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Abstract

In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular
two-dimensional vectors with uniform exponent µ ∈ (1/2, 1) is 2(1− µ) when µ ≥

√
2/2,

whereas for µ <
√

2/2 it is greater than 2(1−µ) and at most (3−2µ)(1−µ)/(1 +µ+µ2).
We also establish that this dimension tends to 4/3 (which is the dimension of the set
of singular two-dimensional vectors) when µ tends to 1/2. These results improve upon
previous estimates of R. Baker, joint work of the first author with M. Laurent, and
unpublished work of M. Laurent. We also prove a lower bound on the packing dimension
that is strictly greater than the Hausdorff dimension for µ ≥ 0.565 . . . .
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1 Introduction and results

1.1 Overview of known results

Let θ be a (column) vector in Rn. We denote by |θ|∞ the maximum of the absolute values of
its coordinates and by

‖θ‖ = min
x∈Zn
|θ − x|∞

the maximum of the distances of its coordinates to the rational integers.
Let m,n be positive integers and A a real n×m matrix. Dirichlet’s Theorem implies that,

for any X > 1, the system of inequalities

‖Ax‖ ≤ X−m/n, 0 < |x|∞ ≤ X

have a solution x in Zm. This leads to the following definitions. The second one was introduced
by Davenport and Schmidt [13].

∗The second author is partially supported by NSF Grant DMS 1600476.
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Definition 1. Let m,n be positive integers and A a real n×m matrix. The matrix A is badly
approximable if there exists a positive constant c such that the system of inequalities

‖Ax‖ ≤ cX−m/n, 0 < |x|∞ ≤ X (1.1)

has no solution x in Zm for any X ≥ 1.

Definition 2. Let m,n be positive integers and A a real n×m matrix. We say that Dirichlet’s
Theorem can be improved for the matrix A if there exists a positive constant c < 1 such that
the system of inequalities (1.1) has a solution x in Zm for any sufficiently large X.

If the subgroup G = AZm + Zn of Rn generated by the m rows of the matrix tA (here
and below, tM denotes the transpose of a matrix M) together with Zn has rank strictly less
than m + n, then there exists x in Zm with |x|∞ arbitrarily large, such that ‖Ax‖ = 0 and,
consequently, for any real number w and any sufficiently large X > 1, the system of inequalities

‖Ax‖ ≤ X−w, 0 < |x|∞ ≤ X

has a solution x in Zm. In several of the questions considered below, we have to exclude this
degenerate situation, thus we are led to introduce the setM∗

n,m(R) of n×m matrices for which
the associated subgroup G has rank m+ n.

When m = n = 1, that is, when A = (ξ) for some irrational real number ξ, it is not difficult
to show that Dirichlet’s Theorem can be improved if, and only if, ξ is badly approximable (or,
equivalently, ξ has bounded partial quotients in its continued fraction expansion); see [19] and
[13] for a precise statement. Furthermore, by using the theory of continued fractions, one can
prove that, for any irrational real number ξ, there are arbitrarily large integers X such that the
system of inequalities

‖xξ|| ≤ 1

2X
and 0 < x ≤ X (1.2)

has no integer solutions; see Proposition 2.2.4 of [5].
Since the set of badly approximable numbers has Lebesgue measure zero and Hausdorff

dimension 1, this implies that the set of 1 × 1 matrices A for which Dirichlet’s Theorem can
be improved has Lebesgue measure zero and Hausdorff dimension 1. The latter assertion has
been extended as follows.

Theorem A. For any positive integers m,n, the set of real n×m matrices for which Dirichlet’s
Theorem can be improved has mn-dimensional Lebesgue measure zero and Hausdorff dimension
mn.

The first assertion of Theorem A has been established by Davenport and Schmidt [14] when
min{m,n} = 1. According to Kleinbock and Weiss [21], their proof can be generalized to n×m
matrices. Actually, a more general result is proved in [21].

As for the latter assertion of Theorem A, Davenport and Schmidt [13] showed that, for
(m,n) = (1, 2) or (2, 1), Dirichlet’s Theorem can be improved for the n ×m matrix A if A is
badly approximable. They noted on page 117 that this assertion is true for arbitrary integers
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m,n. Combined with a result of Schmidt [28] on the size of the set of badly approximable
matrices, this gives the latter assertion of Theorem A.

We introduce the related notion of singular and regular matrices, which goes back to Khint-
chine [20].

Definition 3. Let m,n be positive integers and A a real n×m matrix. We say that the matrix
A is singular if, for every positive real number c, the system of inequalities (1.1) has a solution
x in Zm for any sufficiently large X. A matrix which is not singular is called regular.

Khintchine [20] proved that the set of singular n × m matrices A has mn-dimensional
Lebesgue measure zero; see also [8], page 92.

A natural question is then to determine the Hausdorff dimension of the set of singular n×m
real matrices A. The case n = m = 1 is easy: there is no irrational real number ξ such that
the matrix (ξ) is singular (recall that (1.2) has no integer solutions for arbitrarily large values
of X). The case n = 2,m = 1 was recently solved by Cheung [10]. For an integer n ≥ 2, we
often use the terminology n-dimensional (column) vector instead of n× 1 matrix.

Theorem B. The Hausdorff dimension of the set of singular two-dimensional vectors is equal
to 4

3
.

Cheung’s result was very recently extended to n-dimensional vectors, for an arbitrary integer
n ≥ 2, by Cheung and Chevallier [11].

Theorem C. For every integer n ≥ 2, the Hausdorff dimension of the set of singular n-
dimensional vectors is equal to n2

n+1
.

However, the following question remains unsolved.

Problem 1. Let m,n be integers at least equal to 2. What is the Hausdorff dimension of the
set of singular n×m matrices ?

Kadyrov et al. [18] established that this dimension is bounded from above by mn(m+n−1)
m+n

and it is conjectured that there is in fact equality.
We can further discriminate between the singular matrices by introducing exponents of

uniform Diophantine approximation. We keep the notation from [6].

Definition 4. Let n and m be positive integers and let A be a real n×m matrix. We denote
by ω̂n,m(A) the supremum of the real numbers w for which, for all sufficiently large positive
real numbers X, the system of inequalities

‖Ax‖ ≤ X−w, 0 < |x|∞ ≤ X (1.3)

has a solution x in Zm.

For ω in (0,+∞], let Singn,m(ω) (resp. Sing∗n,m(ω)) denote the set of matrices A inMn,m(R)
(resp., in M∗

n,m(R)) such that
ω̂n,m(A) ≥ ω,
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and Sing
n,m

(ω) (resp. Sing∗
n,m

(ω)) denote the set of matrices A inMn,m(R) (resp., inM∗
n,m(R))

such that (1.3) holds for sufficiently large real numbers X. Observe that the set Sing
n,m

(ω)

is included in Singn,m(ω) and depends on the choice of the norms on Rn and Rm whereas
Singn,m(ω) does not.

For a real n×m matrix A, Dirichlet’s Theorem implies that

ω̂n,m(A) ≥ m

n
. (1.4)

Furthermore, we have equality in (1.4) for almost all matrices A, with respect to the Lebesgue
measure on Rmn, as follows from the Borel–Cantelli Lemma. Any real matrix A satisfying
ω̂n,m(A) > m

n
is singular, and there exist singular matrices A with ω̂n,m(A) = m

n
.

Since, for any real irrational number ξ, there are arbitrarily large integers X for which the
system of inequalities (1.2) has no solutions, we deduce that, for any n ≥ 1, any real n × 1
matrix A satisfies ω̂n,1(A) ≤ 1. Khintchine [19] established that, for any integer n ≥ 2, there
exist matrices A such that ω̂n,1(A) = 1 and, for any integer m ≥ 2 and any integer n ≥ 1, there
exist matrices A such that ω̂n,m(A) = +∞.

The following problem complements Problem 1. It has been considered by R. C. Baker
[1, 2], Yavid [31], and Rynne [27, 26].

Problem 2. Let m,n be positive integers. Let ω be in [m
n
,+∞] with ω ≤ 1 if m = 1. What is

the Hausdorff dimension of the set of n ×m matrices A in M∗
n,m(R) satisfying ω̂n,m(A) ≥ ω

(resp. ω̂n,m(A) = ω)?

Before stating our new results, which deal with the case (n,m) = (2, 1), we summarize what
is known towards the resolution of Problem 2.

We first point out a result of Jarńık [16] asserting that any real 1× 2 matrix A inM∗
1,2(R)

satisfies

ω̂2,1(tA) = 1− 1

ω̂1,2(A)
. (1.5)

Thus, the cases (n,m) = (1, 2) and (n,m) = (2, 1) are equivalent.
Let τ > 2 be a real number. Baker [1, 2] proved that

2

τ
≤ dimH Sing∗1,2(τ) ≤ 6

τ + 1
, (1.6)

thus
dimH Sing∗1,2(+∞) = 0.

Bugeaud and Laurent [7] observed that a direct combination of (1.5) with a result of Dodson
[15] yields the slightly sharper upper bound

dimH Sing∗1,2(τ) ≤ 3τ

τ 2 − τ + 1
, (1.7)

which was improved to (2τ + 2)/(τ 2 − τ + 1) by Laurent in an unpublished manuscript. We
deduce from (1.5) that (1.6) and (1.7) give, for µ ≥ 1/2,

2(1− µ) ≤ dimH Sing∗2,1(µ) ≤ 3(1− µ)

µ2 − µ+ 1
. (1.8)

4



Observe that for µ = 1/2 the right hand-side of (1.8) is equal to 2, while Theorem B implies
that limµ→ 1

2
dim Sing∗2,1(µ) ≤ 4/3. This shows that the right hand inequality in (1.8) is certainly

not best possible for µ > (
√

105− 5)/8 = 0.655 . . .
For m ≥ 3, combining results of Baker [2] and Rynne [26], one gets that

m− 2 +
m

τ
≤ dimH Sing∗1,m(τ) ≤ m− 2 + 2

m+ 1

τ + 1

holds for any real number τ > m, thus

dimH Sing∗1,m(+∞) = m− 2,

for m ≥ 2.
As far as we are aware, there is no contribution towards Problem 2 when min{m,n} ≥ 2.

1.2 New results

The purpose of the present paper is to address Problem 2 for the pair (n,m) = (2, 1). Our first
result improves the right hand inequality in (1.8) for every value of µ in (1/2, 1).

Theorem 1. For any real number µ in (1/2,
√

2/2], we have

dimH Sing∗2,1(µ) ≤ (3− 2µ) (1− µ)

µ2 − µ+ 1
.

For any real number µ in [
√

2/2, 1), we have

dimH Sing∗2,1(µ) ≤ 2(1− µ).

Observe that our upper bound for dimH Sing∗2,1(µ) is a continuous function of µ in (1/2, 1).
Combined with (1.8), Theorem 1 yields the exact value of the dimension when µ is suffi-

ciently large.

Corollary 2. For any real number µ in [
√

2/2, 1), we have

dimH Sing∗2,1(µ) = 2(1− µ).

Our second result improves the left hand inequality in (1.8) for every value of µ in (
√

2/2, 1).

Theorem 3. For any real number µ in (1/2,
√

2/2), we have

dimH Sing∗
2,1

(µ) ≥ (1− µ) sup
b>0

(2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
,

and thus
dimH Sing∗

2,1
(µ) ≥ 2(1− µ).
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A combination of Theorems 1 and 3 yields the following corollary.

Corollary 4. We have

lim
µ→1/2, µ> 1

2

dimH Sing∗
2,1

(µ) =
4

3
.

By Theorem B, the set of singular two-dimensional vectors has dimension 4
3
. Corollary 4

shows that there is no jump of Hausdorff dimension.

Remark 1.1. For a fixed µ in (1
2
, 1√

2
), it is not difficult to compute the positive real number b0

giving the maximum of the rational fraction

b 7−→ (2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
.

It satisfies a quadratic equation. Unfortunately, the lower bound we obtain does not match
with the upper bound established in Theorem 1.

Remark 1.2. For real numbers µ, τ ≥ 1/2, denote by Sing
2,1

(µ, τ) the set of matrices A in

Sing
2,1

(µ) such that there are arbitrarily large real numbers X for which the system of inequal-

ities
‖Ax‖ ≤ X−τ , 0 < |x|∞ ≤ X

has a solution x in Z.
The proof of Theorem 3 enables us to state a more precise result, namely

dimH Sing∗
2,1

(µ, τ) ≥ (1− µ)
(2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(b+ 2µ− 1) (µ2 − µ+ b+ 1) ,

where τ = 1
(1−µ)(b+1)

(µ2 − µ+ b+ 1)−1 and b is any positive real number (this is a consequence

of Lemma 25).

Remark 1.3. It is very likely that

dimH{A ∈M∗
2,1(R) : ω̂2,1(A) = µ} = 2(1− µ)

for every µ in [
√

2/2, 1). However, this does not follow from our results and it seems to us that
a proof would require additional ideas.

Finally, we also prove a result about the packing dimension.

Proposition 5. For every real number µ in (1
2
, 1), we have

dimP Sing∗
2,1

(µ) ≥ sup
b>0

(2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(µ+ 1 + 2b) (b+ 2µ− 1) ,

thus, in particular,
dimP Sing∗

2,1
(µ) > 1.

Remark 1.4. Using Theorem 3 and Proposition 5 and some numerical experiments it is easy to
see that

dimP Sing∗
2,1

(µ) > dimH Sing∗
2,1

(µ)

for µ ≥ 0.565 . . . However Theorem 3 and Proposition 5 are not strong enough to get the strict
inequality for µ ≤ 0.565 . . .
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Sketch of the proofs

Since the proofs deal only with the sets Sing 2,1(µ), we will drop the subscript 2,1 when there
is no ambiguity. For convenience, we replace column vectors by row vectors. We use also
the following notation. We take θ in R2 and consider elements x = (p, q) in Z2 × Z≥1, where
p = (p1, p2) is a pair of integers. Then, p

q
denotes the pair (p1

q
, p2
q

). We also write |x| = q.

The strategy of our proofs follows closely the one of [11]. As in this work, the guideline for
the proofs relies on two simple results. For each primitive vector x = (p, q) of the lattice Z3

with p in Z2 (we keep this notation throughout this paper) and q in Z>0, let λ1(x) denote the
length of the shortest vector of the lattice Λx = Z2 + Zp

q
. Roughly, the first result is: θ in R2

is in Sing(µ) if and only if for n large enough,

λ1(xn) ≤ |xn|−µ

where xn = (pn, qn) is the n-th term of the the sequence of best approximation vectors of θ
and |xn| = qn (see Section 3 and Corollary 12 for an exact statement). The second result is
a multidimensional extension of Legendre’s Theorem about convergents of ordinary continued
fraction expansions: if x = (p, q) is a best approximation vector of θ, then θ ∈ B(p

q
, 2λ1(x)
|x| ) and

conversely, if θ ∈ B(p
q
, λ1(x)

2|x| ), then x is a best approximation vector of θ (see Lemma 10). Then
we use the standard strategy for computing the Hausdorff dimension of Cantor sets defined
by a nested tree of intervals. Precisely, defining the children of an interval as the immediate
successors with respect to the partial order induced by inclusion of intervals, the diameter of one
interval raised to the power s has to be compared with the sum over all the children intervals
of their diameters raised to the power s.

For the upper bound, consider a set σµ(x) for each primitive vector x = (p, q) in Z2 × Z>0

with λ1(x) ≤ |x|−µ. This set plays the role of the children of x. The first idea is to take for
σµ(x) the set of all possible primitive vectors y in Z2×Z>0 with λ1(y) ≤ |y|−µ such that x and
y are two consecutive best approximation vectors of some θ in Rd. If for all x,∑

y=(u,v)∈σµ(x)

(
diamB

(
u

v
,
2λ1(y)

|y|

))s
≤
(

diamB

(
p

q
,
2λ1(x)

|x|

))s
then the Hausdorff dimension of Sing(µ) is at most equal to s. We make this statement more
precise by using self-similar covering introduced by the second author (see [10] and Theorem 6).
However the above inequality does not hold and as in [10] and [11] we modify the definition of
the set σµ(x) with an “acceleration” by considering only a subsequence of the sequence of best
approximations (see Definition 7). Note that the subsequence is not the same as that in [11].

Another point is that it is better to use a radius larger than 2λ1(x)
|x| (see Corollary 17), for it

avoids the second acceleration used in [10]. The choice of a good radius is more delicate than
in [11]. With these ingredients the proof of the upper bound follows readily; see Section 4.

The lower bound is trickier. The idea is to find a Cantor set included in Sing∗(µ). This

Cantor set has an “inhomogeneous” tree structure. For each x = (p, q) such that λ1(x) ≤ |x|−µ,
we define a finite set σ(x) and a ball B(x) such that for all z = (u, v) in σ(x), we have both
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λ1(z) ≤ |z|−µ and

B(z) ⊂ B
(u
v
,
λ1(z)

2 |z|

)
⊂ B(x).

The above inclusions ensure that x and z are best approximation vectors of all θ in B(z) which
in turn will be helpful to show that the Cantor set defined by the sets σ(x) and the balls B(x)
is included in Sing∗(µ) (see Proposition 26). Then, the inequality∑

z∈σ(x)

(diamB (z))s ≥ (diamB (x))s

together with a condition about the distribution in B(x) of the points z in σ(x) imply that
the Hausdorff dimension of Sing∗(µ) is at least equal to s. However, this program is not
straightforward because the condition about the distribution of the elements of σ(x) used in
[11] does not work in our context (see Theorem 3.6 of [11]).

To overcome this problem, we use a more flexible condition which is an adaptation of the
mass distribution principle to self-similar covering; see Theorem 7. This more flexible condition,
together with a careful study of the geometric positions of the points of σ(x) in the ball B(x)
(see Lemmas 19 and 27), finally lead to the lower bound.

1.3 Questions and problems

In this subsection, we gather some suggestions for further research closely related to the present
work.

Maybe, it is possible to adapt the methods of [14, 21] to solve the following problem, which
seems to be rather difficult.

Problem 3. Let c be a real number with 0 < c < 1. What is the Hausdorff dimension of the
set of n ×m matrices such that (1.1) has a solution x in Zm for any sufficiently large X? Is
this a continuous function of c?

All the results quoted above are concerned with approximation of independent quantities in
the sense that we assume that the entries of the matrices A are independent. It is a notorious
fact that questions of approximation of dependent quantities are much more delicate. An
emblematic example in the case of n× 1 matrices is given by the Veronese curve (ξ, ξ2, . . . , ξn).
At present, we do not know the Hausdorff dimension of the set of real numbers ξ such that the
pair (ξ, ξ2) is singular. In 2004 Roy [25] showed that this set is nonempty. In the oppposite
direction, Shah [29, 30] has obtained several striking results on the size of sets of matrices with
dependent entries for which Dirichlet’s Theorem cannot be improved.

Problem 4. Let n ≥ 2 be an integer. What is the Hausdorff dimension of the set of real
numbers ξ such that (ξ, ξ2, . . . , ξn) is singular?

The latter problem is deeply connected with the following famous conjecture of Wirsing
on approximation to real numbers by algebraic numbers of bounded degree. Recall that the
height of an algebraic number α, denoted by H(α), is the maximum of the absolute values of
the coefficients of its minimal defining polynomial over Z.
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Problem 5. (Wirsing) Let n ≥ 2 be an integer and ξ be a transcendental real number. For any
positive ε, there exist algebraic numbers α of degree at most n and of arbitrarily large height
such that

|ξ − α| < H(α)−n−1+ε.

It follows from results established in [6] that the Hausdorff dimension of the set of coun-
terexamples to the Wirsing conjecture on the approximation by algebraic numbers of degree
at most n is at most equal to the Hausdorff dimension of the set of real numbers ξ such that
(ξ, ξ2, . . . , ξn) is singular. See Chapter 3 of [4] for a survey of known results towards Wirsing’s
conjecture.

A further line of research is Diophantine approximation on fractal sets. Rather than assum-
ing that A is an arbitrary real n ×m matrix, we restrict our attention to matrices in a given
fractal set.

Problem 6. What is the Hausdorff dimension of the set of singular pairs whose entries belong
to the middle third Cantor set?

Our results on the packing dimension motivate the following questions.

Problem 7. Is the packing dimension of Sing∗(µ) strictly greater than the Hausdorff dimension
for all µ > 1/2? What is the value of the packing dimension of the set of singular pairs? Is it
equal to its Hausdorff dimension, that is, to 4/3?

2 Definitions and results about self-similar coverings

Definition 5. Let Y be a metric space. A self-similar structure on Y is a triple (J, σ,B) where
J is countable, σ is a subset of J2, and B is a map from J into the set of bounded subsets of
Y . A σ-admissible sequence is a sequence (xn)n∈N in J such that

(i) for all integers n, (xn, xn+1) ∈ σ.

Let X be a subset of Y . A self-similar covering of X is a self-similar structure (J, σ,B)
such that, for all θ in X, there exists a σ-admissible sequence (xn)∈N in J satisfying

(ii) limn→∞ diamB(xn) = 0,

(iii)
⋂
n∈NB(xn) = {θ}.

The set covered by a self-similar structure (J, σ,B) is the set all θ in Y with the two
properties above.

Notation. We denote by σ(x) the set of y in J such that (x, y) ∈ σ.

Definition 6. By a strictly nested self-similar structure we mean a self-similar structure
(J, σ,B) that satisfies limn→∞ diamB(xn) = 0, for all σ-admissible sequence (xn)n∈N, and
B(y) ⊂ B(x), for all x in J and all y in σ(x).
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2.1 Upper bound for the Hausdorff dimension

We quote a result from [10].

Theorem 6. ([10]) Let Y be a metric space, let X be a subset of Y that admits a self-similar
covering (J, σ,B) and let s be a positive real number. If∑

y∈σ(x)

diamB(y)s ≤ diamB(x)s,

holds for all x in J , then dimH X ≤ s.

2.2 Lower bound for the Hausdorff dimension

There already exist results providing lower bounds for the Hausdorff dimension of self simi-
lar structures, see [10] or [11]. However these results are not suitable for our purpose. An
adaptation of the mass distribution principle to self similar structures leads to a more flexible
statement.

Let (J, σ,B) be a self-similar structure on a complete metric space (Y, d). For a subset F
of Y and x in J , we set

σF (x) = {y ∈ σ(x) : F ∩B(y) 6= ∅}.

Theorem 7. Let (J, σ,B) be a strictly nested self-similar structure on a complete metric space
(Y, d). Suppose that, for all x ∈ J , the set B(x) is bounded and closed. Let s be a positive real
number and suppose that

i. for all x in J , diamB(x) > 0 and
∑

y∈σ(x)(diamB(y))s ≥ (diamB(x))s,

ii. for all x in J , the sets B(y), y ∈ σ(x), are disjoint,

iii. there exists a constant C such that for all x in J and all subsets F in Y such that

δ(x) = min
y 6=y′∈σ(x)

d(B(y), B(y′)) ≤ diamF ≤ diamB(x),

we have ∑
y∈σF (x)(diamB(y))s

(diamF )s
≤ C

∑
y∈σ(x)(diamB(y))s

(diamB(x))s
,

Then dimH E ≥ s and the Hausdorff dimension of the set covered by (J, σ,B) is ≥ s.

We need an auxiliary Lemma. Let (J, σ,B) be a self-similar structure on a complete metric
space (Y, d). For x0 in J , we consider the set Ωx0 of all admissible sequences starting at x0 and,
for a finite admissible sequence a0 = x0, a1 . . . , an in J , we denote by

[a1, . . . , an] = {(xn)n∈N ∈ Ωx0 : xi = ai, i = 1, . . . , n}

the associated cylinder. We endow Ωx0 with the topology induced by the product topology on
JN.
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Lemma 8. Let (J, σ,B) be a strictly nested self-similar structure on a complete metric space
(Y, d). Suppose that, for all x ∈ J , the set B(x) is bounded and closed. Then Ωx0 is a compact
subset of JN and for all sequence (xn)n∈N in Ωx0 there exists a unique point a in the intersection
of the closed sets B(xn), n ∈ N. Furthermore the map ϕ : Ωx0 → Y defined by ϕ((xn)n∈N) = a
is continuous and the sequence

Dn = max{diamϕ([x1, . . . , xn]) : x1, . . . , xn ∈ J}

goes to zero when n goes to infinity.

Proof of the Lemma. The only thing which is not clear is the last point. Consider the sequence
of functions (dk)k≥1 defined by

dk((xn)n∈N) = diamϕ([x1, . . . , xk])

for a sequence (xn)n∈N in Ωx0 . By the definition of the topology, each dk is continuous
on the compact set Ωx0 . Clearly the sequence (dk)k is non-increasing and by assumption
limk→∞ dk((xn)n∈N) ≤ limk→∞ diamB(xk) = 0 for all (xn)n∈N in Ωx0 , hence by Dini’s theorem,
the sequence (dk)k≥1 converges uniformly to zero.

Proof of Theorem 7. We keep the notations of the Lemma. The set E := ϕ(Ωx0) is a compact
subset of Y . It is enough to prove that there exists a probability measure ν on Y supported by
E such that for every Borel subset F of Y , we have

ν(F ) ≤ C(diamF )s

for some absolute constant C.
A map µ defined on the set of cylinders can be extended to a probability measure on Ωx0 if

for all cylinders [x1, . . . , xn] we have the additive formula∑
x∈σ(xn)

µ([x1, . . . , xn, x]) = µ([x1, . . . , xn]).

For all x in J set M(x) =
∑

y∈σ(x)(diamB(y))s. The following recursion formulas

µ([x1]) =
(diamB(x1))s

M(x0)
,

µ([x1, . . . , xn+1]) =
(diamB(xn+1))s

M(xn)
µ([x1, . . . , xn]),

define a measure µ on the set of cylinders. Clearly the additive formula holds, hence µ extends
to a probability measure.

Call ν the image of µ by the map ϕ. The support of ν is included in E.
We want to check that ν(F ) ≤ C(diamF )s for all Borel subset F of Y . We can suppose

that F ⊂ E.

11



First, let us show by induction that for all cylinders [x1, . . . , xn], we have the inequality,

µ([x1, . . . , xn]) ≤ (diamB(xn))s

(diamB(x0))s
.

For all x1 ∈ σ(x0),

µ([x1]) =
(diamB(x1))s

M(x0)

≤ (diamB(x1))s

(diamB(x0))s
,

and since M(xn) ≥ (diamB(xn))s,

µ([x1, . . . , xn+1]) =
(diamB(xn+1))s

M(xn)
µ([x1, . . . , xn])

≤ (diamB(xn+1))s

(diamB(xn))s
× (diamB(xn))s

(diamB(x0))s

≤ (diamB(xn+1))s

(diamB(x0))s
.

Let F be a subset of E. If F is reduced to one point a = ϕ((xn)n∈N), we have to check that
ν(F ) = 0. By the disjointness assumption ϕ is one to one and

ν(F ) ≤ ν(ϕ([x1, . . . , xn])) = µ([x1, . . . , xn]) ≤ (diamB(xn))s

(diamB(x0))s
,

which goes to zero because the self-similar covering is strictly nested.
Suppose now that diamF > 0. By the last point of the above lemma there is a cylinder

C =[x1, . . . , x = xn] of maximal length containing the image ϕ(C) (C can be Ωx0). By maximal-
ity, there exists y 6= y′ in σ(x) such that F intersects both B(y) and B(y′), hence diamF ≥ δ(x).
Therefore, ∑

y∈σF (x)(diamB(y))s

(diamF )s
≤ C

∑
y∈σ(x)(diamB(y))s

(diamB(x))s
= C

M(x)

(diamB(x))s
.

By the definition of σF , we have

F ⊂ (∪y∈σF (x)B(y)),

ν(F ) ≤
∑

y∈σF (x)

ν(B(y)),

and, by the definition of ν and by the disjointness assumption,∑
y∈σF (x)

ν(B(y)) =
∑

y∈σF (x)

µ([x1, . . . , x, y])

=
∑

y∈σF (x)

µ([x1, . . . , x])
(diamB(y))s

M(x)
.
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Hence, we deduce from the above inequality about cylinders that

ν(F ) ≤
∑

y∈σF (x)

(diamB(x))s

(diamB(x0))s
(diamB(y))s

M(x)

≤ C

(diamB(x0))s
(diamF )s.

2.3 Lower bound for the packing dimension

Lemma 9. Let (J, σ,B) be a strictly nested self-similar structure on a metric space Y and
let s be a positive real number. Suppose that we have a map x 7→ x̂ from J to Y and a map
B′ : x 7→ B′(x) = B(x̂, r(x)) from J to the set of closed balls in Y . We also make the following
assumptions:

1. for all x in J , σ(x) is finite,

2. there exists k < 1 such that B(x) ⊂ B(x̂, kr(x)) for all x in J ,

3. for all x in J , the balls B′(y), y ∈ σ(x), are disjoint and included in B′(x),

4. for all σ-admissible sequence (xn)∈N in J , we have limn→∞ diamB′(xn) = 0,

5. for all x in J , diamB′(x) > 0 and
∑

y∈σ(x)(diamB′(y))s ≥ (diamB′(x))s.

Then, the packing dimension of the set covered by (J, σ,B) is at least equal to s.

Proof. We keep the notations of the previous section and consider, for x0 ∈ J , the set Ωx0 of
all admissible sequences starting at x0. We are going to show that

dimP E ≥ s.

Let ε be a positive real number. As in the proof of Lemma 8, Dini’s theorem implies that

lim
p→∞

sup{diamB′(xp) : (xn)n∈N ∈ Ωx0} = 0.

Therefore, there exists an integer qε such that

sup{diamB′(xqε) : (xn)n∈N ∈ Ωx0} ≤ ε.

For a positive integer q, let Jq be the set of x in J such that there exists a σ-admissible sequence
x0, x1, . . . , xq with xq = x. The disjointness property in item 3 implies that the sets σ(x), x ∈ Jq,
are disjoint. Hence, we have a disjoint union Jq+1 = ∪x∈Jqσ(x). An easy induction together
with item 5 implies that for all q,∑

x∈Jq

(diamB′(x))s ≥ (diamB′(x0))s,

13



hence we would have shown that the ε-packing measure satisfies

Psε (E) ≥ diamB′(x0))s,

if the balls B′(x), x ∈ Jqε , were centered at points in E = ϕ(Ωx0). Now, by item 2, the set
ϕ([x0, . . . , xq]) is included in the ball B′(x̂q, kr(xq)), hence there is a point y(xq) ∈ E such that
the ball B(y(xq), (1− k)r(xq)) is included in the ball B(x̂q, r(xq)). It follows that∑

x∈Jq

(diamB(y(x), (1− k)r(x)))s ≥ ((1− k) diamB′(x0))s,

which in turn implies that Ps′(E) = ∞ for all s′ < s. It remains to show that the packing
measure ps

′
(E) does not vanish. This is proved by means of a standard argument. If (Ei)i∈ N

is any covering of E, then, by Baire’s Theorem, one of the closure Fi = Ēi, say Fq, contains a
subset of E of nonempty relative interior. It follows that there exists a cylinder C = [a0, . . . , aj]
of Ωx0 such that ϕ(C) ⊂ Fq. Now, the previous way of reasoning implies that

Ps(ϕ(C)) ≥ ((1− k) diamB′(aj))
s,

hence, for all s′ < s,
Ps′(Fq) = Ps′(Eq) =∞

and ps
′
(E) =∞.

3 Farey Lattices and best approximants

From now on we suppose that R2 is equipped with the standard Euclidean norm ‖.‖e.
Let the set of primitive vectors in Z3 corresponding to rationals in Q2 in their “lowest terms

representation” be denoted by

Q = {(p1, p2, q) ∈ Z3 : gcd(p1, p2, q) = 1, q > 0}.

Given x = (p, q) ∈ Q, where p ∈ Z2, we use the notation

|x| = q and x̂ =
p

q
.

For x in Q, let
Λx := Z2 + Zx̂ = πx(Z3)

where πx : R3 → R2 is the ”projection along the lines parallel to x” given by the formula
πx(m,n) = m− nx̂ for (m,n) ∈ R2 × R. Observe that vol Λx = |x|−1.

Given a norm on R2, we denote the successive minima of Λx by λi(x) and the normalized
successive minima by

λ̂i(x) := |x|1/2 λi(x) for i = 1, 2.

We collect without proof a few lemmas the proof of which can be found in [10] and [11].
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3.1 Inequalities of best approximation

The ordinary continued fraction expansion is a very efficient tool for the study of Diophantine
exponents of a single real number. In higher dimensions, it is convenient to replace the ordi-
nary continued fraction expansion by the sequence of best Diophantine approximations vectors
because a weak form of many properties of the one-dimensional expansion still hold.

Recall that the sequence (qn)n≥0 of best simultaneous approximation denominators of θ ∈ R2

with respect to the norm ‖ · ‖e is defined by the recurrence relation

q0 = 1, qn+1 = min{q ∈ N : q > qn, dist(qθ,Z2) < dist(qnθ,Z2)}.

By definition, the sequence (qn)n≥0 is strictly increasing, while the sequence (rn)n≥0 where
rn = dist(qnθ,Z2), is strictly decreasing. These sequences are infinite if and only if θ ∈ R2 \
Q2. For each n ≥ 0, we choose pn so that ‖qnθ − pn‖e = rn and set xn = (pn, qn) ∈ Z2 ×
Z>0. It is customary to refer to (xn)n≥0 as the sequence of best simultaneous approximation
vectors, even though the choice of pn need not be unique.1 See [12, 22, 23, 24] for more about
best approximations. In what follows we shall often write best approximation instead of best
simultaneous approximation vector.

First we qote a result that generalizes Legendre’s Theorem: p/q is a convergent of α ∈ R as
soon as |α− p/q| < 1/2q2. Denote by µ2 the supremum of λ1(L) over all 2-dimensional lattices
L ⊂ R2 of covolume 1.

Lemma 10 (Thm. 2.11 of [10]). For x ∈ Q, let ∆(x) = {θ : x̂ is a best approximation of θ}.
If |x| >

(
µ2

λ1(Z2)

)2

, then

B̄

(
x̂,
λ1(x)

2 |x|

)
⊂ ∆(x) ⊂ B

(
x̂,

2λ1(x)

|x|

)
,

where B̄ denote the closed ball.

The unimodular property, |pn+1qn − qn+1pn| = 1, which hold for two consecutive conver-
gents pn

qn
and pn+1

qn+1
of the ordinary continued fraction expansion cannot be extended to best

Diophantine approximations in higher dimensions (see [12] and [24]). However (i) of Lemma
11 can be seen as a weak form of the unimodular property.

The notation x �2 y means 1
2
y ≤ x ≤ 2y.

Lemma 11 ([10], [11]). Let xn = (pn, qn), n ≥ 0, be the sequence of best approximation vectors
of θ ∈ R2. Then

(i) ‖x̂n − x̂n+1‖e < 4λ1(xn+1)
|xn| .

(ii) For all k ≥ 0, ‖x̂n − x̂n+k‖e < 4λ1(xn)
|xn| .

(iii) For all y = (p, q) ∈ Z2+1 with 0 < q < |xn|, ‖p− qθ‖e �2 ‖p− qx̂n‖e.
1It is unique as soon as qn is large enough, e.g. if qn > (4µ2/λ1(Z2))2. See [22] or Remark 2.13 of [10].
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The previous lemma allows to almost characterize the set Sing(µ) with best approximation
vectors.

Corollary 12. Let µ′ > µ > 0 and let θ be in R2. Call xn = (pn, qn), n ≥ 0, the sequence of
best approximation vectors of θ ∈ R2. If θ ∈ Sing(µ′), then for all n large enough

λ1(xn) ≤ ‖qn−1x̂n − pn−1‖e ≤ |xn|
−µ .

Conversely, if
λ1(xn) ≤ |xn|−µ

′

for all n large enough, then θ ∈ Sing(µ).

Proof. By Lemma 11 (iii), if θ ∈ Sing(µ′), then for all n large enough

λ1(xn) ≤ ‖qn−1x̂n − pn−1‖e
≤ 2 ‖qn−1θ − pn−1‖e
≤ 2(qn − 1)−µ

′

≤ |xn|−µ .

Conversely, if λ1(xn) ≤ |xn|−µ
′
, then by Lemma 11 (iii) and (i), for all qn−1 ≤ q < qn, we have

d({θ, . . . , qθ},Z2) = ‖qn−1θ − pn−1‖e
≤ 2 ‖qn−1x̂n − pn−1‖e
≤ 8λ1(xn)

≤ 8q−µ
′

n ≤ q−µ,

when n is large enough.

3.2 The subspace Hx

Call xn = (pn, qn), n ∈ N, the sequence of best approximation vectors of θ ∈ R2. Corollary 12

shows that if θ is in Sing(µ) with µ > 1
2
, then λ̂(xn)→ 0 when n goes to∞. It follows that the

shortest vector of the lattice Λxn is very small compare to λ2(xn) when n is large. So, at the
scale of the second minimum, the lattice Λxn looks like an evenly spaced union of lines parallel to
the shortest vector, with very closed points evenly spaced in these lines. This picture is helpful
and shows that the line defined by the shortest vector should play an important role. The
subspace Hx defined below could have been defined with the shortest vector of the lattice Λx.
However as in [11] we use the volume instead of the length because it works in any dimension.

For each x in Q we fix once and for all a co-dimension one sub-lattice of Λx of minimal
volume and call it Λ′x. Let Hx = π−1

x H ′x where H ′x is the real span of Λ′x. Thus,

Λ′x = Λx ∩H ′x.

The two Lemmas below are easy and proved in [11].
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Lemma 13. Let x and y be in Q. Then, y ∈ Hx if and only if ŷ ∈ x̂+H ′x .

Lemma 14. Let x and y be in Q. Suppose that |x| ≤ |y| , y ∈ Hx, and ‖x̂− ŷ‖e ≤ 4λ1(x)
|x| . Then

λ2(x) � λ2(y).

3.3 The first minimum of Λy

In one dimension, when x̂n = pn
qn

and x̂n+1 = pn+1

qn+1
are two consecutive convergents of a real

number, the unimodular property of the ordinary continued fraction algorithm implies the two
equivalent properties:

(i) πxn(pn+1, qn+1) = pn+1 − qn+1x̂n is one of the two primitive elements of the lattice Λxn ,

(ii) πxn+1(pn, qn) = pn − qnx̂n+1 is a shortest vector of Λxn+1 .

In higher dimensions, lattices have infinitly many primitive elements. So, a priori, given
two consecutive best approximation vectors x and y ∈ Q there are infinitely many possible
primitive elements α ∈ Λx that could be the projection α = πx(y). Moreover property (i) no
longer imply property (ii). Lemma 15 below give an additional condition which, together with
(i), implies (ii).

Given x ∈ Q and a primitive element α in Λx, we let

Λα⊥ = π⊥α (Λx),

where π⊥α is the orthogonal projection of R2 onto the subspace α⊥ of vectors of R2 orthogonal
to α.

For any y ∈ Q such that πx(y) = α, the 1-volume of Λα⊥ satisfies

vol(Λα⊥) =
vol(Λx)

‖α‖e
=

1

‖α‖e |x|
=

1

|x ∧ y|
.

Here, the quantity |y∧ z| is the 2-volume of the orthogonal projection of y∧ z ∈ Λ2R3 onto the
subspace spanned by e1 ∧ e3 and e2 ∧ e3. Equivalently, (see §2 of [9])

|y ∧ z| = |y| |z| d(ŷ, ẑ).

Denote the first minimum of Λα⊥ by λ1(α). The following lemma was proved in [11].

Lemma 15. Let x ∈ Q and α be a primitive element of Λx. Suppose that y is an element in
Q such that πx(y) = α. Then |x∧y|

|y| ≤ λ1(α) implies λ1(y) = |x∧y|
|y| = ‖πy(x)‖e.

4 Upper bound for the Hausdorff dimension

Let µ′ > µ > 0 be two real numbers. We want to define a self-similar covering (J, σ,B) of
the set Sing∗(µ′). Since the sequence of best approximation vectors (xn)n∈N of any θ ∈ R2

converges to θ, it is natural to choose a self similar structure such that all the sequences of best
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approximations vectors of the θ ∈ Sing∗(µ′) are admissible. Moreover, according to Corollary
12, all the best approximation vectors of θ ∈ Sing∗(µ′) are in the set

Qµ = {x ∈ Q : λ1(x) ≤ |x|−µ},

hence J = Qµ is a natural choice. The maps σ and B are more difficult to defined. Using the
extension to higher dimensions, of Legendre’s Theorem (Lemma 10) it is tempting to defined

the map B with B(x) = B
(
x̂, 2λ1(x)

|x|

)
. However, by a result of Jarńık [17], if the uniform

exponent ω̂1,2(θ) is ≥ µ, then the standard exponent of approximation ω1,2(θ) is larger than

µ2

1− µ
.

Therefore using subsequences of sequences of best approximation vectors, it should be possible
to define the sets B(x) with smaller diameters. The precise definition involves the subspaces
Hx defined section 3.2.

Notation.
E(x) = {y ∈ Qµ : |y| > |x| , y /∈ Hx, ‖πy(x)‖e ≤

1
|y|µ , πx(y) is primitive in Λx},

D(y) = {z ∈ Qµ : |z| ≥ |y| , z ∈ Hy, ‖ŷ − ẑ‖e ≤ 4λ1(y)
|y| }.

Definition 7. We set σµ(x) = ∪y∈E(x)D(y) and Bµ,c(x) = B(x̂, c

(λ2(x)µ|x|)
1

1−µ
).

Remark 4.1. In [11], the roles of D and E were permuted and σ(x) was defined as

σµ(x) = ∪y∈D(x)E(y).

Remark 4.2. When λ1(x) ≤ |x|−µ, using the second Minkowski Theorem, it is easy to see that
the radius of the ball Bµ,c(x) is �

|x|−(1+ µ2

1−µ )

which is precisely what is expected from the result of Jarńık quoted above.

Theorem 1 is a consequence of the following two lemmata.

Lemma 16. When c is large enough, (Qµ, σµ, Bµ,c) is a self-similar covering of Sing∗(µ′) for
all µ′ > µ.

Proof. Let θ ∈ Sing∗(µ′) and let ((pn, qn))n≥0 be the sequence of best approximations of θ. For
n ≥ 0, set xn = (pn, qn). By Corollary 12 and removing the first best approximation vectors if
necessary, we can suppose that xn ∈ Qµ for all n. Consider a subsequence (xni)i≥0 such that
for all i ≥ 1,

xni+1 /∈ Hxni
, xni+1, . . . , xni+1

∈ Hxni+1 , xni+1+1 /∈ Hxni+1 .

Such a subsequence exists since the sequence (xn)n≥0 must leave each subspace Hxk : otherwise
the coordinates of the point θ together with 1 would be rationally dependent. Observe that

Hxni+1 = Hxni+2 = . . . = Hxni+1
6= Hxni+1+1 .
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Let i be an integer. Set x = (p, q) = xni , y = (u, v) = xni+1 and z = xni+1
. We have y /∈ Hx

and, by Corollary 12,

‖qŷ − p‖e ≤
1

|y|µ
.

Since x and y are consecutive best approximation vectors, πx(y) is primitive in Λx, hence
y ∈ E(x). Let (e1, e2) be a reduced basis of Λx and α = πx(y). Since y /∈ Hx we have
α = ae1 + be2, where b is a nonzero integer. We have

‖α‖e |x|
|y|

=
|x ∧ y|
|y|

= ‖qŷ − p‖e ≤ |y|
−µ ,

hence
|y| ≥ (‖α‖e |x|)

1
1−µ

and
|y|
|x|
≥ (‖α‖e |x|

µ)
1

1−µ .

It follows that y = α + kx, where the real number k satisfies |k| ≥ (‖α‖e |x|
µ)

1
1−µ . Moreover,

ŷ = x̂+
α

|y|
.

Since ‖α‖e � λ2(x), we get

d(x̂, ŷ)� ‖α‖e
(‖α‖e |x|)

1
1−µ

=
1

(‖α‖µe |x|)
1

1−µ

� 1

(λ2(x)µ |x|)
1

1−µ
.

Furthermore, θ ∈ B(ŷ, 2λ1(y)
|y| ) and

λ1(y)

|y|
� 1

|y|1+µ ≤
1

(‖α‖e |x|)
1+µ
1−µ

� 1

(λ2(x)µ |x|)
1

1−µ
× 1

(λ2(x) |x|µ)
1

1−µ
.

Since µ ≥ 1
2
, we deduce from Minkowski’s Theorem that

λ2(x) |x|µ ≥ λ2(x) |x|1−µ � 1,

which implies that θ is in B(x̂, c

(λ2(x)µ|x|)
1

1−µ
) when c is large enough. The last thing to check is

that z ∈ D(y), but this follows from Lemma 11 (ii).
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It appears that in some cases, it is better to use a larger radius for the balls Bc,µ. This obser-
vation has already been done in [11]. Since λ2(x)� |x|µ−1 for x ∈ Qµ, a convex interpolation
between the exponents of λ2(x) and |x|µ−1 yields

Corollary 17. For γ ∈ [0, 1] and x ∈ Qµ set

Bµ,γ(x) = B(x) = B
(
x̂,

c

(λ2(x)(1−γ)µ |x|(µ−1)µγ+1)
1

1−µ

)
.

When c is large enough, (Qµ, σµ, Bµ,γ) is a self-similar covering of Sing∗(µ′) for all µ < µ′.

Lemma 18. Let a and b be real numbers with b > 2 and b−1
1−µ − a > 2. Then, for x ∈ Qµ with

|x| large enough, we get ∑
z∈σµ(x)

1

λ2(z)a |z|b
� 1

λ2(x)A |x|B
,

where A = b−1
1−µ − a− 2 and B = µ b−1

1−µ − a− 1 + b.

Proof. Step 1. For z ∈ D(y), we have λ2(z) � λ2(y) because z ∈ Hy. It follows that

S1(y) =
∑
z∈D(y)

1

λ2(z)a |z|b

�
∑
z∈D(y)

1

λ2(y)a |z|b
.

Since the number of elements of

Dk(y) = {z ∈ D(y) : k |y| ≤ |z| < (k + 1) |z|}
is � k, we have

S1(y) �
∑
k≥1

∑
z∈Dk(y)

1

λ2(y)a |z|b
=

1

λ2(y)a |y|b
∑
k≥1

∑
z∈Dk(y)

( |y|
|z|

)b
� 1

λ2(y)a |y|b
∑
k≥1

1

kb−1
.

Since b > 2, we get

S1(y)� 1

λ2(y)a |y|b
.

Step 2. By the definition of σµ(x) and by step 1, we have

S(x) =
∑

z∈σµ(x)

1

λ2(z)a |z|b
=
∑
y∈E(x)

∑
z∈D(y)

1

λ2(z)a |z|b

�
∑
y∈E(x)

1

λ2(y)a |y|b

=
∑

α∈Λx\H′x
α primitive

∑
y∈E(x) : πx(y)=α

1

λ2(y)a |y|b
.
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By the definition of E(x), if y ∈ E(x), then we have ‖πy(x)‖e ≤
2
|y|µ and

‖α‖e =
|x ∧ y|
|x|

=
‖p− qŷ‖e |y|

|x|
=
‖πy(x)‖e |y|
|x|

,

hence
‖α‖e |x| ≤ 2 |y|1−µ

and
|y|
|x|
≥ (

1

2
‖α‖e |x|

µ)
1

1−µ .

Since
|x|‖α‖e
|y| = ‖πy(x)‖e ≥ λ1(y), we deduce from Minkowski’s Theorem that

λ2(y)� 1

‖α‖e |x|
holds for all y ∈ E(x) such that πx(y) = α. Call λ1(α) the first minimum of the orthogonal

projection of Λx on the line orthogonal to α. By Lemma 15, if |x∧y||y| < λ1(α) then λ1(y) =
|x∧y|
|y| =

|x|‖α‖e
|y| , which implies that λ2(y) � 1

‖α‖e|x|
. Now λ1(α) = 1

‖α‖e|x|
and µ > 1

2
, hence, for |x|

large enough,

|y| > (
1

2
‖α‖e |x|)

1
1−µ ⇒ |y| > (‖α‖e |x|)

2

⇒ ‖α‖e |x|
|y|

<
1

‖α‖e |x|

⇒ |x ∧ y|
|y|

< λ1(α).

It follows that

S �
∑

α∈Λx\H′x

∑
y∈E(x):πx(y)=α

1

( 1
|x|‖α‖e

)a |y|b

�
∑

α∈Λx\H′x

∑
k≥( 1

2
‖α‖e|x|

µ)
1

1−µ

(|x| ‖α‖e)a

|x|b kb

�
∑

α∈Λx\H′x

(|x| ‖α‖e)a

|x|b (1
2
‖α‖e |x|

µ)
b−1
1−µ

�
∑

‖α‖e≥λ2(x)

1

|x|µ
b−1
1−µ−a+b ‖α‖

b−1
1−µ−a
e

.

Now b−1
1−µ − a > 2 if s > 3−2µ

1−µ+µ2
(1− µ). Therefore, by Lemma 2.5 of [11],

S � 1

|x|µ
b−1
1−µ−a+b vol Λxλ2(x)

b−1
1−µ−a−2

=
1

λ2(x)A |x|B
,
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where B = µ b−1
1−µ − a− 1 + b and A = b−1

1−µ − a− 2.

Completion of proof of Theorem 1. Let µ0 be in (1
2
, 1).

Case 1. Assume that µ0 > 1√
2
. By Lemma 16, (Qµ, σµ, Bµ) is a self-similar covering of

Sing∗(µ0) for all µ such that 1√
2
< µ < µ0. Let s > 2(1 − µ). Set t = s

1−µ , a = µt and b = t.
For x ∈ Qµ, set

S(x) =
∑

z∈σµ(x)

(diamB(z))s.

With these notations, (diamB(x))s = cs

λ2(x)a|x|b for all x ∈ Qµ, hence by the above Lemma, we

have
S(x)

(diamB(x))s
� 1

λ2(x)A−a |x|B−b
.

Straightforward calculations give

A− a =
b− 1

1− µ
− 2a− 2

=
1

1− µ
(
t(1− 2µ+ 2µ2) + 2µ− 3

)
and

B − b = µ
b− 1

1− µ
− a− 1

=
tµ2 − 1

1− µ
.

By assumption t > 2 and µ2 > 1
2
, so B − b is positive. If A− a < 0, then S(x) ≤ (diamB(x))s

when |x| is large enough. Otherwise we use that λ2(x)� |x|µ−1 and we get

1

λ2(x)A−a |x|B−b
� 1

|x|C
,

with

C = (µ− 1)(A− a) + (B − b)

=
2µ− 1

1− µ
(
t(1− µ+ µ2) + µ− 2

)
>

2µ− 1

1− µ
(−µ+ 2µ2) > 0.

We conclude that S(x) ≤ (diamB(x))s when |x| is large enough. Therefore, by Theorem 6,

dimH Sing∗(µ0) ≤ s
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and since this holds for all s > 2(1− µ) and all 1√
2
< µ < µ0, we obtain

dimH Sing∗(µ0) ≤ 2(1− µ0).

Case 2. Assume that µ0 <
1√
2
. We use Corollary 17 instead of Lemma 16 with µ < µ0 and a

suitable choice of γ. Set t = s
1−µ , a = (1− γ)µt and b = (1 + γ(µ− 1)µ)t. The idea is to find a

value of γ such that the constraints

b > 2,
b− 1

1− µ
− a > 2, B − b > 0

are satisfy with t minimal. This leads to the value γ = 1−2µ2

µ(1−µ)(3−2µ)
. In fact with the value

t = 3−2µ
1−µ+µ2

we find b = 2, b−1
1−µ − a = 2, and B − b = 0. It follows that if t > 3−2µ

1−µ+µ2
the three

strict inequalities hold. The last thing to check is that with this value of γ and t > 3−2µ
1−µ+µ2

we

have A− a ≤ 0. Now, if t = 3−2µ
1−µ+µ2

we have A− a = 1
µ−1

(2µ− 1) < 0, hence A− a < 0 for t

close to 3−2µ
1−µ+µ2

which implies that S(x) ≤ 1 for |x| large enough.

5 Lower bounds for the Hausdorff dimension: tools

5.1 The counting/diameter function

We will use Theorem 7 when all the diameters of the sets B(z), z ∈ σ(x), have the same order.
In that case we can replace the sums

∑
z∈σF (x)(diamB(z))s in condition (iii) of Theorem 7 by

an equivalent sum
(diamB(z))s × card{z ∈ σ(x) : B(z) ∩ F 6= ∅}.

So we are reduced to bound card{z ∈ σ(x) : B(z)∩F 6= ∅} from above with (diamF )s. This will
be done when the z ∈ σ(x) are on line segments through some points in almost lattice positions.

The next lemma allows us to bound from above
∑

z∈σF (x)
(diamB(z))s

(diamF )s
in such a situation.

Definition 8. Let C0 ≥ 1, H > 0 and V > 0 be real numbers. A C0-distorted H × V -tiling of
a subset B in R2 is a finite collection of subsets Ri, i ∈ I, such that

1. each Ri is included in B,

2. the intersection of Ri and Rj has measure zero for all i 6= j,

3. each Ri contains a rectangle of horizontal length 1
C0
H and of vertical length 1

C0
V ,

4. each Ri is contained in a rectangle of horizontal length C0H and of vertical length C0V .

Assumptions of Lemma 19. Let C0 ≥ 1 be a real number, let R0 > R1 > R2 > R3 and
H,V be real numbers such that

R0

C0

≥ H, V ≥ R1

C0

,
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and let E be a finite subset of R2. Assume that (Ry)y∈E is a C0-distorted H×V tiling of the ball
B(x,R0) such that each set Ry contains the corresponding y of E . Furthermore assume that,
for each y ∈ E , the ball B(y,R1) contains a set of balls B(z1, R3), . . . , B(zky , R3), ky ≤ b2R1

R2
c,

which are disjoint and whose centers zi are in a same line going through y, the distance between
consecutive centers being at least R2. Call Dy the set of all the zi and set

S = ∪y∈EDy.

Lemma 19. Set f(r) = maxa∈R2
cardS∩B(a,r)

rs
.

1. If 1 ≤ s ≤ 2, then

max
R3≤r≤R0

f(r) ≤ 72C4
0 max

{ 1

Rs
3

,
R1R

2
0

V HR2

× 1

Rs
0

}
.

2. If s < 1, then

max
R3≤r≤R0

f(r) ≤ 72C4
0 max

{ 1

Rs
3

,
R1

R2Rs
1

,
R1R

2
0

V HR2

× 1

Rs
0

}
.

Proof. We can assume that V ≤ H.
Observe first that a 4C0H × 4C0V rectangle can meet at most 36C4

0 tiles Ry because the
union of all these tiles is included in a 6C0H × 6C0V rectangle and these tiles have an area
at least equal to C−2

0 HV . Next, if a ball B(a, r) meets a ball B(y,R1) with y ∈ E , then the
ball B(a, r + R1) meets the tile Ry. Since a ball B(a, r + R1) with r ≤ C0V is included in a
4C0H × 4C0V rectangle, it follows that a ball B(a, r) with r ≤ R1 meets at most 36C4

0 balls
B(y,R1), y ∈ E .

Case 1. R3 ≤ r ≤ R2.
Since, for a given y in E , a ball B(a, r) contains at most two points z in Dy, by the above
observation we have

f(r) ≤ 72C4
0 × r−s = g(r),

which is a decreasing function of r.
Case 2. R2 ≤ r ≤ R1.

Since, for a given y in E , a ball B(a, r) contains at most 2r
R2

points z in Dy, by the above
observation we have

f(r) ≤ 36C4
0

rs
× 2× r

R2

= 72C4
0 ×

r1−s

R2

= g(r),

which is an increasing function of r if s ≤ 1, and a decreasing function otherwise.
Case 3. R1 ≤ r ≤ C0V .

By the above observation we have

f(r) ≤ 36C4
0 ×

2R1

R2

× r−s = g(r),
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which is a decreasing function of r.
Case 4. C0V ≤ r ≤ C0H.

We need first to refine the above observation. A 2(r + R1) × 2(r + R1) square is included in
a 4C0H × 4r

C0V
C0V rectangle and all the tiles meeting this rectangle are included in a ( 4r

C0V
+

2)C0V × 6C0H rectangle. It follows that the 2(r +R1)× 2(r +R1) square meets at most

(
6r

C0V
× 6)C2

0

V H

C−2
0 V H

= 36C4
0 ×

r

C0V

tiles Ry. Hence

f(r) ≤ 36C4
0 ×

r

C0V
× 2R1

R2

× r−s = 72C3
0

R1

V R2

r1−s = g(r),

which is an increasing function of r if s ≤ 1, and a decreasing function otherwise.
Case 5. C0H ≤ r ≤ R0.

The number of tiles meets by 2(r +R1)× 2(r +R1) square is at most
36C2

0r
2

HV
, hence

f(r) ≤
36C2

0r
2

HV
× 2R1

R2

rs
= 72C2

0 ×
R1

V HR2

r2−s = g(r)

which is a decreasing function of r.
Conclusion.

If s ≥ 1, then f(r) ≤ g(r) ≤ max(g(R3), g(R0)) ≤ 72C4
0 max{ 1

Rs3
,
R1R2

0

V HR2
× 1

Rs0
}.

If s ≤ 1, the maximum of g might be reach in r = R1.

The above lemma will be used with an s chosen so that cardS×Rs
3 ≥ Rs

0. Thanks to
Theorem 7, it gives a lower bound for the Hausdorff dimension of the image of Ωx0 when s ≥ 1.
If s ≤ 1, it will be necessary to check that

1� g(R0)

g(R1)
.

5.2 A first step in the definition of the self-similar structure: defi-
nition of σ and of Qσ

Let µ > 1
2

be fixed. We want to define a self-similar structure (J, σ,B) that covers a subset of
Sing∗(µ). In this subsection we only define J and σ.

We denote by c1, c2, . . . some constants that will be chosen later. These constants might
depend on µ. The constants involved in�,�, or in � depends only on µ but not on c1, c2, . . .

For each x in Q let u1 = u1(x), u2 = u2(x) be a reduced basis of Λx (by reduction, we mean
the Gauss reduction). The vector subspace H ′x is spanned by u1 and x (see the definition of
Hx in Section 3).
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Let E1(x) be the set of y = α + kx ∈ Q with α = αm = πx(y) = mu1 + u2 in the “first

level” u2 +H ′x, ‖mu1‖e ≤ λ2(x) and |y| ∈ (‖α‖e |x|)
1

1−µ [c0, 2c0] where c0 = 32
1

1−µ . This value of
c0 will be used in the proof of Proposition 26.

Fix b a positive real number. Let y be in E1(x). Let D1(y) be the set of z in Q such that
|z| ≥ |y| , z ∈ Hy,

1

2
|y|b ≤ |z|

|y|
≤ |y|b ,

‖ŷ − ẑ‖e ≤ c1
λ1(y)

|y|
,

where c1 ≤ 1
4

is small enough and will be chosen after Lemma 27.
For each x in Q, set

σ(x) = ∪y∈E1(x)D1(y)

and
J = Qσ =

⋃
x∈Q, |x|≥c

σ(x),

where c is a constant. The remaining Propositions and Lemmas hold when |x| is large enough,
so the constant c will be chosen in order all these results hold.

5.3 A few Calculations

Let x be in Qσ, y be in E1(x) and z be in D1(y). Since πx(y) = α = mu1 + u2 with ‖mu1‖e ≤
λ2(x), we have ‖α‖e � λ2(x). So if we can evaluate λ2(x), we will then be able to estimate the
height of y, the height of z and also λ1(x). However, estimating λ2(x) is not possible directly
and we have to estimate λ1(y) first.

5.3.1 Minima of Λy

Lemma 20. Let x be in Qσ and y in E1(x). Then λ1(y) = |x∧y|
|x| � |y|

−µ and λ2(y) � |y|µ−1

when |x| is large enough.

Proof. Let λ1(α) denote the first minimum of the orthogonal projection of Λx on the line

orthogonal to α. By Lemma 15, if |x∧y||y| ≤ λ1(α), then λ1(y) = |x∧y|
|y| = ‖α‖e

|x|
|y| . Now λ1(α) =

det Λx
‖α‖e

= 1
‖α‖e|x|

≥ |x∧y|
|y| is equivalent to

|y| ≥ (‖α‖e |x|)
2

and, by definition of E1(x), we get |y| ≥ c0(‖α‖e |x|)
1

1−µ ≥ (‖α‖e |x|)2 (note that ‖α‖e |x| > 1

when |x| is large enough), therefore λ1(y) = |x∧y|
|y| when |x| is large enough.

It follows that

λ1(y) = ‖πy(x)‖e = ‖α‖e
|x|
|y|
� (|x| ‖α‖e)

1− 1
1−µ � |y|−µ
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and, by Minkowski’s Theorem,

λ2(y) � 1

|y|λ1(y)
� |y|µ−1 .

5.3.2 Minima of Λx and Λz

Lemma 21. Let x be in Qσ and z in σ(x). We have λ1(z) � |z|−
µ+b
1+b and λ2(z) � |z|

µ−1
1+b when

|x| is large enough. Consequently, λ1(x) � |x|−
µ+b
1+b and λ2(x) � |x|

µ−1
1+b .

Proof. Let y be in E1(x) such that z is in D1(y). By definition of D1(y), we get |z| � |y|1+b.
By Lemma 14 and by the definition of D1(y), and then by Lemma 20, we have

λ2(z) � λ2(y) � |y|µ−1 � |z|
µ−1
1+b ,

λ1(z) � |z|−1−µ−1
1+b = |z|−

µ+b
1+b .

5.3.3 Distance from x̂ to ŷ

Lemma 22. Let x be in Qσ and y in E1(x). Then, when |x| is large enough, we have

d(x̂, ŷ) � |x|r0 ,

where

r0 = −µ
2 − µ+ b+ 1

(1− µ) (b+ 1)
.

Proof. Let α = πx(y). Since y = α + |y|
|x|x, we get

d(x̂, ŷ) =
‖α‖e
|y|
� ‖α‖e

(|x| ‖α‖e)
1

1−µ
=

1

(|x| ‖α‖µe )
1

1−µ
� 1

(|x|λµ2(x))
1

1−µ
.

Therefore, by Lemma 21, we have

d(x̂, ŷ) � 1

(|x| |x|
µ−1
1+b

µ)
1

1−µ

� 1

|x|
1

1−µ (1+
µ(µ−1)
1+b

)
= |x|r0 .
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5.3.4 Growth rate of |y|

Lemma 23. Let x be in Qσ and y in E1(x). Then, when |x| is large enough, we get

|y| = |x|ey ,

where

ey =
µ+ b

(1− µ)(1 + b)
.

Proof. By the definition of E1(x) and by Lemma 21, we have

|y| � (|x|λ2(x))
1

1−µ � (|x| |x|
µ−1
1+b )

1
1−µ .

5.4 A nested self-similar structure

We want to define a self-similar structure (J, σ,B). Since J = Qσ and σ have already been
defined, it remains only for us to define the map B.

5.4.1 Definition of B(x)

For each x ∈ Qσ, set
B(x) = B(x̂, c2 |x|r0),

where the constant r0 is defined in Lemma 22. The constant c2 will be chosen in the proof of
Lemma 27.

Lemma 24. For x in Qσ,

B(x) ⊂ B
(
x̂,
λ1(x)

2 |x|

)
,

when |x| large enough, and therefore x is a best approximation vector of all θ in B(x).

Proof. By Lemma 21, λ1(x) � |x|−
µ+b
1+b and

−µ+ b

1 + b
− 1 + r0 = −µ+ 2b+ 1

1 + b
+
µ2 − µ+ b+ 1

(1− µ) (b+ 1)
> 0,

Therefore c2 |x|r0 ≤ λ1(x)
2|x| when |x| is large enough. By Lemma 10, it follows that x is a best

approximation vector of all θ in B(x).
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5.4.2 Nestedness

Lemma 25. Let x be in Qσ. Then for all z ∈ σ(x), B(z) ⊂ B(x) and z ∈ Qσ when |x| is large
enough. Moreover,

B(z) ⊂ B
(
ŷ,
λ1(y)

2 |y|

)
⊂ B

(
ŷ,

2λ1(y)

|y|

)
⊂ B(x),

where y is the element of E1(x) such that z ∈ D1(y).

Proof. By Lemma 22,
d(x̂, ŷ)� |x|r0 ,

where r0 = − µ2−µ+b+1
(1−µ)(b+1)

. Moreover, by Lemmas 20 and 23, λ1(y)
|y| � |x|

− (µ+b)(1+µ)
(1−µ)(1+b) and

r0 +
(µ+ b)(1 + µ)

(1− µ)(1 + b)
=

2µ− 1 + bµ

(1− µ)(1 + b)
> 0.

Therefore

B(ŷ,
2λ1(y)

|y|
) ⊂ B(x),

for all y ∈ E1(x) when |x| is large enough.

Now let y be in E1(x) and z be in D1(y). By definition we have d(ŷ, ẑ) ≤ 1
4
λ1(y)
|y| , so in order

to prove that B(z) ⊂ B(ŷ, λ1(y)
2|y| ) ⊂ B(x) it is enough to prove that c2 |z|r0 ≤ 1

4
λ1(y)
|y| .

Since λ1(y) � |y|−µ (by Lemma 20), we are reduced to check that

c2 |y|(1+b)r0 � c2 |z|r0 ≤
1

4 |y|1+µ ,

which holds when |y| is large enough because

−(1 + b)r0 − (1 + µ) =
1

1− µ
((2µ− 1)µ+ b) > 0.

Proposition 26. The self-similar structure (Qσ, σ, B) is strictly nested and covers a subset of
Sing∗(µ).

Proof. The nestedness is ensured by the previous Lemma and the fact that limn→∞ diamB(xn) =
0 for all admissible sequence (xn)n≥0 is an immediate consequence of the inequality |z| > |x|
for all z ∈ σ(x).

Let (xn)n≥0 be an admissible sequence and let θ be the unique point in ∩n≥0B(xn). We have
to show that θ ∈ Sing(µ) and that Zθ+Z2 is everywhere dense in R2. Let Q be an integer. We
want to prove that there exists an integer q ≤ Q such that

d(qθ,Z2) ≤ Q−µ.
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Let n be the integer defined by |xn| ≤ Q < |xn+1|. Set x = xn. By the definition of σ, there
exists y ∈ E1(x) such that z = xn+1 ∈ D1(y).

Case 1: |xn| ≤ Q < |y|.
By the above lemma θ ∈ B(z) ⊂ B(ŷ, λ1(y)

2|y| ), hence y is a best approximation vector of θ. By

Lemma 11 (iii), for all (p, q) in Z2 with 0 < q < |y|, we have

‖p− qθ‖e ≤ 2 ‖p− qŷ‖e .

Now by the definition of E1(xn) we have |y| ≥ c0(‖α‖e |xn|)
1

1−µ where α = πx(y). This implies
that

‖ŷ − x̂‖e ≤
|y|−µ

c1−µ
0 |x|

and therefore, by Lemma 11 (iii), the constant c0 can be chosen large enough so that

‖p− qθ‖e ≤ 2 ‖p− qŷ‖e ≤ |y|
−µ ≤ Q−µ.

where x = (p, q).
Case 2: |y| ≤ Q < |z|.

Since d(ẑ, ŷ) ≤ 1
4
λ1(y)
|y| ≤

λ1(y)
2|y| , by Lemma 10, y is a best approximation vector of ẑ. Let

y0 = y = (p0, q0), y1 = (p1, q1), . . . , yk = (pk, qk) = z be all the intermediate best approximation
vectors of ẑ. Since Λz = πz(Z3) ⊂ H ′y + Λ′y and since by Lemma 20, λ1(y) is small compared to
λ2(y) when |x| is large enough, the intermediate best approximation vectors are all in Hy and
Λyi ⊂ H =Hy + Λy , i = 0, . . . , k. It follows that for each i < k we have

λ1(yi)e(H) =
1

|yi|
,

where e(H) is the distance between two consecutive lines of H. Since e(H) ≥
√

3
2
λ2(y), and

λ1(y)λ2(y) ≥ 1
|y| (the minima are associated with an Euclidean norm),

λ1(yi) =
1

e(H) |yi|
≤ 2√

3

λ1(y) |y|
|yi|

≤ 2
1

c1−µ
0

|y|−µ |y|
|yi|
≤ 2

1

c1−µ
0

|yi|−µ .

Hence, by Lemma 11 (i) and (iii), for |yi−1| ≤ Q < |yi|, i = 1, . . . , k,

d({ẑ, . . . , Qẑ},Z2) ≤ 2d({ŷi, . . . , Qŷi},Z2)

≤ 2 ‖qi−1ŷi − pi−1‖e ≤ 8λ1(yi)

≤ 16
1

c1−µ
0

|yi|−µ ≤ 16
1

c1−µ
0

Q−µ.

Now, by Lemma 24, z is a best approximation vector of θ, hence

d({θ, . . . , Qθ},Z2) ≤ 2d({ẑ, . . . , Qẑ},Z2) ≤ 32
1

c1−µ
0

Q−µ,

which is equal to Q−µ by the choice of c0.
It remains to see why Zθ + Z2 is everywhere dense. This simply follows from the fact that

e(H) ≤ λ2(y) and that λ2(y) tends to 0 for y ∈ E1(xn) when n goes to infinity.

30



5.5 A distorted tiling associated with the set of ŷ, for y in E1(x).

Let x be in Qσ and let u1, u2 be the reduced basis of Λx. For each y in E1(x) there are unique
integers m and a, and 0 ≤ r < 1 such that y = mu1 + u2 + (a+ r)x. For given integers m and
a, consider the trapezoid T (m, a) with extreme points

x̂+
mu1 + u2

a |x|
, x̂+

(m+ 1)u1 + u2

a |x|
, x̂+

mu1 + u2

(a+ 1) |x|
, x̂+

(m+ 1)u1 + u2

(a+ 1) |x|
.

For y = mu1 + u2 + (a+ r)x in E1(x) we set

Ry = Rŷ = T (m, a).

Let E(x) denote the set of ŷ, y in E1(x).

Lemma 27. There exists a constant C0 such that for all x in Qσ with |x| large enough and c2

large enough, the collection Rŷ, ŷ in E(x), is a C0-distorted H × V -tiling of B(x) with

H = |x|h = |x|−
(2−µ)(b+µ)
(1−µ)(b+1)

V = |x|v = |x|−
(1+µ)(b+µ)
(1−µ)(b+1) .

Moreover, every ŷ in E(x) lies on a vertical side of Ry and the minimal distance ρ(x) between

two elements in E(x) is � V � λ1(y)
|y| .

Proof. Observe that the trapezoid T (m, a) lies between the vertical lines

Vm = x̂+ R(mu1 + u2), and Vm+1 = x̂+ R((m+ 1)u1 + u2)

and between the horizontal lines

Ha = x̂+
u2

a |x|
+ Ru1, and Ha+1 = x̂+

u2

(a+ 1) |x|
+ Ru1.

Therefore, the trapezoids Rŷ have intersections of Lebesgue measure zero. Observe that for y

in E1(x), by Lemma 23, a � |y|
|x| � |x|

ey−1. On the one hand, by definition of E1(x) and Lemma
20, the distance between two consecutive horizontal lines is

� λ2(x)

a2 |x|
� |x|λ2(x)

|y|2
� |x ∧ y|
|y|2

=
λ1(y)

|y|
� |y|−1−µ � |x|v .

On the other hand, the distance between the two vertical segments of T (m, a) is � λ1(x)
|y| which

is � |x|h by Lemmas 23 and 21. Since h > v, diamRŷ � H and since h < r0, we see that all
the trapezoids Rŷ are included in B(x) when c2 is large enough.

Since ŷ = x̂+ mu1+u2
(a+r)|x| , ŷ is in the left vertical side of Rŷ and the nearest element of E(x) is

in the same vertical line at a distance � V . Therefore ρ(x) � λ1(y)
|y| .
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5.5.1 Choice of the constants c, c1 and c2

The constant c2 is chosen according to Lemma 27. With this choice, we determine the constant
c1. Since ρ(x) � λ1(y)

|y| , it is possible to take c1 small enough in order that for all z in D1(y),

d(ŷ, ẑ) ≤ c1
λ1(y)

|y|
≤ 1

4
ρ(x).

The choice of the constant c involved in the definition of Qσ is done at the very end taking
all the “|x| large enough” into account.

5.5.2 Distance between the points ẑ for z in D1(y)

Lemma 28. Let x be in Qσ and y be in E1(x). If z 6= z′ are in D1(y), then

d(ẑ, ẑ′) ≥ λ1(y)

2 |y|1+2b
≥ 3 max

u∈σ(x)
diamB(u)

when |x| is large enough. Hence the balls B(z), z ∈ σ(x), are disjoint.

Proof. Choose a generator uy of Λ′y = Λy ∩ Hy and y′ in Z3 ∩ Hy such that πy(y
′) = uy and

|y′| ≤ 1
2
|y|. We have y′ = uy + ry with |r| ≤ 1

2
and Z3 ∩Hy = Zy + Zy′.

Let z = ay′ + ky be in Q ∩Hy. We have z = auy + (ar + k)y, hence

ẑ =
a

(ar + k)

uy
|y|

+ ŷ,

and, since z is primitive, the pair (a, k) is primitive in Z2.
Now, if z = ay′ + ky is in D1(y) then

|a|λ1(y) = ‖auy‖e = ‖πy(z)‖e ≤
1

4

λ1(y)

|y|
× |z| ,

hence |a| ≤ 1
4
|z|
|y| . Moreover, |z| ≤ |k| |y|+ 1

2
|a| |y|, thus

|k| ≥ 1

|y|
(|z| − 1

2
|a| |y|) =

|z|
|y|

(1− 1

8
) ≥ 1

2

|z|
|y|
.

Let z = ay′ + ky and z′ = a′y′ + k′y be two distinct points in D1(y). We have

ẑ − ẑ′ = (
a

(ar + k)
− a′

(a′r + k′)
)
uy
|y|

= (
ak′ − a′k

(ar + k)(a′r + k′)
)
uy
|y|
.

Since (a, k) and (a′, k′) are primitive, we have ak′ − a′k 6= 0. It follows that

d(ẑ, ẑ′) ≥ λ1(y)

|y|
× 1
|z|
|y| ×

|z′|
|y|

≥ λ1(y)

|y|1+2b
.
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It remains to see that for all z,

diamB(z) ≤ 1

3

λ1(y)

|y|1+2b
� 1

|y|1+2b+µ
.

Since diamB(z) � |z|r0 � |y|(1+b)r0 and since

−(1 + b)r0 − (1 + 2b+ µ) =
(b+ µ)(2µ− 1)

1− µ
> 0

we have diamB(z) ≤ 1
3
λ1(y)

|y|1+2b .

The last thing to see is that the balls B(z), z ∈ σ(x) are disjoint. Recall that the constant c1

has been chosen in order that for all z in D1(y), d(ŷ, ẑ) ≤ 1
4
ρ(x), the minimal distance between

two points ŷ, where y is in E1. It follows that the balls B(z) are disjoint provided that

max
z∈σ(x)

diamB(z) <
1

4
ρ(x).

This latter inequality holds because ρ(x) � λ1(y)
|y| and λ1(y)

|y|1+2b ≥ diamB(z).

5.5.3 Number of points in σ(x)

Lemma 29. Let x be in Qσ and y in E1(x). Then

cardD1(y) � |x|2bey = |x|d1 ,

cardE1(x) � |x|2
µ−1
1+b

+ey = |x|e1 ,

and
cardσ(x) � |x|nx ,

where

nx =
1

(1− µ) (b+ 1)

(
2b2 + 2bµ+ b+ (2µ− 1) (2− µ)

)
when |x| is large enough.

Proof. It is not difficult to see that the number of points z in Hy ∩ Z3 such that

‖ŷ − ẑ‖e ≤ c1
λ1(y)

|y|
and

1

2
|y|b ≤ |z|

|y|
≤ |y|b

is � |y|2b. Indeed, the condition ‖ŷ − ẑ‖e ≤ c1
λ1(y)
|y| is equivalent to ‖πy(z)‖e ≤ c1

|z|
|y|λ1(y) which

means that there are � |z|
|y| � |y|

b possible values for α = πy(z). Moreover, the set of integer

points on each of the lines π−1
y (α) is a translate of Zy and therefore there are |y|b possible z

for each α. The fact that many of such z are primitive is less clear; in fact, by Lemma 7.11 of
[11], we have

cardD1(y) � |y|2b � |x|2bey .
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Clearly,

cardE1(x) � λ2(x)

λ1(x)
× |y|
|x|
� λ2

2(x) |x|ey � |x|2
µ−1
1+b

+ey .

It then follows that the number of points in σ(x) satisfies

cardσ(x) � |x|2bey × |x|2
µ−1
1+b

+ey = |x|nx ,

where

nx = 2
µ− 1

1 + b
+ (1 + 2b)

µ+ b

(1− µ)(1 + b)

=
1

(1− µ) (b+ 1)

(
2b2 + 2bµ+ b+ (2µ− 1) (2− µ)

)
.

6 Lower bounds for the Hausdorff dimension: proofs

Proof of Theorem 3. Let s be a positive real number. Suppose that the following conditions
hold:

•
∑

z∈σ(x)(diamB(z))s ≥ (diamB(x))s,

• Rs
1 cardE1(x)� (diamB(x))s where R1 = maxy∈E1(x)

λ1(y)
|y| � |x|

−ey(µ+1) � |x|r1 ,

for all x in Qσ with |x| large enough.
Let us show that such an s is a lower bound for dimH Sing∗(µ). We want to use Theorem 7

with the self-similar structure (Qσ, σ, B) which is strictly nested and covers a subset of Sing∗(µ)
by Proposition 26. The first condition above is just the first hypothesis of Theorem 7 and the
second condition of Theorem 7 is implied by Lemma 28. So it remains to check the last
hypothesis of Theorem 7. For this last condition, we use Lemma 19 with R0 = c2 |x|r0 and the

sets B = B(x̂, R0), E = Ê1(x), Dŷ = D̂1(y), S = ∪ŷ∈EDŷ, R1 defined above, and

R2 = c3 |x|−ey(µ+1+2b) � |x|r2 , R3 = |x|ezr0 = |x|
µ+b

(1−µ) r0 = |x|r3 .

Let us first check the inequalities between R0, . . . , R3, H � |x|h , V � |x|v. Looking at the
exponents we find

r0 = −µ
2 − µ+ b+ 1

(1− µ) (b+ 1)
> h = −(2− µ)(b+ µ)

(1− µ)(b+ 1)
> v = r1 = −(1 + µ)(b+ µ)

(1− µ)(b+ 1)
>

r2 = −(µ+ 1 + 2b)(b+ µ)

(1− µ)(b+ 1)
> r3 = − (b+ µ)

(1− µ)
× µ2 − µ+ b+ 1

(1− µ) (b+ 1)
,
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which show that the assumptions of Lemma 19 about the numbers R0, R1, R2, R3, H and V
are satisfied. Moreover, by Lemma 28 and for c3 small enough, we have

d(z, z′) ≥ λ1(y)

2 |y|1+2b
≥ R2,

for all z 6= z′ in D1(y). Together with Lemma 27, this imply that all the assumptions of Lemma
19 hold.

With the notations of Lemma 19, we get

f(r)� max
{ 1

Rs
3

,
R1

R2Rs
1

,
R2

0R1

V HR2

× 1

Rs
0

}
.

By Lemma 27 (or 29),
R2

0

V H
� cardE1(x) and, since R1

R2
� |y|2b � cardD1(y), we see that

R2
0R1

V HR2

× 1

Rs
0

� cardσ(x)

(diamB(x))s
.

With the first assumption
∑

z∈σ(x)(diamB(z))s ≥ (diamB(x))s we get

1

Rs
3

� R2
0R1

V HR2

× 1

Rs
0

.

With the second assumption Rs
1 cardE1(x)� (diamB(x))s, we get

R1

R2Rs
1

� R2
0

V H

1

Rs
1 cardE1(x)

× R1

R2

� R2
0

V H

1

Rs
0

× R1

R2

.

Therefore, for all r in [R3, R0], we have

cardσ(x) ∩B(a, r)

rs
� cardσ(x)

(diamB(x))s

and so, with F = B(a, r), ∑
z∈σF (x)

(diamB(z))s

(diamF )s
�

∑
z∈σ(x)

(diamB(z))s

(diamB(x))s
.

By applying Theorem 7 we conclude that the Hausdorff dimension of Sing∗(µ) is at least equal
to s.

The idea is now to show that the assumption
∑

z∈σ(x)(diamB(z))s ≥ (diamB(x))s is more

restrictive than the other assumption Rs
1 cardE1(x)� (diamB(x))s.

The condition
sr3 + nx > sr0

implies the first assumption and the condition

sr1 + e1 > sr0
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implies the second assumption. The first condition is equivalent to s < nx
r0−r3 = s1 and the

second is equivalent to s < e1
r0−r1 = s2. Therefore, to prove that s1 is a lower bound for the

Hausdorff dimension of Sing∗(µ), it is enough to check that s1 < s2 for all µ in (1
2
, 1) and all

positive b.
Tedious calculations give

s1(b) =
(1− µ) (2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
,

s2(b) =
1

2µ+ bµ− 1

(
−2µ2 + 5µ+ b− 2

)
,

and

s2(b)− s1(b) = (b+ µ)
(2µ2 − 2µ+ 1) b2 + (4µ2 − 2µ) b+ µ (2− µ) (2µ− 1)2

(b− µ+ µ2 + 1) (b+ 2µ− 1) (2µ+ bµ− 1) ,

which is > 0 for µ in [1
2
, 1) and b > 0. It follows that

dimH Sing∗(µ) ≥ s1(b),

and the proof is complete.

Proof of corollaries 2 and 4. Clearly,

lim
b→∞

s1(b) = 2(1− µ)

It follows that
dimH Sing∗(µ) ≥ lim

b→∞
s1(b) = 2(1− µ).

Next we can compute the derivative of the function b 7→ s1(b). The numerator of this
derivative is

Num(b) = (1− µ)((2µ2 − 1)b2 + (8µ3 − 8µ2 + 2)b+ (6µ4 − 7µ3 + 3µ− 1)).

When µ > 1√
2
, Num(b) is positive for all positive b, hence the maximum of s1 is reached when

b goes to infinity. When µ < 1√
2
, Num(b) vanishes at the value

b0 =
1

1− 2µ2

(
µ− 4µ2 + 4µ3 +

√
(1− µ)3(2µ− 1)(2µ− 2µ2 + 1)

)
,

which is positive. Since Num(b) is negative for b large this implies that s1(b0) is larger than
the limit at infinity and therefore the Hausdorff dimension exceeds 2(1− µ).

Let us look at the limit when µ tends to 1
2
. With b = β(2µ− 1), we obtain

s1 = s1(µ, β) =
(1− µ)(2β2(2µ− 1) + 2βµ+ β + 2− µ)

(µ2 − µ+ 1 + β(2µ− 1))(β + 1)
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Therefore for all β > 0,

lim
µ→ 1

2

dimH Sing∗(µ) ≥
1
2
(2β + 3

2
)

3
4
(β + 1)

.

Letting β going to infinity this implies

lim
µ→ 1

2

dimH Sing∗(µ) ≥ 4

3
.

Proof of Proposition 5. We keep the notation of the proof of Theorem 3. We want to use
Lemma 9 with the strictly nested self-similar structure (Qσ, σ, B) and the map x 7→ x̂. We
need to define the map B′. For x in Qσ, we set

B′(x) = B(x̂, c4 |x|−
µ+1+2b

1+b ).

Since, for z ∈ σ(x),

|z|−
µ+1+2b

1+b � |x|−ey(1+µ+2b) � λ1(y)

2 |y|1+2b
� R2,

by using Lemma 28, we see that the balls B′(z), z ∈ σ(x), are disjoint when c4 is small enough.

Moreover, since R2 is small compared to λ1(y)
|y| , Lemma 25 implies that for all x ∈ Qσ, all

y ∈ E1(x) and z ∈ D1(y), we have

B′(z) ⊂ B(ŷ,
2λ1(y)

|y|
) ⊂ B(x) ⊂ B′(x),

hence the third assumption of Lemma 9 holds. The second assumption of this lemma holds
because R3 is small compared to R2. The fifth assumption, namely∑

z∈σ(x)

(diamB′(z))s ≥ (diamB′(x))s,

needs to be checked. Since

diamB′(x) � (diamB(x))
µ+1+2b
|r0|(1+b) ,

the fifth assumption holds provided that

µ+ 1 + 2b

|r0|(1 + b)
s ≤ s1.

Therefore,

dimP Sing∗(µ) ≥ |r0|(1 + b)

µ+ 1 + 2b
s1

=
(2b2 + 2bµ+ b+ (2− µ)(2µ− 1))

(µ+ 1 + 2b) (b+ 2µ− 1)
.

Letting b going to infinity, we obtain

dimP Sing∗(µ) ≥ 1.
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