2| > 0. Let ϕ be in D8. Consider u′ = (u′1, v

′
2

1
ϕ(1)2ϕ(w2)) and v′ =

(u′1ϕ(w1), v′2) where |u′1|, |v′2| > 0. Then

(1) For all nonzero complex numbers a and b,

|au− bv|u,v = |ϕ(1)ϕ(a)u′ − ϕ(b)v′|u′,v′ .
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(2) When |w1|, |w2| < 1, the vectors u and v are consecutive minimal vectors in Z[i]u+
Z[i]v (resp. in 〈u, v〉J) iff u′ and v′ are consecutive minimal vectors in Z[i]u′+Z[i]v′

(resp. in 〈u′, v′〉J)

Let us explain how the first assertion in the proposition allows us to reduces the proofs
of Theorems 6 and 7 to the case w1 ∈ C. When ϕ ∈ D8, the three maps ϕ, ψ : z ∈ C →
ψ(z) = ϕ(1)ϕ(z) and ϕ′ : z ∈ C → ϕ′(z) = ϕ(z)

ϕ(1)2 are isometries and bijection on the ring

of Gaussian integers and on J . Using part 1 of the proposition, we see that, if for some
vectors u, v and a subset F of R where R = (Z[i] \ {0})2 or (Z[i] \ {0})2 ∪ J2, one has

∀(g, h) ∈ F, |gu− hv|u,v ≥ 1⇒ ∀(g, h) ∈ R2 with fg 6= 0, |gu− hv|u,v ≥ 1,

then one has the same implication with u′, v′ and

F ′ = {(ψ(g), ϕ(h)) : (g, h) ∈ F}

instead of F . Since the images of C by the maps ϕ ∈ D8 cover the closed unit disk, we
have only to deal with w1 ∈ C.

Before proving the proposition, we need a simple formula.

Lemma 12. For all ϕ ∈ D8 and all x, y ∈ C

ϕ(xy) =
1

ϕ(1)
ϕ(x)ϕ(y)

Proof. The formula is obvious since the maps ϕ ∈ D8 are of the shape ϕ(z) = αz or αz̄
with α ∈ U4. �

Proof of the proposition. 1. For all a, b ∈ C and all ϕ ∈ D8, we have

au− bv = (u1(a− bw1), v2(aw2 − b))
and using the above lemma, we obtain

ϕ(1)ϕ(a)u′ − ϕ(b)v′ = (u′1(ϕ(1)ϕ(a)− ϕ(b)ϕ(w1)),

v′2(ϕ(1)ϕ(a)
1

ϕ(1)2
ϕ(w2)− ϕ(b)))

= (u′1(ϕ(1)ϕ(a)− ϕ(1)ϕ(bw1)), v′2(ϕ(aw2)− ϕ(b)))

= (u′1ϕ(1)ϕ(a− bw1), v′2ϕ(aw2 − b)).
Therefore,

|au− bv|u,v = |ψ(a)u′ − ϕ(b)v′|u′,v′ .

2. The vector u is minimal iff for all nonzero au− bv ∈ Z[i]u+ Z[i]v (resp. ∈ 〈u, v〉J){
|bw1 − a| ≤ 1
|aw2 − b| ≤ |w2|

⇒
{
|bw1 − a| = 1
|aw2 − b| = |w2|

and u′ is minimal iff for all nonzero ϕ(1)ϕ(a)u′−ϕ(b)v′ ∈ Z[i]u′+Z[i]v′ (resp. ∈ 〈u′, v′〉J){
|ϕ(1)ϕ(bw1 − a)| ≤ 1
|ϕ(aw2 − b)| ≤ | 1

ϕ(1)2ϕ(w2)| ⇒
{
|ϕ(1)ϕ(bw1 − a)| = 1
|ϕ(aw2 − b)| = | 1

ϕ(1)2ϕ(w2)|

Therefore u is minimal iff u′ is minimal. We see that v is minimal iff v′ is minimal as well.
Furthermore, by Lemma 4, u and v are consecutive iff |au − bv|u,v ≥ 1 for all nonzero
au− bv ∈ Z[i]u+ Z[i]v (resp. ∈ 〈u, v〉J). The formula |au− bv|u,v = |ψ(a)u′ − ϕ(b)v′|u′,v′
implies that u and v are consecutive iff u′ and v′ are. �
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4.2. Proof of Theorem 6 and 7 when w1 ∈ C. We shall need the following sets

D ={z ∈ C : |z| < 1, d(z, 1) > 1, d(z, 1− i) > 1},

T ={z ∈ C : |z| < 1, d(z, 1) >
√

2, d(z,−i) >
√

2},
F ={(1, 1), (1,−i), (1, 1− i), (1, 1 + i), (1 + i, 1)}.

Theorem 6 and 7 are obvious consequences of the following proposition where we assume
w1 ∈ C.

Proposition 13. Let u = (u1, v2w2) and v = (u1w1, v2) in C2 be such that w1 ∈ C and
|w1|, |w2| ≤ 1 (resp. < 1) and |u1|, |v2| > 0.

0. If w1 = 0 then |gu − hv|u,v ≥ 1 for all nonzero Gaussian integers g, h, and |u −
hv|u,v = 1 for at least one h ∈ U4, and | 1

1+i
u− b

1+i
v| < 1 for at least one b ∈ U4.

1. Suppose that w1 6= 0 and that |gu−hv|u,v ≥ 1 (resp. > 1) for all (g, h) ∈ F . Then
|gu−hv|u,v ≥ 1 (resp. > 1) for all nonzero g, h in Z[i]. If moreover, w1 6= 1, then
w2 ∈ D.

2. Suppose that w1 6= 0 and that |gu − hv|u,v ≥ 1 (resp. > 1) for all (g, h) ∈
{( 1

1+i
, α

1+i
) : α ∈ U4}. Then |gu− hv|u,v ≥ 1 (resp. > 1) for all nonzero g, h both

in Z[i] or both in J . If moreover, w1 6= 1 and w2 6= −1, then w1 ∈ C \ D(−i,
√

2)
and w2 ∈ T .

The following simple formula will be useful.

Lemma 14 (Distance formula). Let u = (u1, v2w2) and v = (u1w1, v2) be in C2. Assume
that |w1|, |w2| ≤ 1 and |u1|, |v2| > 0. Then for all nonzero complex numbers a and b,

|au− bv|u,v = max(|b| d(w1,
a
b
), |a| d(w2,

b
a
)).

Proof. Since |w1|, |w2| ≤ 1, for any x = (x1, x2) ∈ C2, |x|u,v = max( |x1|
|u1| ,

|x2|
|v2| ). Therefore

|au− bv|u,v = max( 1
|u1| |au1 − bu1w1|, 1

|v2| |av2w2 − bv2|)

= max(|b||w1 − a
b
|, |a||w2 − b

a
|).

�

Proof of the proposition. The proof needs only elementary geometry but is rather long,
the strategy works as follows. We assume that w1 ∈ C, |w2| ≤ 1 and |gu− hv|u,v ≥ 1 for
all nonzero (g, h) ∈ F or for all (g, h) ∈ J2 with |g| = |h| = 1√

2
. We want to show that

|gu− hv|u,v ≥ 1 for all nonzero Gauss integers or for all (g, h) ∈ Z[i]2 ∪ J2.

(1) We first get rid of the four particular cases w1 = 0, w1 = 1, w2 = −i and w2 = −1.
(2) We show that |gu−hv|u,v ≥ 1 for (g, h) = (1, 1) and (1, 1− i) implies that w2 ∈ D
(3) We show that |gu − hv|u,v ≥ 1 for (g, h) = ( 1

1+i
, 1

1+i
) and ( i

1+i
, 1

1+i
) implies that

w2 ∈ T .
(4) Let a be a positive real number. We show that, if g and h are two nonzero complex

numbers such that |g|, |h| ≥ 1
a

and, |g||h| or |g||h| > 1 + a, then |gu− hv|u,v > 1.

(5) We show that if |gu − hv|u,v ≥ 1 for (g, h) ∈ {(1, 1), (i, 1), (1, 1 − i)}, then |gu −
hv|u,v > 1 for all complex numbers g and h such that |g| and |h| ≥ 3 (Lemma 15).

(6) Thanks to points (4) and (5), we shall see that we are reduced to deal with the
pairs (g, h) with |g| and |h| ≤ 6. Since g and h are in Z[i] or in J , we are left
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with finitely many pairs (g, h). Then we are able to conclude the proof with a
computer.

1) The four particular cases w1 = 0, w1 = 1 w2 = −i and w2 = −1.
Case w1 = 0. For all nonzero a, b ∈ C,

|au− bv|u,v = max(|a|, |a||w2 − b
a
|).

Therefore, |au − bv|u,v ≥ 1 for all nonzero a ∈ Z[i]. Furthermore, since the four closed
disks D(b, 1), b ∈ U4, cover the closed disk D(0, 1), we have |1×u− bv|u,v = 1 for at least
one b ∈ U4, and | 1

1+i
u− b

1+i
v|u,v < 1 for at least one b ∈ U4.

In the three other cases we don’t have to consider the strict inequalities because |w1|
or |w2| = 1.

Case w1 = 1. For all nonzero a, b ∈ C,

|au− bv|u,v = max(|a− b|, |a||w2 − b
a
|).

Therefore, |au − bv|u,v ≥ 1 for all a 6= b both in Z[i] or both in J . If a = b, then
|au− bv|u,v = |a||u− v|u,v, hence |au− av|u,v ≥ 1 for all nonzero a ∈ Z[i] iff |u− v|u,v ≥ 1,
and |au− av|u,v ≥ 1 for all a ∈ J iff | 1

1+i
u− 1

1+i
v|u,v ≥ 1. So the proposition holds when

w1 = 1.

Cases w2 = α = −1 or −i. For all nonzero a, b ∈ C,

|au− bv|u,v = max(|b||w1 − a
b
|, |aα− b|).

Therefore, |au − bv|u,v ≥ 1 for all b 6= αa both in Z[i] or both in J . If b = αa, then
|au − bv|u,v = |a||1 × u − αv|u,v, hence |au − αav|u,v ≥ 1 for all nonzero a ∈ Z[i] iff
|1 × u − αv|u,v ≥ 1 which always holds when α = −1 because |1 × u − αv|u,v = |w1 + 1|
and w1 ∈ C. Likewise, |au − αav|u,v ≥ 1 for all a ∈ J iff | 1

1+i
u − α

1+i
v|u,v ≥ 1. So the

proposition holds when w2 = α.

We now suppose that w1 6= 0, w1 6= 1, w2 6= −i and w2 6= −1.

2) By the distance formula (Lemma 14), for all nonzero g and h,

|gu− hv|u,v = max(|h| d(w1,
g
h
), |g| d(w2,

h
g
)).

Now since w1 ∈ C \ {0, 1}, we have

|1| d(w1,
1
1
) < 1 and |1− i| d(w1,

1
1−i) < 1.

Therefore, if |gu− hv|u,v ≥ 1 (resp. > 1) for (g, h) = (1, 1) and (1, 1− i), then

|1| d(w2,
1
1
) ≥ 1 and |1| d(w2,

1−i
1

) ≥ 1,

(resp. > 1) which in turn implies w2 ∈ D (resp. w2 ∈ D).
3) Since w1 ∈ C \ {0, 1}, we have

| 1
1+i
| d(w1, 1 =

1
1+i

1
1+i

) < 1 and | 1
1+i
| d(w1, i =

1
1+i
−i
1+i

) < 1.

Therefore, if |gu − hv|u,v ≥ 1 (resp. > 1) for (g, h) = ( 1
1+i
, 1

1+i
) and (g, h) = ( 1

1+i
, −i

1+i
),

then

d(w2, 1) ≥
√

2 and d(w2,−i) ≥
√

2

(resp. >
√

2) which in turn implies w2 ∈ T (resp. w2 ∈ T ).



16 NICOLAS CHEVALLIER

4) Let a be a positive real number. Let g, h be two nonzero complex numbers with

|g|, |h| ≥ 1
a
. Since |w1| and |w2| ≤ 1, if |g||h| or |h||g| > 1 + a, then by the distance formula

(Lemma 14),

|gu− hv|u,v = max(|h| d(w1,
g
h
), |g| d(w2,

h
g
))

≥ max(|h|( |g||h| − 1), |g|( |h||g| − 1)) > 1.

5)

Lemma 15. Suppose w1 ∈ C \ {0, 1} and w2 ∈ D(0, 1). If |gu − hv|u,v ≥ 1 for (g, h) ∈
{(1, 1), (i, 1), (1, 1 − i)} then |gu − hv|u,v > 1 for all complex numbers g and h such that
|g| and |h| ≥ 3.

Proof of Lemma 15. We proceed by contradiction and assume that |gu − hv|u,v ≤ 1 for
some complex numbers g and h with |g| and |h| ≥ 3. Set z = g

h
and z′ = 1

z
. By the

distance formula (Lemma 14),

d(w1, z) and d(w2, z
′) ≤ 1

3

hence |z|, |z′| ≤ 4
3
. It follows that |z|, |z′| ≥ 3

4
and then that |w1|, |w2| ≥ 3

4
− 1

3
= 5

12
.

Also observe that since w1 ∈ C, <z and =z are ≥ −1
3

which implies that the inverse z′

of z is neither in the open disk D(−3
2
, 3

2
) nor in the open disk D(3

2
i, 3

2
).

We divide the proof in two cases:

(1) d(w1, i) ≥ 1,
(2) d(w1, i) < 1.

The first case uses the following intermediate lemma.

Lemma 16. Let w ∈ C be such that <w, =w ≥ 0, 5
12
≤ |w| ≤ 1, and d(w, i) ≥ 1 then

d(w, 1) < 2
3
.

Proof of the intermediate lemma. We want to show that the function f(z) = |z − 1|2 − 4
9

is < 0 when |z| ≤ 1, <z ≥ 0, =z ≥ 0 and z is neither in the interiors of D(i, 1) nor in
the interior of D(0, 5

12
). It is easy to see that the maximum of f on this region is reached

at a point which belongs to the circle C of radius 1 and center i. The circle C has polar
equation r = 2 sin θ. Since for z = reiθ ∈ C,

f(reiθ) = 5
9

+ r2 − 2r cos θ = 5
9

+ 4 sin2 θ − 2 sin 2θ = g(θ),

it is enough to show that g(θ) < 0 for θ ∈ [arcsin 5
24
, π

6
]. Now g′(θ) = 4 sin 2θ − 4 cos 2θ is

negative if θ < π
8

and non-negative otherwise, hence it is enough to check that g is < 0
at the extremities of the interval. Since

g(π
6
) = 5

9
+ 1−

√
3 < 0,

g(arcsin 5
24

) = 5
9

+ ( 5
12

)2 − 4 5
24

√
1− ( 5

24
)2 ≤ −0.08

we are done. �

End of proof of Lemma 15.
Case 1: d(w1, i) ≥ 1. By the above lemma, |z − 1| ≤ |z − w1| + |w1 − 1| < 1

3
+ 2

3
= 1,

hence its inverse z′ has a real part > 1/2. We also already know that z′ is not in the open
disk D(3

2
i, 3

2
).
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Figure 1. Proof of Lemma 15, case 1

Since w1 is in C and w1 6= 0 , d(w1, 1) < 1. By assumption |u− v|u,v ≥ 1, therefore, by
the distance formula (Lemma 14) with a = 1 and b = 1, we obtain d(w2, 1) ≥ 1. Since
w1 ∈ C\{0, 1} ⊂ D(1+i

2
, 1√

2
), d(w2, 1−i) ≥ 1 again by Lemma 14 with a = 1 and b = 1−i.

Finally z′ and w2 satisfy the inequalities

z′ /∈ D(3
2
i, 3

2
), <z′ > 1

2
, and d(w2, 1) ≥ 1, d(w2, 1− i) ≥ 1

contradicting d(z′, w2) ≤ 1
3

because
√

3
2
− 1

2
> 1

3
(see Figure 1).

Case 2: d(w1, i) < 1. We already know that |z′| ≥ 3
4

and that z′ is neither in the open

disk D(−3
2
, 3

2
) nor in the open disk D(3

2
i, 3

2
)

As in case (1), making use of lemma 14 with a = 1 and b = 1 we see that d(w2, 1) ≥ 1.
Since d(w1, i) < 1 (case(2)), again with a = i and b = 1 we see that d(w2,−i) ≥ 1.

It follows that d(w2, z
′) > 1

3
(see Figure 2), a contradiction. �

6) It remains to study the case |g| and |h| ≤ 6. Indeed, if g and h are nonzero complex
numbers such that |g| or |h| > 6, say |g| > 6, and taking into account that g and h are
both Gaussian integers or both in J , we have

• either, |h| ≥ 1 and

– either, |g||h| > 2, and item 4. with a = 1 implies |gu− hv|u,v > 1,

– or, |g||h| ≤ 2 and |h| ≥ 3, and item 5. implies |gu− hv|u,v > 1.

• or, |h| = 1√
2

and |g|
|h| ≥

6√
2
> 1 +

√
2. Now item 4. with a =

√
2 implies

|gu− hv|u,v > 1.

Observe that up to now we have only used the hypothesis: w1 ∈ C \{0, 1}, w2 ∈ D(0, 1)
and |gu− hv|∞ ≥ 1 for (g, h) ∈ {(1, 1), (i, 1), (1, 1− i)}.

We now use a computer to prove two lemmas.
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Figure 2. Proof of Lemma 15, case 2

Lemma 17 (First set of critical pairs). For all nonzero Gaussian integers g and h with
|g| and |h| ≤ 6, if the pair (g, h) is not in Z[i]G1 where

G1 ={(1,−i), (1, 1), (1, i), (1,−1), (1, 1 + i), (1, 1− i), (1,−1 + i), (1,−1− i),
(1, 2i), (1,−2i), (1,−2), (1 + i, 1), (1 + i, i), (1 + i, 2− i), (2, 1), (2, 1− 2i),

(2− i,−2i), (2 + i, 2− 2i)},
then

|h| d( g
h
, C) or |g| d(h

g
,D) > 1.

The set G1 is called the first set of critical pairs.

Proof using a computer. • Let L1 be the set of pairs of nonzero Gaussian integers
with moduli ≤ 6. The set L1 is finite with less than (6 + 1 + 6)4 = 28501 elements
and can be generated using a simple computer code (we use a Python code).
• One can write two functions that calculate the two distances d(z, C) and d(z,D)

for any complex number z. See Appendix Section 14 where it is explained how to
calculate d(z,D). This calculation can be performed with standard floating point
arithmetic. The distance to C can be calculated the same way.
• Using these two functions one can obtain the set L′1 of pairs (g, h) ∈ L1 such that

|h| d(C, g
h
) ≤ 1 + ε and |g| d(D, h

g
) ≤ 1 + ε,

with ε = 0.001, a numerical safety margin. The set L′1 certainly contains all the
pairs such that |h| d(C, g

h
) ≤ 1 and |g| d(D, h

g
) ≤ 1.

• Finally extract from L′1, a minimal subset G′1 such that for each pair (a, b) ∈ L′1
there exist z ∈ Z[i] and (g, h) ∈ G′1 such that (a, b) = z(g, h). For this step observe
that if (a, b) ∈ L′1, then there exists a primitive pair (g, h) ∈ Z[i]2 which is in the
line C(a, b) and which is also in L′1 because |au− bv|u,v ≥ |gu− bv|u,v.
• The pairs added in G′1 due to the numerical margin are validated using calculation

by hand. This lead to the set G1 (actually, with the margin ε = 0.001, G1 = G′1).
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Suppose now that (a, b) is a pair of nonzero Gaussian integers such that |h|, |g| ≤ 6 and
|au− bv|u,v ≤ 1. There exists a primitive pair (g, h) ∈ Z[i]2 such that (a, b) = z(g, h) with
|z| ≥ 1. Since |z| ≥ 1, 1 ≥ |au− bv|u,v ≥ |gu− bv|u,v. Therefore (g, h) ∈ L′1. Since (g, h)
is primitive, on the one hand, one of the pairs α(g, h), α ∈ U4 must be in G′1, and on the
other hand, z ∈ Z[i]. It follows that (a, b) ∈ Z[i]G1. �

Remark 3. Without the safety margin ε in the above proof, some pairs may be missing
from the set G1 as the referee pointed out.

Lemma 18 (Second set of critical pairs). For all (g, h) ∈ J2 with |g| and |h| ≤ 6, and
(g, h) /∈ G2 = {( a

1+i
, b

1+i
) : a, b ∈ U4}, we have

|h| d( g
h
, C \ D(−i,

√
2)) or |g| d(h

g
, T ) > 1.

Proof using a computer. • Let L2 be the set of pairs of nonzero elements in J with
moduli ≤ 6. The set L2 is finite with less than (8 + 1 + 8)4 = 83521 and can be
generated a using simple computer code (we use a Python code).
• One can write a function that calculates the distance d(z, T ) from z to T for any

complex number z. See Appendix Section 14 where it is explained how to calculate
d(z,D). The distance to T can be calculated the same way.
• Since C \ D(−i,

√
2)) ⊂ (−i)T , for each nonzero g, h,

d( g
h
, C \ D(−i,

√
2))) ≤ d(i g

h
, T ).

• Using the function d(z, T ), one can obtain the set L′2 of pairs (g, h) ∈ L2 such that

|h| d(i g
h
, T ) ≤ 1 + ε and |g| d(h

g
, T ) ≤ 1 + ε,

with ε = 0.001, a numerical safety margin. We obtain

L′2 = {( a
1+i
, b

1+i
) : a, b ∈ U4}.

�

End of proof of Part 1 in Proposition 13. Recall that we suppose w1 6= 0, 1
and w2 6= −i,−1. By 2), we already know that w2 ∈ D. It remains to prove that, if
|gu− hv|u,v ≥ 1 (resp. > 1) for all (g, h) in

F = {(1, 1), (1,−i), (1, 1− i), (1, 1 + i), (1 + i, 1)},
then |gu− hv|u,v ≥ 1 (resp. > 1) for all nonzero g, h in Z[i].

By Lemma 17, if |gu− hv|u,v ≥ 1 (resp. > 1) for all (g, h) ∈ G1, then |gu− hv|u,v ≥ 1
(resp. > 1) for all pairs (g, h) of nonzero Gaussian integers. We prove that we can remove
the pairs in G1 \ F and get the same conclusion.

When (g, h) ∈ {(1, i), (1,−1), (1,−1 + i), (1,−1− i), (1, 2i), (1,−2)}, we have

|h| d( g
h
, C) = 1,

∀w1 ∈ C \ {0}, |h| d( g
h
, w1) > 1.

So by the distance formula, these six pairs can be removed from G1 when dealing with
the large inequality or the strict inequality.

When (g, h) ∈ {(1 + i, i), (2, 1)}, we have

|h| d( g
h
, C) = 1,

∀w1 ∈ C \ {1}, |h| d( g
h
, w1) > 1.

So these two pairs can be removed.
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When (g, h) ∈ {(1,−2i), (1 + i, 2− i), (2, 1− 2i), (2 + i, 2− 2i)}, we have

|g| d(h
g
,D) = 1,

∀w2 ∈ D \ {−i}, |g| d(h
g
, w2) > 1.

So these four pairs can be removed from G1.
Finally, consider the pair (g, h) = (−2 + i, 2i). Since the disk D( g

h
, 1
|h|) is included in

the disk D( g
′

h′
, 1
|h′|) where (g′, h′) = (1, 1 + i) and since the portion of the disk D(h

g
, 1
|g|)

lying in the unit disk is included in the disk D(h
′

g′
, 1
|g′|), the inequality |g′u − h′v|u,v ≥ 1

(resp. > 1) implies the inequality |gu− hv|u,v ≥ 1 (resp. > 1) which means that we can
remove the pair (−2 + i, 2i).

It follows that for w1 ∈ C \ {0, 1} and w2 ∈ D(0, 1) \ {−i}, if for all (g, h) ∈ F
|gu − hv|u,v ≥ 1, (resp. > 1) then |gu − hv|u,v ≥ 1 (resp. > 1) for all nonzero Gaussian
integers g and h.

End of proof of Part 2 in Proposition 13. By 3), we already know that w2 ∈ T . It
remains to prove that if |gu−hv|u,v ≥ 1 (resp. > 1) for all (g, h) ∈ {( a

1+i
, b

1+i
) : a, b ∈ U4},

then w1 ∈ C \D(−i,
√

2) and |gu− hv|u,v ≥ 1 (resp. > 1) for all nonzero g, h both in Z[i]
or both in J

Since w2 ∈ T and since w2 6= −1, d(w2, i) <
√

2. Now by assumption, | 1
1+i
u− i

1+i
v|u,v ≥

1, hence d(w1,−i) ≥
√

2 by the distance formula. This means that w1 ∈ C \ D(−i,
√

2).
Since w1 ∈ C \ D(−i,

√
2) and w2 ∈ T , we can use Lemma 18, we obtain that |gu −

hv|u,v ≥ 1 (resp. > 1) for all g, h both in J .
It remains to see what is happening when g and h are Gaussian integers. Since T ⊂ D,

using the first set of critical pairs and the Part 1 of the proposition, we see that only
the pairs (g, h) in F must be examined. For each of these pairs, we have |g| d(h

g
, T ) > 1

except for (g, h) = (1, 1 + i), and for this latter pair d(w2,
h
g
) > 1 for all w2 ∈ T \ {i}, so

we are done. �

4.3. Constraints on the pairs (w1, w2) when w1 ∈ C. Let’s remember the sets we need

C ={z ∈ C : |z| < 1, arg z ∈ [0, π
4
]},

D ={z ∈ C : |z| < 1, d(z, 1) > 1, d(z, 1− i) > 1},

T ={z ∈ C : |z| < 1, d(z, 1) >
√

2, d(z,−i) >
√

2},
F ={(1, 1), (1,−i), (1, 1− i), (1, 1 + i), (1 + i, 1)}.
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Figure 3. The constraints on consecutive minimal vectors.

Consider the following pairs of open disks in C

Blue1 = D(1−i
2
, 1√

2
), Blue2 = D(1 + i, 1)

Red1 = D(i, 1), Red2 = D(−i, 1)

Green1 = D(1 + i, 1), Green2 = D(1−i
2
, 1√

2
).

Corollary 19. Let u = (u1, v2w2) and v = (u1w1, v2) be two vectors in C2 with |u1|, |v2| >
0, |w1|, |w2| < 1, and w1 ∈ C \ {0}.

• No nonzero vector in Z[i]u + Z[i]v are in
o

C(u, v) iff w2 ∈ D and one of the four
conditions
(1) w2 ∈ Green2 and w1 /∈ Red1 ∪Green1,
(2) w2 ∈ Red2 \Green2 and w1 /∈ Red1,
(3) w2 /∈ Red2 ∪Blue2,
(4) w2 ∈ Blue2 and w1 /∈ Blue1,

holds.

• No nonzero vector in 〈u, v〉J are in
o

C(u, v) iff (w1, w2) ∈ (C \ D(−i,
√

2))× T .

Remark 4. We do not consider the particular cases w1 = 0 or |wi| = 1 because we will not
use them in the sequel. But clearly, it is not difficult to find the constraints on (w1, w2) in

these cases using Proposition 13. In fact, when w1 = 0 then (Z[i]u+Z[i]v)∩
o

C(u, v) = {0}
whatever the value of w2 ∈ D, and 〈u, v〉J ∩

o

C(u, v) 6= {0} whatever the value of w2 ∈ D.

Proof. By Proposition 13, no nonzero vector in Z[i]u+Z[i]v are in
o

C(u, v) iff for all (g, h)
in

F = {(1, 1), (1,−i), (1, 1− i), (1, 1 + i), (1 + i, 1)},
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|gu− hv|u,v ≥ 1. By the distance formula (Lemma 14), it means that for all (g, h) ∈ F ,

d(w1,
g
h
) ≥ 1

|h| or d(w2,
h
g
) ≥ 1

|g| .

Taking (g, h) = (1, 1) and (g, h) = (1, 1 − i), we obtain that w2 /∈ D(1, 1) and w2 /∈
D(1− i, 1) which implies w2 ∈ D.

Taking (g, h) = (1,−i), we obtain w1 /∈ D(i, 1) = Red1 or w2 /∈ D(−i, 1) = Red2.

Taking (g, h) = (1, 1 + i), we obtain w1 /∈ D( (1−i)
2
, 1√

2
) = Blue1 or w2 /∈ D(i + i, 1) =

Blue2.
Taking (g, h) = (1 + i, 1), we obtain w1 /∈ D(1 + i, 1) = Green1 or w2 /∈ D(1−i√

2
, 1√

2
) =

Green2.
Taking into account the positions of the disks Red2, Blue2 and Green2 in D, we obtain

that |gu − hv|u,v ≥ 1 for all (g, h) ∈ F iff one of the conditions (1) or (2) or (3) or (4)
holds.

Again by Proposition 13, no nonzero vector in 〈u, v〉J are in
o

C(u, v) iff it is true for
all (g, h) ∈ {( 1

1+i
, 1

1+i
), ( 1

1+i
, i

1+i
)}. The distance formula shows that it is equivalent to

(w1, w2) ∈ (C \D(−i,
√

2))× T . �

4.4. An example of a lattice with linearly independent equivalent minimal
vectors. We give an example of two vectors u and v such that

• u and v are consecutive minimal vectors of Λ = Z[i]u+ Z[i]v,
• u− (1− i)v is a minimal vector equivalent to v,
• (1 + i)u− v is a minimal vector equivalent to u.

Let s ∈ (4
3
π, 3

2
π), t ∈ (5

6
π, π), w1 = 1 + i + eis, w2 = 1 − i + eit, u = r(1, eiαw2) and

v = r(w1, e
iα) where r > 0 and α ∈ R are such that

detC(u, v) = r2eiα(1− w1w2) = 1.

Consider the lattice Λ = Z[i]u + Z[i]v. We have w1 ∈ C ∩ ∂Green1 \ Red1 and w2 ∈
D ∩C(1− i, 1), so that thanks to Corollary 19,

o

C(u, v) ∩ Λ = {0}.

However, since w1 ∈ ∂Green1 and w2 ∈ C(1− i, 1), ∂C(u, v) contains not only the subsets
U4u and U4v of Λ, but also the subsets of Λ

U4((1 + i)u− v) and U4(u− (1− i)v).

By Lemma 17 about the first set of critical pairs, the only others (g, h) such that |gu −
hv|u,v = 1 are in U4G1. Furthermore, since w1 6= 0, 1 and w2 6= −1,−i, we see as in the
end of the proof of Proposition 13 part 1, that if (g, h) ∈ U4(G1\F ), then |gu−hv|u,v > 1.
By checking the values of |gu− hv|u,v for the pairs (g, h) ∈ F , we see that

∂C(u, v) ∩ Λ = U4u ∪ U4v ∪ U4((1 + i)u− v) ∪ U4(u− (1− i)v).
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Now

u− (1− i)v = r(1− (1− i)w1, e
iα(w2 − (1− i)))

= r(1− (1− i)(1 + i+ eis), eiα(1− i+ eit − (1− i)))
= r(−1− (1− i)eis, eiαeit)
= r(x1, x2)

(1 + i)u− v = r(1 + i− w1, e
iα((1 + i)w2 − 1))

= r(1 + i− (1 + i+ eis), eiα((1 + i)(1− i+ eit)− 1))

= r(−eis, eiα((1 + i)eit + 1)

= r(y1, y2)

and one check that

|x1|2 = 3 + 2(cos s+ sin s) = |w1|2 and |x2| = 1

|y1|2 = 1 and |y2| = 3 + 2(cos t− sin t) = |w2|

Hence v and u − (1 − i)v are two equivalent minimal vectors and u and (1 + i)u − v as
well.

5. No consecutive pairs of index 2

In Proposition 10 we have seen that two consecutive minimal vectors have index one
or two. We show now that the case of index two cannot occur twice consecutively.

Proposition 20. Suppose that u = (u1, v2w2) and v = (u1w1, v2) are two consecutive
minimal vectors of index 2 in a lattice Λ in C2. Let w be a minimal vector such that v
and w are two consecutive minimal vectors. Then Z[i]v + Z[i]w = Λ.

Remark 5. In fact, with the assumptions of the proposition, it is possible to prove that
Z[i]u + Z[i]w = Λ also holds. The proof of this latter fact goes as the proof of the
proposition but is slightly more difficult. We shall not do it.

The proof of the proposition uses two lemmas. The first lemma is well known and its
proof is a straightforward calculation we omit.

Lemma 21. Let w and z be two complex numbers and let k < 1 be a nonnegative real
number. Then

|z − w| < k|w| ⇔ d(w,
z

1− k2
) <

k|z|
1− k2

,

|z − w| = k|w| ⇔ d(w,
z

1− k2
) =

k|z|
1− k2

.

Lemma 22. Suppose that u = (u1, v2w2) and v = (u1w1, v2) are two consecutive minimal
vectors of index 2 in a lattice Λ. Suppose that w is a minimal vector such that v and
w are two consecutive minimal vectors and such that v and w has index 2 in Λ. Then
w = a(1+i)v+αu where a and α are Gaussian integers such that 0 < |a| ≤ 2 and |α| = 1.
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Proof. By Proposition 10, (U = 1
1+i

(u + v), V = v) is a basis of Λ and (V = v,W =
1

1+i
(v + w)) as well. Therefore, 

u = −V + (1 + i)U
v = V
w = −V + (1 + i)W
W = bV − αU

where b ∈ Z[i] and α ∈ U4 because the determinant of the matrix of the coordinates of
the vectors V and W in the basis (U, V ) is a unit of Z[i]. It follows that

w = −v + (1 + i)(bv − α 1
1+i

(u+ v))

= (−1− α + (1 + i)b)v − αu
= a(1 + i)v − αu

where a ∈ Z[i] because −1− α ∈ (1 + i)Z[i]. In coordinates this gives

w = (u1(a(1 + i)w1 − α), v2(a(1 + i)− αw2))

and since w follows v,

|a(1 + i)w1 − α| < |w1|.
Therefore, |w1| > |a(1 + i)||w1| − |α|. Making use of Corollary 19 and of Proposition 11,

we see that w1 is in ϕ(C \D(−i,
√

2)) for some ϕ ∈ D8, hence |w1| >
√

3−1√
2

. The last two

inequalities imply that |a| < 1
|1+i|(1 + 1

|w1|) <
1√
2

+ 1√
3−1

<
√

5. It follows that |a| ≤ 2.

Finally, a cannot be 0 because w and u are not proportional. �

Proof of the proposition. We proceed by contradiction and suppose that Z[i]v+Z[i]w has
index two. By the above lemma, we have w = (1 + i)av−αu where a and α are Gaussian
integers with |α| = 1 and 0 < |a| ≤ 2. We have

w = (u1((1 + i)aw1 − α), v2((1 + i)a− αw2)).

Since the minimal vector w follows v, we have |(1 + i)aw1− α| < |w1| which is equivalent
to

|w1 − z|2 < |z|2|w1|2

where z = c + id = α
(1+i)a

. With the above lemma, we see that the latter inequality is

equivalent to

d(w1,
z

1− |z|2
) <

|z|2

1− |z|2
.

Given β ∈ U4, consider the complex numbers x = − 1
1+i

+ (1 + i)a and y = − β
1+i

+α; they
are both in J . So that by Proposition 10, the vector

w′ = w − xv + yu = 1
1+i

(v − βu) = (w′1, w
′
2)

is in Λ. If we can choose β so that{
|w′1| ≤ |u1w1|
|w′2| ≤ |v2((1 + i)a− αw2)|

with one strict inequality at least, it contradicts that v and w are two consecutive minimal
vectors. The strategy is now to prove that either we can choose β or that the inequality

d(w1,
z

1−|z|2 ) < |z|2
(1−|z|2)

does not hold.
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Using the symmetries and Proposition 11 as in section 4, we can suppose that w1 ∈ C.
By Corollary 19,

w1 ∈ C \ D(−i,
√

2) and w2 ∈ D \ (D(1,
√

2) ∪ D(−i,
√

2)).

With t = 1
z

= (1+i)a
α

, the above inequalities about w′1 and w′2 are equivalent to{
1√
2
|w1 − β| ≤ |w1|

1√
2
|w2 − β̄| ≤ |t− w2|

.

A short calculation shows that the latter inequalities are equivalent to{
|w1 + β|2 ≥ 2
|w2 − (2t− β̄)|2 ≥ 2|t− β̄|2 .

Since w1 ∈ C \ D(−i,
√

2), the first inequality holds when β = 1 or i.
Suppose first that |a| = 1. We have |t|2 = 2 hence t = ±1± i.
If t = 1 + i, choose β = 1. We have t − β̄ = i and 2t − β̄ = 1 + 2i, hence the second

inequality is equivalent to |w2− (1+2i)|2 > 2 which holds because <w2 < 0 and =w2 < 1.
If t = 1− i, choose β = 1. We have t− β̄ = −i and 2t− β̄ = 1− 2i, hence the second

inequality is equivalent to |w2 − (1− 2i)|2 > 2 which holds because =w2 > 0.

If t = −1 + i, then z = −1+i
2

. Therefore, d(w1,
z

1−|z|2 )2 > |z|4
(1−|z|2)2 = 1 a contradiction.

If t = −1− i, then z = −1+i
2

. Therefore, d(w1,
z

1−|z|2 )2 > |z|4
(1−|z|2)2 = 1 a contradiction.

Suppose that |a| =
√

2. We have |t| = 2, hence t = ±2 or ±2i. Therefore, z
1−|z|2 =

4
3
z, and the information w1 ∈ C \ D(−i,

√
2) implies that if t = 2i or −2 or −2i then

d(w1,
4
3
z)2 > |z|4

(1−|z|2)2 = 1
9
.

If t = 2, choose β = 1. We have t− β̄ = 1 and 2t− β̄ = 3, hence the second inequality
becomes |w2 − 3|2 > 2 which holds because <w2 < 0.

Suppose that |a| = 2. We have |t| = 2
√

2 hence t = ±2(1 + i) or ±2i(1 + i). Therefore,
z

1−|z|2 = 8
7
z, and the information w1 ∈ C\D(−i,

√
2) implies that if t = 2(1+i) or −2(1+i)

or −2i(1 + i) then d(w1,
8
7
z)2 > |z|4

(1−|z|2)2 = 1
49

.

If t = 2(1−i), choose β = 1. We have t−β̄ = 1−2i and 2t−β̄ = 3−4i, hence the second
inequality becomes |w2 − (3 − 4i)|2 > 2 × 5 which holds because |<(w2 − (3 − 4i))| ≥ 2
and |=(w2 − (3− 4i))| ≥ 3. �

6. Definitions and parametrization of the transversals

6.1. The open transversal. Let U4 be the group of units in Z[i]. The open transversal
T is the set of Gauss lattices Λ in C2 such that detC Λ ∈ U4 and such that there exist two
vectors u = (u1, u2) and v = (v1, v2) in Λ such that

(1) |u2|, |v1| < |u1| = |v2| = r,
(2) the only nonzero vectors of Λ in the ball B∞(0, r) are in U4u ∪ U4v.

Observe that the two vectors u and v are minimal vectors in Λ and that by Lemma 4,
they are consecutive. The vectors u and v are the vectors associated with Λ. They are
unique up to a multiplicative factor in U4:

Lemma 23. Let Λ be a lattice in the open transversal T and let u, v be two vectors in Λ
satisfying (1) and (2) in the above definition. If u′ and v′ are two vectors in Λ such that
(1) and (2) hold then u′ ∈ U4u and v′ ∈ U4v.
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Proof. Set r = |u|∞ and r′ = |u′|∞. The balls B∞(0, r) and B∞(0, r′) are nested, therefore
by (2) they are equal. So that by (1), |u′1| = |u1| = |v′2| = |v2|. Hence u′ and v′ ∈ B∞(0, r).
Again by (2), this imply that u′ ∈ U4u and v′ ∈ U4v. �

6.2. The full transversal. The full transversal T ′ is the set of Gauss lattices Λ in C2

such that detC Λ ∈ U4 and such that there exist two minimal vectors u = (u1, u2) and
v = (v1, v2) in Λ such that

(1’) |u2|, |v1| < |u1| = |v2| = r,

(2’) the only nonzero vector of Λ in the open ball
o

B∞(0, r) is 0.

Clearly

T ⊂ T ′ ⊂ {Λ ∈ SL(2,C)/ SL(2,Z[i]) : λ1(Λ, |.|∞,C) = λ2(Λ, |.|∞,C)} .
The vectors u and v are the vectors associated with Λ. They are no longer unique up

to a multiplicative factor in U4, see the example subsection 4.4. By Lemma 4, they are
consecutive.

By Proposition 10, the lattice L = Z[i]u + Z[i]v has index 1 or 2 in Λ. Therefore, the
transversal T (resp. T’) is the union of two pieces T1 and T2 (resp. T ′1 and T ′2) according
to the index of L. The above lemma implies that T1 and T2 are disjoint but as the example
in the Subsection 4.4 shows,

T ′1 ∩ T ′2 6= ∅.
However, T ′1 ∩ T ′2 is a small set. It is a consequence of the following Lemma.

Let N be the set of unimodular lattices Λ ⊂ C2 such that either there exists a nonzero
vector (u1, u2) ∈ Λ with u1u2 = 0 or there exist two linearly independent vectors u =
(u1, u2) and v = (v1, v2) in Λ such that |u1| = |v1| or |u2| = |v2|.

Lemma 24. The following properties hold

(1) N contains the set

{Λ ∈ SL(2,C)/ SL(2,Z[i]) : λ1(Λ, |.|∞,C) = λ2(Λ, |.|∞,C)} \ T.
(2) N is stable under the action of the flow gt, t ∈ R.
(3) N has zero Haar measure.

Remark 6. T ′ \ T ⊂ N .

Proof. 1. Let Λ be a unimodular lattice not in the open transersal T such that λ1(Λ, |.|∞,C) =
λ2(Λ, |.|∞,C) = r. The equality of the two minima implies that there exist two linearly in-
dependent vectors u = (u1, u2) and v = (v1, v2) such that |u|∞ = |v|∞ = r and |u1| ≥ |v1|.
If Λ were not in N , we would have r ≥ |u1| > |v1| and therefore, r = |v2|. Since |v2| 6= |u2|,
we would have |v2| > |u2|. Since Λ is not in T , this implies that there exists a nonzero vec-
tor w = (w1, w2) ∈ Λ∩B∞(0, r) and not in U4u∪U4v. Then we have either |w1| = r = |u1|
or |w2| = r = |v2|, a contradiction.

2. Clear.
3. LetM be the set of matrices M ∈M2(C) such that either there exists X ∈ Z[i]∗ such

that the product of the coordinates of MX is zero, or there are two linearly independent
vectors X and Y in Z[i] such that either the moduli of the first coordinates of MX and
MY are equal, or the moduli of the second coordinates of MX and MY are equal. It
suffices to prove that M has zero Lebesgue measure. By definition, the set M is the
union of two setsM1 andM2. The first set is a countable union of hyperplanes in M2(C)
and thus is of zero Lebesgue measure. Let us deal now with M2.
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Since Z[i] is countable, considering each row of the matrix M , we are reduced to prove
that given two linearly independent vectors x = (x1, x2) and y = (y1, y2) ∈ C2, the set of
(a, b) ∈ C2 such that P (a, b) = |ax1 + bx2|2−|ay1 + by2|2 = 0, is of zero Lebesgue measure
in C2.

Now P can be considered as a real polynomial of four variable. Since P (y2,−y1) =
| detC(x, y)|2 6= 0, the polynomial P is not zero and the set of (a, b) such that P (a, b) = 0
has measure zero. �

6.3. Properties of the open transversal.

Lemma 25. The open transversal T is a real submanifold of SL(2,C)/ SL(2,Z[i]).
Furthermore, The flow (gt)t∈R is transverse to T .

Proof. Let Λ0 be in T and let u0 and v0 be the two vectors associated with Λ0 by the
definition of T . By Proposition 10, either (u0, v0) form a basis of Λ0 and we can suppose
det(u0, v0) = 1 w.l.o.g. (case of index 1) or U0 = u0 and V0 = 1

1+i
(u0 + v0) form a basis

of Λ0 and we can suppose det(u0, v0) = (1 + i) w.l.o.g. (case of index 2). We can find a
small enough positive real number ε such that for any (u, v) in the open set

W = BC2(u0, ε)×BC2(v0, ε),

• the matrix M = M(u, v) the columns of which are u = (u1, u2) and v = (v1, v2),
is in GL(2,C) and the sets WP , P ∈ SL(2,Z[i]) are disjoint,
• the vectors in U4u and U4v are the only nonzero vectors of the lattice Λ = MZ[i]2

in the cylinder C(u, v) in the index 1 case, or of the lattice Z[i]u+ Z[i] 1
1+i

(u+ v)
in the index 2 case,
• |u1| > |u2| and |v1| < |v2|,
• for all M ∈ W , | detM − det(u0, v0)| ≤ 1

10
.

Consider the map

φ : W → C× R

: M = (u, v)→ (φ1(M) =
detM

det(u0, v0)
, φ2(M) = |u1|2 − |v2|2).

In the index 1 case, a lattice Λ = MZ[i]2 with M ∈ W , is in T iff φ(M) = (1, 0). In index
2 case, a lattice Λ = Z[i]u + Z[i] 1

1+i
(u + v) is in T iff φ(M) = (1, 0). Hence, to prove

that T is a submanifold, it is enough to show that the differential Dφ(M) is onto at every
point M in W . The differential of φ1 is C-linear and is given by

Dφ1(M).(x, y) =
1

det(u0, v0)
(v2x1 + u1y2 − v1x2 − u2y1)

where x = (x1, x2) and y = (y1, y2). The differential of φ2 is given by

Dφ2(M).(x, y) = u1x̄1 + ū1x1 − v2ȳ2 − v̄2y2.

Call γM the C-linear map defined by γM(x, y) = ū1x1− v̄2y2. On the one hand, Dφ2(M) =
γM + γ̄M . On the other hand, γM and Dφ2(M) are C-linearly independent because
|v2|2 + |u1|2 6= 0. Therefore, the three R-linear maps <γM , <Dφ1(M) and =Dφ1(M)
are R-linearly independent. It follows that Dφ(M) is onto which implies that T is a
submanifold of Ω2.

To show that the flow is transverse to T , we have to check that for any matrix M =
M(u, v) in W such that φ(M) = (1, 0), we have
Dφ(M).((u1,−u2), (v1,−v2)) 6= 0. Now, Dφ2(M).((u1,−u2), (v1,−v2)) = 2|u1|2 + 2|v2|2,
hence Dφ(M).((u1,−u2), (v1,−v2)) is not zero. �
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7. First return map, proof of Theorem 3

Lemma 26. Let Λ be a unimodular lattice that is in the full transversal T ′ and let u =
(u1, u2) and v = (v1, v2) be two consecutive minimal vectors associated with Λ. Let t =
inf{s > 0 : gs(Λ) ∈ T ′}. Then t < +∞ if and only if v1 6= 0. Moreover, in the latter case,
there exists a minimal vector z = (z1, z2) such that v and z are two consecutive minimal
vectors and such that

t =
1

2
ln
|z2|
|v1|

.

Consequently the first return map applied to Λ is gtΛ.

Proof. If v1 6= 0, then by Lemma 6, a minimal element z = (z1, z2) ∈ Λ for the lex-

icographic preoder ≺ in the infinite vertical cylinder
o

C1(|v1|) is a minimal vector. By

definition v and z are consecutive. So, by Lemma 4,
o

C(v, z) ∩ Λ \ {0} = ∅, hence
o

C(gtv, gtz) ∩ gt(Λ \ {0}) = ∅, thus gtΛ is in T ′ when t = 1
2

ln |z2||v1| . Let 0 < s < t.

We want to show that gsΛ /∈ T ′.
• If r2 = e−s|v2| ≤ r1 = es|v1|, since r1 = es|v1| < et|v1| = e−t|z2| < e−s|z2|, we have
B∞(0, r1 = |gsv|∞) ⊂ C(gsv, gsz). Now, there is no vector in gs(Λ \ {0}) of the
shape (x1, x2) with |x1| < r1 and |x2| = r1 < e−s|z2| because such vector would be

in
o

C(gsv, gsz) = gs−t
o

C(gtv, gtz). Therefore, gsΛ is not in the full transversal T ′.
• If r2 = e−s|v2| > r1 = es|v1|, since r2 = e−s|v2| = e−s|u1| < es|u1|, we have
B∞(0, r2 = |gsv|∞) ⊂ C(gsu, gsv) and there is no vector in gs(Λ\{0}) of the shape
(x1, x2) with |x1| = r2 < es|u1| and |x2| < r2. Therefore, gsΛ is not in the full
transversal T ′.

�

Let u = (u1, v2w2) and v = (u1w1, v2) be the two consecutive minimal vectors associated
with a lattice Λ that is in the full transversal T ′. By the above lemma, the computation
of the first return map is reduced to the computation of the minimal vector v′ ∈ Λ such
that v and v′ are two consecutive minimal vectors. This is the purpose of Theorem 3 that
we recall below. To perform this calculation, we must take into account the component
of the transversal which contains Λ.

Recall that the lexicographic preoder on C2 is defined by

(x1, x2) ≺ (y1, y2)

iff |x2| < |y2| or |x2| = |y2| and |x1| ≤ |y1|. We recall the statement of Theorem 3 for the
convenience of the reader.

Theorem 3. Let u = (u1, v2w2) and v = (u1w1, v2) be the two minimal consecutive
vectors associated with a lattice Λ that is in the full transversal T ′. If w1 6= 0 then there
exists v′ ∈ Λ a minimal vector such that v and v′ are two consecutive minimal vectors
and

• if detC(u, v) = 1, then v′ is any vectors that is minimal for the preoder ≺ in the
set {

z = −au+ gv : a ∈ {1, 1 + i}, g ∈ Z[i], | a
w1
− g| < 1

}
.
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Moreover with u′ = v = (u′1, v
′
2w
′
2) and v′ = −au+ gv = (u′1w

′
1, v
′
2) we have

w′1 = g − a

w1

, w′2 =
1

g − aw2

.(3)

• if detC(u, v) = 1 + i, then v′ is any vectors that is minimal in the set{
z = − 1

1+i
(u+ v) + gv : g ∈ Z[i], | 1

(1+i)w1
+ 1

(1+i)
− g| < 1

}
.

Moreover with u′ = v = (u′1, v
′
2w
′
2) and v′ = −au+ gv = (u′1w

′
1, v
′
2) we have

w′1 = g − 1
(1+i)w1

− 1
(1+i)

, w′2 =
1

g − 1
(1+i)

w2 − 1
(1+i)

.(4)

Proof. If w1 6= 0 then v1 = u1w1 6= 0 and by Minkowski convex body theorem, the cylinder
o

C1(|v1|) = {(x, y) ∈ C2 : |x| < |v1|} contains at least one nonzero vector of Λ. By Lemma
6, a vector of Λ in this cylinder which is minimal for the preorder ≺ is a minimal vector
v′ that follows v.

Case 1: detC(u, v) = 1. Let L = Z[i]v + Z[i]v′ be the lattice generated by v and v′.
Since L has index 1 or 2 in Λ, the determinant of v and v′ in the basis u, v is a unit of
Z[i] or (1 + i) times a unit. This implies that v′ = −au+ gv with g ∈ Z[i] and a ∈ U4 or

a ∈ (1 + i)U4. We can suppose that a ∈ {1, 1 + i} w.l.o.g.. The condition v′ ∈
o

C1(|v1|) is
equivalent to,

|au1 − gu1w1| < |u1w1|

which in turn is equivalent to

| a
w1

− g| < 1.

By definition v′ is minimal for the preorder ≺ among the vectors −au+ gv such that the
latter inequality holds. An easy calculation leads to the formula for w′1 and w′2.

Case 2: detC(u, v) = 1 + i. By Proposition 20, Z[i]v + Z[i]v′ has index one in Λ and
by Proposition 10, 1

1+i
(u+ v), v is a basis of Λ, therefore, z′ is of the shape

v′ = a 1
1+i

(u+ v) + gv

with g ∈ Z[i] and a ∈ U4. We can suppose that a = −1 w.l.o.g. As before, we have

| 1
1+i

(u1 + u1w1)− gu1w1| < |u1w1|,

which is equivalent to

| 1
(1+i)w1

+ 1
(1+i)

− g| < 1.

We conclude as in the first case. �

8. Parametrization of the open transversal and the first return map

We first give a parametrization of the open transversal with coordinates (θ, w1, w2) ∈
R×D2. Then, we want to describe the open transversal with the (θ, w1, w2) coordinates.
To do this, we first write the symmetries of the transversal with these coordinates. Fi-
nally, we give some explicit formulas for the first return map in terms of the coordinates
(θ, w1, w2).
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8.1. Parametrization of the open transversal T .

Proposition 27. Let Ψk : R× D2 → Ω2, k = 1, 2 be the maps defined by

Ψ1(θ, w1, w2) = Z[i]u+ Z[i]v,

Ψ2(θ, w1, w2) = Z[i]u+ 1
1+i

Z[i](u+ v)

where

u = u(θ, w1, w2) = r(u1, v2w2),

v = v(θ, w1, w2) = r(u1w1, v2),

r =
k1/4√
|1− w1w2|

,

u1 = exp iθ,

v2 = exp iθ′ = exp i((k − 1)π
4
− θ − arg(1− w1w2)).

For k = 1, 2, let Ck(θ, w1, w2) = C(u(θ, w1, w2), v(θ, w1, w2)). Then for all Λ in Tk there
exists exactly one element (θ, w1, w2) ∈ [0, π

2
) × D2 such that Λ = Ψk(θ, w1, w2) and

Λ ∩
o

Ck(θ, w1, w2) = {0}.

Proof. Existence. Let Λ be a unimodular lattice in C2 that belongs to Tk and call u
and v the two minimal vectors associated with Λ. Denoting r = |u|∞, u and v can be
written u = r(u1, v2w2) and v = r(u1w1, v2) with

|w1|, |w2| < 1 = |u1| = |v2|.

The unimodularity implies that

detC(u, v) = r2u1v2(1− w1w2) ∈ U4 or ∈ (1 + i)U4

according to Λ ∈ T1 or T2. On the one hand, this implies that r = k1/4√
|1−w1w2|

. On the

other hand, since u and v can be changed in ωu and ω′v with ω, ω′ ∈ U4, we can impose
u1 = exp iθ with θ ∈ [0, π

2
[ and v2 = exp iθ′ where

θ′ = (k − 1)π
4
− θ − arg(1− w1w2).

With our choices, the triple (θ, w1, w2) belongs to U = [0, π
2
)× D2.

If k = 1, we have Λ = Ψ1(θ, w1, w2) ∈ Ψ1(U). If k = 2, thanks to Proposition 10 Part
3, we have Λ = Ψ2(θ, w1, w2) ∈ Ψ2(U).

Uniqueness. Let Λ be in Tk. Suppose that Λ = Ψk(α,w1, w2) = Ψk(α
′, w′1, w

′
2) with

(α,w1, w2) and (α′, w′1, w
′
2) ∈ U . Let u = u(α,w1, w2), v = v(α,w1, w2), u′ = u(α′, w′1, w

′
2)

and v′ = v(α′, w′1, w
′
2). The two cylinders

o

Ck(α,w1, w2) and
o

Ck(α,w1, w2) must be equal,
otherwise one of them would contains nonzero elements of Λ. Hence r = r′ and by Lemma
23, u′ ∈ U4u. Since α and α′ are both in [0, π

2
[, it follows that u = u′ and α = α′. Hence

v2w2 = v′2w
′
2. Again v′ = ωv with ω ∈ U4, therefore w′1u1 = ωw1u1 and v′2 = ωv2. It

follows that w′1 = ωw1 and w′2ω = w2 which in turn imply w′1w
′
2 = w1w2. Now by definition

of Ψk, detC(u, v) = detC(u′, v′) = 1 or 1 + i, hence u1v2(1− w1w2) = u′1v
′
2(1− w′1w′2) and

taking into account the relations u′1 = u1 and w′1w
′
2 = w1w2, we obtain v2 = v′2. Finally,

this implies, ω = 1 and (α′, w′1, w
′
2) = (α,w1, w2). �



GAUSS LATTICES AND COMPLEX CONTINUED FRACTIONS 31

8.2. Symmetries of the transversal. Given (θ, w1, w2) ∈ R×D2, we would like to know
what are the conditions on (θ, w1, w2) in order that Ψ1(θ, w1, w2) ∈ T1 and Ψ2(θ, w1, w2) ∈
T2. Thanks to Theorem 7 and to the distance formula (Lemma 14), these conditions are
given by a finite set of inequalities on w1 and w2 and do not depend on θ. As for Theorem
7, the symmetries of the transversal simplify the statement. Actually, it can be reduced
to the case

w1 ∈ C = {z ∈ D : arg z ∈ [0, π
4
]}

and the other cases, w1 ∈ {z ∈ D : arg z ∈ [kπ
4
, (k+1)π

4
]}, k = 1, . . . , 7, will be obtained by

simple transformations.
Let T 0

1 and T 0
2 be the subset of T1 and T2 defined by

T 0
1 =T1 ∩ {Λ = Ψ1(θ, w1, w2) :

(θ, w1, w2) ∈ [0, π
2
)× C ×D), Λ ∩

o

C1(θ, w1, w2) = {0}},
T 0

2 =T2 ∩ {Λ = Ψ2(θ, w1, w2) :

(θ, w1, w2) ∈ [0, π
2
)× C ×D), Λ ∩

o

C1(θ, w1, w2) = {0}}.
Recall that D8 is the group of isometries acting on C generated by the multiplications by
elements in U4 and by the conjugation. For ϕ ∈ D8, consider the map Fk,ϕ : Tk → Ω2

defined by
Fk,ϕ(Ψk(θ, w1, w2)) = Ψk(θ, ϕ(w1), 1

ϕ(1)2ϕ(w2)).

This map is well defined because by Proposition 27, for each Λ ∈ Tk, there exists

(θ, w1, w2) unique in [0, π
2
[×D2 such that ψk(θ, w1, w2) = Λ and Λ ∩

o

Ck(θ, w1, w2) = {0}.
Our aim is to prove:

Proposition 28. For k = 1, 2,

Tk =
⋃
ϕ∈D8

Fk,ϕ(T 0
k ).

Since
D = ∪ϕ∈D8ϕ(C),

the proposition is an obvious consequence of the following lemma.

Lemma 29. For k = 1, 2 and ϕ ∈ D8

Fk,ϕ(Tk) = Tk.

Proof of Lemma 29. 1. It is enough to prove that Fk,ϕ(Tk) ⊂ Tk for all ϕ ∈ D8. Indeed, if
so, we have Fk,ϕ−1(Fk,ϕ(Tk)) ⊂ Fk,ϕ−1(Tk) ⊂ Tk and since the elements in D8 are R-linear,
for Λ = Ψk(θ, w1, w2) ∈ Tk, we have

Fk,ϕ−1(Fk,ϕ(Ψk(θ, w1, w2))) = Fk,ϕ−1(Ψk(θ, ϕ(w1), 1
ϕ(1)2ϕ(w2))

= Ψk(θ, ϕ
−1(ϕ(w1)), 1

ϕ−1(1)2ϕ
−1( 1

ϕ(1)2ϕ(w2)))

= Ψk(θ, w1,
1

ϕ−1(1)2
1

ϕ(1)2w2)

= Ψk(θ, w1, w2),

which implies that Fk,ϕ−1(Fk,ϕ(Tk)) = Tk.

2. Call E1 = (Z[i] \ {0})2 and E2 = (Z[i] \ {0})2 ∪ J2. For each ϕ, ψ ∈ D8, the
maps f(a, b) = (ψ(a), ϕ(b)) induce a bijection on Ek. It is an immediate consequence of
ϕ(Z[i]) = ψ(Z[i]) = Z[i] and ϕ(J) = ψ(J) = J .
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3. Let θ ∈ [0, π
2
[, w1, w2 ∈ D, w′1 = ϕ(w1), and w′2 = 1

ϕ(1)2ϕ(w2)

u = u(θ, w1, w2) = (u1, v2w2), v = v(θ, w1, w2) = (u1w2, v2)

u′ = u(θ, w′1, w
′
2) = (u′1, v

′
2w
′
2), v′ = v(θ, w′1, w

′
2) = (u′1w

′
2, v
′
2).

Suppose that Λ = Z[i]u + Z[i]v ∈ Tk and Λ ∩ Ck(θ, w1, w2) = {0}. Consider Λ′ =
Z[i]u′+Z[i]v′. By definition Λ′ = Fk,ϕ(Λ). We want to show that Λ′ ∈ Tk. By Proposition
11 about the symmetries, for all nonzero complex numbers a, b,

|au− bv|u,v = |ϕ(1)ϕ(a)u′ − ϕ(b)v′|u′,v′ .

By 2, it follows that |a′u′ − b′v′|u′,v′ > 1 for all (a′, b′) ∈ Ek iff |au − bv|u,v > 1 for all
(a, b) ∈ Ek. Since Λ is in Tk, |au − bv|u′,v′ > 1 for all (a, b) ∈ Ek which implies that
|a′u′ − b′v′|u′,v′ > 1 for all (a′, b′) ∈ Ek and we are done. �

8.3. Determination of the open transversals T1 and T2 with the (θ, w1, w2)-
coordinates. Recall that

C ={w ∈ C : |w| < 1, argw ∈ [0, π
4
]},

D ={w ∈ C : |w| < 1, d(w, 1) > 1, d(w, 1− i) > 1},

T ={w ∈ C : |w| < 1, d(w, 1) >
√

2, d(w,−i) >
√

2}
and that the parametrizations Ψ1 and Ψ2 have been defined in Proposition 27.

Consider the following pairs of closed disks in C:

R̄ed1 = D(i, 1), R̄ed2 = D(−i, 1)

B̄lue1 = D(1−i
2
, 1√

2
), B̄lue2 = D(1 + i, 1)

Ḡreen1 = D(1 + i, 1), Ḡreen2 = D(1−i
2
, 1√

2
).

see the Figure 3 in Subsection 4.3.
Let W 0

1 be the set of (w1, w2) in C × D such that one of the four conditions

(1) w2 ∈ Ḡreen2 and w1 /∈ R̄ed1 ∪ Ḡreen1,
(2) w2 ∈ R̄ed2 \ Ḡreen2 and w1 /∈ R̄ed1,
(3) w2 /∈ R̄ed2 ∪ B̄lue2 and w1 6= 0,
(4) w2 ∈ B̄lue2 and w1 /∈ B̄lue1,

holds, and let

W1 = {(ϕ(w1), 1
ϕ(1)2ϕ(w2)) : ϕ ∈ D8, (w1, w2) ∈ W 0

1 }.

Let

W 0
2 = C \D(−i,

√
2)× T

and let

W2 = {(ϕ(w1), 1
ϕ(1)2ϕ(w2)) : ϕ ∈ D8, (w1, w2) ∈ W 0

2 }.

Theorem 8. Let (θ, w1, w2) be in [0, π
2
[×D2. Then

• Ψ1(θ, w1, w2) ∈ T1 iff (w1, w2) ∈ W1,
• Ψ2(θ, w1, w2) ∈ T2 iff (w1, w2) ∈ W2.

Abridge proof of Theorem 8. With (w′1, w
′
2) = (ϕ(w1), 1

ϕ(1)2ϕ(w2)), we have Ψk(θ, w1, w2) ∈
Tk iff Ψk(θ, w

′
1, w

′
2) ∈ Tk according to Proposition 11 about the symmetries of the transver-

sal. Then, we follow the proof of Corollary 19 using Proposition 13 with strict inequali-
ties. �
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Remark 7. The conditions for Ψk(θ, w1, w2) to be in the full transversal are similar, just
replace the closed disks by open disks and take care of the particular case w1 = 0. In this
latter case Ψ1(θ, w1, w2) is in the transversal whatever w2 is.

8.4. The first return map in the (θ, w1, w2)-coordinates. Let us denote by R : T →
T ′ the first return map in the full transversal T ′. We want to find the formula

R(θ, w1, w2) = (θ′, w′1, w
′
2)

in the coordinates (θ, w1, w2). As the example in Subsection 4.4, shows the minimal
vectors following one minimal vector are not necessarily unique up to a multiplicative
factor in U4. This makes the map TG multi-valued. In order to avoid this drawback we
restrict the first return map to T ′ \N = T \N (see the definition 6.2 where N is defined).

Recall that the set N is negligible, is invariant by the flow and contains the lattices
with nonzero vectors on the axes. Therefore, the restriction of the first return map

R : T \ N → T \ N

is a bijection.
For k = 1, 2, let W ′

k be the set of (θ, w1, w2) ∈ Wk such that Ψk(θ, w1, w2) /∈ N . Let TG
be the map defined on the disjoint union of W ′

1 and W ′
2 according to Theorem 3:

• If (w1, w2) ∈ W1, let a ∈ {1, 1 + i} and g ∈ Z[i] be such that −a(1, w2) + g(w1, 1)
is minimal for the preorder ≺ in the set{

−a(1, w2) + g(w1, 1) : a ∈ {1, 1 + i}, g ∈ Z[i], | a
w1
− g| < 1

}
.

We then have

TG(w1, w2) =

(
g − a

w1

,
1

g − aw2

)
and TG(w1, w2) ∈ W1 or W2 according to a = a1(w1, w2) = 1 or a = a1(w1, w2) =
1 + i.
• If (w1, w2) ∈ W2, let g ∈ Z[i] be such that − 1

1+i
(1+w1, w2+1)+g(w1, 1) is minimal

for the preorder ≺ in the set{
− 1

1+i
(1 + w1, w2 + 1) + g(w1, 1) : g ∈ Z[i], | 1

(1+i)w1
+ 1

(1+i)
− g| < 1

}
.

We then have

TG(w1, w2) =

(
g − 1

(1 + i)w1

− 1

(1 + i)
,

1

g − 1
(1+i)

w2 − 1
(1+i)

)
and TG(w1, w2) is always in W1. In that case, we set a = a2(w1, w2) = 1

1+i
.

Formally the map TG should be defined on ({1}×W ′
1)∪ ({2}×W ′

2) with values in the
same set.

Now we are able to compute the first return map in (θ, w1, w2) coordinates.

Theorem 9. Let k = 1 or 2. Let (θ, w1, w2) be in [0, π
2
[×W ′

k. Then

R ◦Ψk(θ, w1, w2) = Ψj(θ
′, α2TG(w1, w2))

where

• j = 2 when ak(w1, w2) = 1 + i and j = 1 otherwise,
• α = α(θ, w1) is the only element in U4 such that θ′ = θ + argw1 + argα ∈ [0, π

2
[.
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Figure 4. Iterates of the map TG with one initial point. Only the couple
(w1, w2) in T1 with w1 ∈ C are plotted, w1 in the left disk and w2 in the
right disk. The color is chosen according to the regions in Corollary 19. In
the second rectangle, the orange points have been suppressed.

Proof. Set (w′1, w
′
2) = TG(w1, w2). By Theorem 3 and the definitions of the parametriza-

tions Ψ1 and Ψ2 and of the map TG,

R ◦Ψk(θ, w1, w2) = Ψj(θ + argw1, w
′
1, w

′
2)

where j = 2 iff ak(w1, w2) = 1+i. The only thing we have to worry about is that θ+argw1

might be outside the interval [0, π
2
[. In any cases, there exists α ∈ U4 unique such that

θ′ = θ + argw1 + argα ∈ [0, π
2
[. So, if we change the vectors u(θ + argw1, w

′
1, w

′
2) and

v(θ + argw1, w
′
1, w

′
2) in αu(θ + argw1, w

′
1, w

′
2) and 1

α
v(θ + argw1, w

′
1, w

′
2), we obtain the

same lattice and we do not change the determinant (see Proposition 27 the definition of
u(.) and v(.)). Now,

αu(θ + argw1, w
′
1, w

′
2) = u(θ + argw1 + argα, 1

α2w
′
1, α

2w′2)
1
α
v(θ + argw1, w

′
1, w

′
2) = v(θ + argw1 + argα, 1

α2w
′
1, α

2w′2)

and since 1
α2 = α2, we are done. �
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Figure 5. Iterates of the map TG: the points in T2.

9. Invariant measures, Proof of Theorem 4

We want to find the measure induced by the Haar measure and the flow (gt)t on the
transversal T in the coordinates systems Ψ1(θ, w1, w2) and Ψ2(θ, w1, w2) (see Proposition
27 the definitions of the parametrizations Ψk). The Haar measure is defined up to a
multiplicative constant and can be defined with an invariant volume form α on SL(2,C).
To take advantage of the C-linearity of the differential of Ψk with respect to w1, w2, we use
the following volume form. Let ω be the differential form of degree 3 defined on M2(C)
by

ωM(M1,M2,M3) = det(M,M1,M2,M3)

where M2(C) is identified with C4. Since for every matrix A ∈M2(C),

det(AM,AM1, AM2, AM3) = det(MA,M1A,M2A,M3A)

= (detA)2 det(M,M1,M2,M3),

the form ω is SL(2,C)-invariant and

α = −iω ∧ ω
is a volume form on SL(2,C) and defines a Haar measure µ1 on SL(2,C) (see below the
definition of ω). We restate Theorem 4.

Theorem 10. Using the parametrization Ψk, k = 1, 2 of the transversal Tk, the Haar
measure µ1 associated with the volume form α and the flow gt induce a measure ν with
density

h(θ, w1, w2) =
32

|1− w1w2|4
with respect of the Lebesgue measure of [0, π/2]× D2.

Before we prove the above theorem, we wish to compute the volume of the space of lat-
tices SL(2,C)/ SL(2,Z[i]). This volume can be deduced from the volume of SL(2,Z[i]))\H3

where H3 = C+ jR>0 is the three-dimensional hyperbolic space. Indeed, consider the left
action of SL(2,C) on the three-dimensional hyperbolic space H3 defined by

M.(z + rj) =
(az + b)(c̄z̄ + d̄) + ac̄r2 + jr

|cz + d|2 + |c|2r2
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for M =

(
a b
c d

)
∈ SL(2,C) and z + rj ∈ H3. The stabilizer of j is K = SU(2,C).

Choosing an appropriate Haar measure µ2 on SL(2,C), we have

Vol(SL(2,C)/ SL(2,Z[i])) = Vol(SL(2,Z[i]))\H3)× Vol(SU(2,C)).

The measure µ2 can be chosen in order that in the above formula,

Vol(SU(2,C)) = Vol(S3) = 2π2

is the volume of the unit sphere S3 with respect to the standard Euclidean distance and
Vol(SL(2,Z[i]))\H3) is computed with respect to the hyperbolic metric on H3. In that
case

Vol(SL(2,Z[i]))\H3) =
|d|

3
2

4π2
ζK(2)

where d = −4 is the discriminant of the quadratic field K = Q + iQ = Q[
√
−1] and

ζK(s) =
∑

1
(a2+b2)s

where the sum is computed over all the nonzero ideals (a + ib)Z[i] in

Z[i] (see [8] p. 311-312). Actually, ζK(2) = π2

6
C where C =

∑
n≥0

(−1)n

(2n+1)2 is the Catalan

number.
So we have two Haar measures on SL(2,C)/ SL(2,Z[i]), one obtained with the volume

form α and a second obtained from H3 and SU(2,C). It is possible to compute the
normalization factor between the two Haar measures µ1 and µ2, in fact

µ1 = 16µ2,

which leads to

Volα(SL(2,C)/ SL(2,Z[i])) = 16× (2π2)× (
| − 4|

3
2

4π2
ζK(2))

= 64ζK(2) =
32π2

3

∑
n≥0

(−1)n

(2n+ 1)2
.

Proof of Theorem 10. The parametrizations Ψk, k = 1, 2 can be factorized, Ψk = Φk ◦Fk.
Indeed, let Φk : C∗ × D2 → SL(2,C), k = 1, 2, be the maps defined by

Φ1(u1, w1, w2) =

(
u1 u1w1

v2w2 v2

)
where v2 = v2(u1, w1, w2) = 1

u1(1−w1w2)
and

Φ2(u1, w1, w2) =

(
u1 u1w1

v′2w2 v′2

)(
1 1

1+i

0 1
1+i

)
where v′2 = v′2(u1, w1, w2) = (1 + i)v2(u1, w1, w2). Let Fk : R × D2 → C∗ × D2, k = 1, 2,

be the maps defined by Fk(θ, w1, w2) = (u1 = reiθ, w1, w2) where r = k1/4√
|1−w1w2|

. By

definition, Ψk = Φk ◦ Fk.
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The first step is to compute the pull back Φk∗ω. Let p = (u1, w1, w2). Straightforward
calculations lead to

(Φ1∗ω)p(
∂
∂u1
, ∂
∂w1

, ∂
∂w2

) = det


u1 1 0 0
u1w1 w1 u1 0
v2w2 w2

∂v2

∂u1
w2

∂v2

∂w1
v2 + w2

∂v2

∂w2

v2
∂v2

∂u1

∂v2

∂w1

∂v2

∂w2


=

−2

u1(1− w1w2)2
,

hence

(Φ1∗ω)p =
−2

u1(1− w1w2)2
du1 ∧ dw1 ∧ dw2.

Using that v′2 = (1 + i)v2, we obtain

(Φ2∗ω)p = det

(
1 1

1+i

0 1
1+i

)2 −2(1 + i)2

u1(1− w1w2)2
du1 ∧ dw1 ∧ dw2

=
−2

u1(1− w1w2)2
du1 ∧ dw1 ∧ dw2.

Let us now use the conjugation. Consider the maps c : C∗ × D2 → C∗ × D2 and
C : SL(2,C)→ SL(2,C) defined by

c(u1, w1, w2) = (u1, w1, w2),

C(

(
a b
c d

)
) =

(
a b
c d

)
.

The form ω is defined by ω = C∗ω. Since C ◦ Φk = Φk ◦ c, we have

Φk∗ω = (C ◦ Φk)∗ω

= (Φk ◦ c)∗ω
= c∗Φk∗ω.

With u1 = u11 + iu12, w1 = w11 + iw12 and w2 = w21 + iw22, we have

du1 = du11 + idu12 and du1 = c∗du1 = du11 − idu12.

Hence,

c∗(
−2

u1(1− w1w2)2
du1 ∧ dw1 ∧ dw2)

=
−2

c(u1)(1− c(w1)c(w2))2
c∗du1 ∧ c∗dw1 ∧ c∗dw2

=
−2

u1(1− w1w2)2
du1 ∧ dw1 ∧ dw2

Therefore, in the coordinates system (u1, w1, w2), the Haar measure is associated with the
differential form

(Φk∗α)p = −i 4

|u1|2|1− w1w2|4
du1 ∧ dw1 ∧ dw2 ∧ du1 ∧ dw1 ∧ dw2

=
32

|u1|2|1− w1w2|4
du11 ∧ du12 ∧ dw11 ∧ dw12 ∧ dw21 ∧ dw21.
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In coordinates (u1, w1, w2), the diagonal flow gt writes

gt(u1, w1, w2) = (etu1, w1, w2)

and is associated with the vector field X(p) = (u1, 0, 0).
In order to compute the measure induced by the Haar measure and the flow gt, it is

enough to compute the Jacobian of the map

(t, θ, w1, w2)→ gt ◦ Fk(θ, w1, w2) = (ret+iθ, w1, w2)

at the point (0, θ, w1, w2). It is the 6× 6 determinant

det


r cos θ −r sin θ . . . .
r sin θ r cos θ . . . .

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = r2.

Finally, we obtain the density

h(θ, w1, w2) =
32r2

|u1|2|1− w1w2|4
=

32

|1− w1w2|4
.

�

10. Dirichlet best constant, proof of Theorem 5

Let θ be complex number. The Dirichlet constant associated with θ is the infimum
C(θ) of constants C such that for any real number Q ≥ 1 there exist p, q ∈ Z[i] such that{

0 < |q| < Q
|qθ − p| ≤ C

Q

.

The best constant in Theorem 5 is then CD = sup{C(θ) : θ ∈ C}.
Let (pn, qn) ∈ Z[i]2, n ∈ Iθ ⊂ N, be a sequence of best approximations vectors of θ such

that

1 = |q0| < |q1| < · · · < |qn| < . . . ,

and including all the the best approximation denominators: if (p, q) is a best approxi-
mation vector then there is an n ∈ Iθ such that |q| = |qn|. The sequence is infinite, i.e.
Iθ = N, iff θ /∈ Q[i].

Then, it is clear that

C(θ) = sup{|qn+1||qnθ − pn| : n, n+ 1 ∈ Iθ}.

If we want to study the best Dirichlet constant for all large enough Q when θ /∈ Q[i], we
have to use the constant

C ′(θ) = lim sup
n→∞

|qn+1||qnθ − pn|.

instead of the constant C(θ). By Proposition 9, the sequence of best approximation
vectors of θ is the sequence of minimal vectors of the lattice

Λθ =

(
1 −θ
0 1

)
Z[i]2 = MθZ[i]2.
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More precisely, the sequence Mθ

(
pn
qn

)
, n ∈ Iθ, contains exactly one element equivalent

to any minimal vector of Λθ with nonzero second coordinate. It follows that the best
Dirichlet constant CD is bounded above by

CS = sup |u1||v2|
where the supremum is taken over all Gauss unimodular lattices Λ in C2 and all the pairs
u = (u1, u2), v = (v1, v2) of consecutive minimal vectors in Λ with 0 < |u2| < |v2|. The
proof is now done in two steps:

(1) We prove that CS = 1√
6−3
√

3
=

√
2

3−
√

3
,

(2) We prove that for almost all θ ∈ C, C ′(θ) = CS.

10.1. Step 1.

10.1.1. A first reduction to compute CS. Let u = (u1, u2) and v = (v1, v2) be two con-
secutive minimal vectors of a unimodular Gauss lattice Λ in C2. Then |u1| > |v1| and
|v2| > |u2| and by Theorem 1, the index of the sublattice Z[i]u+Z[i]v in Λ, is one or two.
Thus, we can write {

u = (u1, v2w2), |w2| < 1
v = (u1w1, v2), |w1| < 1

and | detC(Z[i]u + Z[i]v)| = |u1v2(1 − w1w2)| = 1 or
√

2 depending on the index 1 or 2.
Set

C1 = supu1v2 = sup
1

|1− w1w2|
where the supremum is taken over all unimodular lattices Λ and all pairs of consecutive
minimal vectors u, v of index 1 in Λ and set

C2 = supu1v2 = sup

√
2

|1− w1w2|
where the supremum is taken over all unimodular lattices Λ and all pairs of consecutive
minimal vectors u, v of index 2 in Λ. Then

CS = max(C1, C2).

Thanks to Proposition 11, using the symmetries associated with ϕ ∈ D8, we can suppose
that w1 ∈ C. We can now evaluate C1 and C2 using Corollary 19 that gives necessary and
sufficient conditions on w1 and w2 so that u and v are consecutive minimal vectors.

10.1.2. We show that C1 = 1√
6−3
√

3
. We want to bound above the function f(w1, w2) =

1
|1−w1w2| . In the particular case w1 = 0, f(w1, w2) = 1 so that f(w1, w2) ≤ 1√

6−3
√

3
. From

now on, we suppose w1 6= 0.
Recall the notations

Red1 = D(i, 1), Red2 = D(−i, 1)

Blue1 = D(1−i
2
, 1√

2
), Blue2 = D(1 + i, 1)

Green1 = D(1 + i, 1), Green2 = D(1−i
2
, 1√

2
).

Let u = (u1, v2w2) and v = (u1w1, v2) be two vectors in C2 with |u1|, |v2| > 0, |w1|, |w2| <
1, and w1 ∈ C \ {0}.
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By Corollary 19, zero is the only vector of Z[i]u + Z[i]v that is in
o

C(u, v) iff w2 ∈ D
and one of the four conditions

(1) w2 ∈ Green2 and w1 /∈ Red1 ∪Green1,
(2) w2 ∈ Red2 \Green2 and w1 /∈ Red1,
(3) w2 /∈ Red2 ∪Blue2,
(4) w2 ∈ Blue2 and w1 /∈ Blue1,

holds.
So we have to compute the supremum of the function f(w1, w2) = 1

|1−w1w2| over the four

regions defined by (1), (2), (3) and (4).
In the following we assume the arguments of complex numbers are in [0, 2π[.

Region 1: (w1, w2) ∈ C \ {0} × D, w2 ∈ Green2 and w1 /∈ Red1 ∪Green1.
We have to minimize the distance from w1w2 to 1 when (w1, w2) is in region 1. If w1 is

on the circle of radius r1 centered at 0 and w2 on the circle of radius r2 centered at 0, the
point w1w2 is on the circle of radius r1r2 and will be closest to 1 when the arguments of
w1 and w2 are maximal. It follows that the infimum of the distances |1−w1w2| is reached
when w1 and w2 are in the following arcs of circle (see Figure 3 in Subsection 4.3)

(a) w1 is in the arc Ca of the circle C(i, 1) from z0 = 0 to z1 = 1/2 + (1 −
√

3/2)i
(positive orientation),

(b) w1 is in the arc Cb of the circle C(1 + i, 1) from z1 to z2 = 1

and

(c) w2 is in the arc Cc of the circle C(1, 1) from z0 to z3 = −iz1,
(d) w2 is in the arc Cd of the circle C(1− i, 1) from z3 to z4 = −i.

We are going to show that the infimum of |1− w1w2| is

r = |1− z1z3| =
√

6− 3
√

3.

Case w1 ∈ Ca and w2 ∈ Cc. Clearly |w1w2| ≤ |z1z3| and 3π/2 ≤ argw1w2 ≤ arg z1z3.
Now z1z3 = 1−

√
3/2− i(

√
3−3/2), |z1z3| = 2−

√
3 and arg z1z3 = 2π−π/3, hence w1w2

is in the sector

S = {z ∈ C : 3π/2 ≤ argw1w2 ≤ 2π − π/3, |z| ≤ 2−
√

3}.
Since z1z3 ∈ C(1, r) and |z1z3| = 2 −

√
3 < 1/2 = cosπ/3, this sector doesn’t intersect

the open disk D(1, r), hence |1− w1w2| ≤ r.

Case w1 ∈ Ca and w2 ∈ Cd. Suppose first that w1 /∈ D(1, r). It is enough to
prove that <(w1w2) ≤ 1 − r. We have <(w1w2) = |w1w2| cos(argw1w2). As before
argw1w2 ∈ [3π/2, arg z1z3], so that cos(argw1w2) ≤ cos(arg z1z3) = 1/2. Let w0 = x + iy
be the unique point in Ca ∩ C(1, r). We have that |w1| ≤ |w0| so that <(w1w2) =
|w1w2| cos(argw1w2) ≤ |w0|/2. The complex number w0 = x+ iy can easily be calculated
because its real part is solution of an equation of degree 2. We find that x ≤ 0.103... and
y ≤ 0.0054... so that |w0| ≤ 0.11. Since 1− r ≥ 0.10 > |w0|/2, we are done.

When w1 ∈ D(1, r) and in the remaining cases below, we shall use the following simple
lemma. It is an easy consequence of the fact that two circles meet in two points at most.

Lemma 30. Let C1 and C2 be two circles in the plane and let p1, p2 and p3 be three
distinct points in C1. If p1 and p2 are not in the interior of C2 while p3 is in the closed
disk associated with C2, then the closed arc of the circle C1 between p1 and p2 that doesn’t
contain p3, doesn’t intersect the interior of C2.
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We now use the lemma with C1 = w1C(1− i, 1) and C2 = C(1, r). Since w1 ∈ Ca and
z3 ∈ Cc, the products w1z3 is not in the interior of C2. Next w1z4 = −iw1 ∈ C(1, 1) is
not in the interior of C2 while the product w1 × 1 is in the closed disk associated with
C2. Therefore, using Lemma 30 with p1 = w1z3, p2 = w1z4 and p3 = w1 × 1, we obtain
that w1Cd doesn’t meet the interior of C2.

Case w1 ∈ Cb and w2 ∈ Cc. We have w1w2 = w′1w
′
2 with w′1 = iw2 ∈ Ca and

w′2 = −iw1 ∈ Cd so we are done thanks to the above case.

Case w1 ∈ Cb and w2 ∈ Cd. We fix w2 ∈ Cd. The points w2z1 and w2z2 = w2 are not
in the interior of C2 while w2 × i is in the interior of C2, therefore, by Lemma 30, w2Cb

doesn’t meet the interior of C2.

Region 2: (w1, w2) ∈ C \ {0} × D, w2 ∈ Red2 \Green2 and w1 /∈ Red1.
As before, if w1 is on the circle of radius r1 and w2 on the circle of radius r2, the point

w1w2 is on the circle of radius r1r2 and will be closest to 1 when the arguments of w1

and w2 are maximal. It follows that the infimum is reached when w1 and w2 are in the
following arcs of circle (see Figure 3)

(a) w1 is in the arc ∈ Ca of the circle C(i, 1) from the point z0 = 0 to the point
z1 = z1 = i+ eiπ/3 = eiπ/6 (positive orientation).

(b) w2 is in the arc Cb of the circle C(1−i
2
, 1√

2
) from the point z0 = 0 to the point

z2 = −i (positive orientation).

The points three points z0 = 0, z2 = −i et z3 = 1− i are on the circle C1 = C(1−i
2
, 1√

2
).

The products z1z0 and z1z2 = e−iπ/3 are on the circle C2 = C(1, 1) and the product
z1z3 =

√
2e−iπ/12 is in the interior of C2. Therefore, by Lemma 30, the arc z1Cb doesn’t

meet the interior of C2 which means that

|1− z1w2| ≥ 1

for all w2 ∈ Cb.
Next fix w2 ∈ Cb. The three points z′1 = w2z0, z′2 = w2z1 and z′3 = w2(1 + i) are on

the circle C3 = w2C(i, 1). The point z′1 is not in the interior of the circle C2 and we
just proved that z′2 is not in the interior of the circle C2 either, while z′3 is on the circle
(1 + i)C(1−i

2
, 1√

2
) = C2. Therefore, by Lemma 30, the arc w2Ca doesn’t meet the interior

of the circle C2 which means that

|1− w2w1| ≥ 1

for all w1 ∈ Ca.

Region 3: (w1, w2) ∈ C \ {0} × D, w2 /∈ Red2 ∪Blue2.
If w2 /∈ Red2 ∪Blue2, then either argw2 ≤ π/2 or

π/2 ≤ argw2 ≤ 7π/6.

In the latter case, since w1 ∈ C, we have

w1w2 ∈{z : π/2 ≤ arg z ≤ 7π/6 + π/4}
⊂ {z : <z ≤ 0}.

Therefore, |1 − w1w2| ≥ 1. In the former case, argw1w2 ≥ arg((1 −
√

3/2) + i/2) =

π/2− π/12. Therefore, |1− w1w2| ≥ cos(π/12) > r =
√

6− 3
√

3.

Region 4: (w1, w2) ∈ C \ {0} × D, w2 ∈ Blue1 and w1 /∈ Blue2.
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Again, if w1 is on the circle of radius r1 and w2 on the circle of radius r2, the point
w1w2 is on the circle of radius r1r2 and will be closest to 1 when the arguments of w1

and w2 are minimal. It follows that the infimum is reached when w1 and w2 are in the
following arcs of circle (see Figure 3)

(a) w1 in the arc Ca of the circle C(1−i
2
, 1√

2
) from the point z1 = 1 to the point z0 = 0.

(b) w2 in the arc Cb of the circle C(1, 1) from the point z2 = 1/2 + i
√

3/2 to the point
z3 = (1−

√
3/2) + i/2.

Fix w2 in Cb. The extremities of w2Ca are 0 and w2 and they are not inside the circle
C(1, 1). While the point w2(−i) ∈ w2C(1−i

2
, 1√

2
) is inside the circle C(1, 1). Therefore,

by Lemma 30, the arc w2Ca is outside the circle C(1, 1) which means that |1−w1w2| ≥ 1
for all w1 ∈ Ca

10.1.3. We show that C2 = 1√
6−3
√

3
. We suppose that u and v are of index 2. Thanks to

Proposition 11, we can suppose w1 ∈ C and thanks to Corollary 19, we know that, zero is

the only vector of 〈u, v〉J in
o

C(u, v), iff (w1, w2) ∈ (C \D(−i,
√

2))×T . We want to show
that inf |1− w1w2| = 3−

√
3.

Once again, if w1 is on the circle of radius r1 and w2 on the circle of radius r2, the
point w1w2 is on the circle of radius r1r2 and will be closest to 1 when the arguments of
w1 and w2 are minimal. It follows that the infimum is reached when w1 and w2 are in the
following arcs of circle (see Figures 5 and 6)

(a) w1 is in the arc Ca of the circle C(−i,
√

2) with extremities z0 = 1 and z1 =√
3−1
2

(1 + i),

(b) w2 is in the arc Cb of the circle C(1,
√

2) with extremities and z2 = i and z3 =√
3−1
2

(−1 + i).
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Figure 6. The infimum of |1− w1w2| on T2.

A short computation shows that ρ = |1− z1z3| = 3−
√

3 =
√

2
√

6− 3
√

3.
Our objective is to show that if w1 ∈ Ca and w2 ∈ Cb then

|1− w1w2| ≥ 3−
√

3.

It will implies that C2 =
√

2
3−
√

3
.

When w1 = z1, the points w1z2 and w1z3 are not inside the circle C = C(1, ρ) and
the point w1(−i) is inside C. Therefore, by Lemma 30, the arc w1Cb doesn’t meet the
interior of C.

Fix w2 ∈ Cb. The points w2z0 = w2 and w2z1 are not inside the circle C. If the point
w2(−1) were inside C, by Lemma 30, w2Ca would be outside C which means that

|1− w1w2| ≥ 3−
√

3.

However, w2(−1) could be outside the circle C. Let us determine the points w2 = x+iy ∈
Cb such that w2(−1) is inside the circle C: w2(−1) is inside C iff

|1− w2(−1)|2 < ρ2

⇔ (1 + x)2 + y2 < (3−
√

3)2

⇔x2 + y2 + 2x+ 1 < 12− 6
√

3.

Since w2 ∈ C(1,
√

2), x2 + y2 = 1 + 2x. Thus, w2(−1) is inside C iff x < 5−3
√

3
2

. So by

Lemma 30, if x ≤ 5−3
√

3
2

then |1− w1w2| ≥ 3−
√

3.

Call x0 = 5−3
√

3
2

, y0 =
√

2− (x0 − 1)2 and z4 = x0 + iy0. Let C′b and C′′b be the portions
of the arc Cb from z2 = i to z4 and from z4 to z3. Let C′a and C′′a be the portions of the
arc Ca from z0 = 1 to (−i)z4 and from (−i)z4 to z1 = (−i)z3.
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We already know that if w1 ∈ Ca and w2 ∈ C′′b then |1−w1w2| ≥ 3−
√

3. Since w2 ∈ Cb

and w1 ∈ C′′a imply (−i)w2 ∈ Ca and iw1 ∈ C′′b , it follows that if w2 ∈ Cb and w1 ∈ C′′b
then

|1− w1w2| = |1− iw1(−1)w2| ≥ 3−
√

3.

So we are left with the case w1 ∈ C′a and w2 ∈ C′b. Since |1− iw1| =
√

2,

|1− w1w2|2 = |1− w1(w2 − i+ i)|2 = |(1− iw1)− w1(w2 − i)|2

= 2 + |w1(w2 − i)|2 − 2<((1− iw1)w1(w2 − i)).
Furthermore, when w1 ∈ C′a and w2 ∈ C′b,

7π/4 ≤ arg(1− iw1) ≤ arg(1− z4)

2π − arg(−iz4) ≤ argw1 ≤ 2π

2π − arg(z4 − i) ≤ arg(w2 − i) ≤ 2π − 5π/4,

and arg(z4− i) = 5π/4 + ε1, arg(−iz4) = ε2 and arg(1− z4) = 7π/4 + ε3 where ε1, ε2 and
ε3 are positive and small. It follows that, modulo 2π, we have

7π/4− arg(−iz4)− arg(z4 − i) ≤ arg((1− iw1)w1(w2 − i)) ≤ arg(1− z4)− 5π/4

π/2− ε1 − ε2 ≤ arg((1− iw1)w1(w2 − i)) ≤ π/2 + ε3.

Now ε1 = arg(z4− i)− 5π/4 = 0.0.0518 · · · ≤ 0.06, and ε2 = arg(−iz4) = 0.109 · · · ≤ 0.11
therefore,

2<((1− iw1)w1(w2 − i)) ≤ 2
√

2|w2 − i| cos(π/2− ε1 − ε2)

≤ 2
√

2× 0.15× 0.17

≤ 0.08.

Finally, we obtain

|1− w1w2| ≥
√

2− 0.08 ≥ 1.38 ≥ 3−
√

3

and we are done.

10.2. Step 2, C ′(θ) = CS for almost all θ ∈ C. Consider the lattice Λ0 = Z[i]u+ Z[i]v
defined by the vectors u = (u1, u2) = r0(1, eiαw2) and v = (v1, v1) = r0(w1, e

iα) where

w1 = 1
2

+ (1−
√

3
2

)i,

w2 = (−i)w1,

r0 =
1√

|1− w1w2|
,

α = − arg(1− w1w2).

The lattice Λ0 is unimodular and by Theorem 2 (more precisely by Corollary 19), there

is no nonzero vector of Λ0 in the open cylinder
o

C(u, v) =
o

B∞(0, r0). The vectors u and v
has been chosen so that

|u1v2| = r2
0 = CS =

√
2

3−
√

3
.

Lemma 31. Let Λ be a lattice in C2 and let r be a positive real number. Suppose that
for some real number t, gtΛ ∩ B∞(0, r) = {0}. Then there exist two consecutive minimal
vectors u = (u1, u2) and v = (u2, v2) in Λ with |v2| > |u2| such that |u1v2| ≥ r2 and
|v2| ≥ ret.
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Proof. Let u = (u1, u2) be a minimal vector in gtΛ with |u1| ≥ r and |u1| minimal. Such a

minimal vector exists because by Lemma 6, there exist minimal vectors in
o

C2(r) and such
minimal vectors have a first coordinate with modulus ≥ r because gtΛ ∩B∞(0, r) = {0}.
Let v = (v1, v2) be a minimal element for the lexicographic preorder ≺ in gtΛ ∩

o

C1(r).
By Lemma 6, v is a minimal vector and again |v2| > r because gtΛ ∩ B∞(0, r) = {0}. If
w = (w1, w2) is a minimal vector in gtΛ with |w2| > |u2| then |w1| < |u1|. By definition

of u, this implies |w1| < r which implies successively that w ∈
o

C1(r) then that v ≺ w and
finally that |w2| ≥ |v2|. It follows that u and v are consecutive minimal vectors in gtΛ and
that B∞(0, r) ⊂ C(u, v). It follows that g−tu and g−tv are consecutive minimal vectors in
Λ and since |v2| > r, we have |etv2| > ret. Moreover |e−tu1e

tv2| = |u1||v2| ≥ r × r. �

Lemma 32. Let r be a positive real number. The set F of unimodular lattices Λ in C2

such that Λ ∩B∞(0, r) 6= {0}, is closed in SL(2,C)/ SL(2,Z[i]).

Proof. Let (Λn = MnZ[i]2)n be a sequence of lattices in F . Suppose that the sequence
converges to a lattice Λ = MZ[i]2. We want to show that Λ ∈ F . We can suppose that
the sequence of matrices (Mn)n converges to M w.l.o.g.. For each n, there exists a nonzero
vector Xn ∈ Z[i]2 such that Yn = MnXn ∈ B∞(0, r). Changing Xn into 2kXn for some
non-negative integer k, we can suppose that r/2 ≤ |Yn|∞ ≤ r. Since the matrices Mn

are all invertible and since the sequence (Mn) is convergent, there exists δ > 0 such that
‖Mn‖ ≥ δ > 0 for all n, where ‖A‖ is the operator norm of the matrix A associated with
the sup norm on C2. Therefore, |Xn|∞ ≤ r

δ
for n large enough. Thus there exist a vector

X ∈ Z[i]2 and an increasing sequence of integers nk such that Xnk
= X for all k. Since

|Mnk
Xnk
|∞ = |Ynk

|∞ ≥ r/2, MX = limk→∞Mnk
X = limk→∞ Ynk

is a nonzero vector of
Λ = MZ[i]2 in the ball B∞(0, r), which means that Λ ∈ F . �

End of proof of Theorem 5 and Theorem 5 bis. By Lemma 31, to prove that C ′(θ) ≥ r0

for almost all θ, it suffices to prove that the set

{θ ∈ [0, 1] + i[0, 1] : ∀T ≥ 0, ∀ε > 0,∃t ≥ T, gtΛθ ∩B∞(0, r0 − ε) = {0}}
has full Lebesgue measure in [0, 1] + i[0, 1]. Suppose on the contrary that the set

{θ ∈ [0, 1] + i[0, 1] : ∃T ≥ 0, ∃ε > 0,∀t ≥ T, gtΛθ ∩B∞(0, r0 − ε) 6= {0}}
has positive Lebesgue measure. Then there exist T ≥ 0 and ε > 0 such that the set

N = {Λθ : θ ∈ [0, 1] + i[0, 1] and ∀t ≥ T, gtΛθ ∩B∞(0, r0 − ε) 6= {0}}
has positive measure. By definition of N , for all Λθ ∈ N and all t ≥ T , there exists a
nonzero vector X(θ, t) ∈ Z[i]2 such that

Y (θ, t) = gtMθX(θ, t) ∈ B∞(0, r0 − ε).
Let H≤ be the subgroup of SL(d+ 1,C) defined by

H≤ =

{
h =

(
a 0
b a−1

)
∈ SL(2,C) : a ∈ C∗, b ∈ C

}
.

There exists δ > 0 such that for all A ∈ H≤

|A− Id|∞ ≤ δ ⇒ ∀t ≥ 0, ‖gtAg−1
t − Id‖ ≤

ε

2r0

where |M |∞ is the sup norm of the matrix M and ‖M‖ is its operator norm associated
with the sup norm. For all Λθ ∈ N , all t ≥ T and all A ∈ H≤ with |A − Id|∞ ≤ δ, we
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have

|gtAMθX(θ, t)|∞ = |gtAg−1
t gtMθX(θ, t)|∞

= |(gtAg−1
t − Id)gtMθX(θ, t) + gtMθX(θ, t)|∞

≤ |(gtAg−1
t − Id)gtMθX(θ, t)|∞ + |gtMθX(θ, t)|∞

≤ (‖gtAg−1
t − Id‖+ 1)|gtMθX(θ, t)|∞

≤ (
ε

2r0

+ 1)(r0 − ε)

≤ r0 −
ε

2
.

Therefore,

gtΛ ∩B∞(0, r0 − ε
2
) 6= {0}

for all Λ ∈ BH≤(Id, δ)N where BH≤(Id, δ) is the set of matrices M in the subgroup H≤
such that |M − Id|∞ ≤ δ and BH≤(Id, δ)N is the set of lattices of the shape AΛ with
A ∈ BH≤(Id, δ) and Λ ∈ N .

Let U be the set of unimodular lattices Λ such that Λ ∩ B∞(0, r0 − ε
2
) = {0}. By the

choice of r0, the lattice Λ0 is in U . By Lemma 32, U is open. So that U is a nonempty
open set and has a positive Haar measure in SL(2,C)/ SL(2,Z[i]). The action of the flow
gt, t ∈ R, on SL(2,C)/ SL(2,Z[i]) is ergodic, see [1] page 90 (it is also a direct consequence
of Mautner’s lemma and of the fact that SL(2,C) is generated by the matrices of the shape(

1 ∗
0 1

)
and

(
1 0
∗ 1

)
). It follows, by Birkhoff ergodic theorem applied to the flow gt and

to the function f = 1U , that for almost all lattices Λ, there exist arbitrarily large t such
that gtΛ ∈ U . Now, the set BH(Id, δ)N has positive Haar measure and by construction
for all lattice Λ in this set and all t ≥ T

gtΛ ∩B(r0 − ε
2
) 6= {0},

and therefore gtΛ /∈ U for all t ≥ T , a contradiction. �

11. Search of minimal vectors in a Gauss lattice in C2

In this subsection we address the problem of finding two consecutive minimal vectors
in a Gauss lattice in C2. The first step is to find one minimal vector and the second step
the next one.

Thanks to the Gauss reduction algorithm it can be done very efficiently.

11.1. The Gauss reduction algorithm. Given Gauss lattice in C2 we want to find a
minimal vector in this lattice. This can be done with a Gauss reduction algorithm and
the following observation:

If Λ is Gauss lattice in C2 and if u is a shortest vector of Λ for the standard Hermitian
norm then u is a minimal vector in Λ.

Indeed, if u = (u1, u2) is a shortest vector for the standard Hermitian norm then any
vector v = (v1, v2) in the cylinder C(u) such that |v1| < |u1| or |v2| < |u2| has a strictly
smaller Hermitian norm.

Given a basis of a lattice in a two-dimensional (real) Euclidean vector space, the Gauss
reduction algorithm provides a reduced basis of the lattice. This algorithm can be adapted
to the case of Gauss lattices in two-dimensional C-vector spaces equipped with an Her-
mitian norm. In [26] it is proved that the Gauss reduction algorithm works for lattices
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in C2 on Euclidean integer rings of imaginary quadratic fields. We state their result for
lattices on Z[i] without proof.

Definition 33. Let E be a two-dimensional C-vector space equipped with a norm ‖.‖.
A basis (u, v) of a Gauss lattice Λ = Z[i]u+Z[i]v is reduced with respect to the norm ‖.‖
if ‖u‖ = λ1(Λ, ‖.‖,C) and ‖v‖ = λ2(Λ, ‖.‖,C).

Let E be a two-dimensional C-vector space equipped with an Hermitian norm |.|E.
The Gauss reduction algorithm proceed as follows.

Input: A basis (u, v) of a Gauss lattice Λ in E.

(1) If |v|E < |u|E, exchange u↔ v.
(2) A := False
(3) Main loop: while A = False

(a) Compute w = (a+ ib)u the orthogonal projection of v on the line Cu.
(b) Find the Gaussian integer p closest to a+ ib and replace v with v − pu.
(c) If |u|E ≤ |v|E, A := True, else exchange u↔ v.

Output A reduced basis of Λ.

Proposition 34. The above algorithm find a reduced basis of Λ = Z[i]u + Z[i]v for the
norm |.|E in finitely many steps.

11.2. An algorithm finding consecutive minimal vectors. Let Λ be a Gauss lattice
in C2 and let u be a minimal vector in Λ. How to find a minimal vector v in Λ such that
u and v are consecutive ?

This problem can be solved with the following proposition.
Notation. For a positive real number t denote |.|t the Hermitian norm on C2 defined

by

|(z1, z2)|2t = |tz1|2 + |1
t
z2|2.

Proposition 35. Let Λ be a Gauss lattice in C2 and let u = (u1, u2) be a minimal vector
in Λ. Set

s =

√
4

π
| detC(Λ)| and t =

s

|u1|
.

Let (w,w′) be a reduced basis of Λ with respect to the norm |.|t. Then the minimal vector
v such that u and v are consecutive minimal vectors, belong to the set of vectors zw+z′w′

with z, z′ ∈ Z[i] and (|z|2 + |z′2|) < 23.

Proof. Let v = (v1, v2) be a minimal vector in Λ such that u and v are consecutive minimal

vectors, let s =
√
a| detC(Λ)| where a is a positive constant and let t = s

|u1| . We will make

the choice a = 4
π

only at the end of the proof. It is enough to prove that a can be chosen
so that for all z, z′ ∈ C, zw + z′w′ ∈ C(u, v) implies |z|2 + |z′|2 < 23.

The sup norm defined by

‖(z1, z2)‖t = max(|tz1|, |1t z2|)
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is bounded below by 1√
2
|(z1, z2)|t. By Lemma 7, 1

2
| detC(Λ)| ≤ |u1||v2| ≤ 4

π
| detC(Λ)| =

C| detC(Λ)|. Since,

λ2(Λ, |.|t,C) ≤
√

2λ2(Λ, ‖.‖t,C)

≤
√

2 max(‖u‖t, ‖v‖t)

=
√

2 max(s,
1

s
|u1||u2|, s |v1|

|u1| ,
1

s
|u1||v2|)

=
√

2 max(s,
1

s
|u1||v2|),

with s =
√
a| detC(Λ)|, we obtain

|w′|t = λ2(Λ, |.|t,C) ≤
√

2 max(s,
1

s
|u1||v2|)

≤
√

2 max(s,
C

s
| detC(Λ)|)

=
√

2 max(1,
C

a
)s = bs.

Now by Hadamard inequality,

| detC(Λ)| = | det(w,w′)| = | det|.|t(w,w
′)| ≤ |w|t|w′|t

where det|.|t(w,w
′) is the determinant computed in a |.|t-orthonormal basis, hence

|w|t ≥
| detC(Λ)|
|w′|t

≥ s

ab
.

Again, since |u1||v2| ≤ C| detC(Λ)| and s =
√
a| detC(Λ)|, the cylinder C(|u1|, |v2|)

is included in the closed ball of radius max(1, C
a

)s associated with this sup norm ‖.‖t.
Therefore, it is enough to find a constant A such that |z|2 + |z′2| > A implies |zw+zw′|t >√

2 max(1, C
a

)s = bs. Now, since the basis (w,w′) is reduced, |w ± w′|2t ≥ |w′|2t , which

implies |<〈w,w′〉t| ≤ 1
2
|w|2t , and |w ± iw′|2t ≥ |w′|2t implies |=〈w,w′〉t| ≤ 1

2
|w|2t as well.

Hence |〈w,w′〉t| ≤ 1√
2
|w|2t , and

|zw + z′w′|2t ≥ |z|2|w|2t + |z′|2|w′|2t −
√

2|z||z′||w|2t
≥ (1− 1√

2
)(|z|2 + |z′|2)|w|2t

≥ (
√

2−1√
2

)(|z|2 + |z′|2)( s
ab

)2.

Therefore, if |z|2 + |z′2| > A, then |zw + z′w′|2t ≥ (
√

2−1√
2

)( 1
ab

)2s2A. So we are done if

A ≥
√

2√
2−1

a2b4. The value a = C minimizes a2b4 and gives (recall that C = 4
π
),

√
2√

2−1
a2b4 = 4

√
2C2

√
2−1

= 64
√

2
(
√

2−1)π2 = 22.139...

�

Thanks to the proposition, the algorithm that finds two consecutive minimal vectors in
a Gauss lattice Λ ⊂ C2 goes as follows:

• Use the Gauss reduction algorithm to find a reduced base (u, u′) in Λ with respect
to the standard Hermitian norm. u is the first minimal vector of the pair.
• Once again, use the Gauss reduction algorithm to find a reduced base (w,w′) with

respect to the Hermitian norm |.|t where t is the parameter associated with u
defined in the proposition.
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• Find a minimal element for the lexicographic preorder among the vectors zw+z′w′

with z, z′ ∈ Z[i] and (|z|2 + |z′2|) < 23 that are in the infinite cylinder C1(u).

12. Miscellaneous questions and comments

12.1. The Hurwitz algorithm in the space of bases of C2. Consider a basis u =
(u1, u2), v = (v1, v2) of the vector space C2. We define a map H that associates a new
basis u′ = (u′1, u

′
2), v′ = (v′1, v

′
2) to each basis u, v. This map is defined only when u1 6= 0

and v1 6= 0. The first vector u′ is defined by u′ = v and v′ is defined as follows. Set
w1 = v1

u1
. We define v′ = (v′1, v

′
2) = u− gv where g is the Gaussian integer such that

v′1
v1

=
u1 − gw1u1

w1u1

=
1

w1

− a ∈ S = [−1
2
, 1

2
) + [−1

2
, 1

2
)i.

For the new basis u′, v′, we have

v′1
u′1

=
v′1
v1

=
1

w1

− g = w′1 ∈ S

and therefore v′1 = w′1u
′
1 with w′1 ∈ S. We recognize the Hurwitz continued fraction

algorithm applied to w1. The map H is defined on the set of pairs of independent vectors
(u, v) such that the first coordinates of u and v are nonzero. Observe that Z[i]u′+Z[i]v′ =
Z[i]u+ Z[i]v and that detCH(u, v) = − detC(u, v).

Remark 8. In Theorem 3, the map TG was defined by a good choice of a Gaussian integer
g and of a ∈ {1, 1 + i} such that | a

w1
− g| < 1, while in the Hurwitz algorithm there is a

unique Gaussian integer g such 1
w1
− g = w′1 ∈ S.

There are two simple questions:

• If (u, v) is a pair of consecutive minimal vectors in a Gauss lattice Λ ⊂ C2 and
(u′, v′) = H(u, v) is defined, is it true that v′ is a minimal vector in Λ ?

• Is it possible to continue the process : if v′ is still a minimal vector and H(u′, v′) =
(u′′, v′′), is v′′ minimal ?

12.2. Ergodic theory and the first return map. Let θ be in C and let Xn(Λ) =
(xn(θ), yn(θ)), n ∈ N, be the sequence of minimal vectors of the lattice Λθ. We can ask
several questions about the quantities xn(θ) and yn(θ).

• (Levy-Khintchin theorem) Show that for almost all θ ∈ C

lim
n→∞

1

n
ln |yn(θ)| = C

where C is a constant that can be computed with the Haar measure of SL(2,C)/ SL(2,Z[i])
and the induced measure ν (see Theorem 10). What can be said about the se-

quence ( yn(θ)
|yn(θ)|)n? Is this sequence almost surely equidistributed in the unit circle?

• (Bosma-Jager-Wiedijk theorem) Show that for almost all θ ∈ C, the sequence of
probabilities

1

n

n−1∑
k=0

δxn(θ)yn(θ)

converges in measure to a probability λ in C. Show that λ has a density with
respect to the Lebesgue measure and compute this density. The question can be
studied with the product yn+1(θ)xn(θ) instead of xn(θ)yn(θ).
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For these two questions the method in [5] should lead to the existence of the limit almost
everywhere. The explicit computations of the limits C and λ could be more difficult.

As we have seen the core of the first return map on the transversal T is the map TG (see
subsection 8.4). In the definition of the map TG two coefficients appear: a ∈ {1, 1 + i}
and g ∈ Z[i]. By Proposition 20, if a = 1 + i for some iterate of TG, the next iterate
should be with a = 1.

• More generally, find the succession laws for the coefficients.
• What is the almost-sure frequency of a = 1 when computing the sequence of

iterates of TG?
• Is there a Borel-Bernstein theorem for the coefficient g?

13. Appendix 1, Gauss lattices

Definition 36. Let E be a finite dimensional C-vector space. A subset Λ in E is a Gauss
lattice if it is a Z[i]-submodule of E, if it is a discrete subset of E and if it generates the
vector space E.

Lemma 37. Let E be a C-vector space of dimension n and let Λ be a Gauss lattice in E.
Then there exists a basis u1, . . . , un of E such that

Λ = ⊕nj=1Z[i]uj.

Proof. Denote ‖.‖ a Hermitian norm in E (an Hermitian structure is used only for con-
venience). We proceed by induction. If n = 1, E = Cu and Λ = Z[i]λu where λu is a
shortest vector in Λ. Indeed for all zu ∈ Λ, there exits p ∈ Z[i] such that | z

λ
− p| < 1,

hence ‖zu− pλu‖ = |z − pλ|‖u‖ < |λ|‖u‖ and therefore z = pλ.
Suppose the result holds for all n− 1-dimensional vector spaces. Let E be a C-vector

space with dimCE = n and let Λ be a Gauss lattice in E. Since Λ generates the vector
space E, there is a basis u1, . . . , un of E with u1, . . . , un ∈ Λ. Let F be the vector space
spanned by u1, . . . , un−1. By induction hypothesis there exists a basis v1, . . . , vn−1 of F
such that F ∩Λ = ⊕n−1

j=1Z[i]vj. The orthogonal projection Λ′ of Λ on the line D orthogonal
to F is discrete. Indeed, suppose there is a sequence wn ∈ Λ′ of nonzero vectors which
converges to zero. We can suppose that the vectors wn, n ∈ N, are distinct. For each n,
let w′n ∈ Λ be a vector whose projection is wn. The vectors w′n can be chosen in order that
their orthogonal projections on F are in the bounded set {

∑n−1
j=1 zjvj ∈ F : (<zj,=zj) ∈

[0, 1]2}. It follows that the wn are in a bounded set which is not possible because they are
distinct. Therefore Λ′ is discrete. Let v′n be a shortest nonzero vector in Λ′. Since Λ′ is
a Gauss lattice, the step n = 1 of the induction implies that Λ′ = Z[i]v′n. Finally choose
any vector vn ∈ Λ whose projection on Λ′ is v′n. If v ∈ Λ then its projection v′ on the
line D is in Z[i]v′n. It follows that v′ = gv′n for some g ∈ Z[i]. Therefore, the projection
of v − gvn is 0 which implies that v − gvn ∈ F ∩ Λ. We conclude that v1, . . . , vn generate
Λ. �

A direct adaptation of Theorem I page 11 of Cassels’ book, [4], An introduction to the
geometry of numbers, shows that

Theorem 11. Let E be a n-dimensional C-vector space, let Λ be a Gauss lattice in E
and let L ⊂ Λ be a lattice in E.



GAUSS LATTICES AND COMPLEX CONTINUED FRACTIONS 51

A. To every basis b1, . . . , bn of Λ, there can be found a basis a1, . . . , an of L of the shape
a1 = z11b1

a2 = z21b1 + z22b2
...

an = zn1b1 + · · ·+ znnbn

where the zij are in Z[i] and zii are nonzero for all i.
B. Conversely, to every basis a1, . . . , an of L, there exists a basis b1, . . . , bn of Λ such the
above system holds.

Proof of A. Pick one basis of Λ and one basis of L and call D the determinant of the
second in the first. The determinant D is a Gaussian integer and Cramer formula shows
that DΛ ⊂ L.

Let (b1, . . . , bn) be a basis of Λ. For each i ∈ {1, . . . , n} there exist points ai in L of the
shape

ai = zi1b1 + · · ·+ ziibi

where the zij are Gaussian integers and zii 6= 0 for Dbi ∈ L. We choose for ai such an
element in L for which |zii| is as small as possible but zero. We are going to show that
a1, . . . , an is a basis of L. Since a1, . . . , an are in L, so is every vector w = w1a1+· · ·+wnan
where w1, . . . , wn are Gaussian integers. Suppose by contradiction that there exists a
vector c of L not of the latter shape. Since c is Λ, c = t1b1 + · · ·+ tkbk where 1 ≤ k ≤ n,
tk 6= 0 and t1, . . . , tk are Gaussian integers. If there are several such c, then we choose one
for which k is minimal. Now since zkk 6= 0, we may choose a Gaussian integer s such that

|tk − szkk| < |zkk|.

The vector

c− sak = (t1 − szk1)b1 + · · ·+ (tk − szkk)bk
is in L since ak and c are; but it is not of the shape w1a1 + · · ·+wnan since c is not. Hence
tk − szkk cannot be zero by assumption that k was minimal. But then |tk − szkk| < |zkk|
contradicts the assumption that the nonzero modulus |zkk| was minimal. �

Proof of B. Let a1, . . . , an be some basis of L. Since DΛ ⊂ L, by part A, there exists a
basis Db1, . . . , Dbn of DΛ such that

Db1 = z11a1

Db2 = z21a1 + z22a2
...

Dbn = zn1a1 + · · ·+ znnbn

with zi,j Gaussian integers and zii 6= 0. Solving the above system we can express a1, . . . , an
in the basis b1, . . . , bn, we obtain a triangular system with coefficients in the fields Q(i).
But b1, . . . , bn is basis of Λ and the ai are in Λ so the coefficients must be Gaussian
integers. �

The norm ‖.‖ we consider on C-vector spaces are suppose to verify

‖λu‖ = |λ|‖u‖

for all vector u of the vector space and all complex number λ.
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Definition 38. Let E be a finite dimensional C-vector space equipped with a norm ‖.‖
and let Λ be a discrete subset in E. For K = R or C and for 1 ≤ j ≤ dimKE, the j-th
minimum of Λ with respect to the norm ‖.‖ and to the field K is the infimum of all the
real numbers λ such that there exist j K-linearly independent vectors in Λ with norms
≤ λ. It is denoted by λj(Λ, ‖.‖,K) or simply by λj(Λ,K) or even by λj when there is no
ambiguity.

Lemma 39. Let E be a C-vector space of dimension n equipped with a norm ‖.‖ and let
Λ a Gauss lattice in E. Then for j = 1, . . . , n

λj(Λ, ‖.‖,C) = λ2j−1(Λ, ‖.‖,R) = λ2j(Λ, ‖.‖,R).

Proof. If u1, . . . , uj are j C-linearly independent vectors with norms≤ λ then u1, iu1, . . . , uj, iuj
are 2j R-linearly independent with norms ≤ λ, therefore λj(Λ, ‖.‖,C) ≥ λ2j(Λ, ‖.‖,R).
Since a C-vector space of C-dimension ≤ j − 1 has a real dimension ≤ 2j − 2, 2j − 1
R-linearly independent vectors u1, . . . , u2j−1 in Λ generate a C-vector space of dimension
> j − 1. Therefore, λj(Λ, ‖.‖,C) ≤ λ2j−1(Λ, ‖.‖,R). �

14. Appendix 2, computing the distance to D

There is a simple algorithm that calculate the distances from a complex number z to
the regions D, C and T . We explain it for the distance to the region D = {z ∈ C : |z| <
1, d(z, 1) > 1, d(z, 1− i) > 1}. The distances to C and to T can be calculated the same
way. The complex plane is the union of seven regions D0, . . . ,D6, see Figure 7. For each
of these regions, there is a simple formula giving the distance d(z,D):

(1) If z ∈ D0 = D then d(z,D) = 0.
(2) If z ∈ D1 = {z ∈ D(1, 1) : arg(z − 1) ∈ [2π

3
, 7π

6
]} then d(z,D) = 1− |z − 1|.

(3) If z ∈ D2 = {z ∈ C : arg z ≤ π
3
, arg(z − 1) ∈ [− π

12
, 2π

3
]} then d(z,D) = d(z, z2)

where z2 = 1
2

+
√

3
2
i.

(4) If z ∈ D3 = {z ∈ C : |z| ≥ 1, arg z ∈ [π
3
, 3π

2
]} then d(z,D) = |z| − 1.

(5) If z ∈ D4 = {z ∈ C : <z ≥ 0, arg(z − 1 + i) ∈ [π, 23
12
π]} then d(z,D) = d(z,−i).

(6) If z ∈ D5 = {z ∈ D(1− i, 1) : arg(z−1+ i) ∈ [5
6
π, π]} then d(z,D) = 1−|z−1+ i|.

(7) If z ∈ D6 = {z ∈ C : arg(z − 1) ∈ [7π
6
, 2π], arg(z − 1 + i) ∈ [− π

12
, 5π

6
]} then

d(z,D) = d(z, z1) where z1 = 1−
√

3
2
− 1

2
i.
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Figure 7. Distance to D.

Furthermore, it is easy to check whether a point z belongs a region Dj. For instance
z ∈ D1 if and only if

|z − 1| ≤ 1 and =(
z − 1

z2 − 1
) ≥ 0 and =(

z − 1

z1 − 1
) ≤ 0.
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