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Abstract

Let ∆n be the set of all possible joint distributions of n Bernoulli
random variables X1, ..., Xn. Suppose that ∆n which is a simplex in the
2n-dimensional space, is endowed with the normalized Lebesgue measure
µn. Suppose also that the integer n is large. Then we show that there
is subset ∆ of ∆n whose measure µn(∆) is very close to 1, such that
if the joint distribution of (X1, ..., Xn) is in ∆ then the law of the sum
X1 + ...+Xn is close to the binomial law B(n, 1

2
). This result doesn’t need

any independance assumption. Next, we show a result of the same kind
when ∆n is endowed with an other probability measure νn.
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1 Introduction

The most common explanation for the ubiquity of the Gaussian law is the
Central Limit Theorem. Another explanation closely related to the previous one,
is that the Gaussian law is the only stable law with finite variance. The proofs
of the Central Limit Theorem always rest on some independence assumption or
at least on some stationarity assumption. The purpose of our work is to give in
a very simplified situation, another kind of explanation for the ubiquity of the
Gaussian law.

Consider a sequence X1, ..., Xn of Bernoulli random variables. We are in-
terested in the law of the sum Sn = X1 + ... + Xn without any independance
assumption about the random variables Xi. Since the Laplace-Moivre theorem
asserts that up to a suitable normalization, for n large (and p not too small),
the binomial distribution B(n, p) is close to the Gaussian law, an explanation
for the ubiquity of the Gaussian law may be in our setting:
when n is large, the law of Sn is often very close to the symmetric binomial
distribution B(n, 1

2 ).
We must explain what we mean by very often. Fix a positive integer n.

Denote by ∆n the set all possible joint distributions of n Bernoulli random
variables X1, ..., Xn. ∆n is the set of all probability measures on {0, 1}n. To
each element p = (pi)i∈{0,1}n of ∆n, one can associate the law of the sum
Sn = X1 + ... + Xn. It is a probability measure Ln(p) on the set {0, ..., n}.
When we choose the uniform probability law b = (2−n, ...., 2−n) on {0, 1}n, we
get Ln(b) = Bn = B(n, 1

2 ) the symmetric binomial distribution:

Bn(k) = Ck
n2−n
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for all k in {0, ..., n}. Let ε > 0, our aim is to estimate the size of the set ∆n,ε

of probability measures p in ∆n such that for all k in {0, ..., n},

|Ln(p)(k)− Bn(k)| ≤ ε.

To make precise this question, we have to measure the size of subsets of ∆n.
This can be done with the help of a probability measure on ∆n. If µ is a
probability measure on ∆n, we wish to prove that

µ(∆n,ε)

is close to 1 when n is large. In a less formal language :
when n is large, choosing at random the joint distribution of (X1, ..., Xn), it is
likely that the law of Sn is very close to the symmetric binomial distribution
B(n, 1

2 ).

2 Statements of results

There are many choices for the probability measure µ and we shall only consider
two. The first and the most natural one is µ = µ1,n the normalized Lebesgue
measure on ∆n. Our first result is:

Theorem 1 There exists a constant A such that for all positive integers n, and
all positive numbers ε,

µ1,n(∆n,ε) ≥ 1− A
√
n

ε22n−1

and

µ1,n({p ∈ ∆n : sup
I⊂{0,...,n}

|Ln(p)(I)− Bn(I)| ≤ ε}) ≥ 1− An5/2

ε22n−1
.

Though, the Lebesgue measure is very natural it has a drawback. One can
consider the law of the first n− 1 Bernoulli random variables (X1, ..., Xn−1) as
a random variable defined on ∆n. This random variable is the projection

pron : ∆n −→ ∆n−1

: (pi)i∈{0,1}n → (p(j,0) + p(j,1))j∈{0,1}n−1

The point is that the Lebesgue measure µ1,n−1 is not the image of µ1,n by the
map pron; the family (µ1,n)n≥1 is not a projective family of probability mea-
sures. We would like to find a projective family (µ2,n)n≥1 of natural probability
measures on the sequence of sets (∆n)n≥1. This can be done inductively: when
we know the law (pi)i∈{0,1}n of (X1, ..., Xn) the law (p′(i,j))i∈{0,1}n,j∈{0,1} of
(X1, ..., Xn, Xn+1) is chosen at random uniformly among all the possible laws.
Let us make it precise. Consider the natural map which is almost a bijection,

ψn : ∆n × [0, 1]{0,1}n → ∆n+1

: ((pi)i∈{0,1}n , (xi)i∈{0,1}n) → (p′(i,j))i∈{0,1}n,,j∈{0,1}

where p′(i,0) = pixi and p′(i,1) = pi(1−xi). The uniformity means that the choice
of (p′(i,j))i∈{0,1}n,,j∈{0,1} given (pi)i∈{0,1}n , is done at random with respect to
the Lebesgue measure λn on [0, 1]{0,1}n

. This enable to transfer a probability
measure from ∆n to ∆n+1. If we have a probability measure µ2,n on ∆n, the
product of this measure with the Lebesgue measure λn on [0, 1]{0,1}n

gives rise
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to a measure on ∆n× [0, 1]{0,1}n

and its image by ψn is a new measure µ2,n+1 on
∆n+1. Since the map pron+1 ◦ ψn : ∆n × [0, 1]{0,1}n → ∆n is the projection on
∆n, the image by pron+1 of µ2,n+1 is µ2,n. Taking µ2,1 the normalized Lebesgue
measure on ∆1, we get a sequence (µ2,n)n≥1 of natural probability measures on
the sequence of simplices (∆n)n≥1 (see section 3, for a purely probabilistic point
of view about the measures µ2,n). This is our second choice which also has a
drawback for it looses the symmetry between the random variables

pri : ∆n → R

: (pj)j∈{0,1}n → pi,

i ∈ {0, 1}n as well as the symmetry between the variables Xi, i ∈ {1, ..., n}. Our
second result is:

Theorem 2 There exists a constant C such that for all positive integers n, and
all positive numbers ε,

µ2,n(∆n,ε) ≥ 1− C lnn
n3/2ε2

and

µ2,n({p ∈ ∆n : sup
I⊂{0,...,n}

|Ln(p)(I)− Bn(I)| ≤ ε}) ≥ 1− C ln3/2 n√
nε2

.

Remark. In both Theorems 1 and 2 it is possible to find an explicit value
for the constants A and C. It is easy to check that the value A = 2 works in
Theorem 1 whereas it is more difficult to give an explicit value for the constant
C and we do not give any.

The main point of these two results is that they do not need any indepen-
dence assumption about the variables Xi. There must be some other works of
the same kind but we have only find one: K. Takeuchi and A. Takemura ([T,T])
have studied the law of the sum Sn = X1 + ...+Xn where the Xi are Bernoulli
variables. They only assume some condition about ”central binomial moments”
which are a one to one function of the factorial moments (the kth factorial mo-
ment of random variable X is E(X(X − 1)...(X − k + 1))). This allows them
to prove convergence to the normal law or to the Poisson’s law for a triangular
array of Bernoulli variables Xi,n. Their hypothesis are only about the central
binomial moments of Sn = X1,n + ...+Xn,n.

3 Sketch of proofs

The ideas of the proofs of Theorems 1 and 2 are exactly the same. It is the
reason why, although these proofs are not difficult, we begin by describing their
main steps. For i = 1, 2, n ∈ N∗, and k ∈ {0, ..., n}, denote by Ei,n(k) and
Vi,n(k) the expectation and the variance of the random variable p → Ln(p)(k)
defined on the probability space (∆n, µi,n).

Making use of the symmetries, we replace the simplex ∆n by another geo-
metrical space where the computation of expectations are easier. Then we show
in both cases, that

Ei,n(k) = Ck
n2−n = Bn(k).

Since by the Chebyshev inequality,

µi,n({p ∈ ∆n : |Ln(p)(k)− Ei,n(k)| > ε}) ≤ Vi,n(k)
ε2

,

3



Theorems 1 and 2 can be deduced from appropriates upper bound on the vari-
ances Vi,n(k). In the first case, standard results lead to the inequality

V1,n(k) ≤ Ck
n

22n
.

In the second case, computations are not as easy as in the first case. Some well
known estimates about binomial coefficients, enable to show that for all k in
{0, ..., n},

V2,n(k) ≤ C

n2
,

and that for all k such that
∣∣k − n

2

∣∣ ≥ 2
√
n lnn,

V2,n(k) ≤ C

n5
,

where C is a constant independent of n and k.

4 Proof of theorem 1

1. The cardinal number of the set ∆n is N = 2n and there is a one to one
correspondence between the sets {0, 1}n and {0, ..., N − 1}. Therefore each p in
∆n can be seen as a probability measure on {0, 1, ..., N − 1}:

∆n = {(p0, ..., pN−1) ∈ RN : p0, p2, ..., pN−1 ≥ 0, p0 + p2 + ...+ pN−1 = 1}.

Furthermore, for all k in {0, ..., n}, there is a subset Ek of {0, ..., N − 1} with
Ck

n elements, such that for all p = (p0, ..., pN−1) in ∆n,

Ln(p)(k) =
∑

i∈Ek

pi.

2. Let σ be a permutation of the set {0, ..., N − 1}. σ induces the linear map,
fσ(x1, ..., xn) = (xσ(0), xσ(2), ..., xσ(N−1)) which sends ∆n onto itself. Therefore
the measure µ1,n is fσ-invariant. It follows that given a subset E of {0, ..., N−1},
the distribution function of the map

p = (p0, ..., pN−1) ∈ ∆n → LE(p) =
∑

i∈E

pi

depends only on the cardinal number of E. This means that for all k ∈ {0, ..., n},
the map LEk

have the same distribution than the map LFk
where

Fk = {0, ..., Ck
n − 1}.

Hence,

µ1,n({p ∈ ∆n : |Ln(p)(k)− Bn(k)| ≥ ε}) = µ1,n({p ∈ ∆n : |LFk
(p)− Bn(k)| ≥ ε}).

3. In order to estimate µ1,n({p ∈ ∆n : |LFk
(p)− Bn(k)| ≥ ε}), let us intro-

duce another way to see the probability space (∆n, µ1,n). Let (Y1, ..., YN−1)
be N − 1 independent random variables uniformly distributed in the interval
[0, 1]. Arranging them in ascending order we find N − 1 random variables
Z1 ≤ Z2 ≤ ... ≤ ZN−1. The joint distribution of (Z1, ..., ZN−1) is the normal-
ized Lebesgue measure ν on

T = {(z1, ..., zN−1) ∈ RN−1 : 0 ≤ z1 ≤ z2 ≤ ... ≤ zN−1 ≤ 1}.
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Let φ : RN−1 → RN be the map defined by

φ(z1, ..., zN−1) = (z1, z2 − z1, ..., zN−1 − zN−2, 1− zN−1).

The image of T by φ is ∆n and since the map φ is affine, the image of the
measure ν by φ is the measure µ1,n. Now, let F = {0, ...,m− 1} be a subset of
{0, ..., N − 1}. For all z = (z1, ..., zN−1) ∈ T , we have

LF (φ(z)) = z1 + (z2 − z1) + ...+ (zm − zm−1) = zm,

hence the distribution of LF is the same as the distribution of the map

Rm : (z1, ..., zN−1) ∈ T → zm.

It follows that
Eµ1,n

(LF ) = Eν(Rm)

and the same holds for the variances

Vµ1,n
(LF ) = Vν(Rm).

4. The distribution of Rm is well known, its density hm is given by the formula

hm(t) =
(N − 1)!

(m− 1)!(N − 1−m)!
× tm−1(1− t)N−1−m

(see [Da, Du]). Therefore,

Eν(Rm) =
∫ 1

0

t× (N − 1)!
(m− 1)!(N − 1−m)!

tm−1(1− t)N−1−mdt

=
(N − 1)!

(m− 1)!(N − 1−m)!
× Γ(m+ 1)Γ(N −m)

Γ(N + 1)

=
(N − 1)!

(m− 1)!(N − 1−m)!
× m!(N −m− 1)!

N !

=
m

N
,

Eν(R2
m) =

∫ 1

0

t2 × (N − 1)!
(m− 1)!(N − 1−m)!

tm−1(1− t)N−1−mdt

=
(N − 1)!

(m− 1)!(N − 1−m)!
× Γ(m+ 2)Γ(N −m)

Γ(N + 2)

=
(N − 1)!

(m− 1)!(N − 1−m)!
× (m+ 1)!(N −m− 1)!

(N + 1)!

=
m× (m+ 1)
N × (N + 1)

and

Vν(Rm) = Eν(R2
m)− Eν(Rm)2 =

m(m+ 1)
N(N + 1)

− m2

N2
=
Nm(m+ 1)− (N + 1)m2

N2(N + 1)

=
Nm2 +Nm−Nm2 −m2

N2(N + 1)
=
m(N −m)
N2(N + 1)

≤ m

N2
.

Coming back to LEk
, we find that for all k in {0, ..., n},

E1,n(k) = Eµ1,n(LEk
) =

Ck
n

N
= Ck

n2−n = Bn(k),

V1,n(k) = Vµ1,n(LEk
) ≤ Ck

n

N2
.

5



Making use of the Stirling formula, it is easy to see that Ck
n ≤ A 2n√

n
where A

is a constant independent of n. It follows that V1,n(k) ≤ A
2n
√

n
. Finally, with

Chebyshev inequality we get

µ1,n({p ∈ ∆n :
∣∣LEk

(p)− Ck
n2−n

∣∣ ≥ ε}) ≤ A

ε22n
√
n

and

µ1,n({p ∈ ∆n :
n

max
k=0

∣∣LEk
(p)− Ck

n2−n
∣∣ ≥ ε}) ≤ (n+ 1)× A

ε22n
√
n
,

therefore

µ1,n(∆ε) ≥ 1− A
√
n

ε22n−1
.

The second inequality of Theorem 1 follows from the first in replacing ε by ε/n.
¤

If we want to find an explicit value for A, we can use the following inequalities
instead of the Stirling formula

√
2πnnn exp(−n+

1
12n+ 1

) ≤ n! ≤
√

2πnnn exp(−n+
1

12n
),

(see [Fe], p. 50-54). An easy calculation shows that the value A = 2 works.

5 About the definition of µ2,n

In this section we give two other ways to introduce the measure µ2,n: proposition
1 and 2. While proposition 1 is not needed for the following, proposition 2 is
useful. It replace the simplices ∆n, n ∈ N∗, by a single product space endowed
with a product probability.

Notations. 1. For x in [0, 1], we put x(0) = x and x(1) = 1− x.
2. Denote pron : ∆n → ∆n−1 the map defined by pron((pi)i∈{0,1}n) = (p′i)i∈{0,1}n−1

where p′i = pi0 + pi1 for all i ∈ {0, 1}n−1.
3. For each i in {0, 1}n, denote pri : R{0,1}n → R the map pr defined by
pr((pj)j∈{0,1}n) = pi. It induces a random variable on ∆n and it is readily seen
that for all i in {0, 1}n−1, pri0 + pri1 = pri ◦ pron on ∆n.
4. For an integer n ≥ 2, the map ψn−1 is defined by:

ψn−1 : ∆n−1 × [0, 1]{0,1}n−1 → ∆n

: ((pi)i∈{0,1}n−1 , (xi)i∈{0,1}n−1) → (p′ij)i∈{0,1}n−1,j∈{0,1}

where p′i0 = pixi and p′i1 = pi(1− xi).

In the introduction we present a rather geometric point of view about the
probability measures µ2,n. It is possible to give a more probabilistic point of view
about these probability measures. The simplex ∆n is the set of all probability
laws of a sequence (X1, ..., Xn) of n Bernoulli random variables and the map
which associated to each law of (X1, ..., Xn) the law of the first n− 1 Bernoulli
random variables (X1, ..., Xn−1) is just the projection pron : ∆n → ∆n−1. When
we know the law of (X1, ..., Xn−1) what can we expect about the law of the whole
sequence (X1, ..., Xn)? This is given by the conditional distribution given pron

of the random variables

P (X1 = i1, ...., Xn−1 = in−1, Xn = 0)
P (X1 = i1, ...., Xn−1 = in−1)

=
pr(i,0)

pri ◦ pron

: ∆n → [0, 1],

6



i = (i1, ...in−1) ∈ {0, 1}n−1. The probability measures µ2,n are the only such
that these variables are all uniformly distributed in the interval [0, 1] and in-
dependent conditionally to the law of (X1, ..., Xn−1). This the meaning of the
next proposition which we state without proof.

Proposition 1 The sequence (µ2,n)n≥1 is the unique sequence of probability
measures such that :
i. µ2,1 is the normalized Lebesgue measure on ∆1,
ii. for all integer n ≥ 1, µ2,n is a probability on ∆n,
iii. for all integer n ≥ 2, the image of µ2,n by pron is µ2,n−1,
iv. for all integer n ≥ 2 and all family (Bi)i∈{0,1}n−1 of Borel subsets of [0, 1],

µ2,n(
pr(i,0)

pri ◦ pron

∈ Bi, i ∈ {0, 1}n−1|pron) =
∏

i∈{0,1}n−1

λ(Bi)

where λ is the Lebesgue measure on [0, 1].

Remark. iv can be replace as well by:
for all integers n ≥ 2 and all family (Bi)i∈{0,1}n−1 of Borel subsets of [0, 1],

µ2,n(pr(i,0) ∈ Bi, i ∈ {0, 1}n−1|pron) =
∏

i∈{0,1}n−1

λ(Bi∩]0, pri[)
pri

where λ is the Lebesgue measure on [0, 1].

By definition, the probability µ2,n is the image by ψn−1 of the probability
µ2,n−1 ⊗ λn−1 where λn−1 is the Lebesgue measure on [0, 1]{0,1}n−1

. We can
iterate this process from n down to 1 and we see that the probability measure
µ2,n is the image of the Lebesgue measure on

Ωn = [0, 1]{∅} × [0, 1]{0,1} × ...× [0, 1]{0,1}n−1

by a map φn : Ωn → ∆n. It will be more efficient to define φn on an unique
probability space Ω which does not depend on n.

Notations. Denote by J the set {∅}∪ (∪∞k=1{0, 1}k) and Ω the set [0, 1]J .
For j = (j1, ..., jk) in J , denote by Zj : Ω = [0, 1]J → [0, 1] the random variable
defined by Zj((ωi)i∈J ) = ωj .
Denote by Q the infinite product of Lebesgue measures on Ω.

Proposition 2 For all integers n ≥ 1, consider the map φn : Ω → R{0,1}n

defined by
pr(i1,...,in) ◦ φn = Z

(i1)
∅ Z

(i2)
(i1)

Z
(i3)
(i1,i2)

...Z
(in)
(i1,...,in−1)

.

Then φn(Ω) ⊂ ∆n and the image by φn of the probability measure Q is µ2,n.

Proof. It is easy to check that φn(ω) is in ∆n for all ω in Ωn. Indeed,

pr(i1,...,in) ◦ φn = pr(i1,...,in−1) ◦ φn−1 × Z
(in)
(i1,...,in−1)

,

thus

pr(i1,...in−1,0)(φn(ω)) + pr(i1,...,in−1,1)(φn(ω)) = pr(i1,...,in−1)(φn−1(ω))× Z(i1,..,in−1)

+ pr(i1,...,in−1)(φn−1(ω))× (1− Z(i1,..,in−1))

= pr(i1,...,in−1)(φn−1(ω))
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and it follows by induction that
∑

i∈{0,1}n

pri(φn(ω)) =
∑

i∈{0,1}
pri(φ1(ω)) = pr0(φ1(ω))+pr1(φ1(ω)) = Z

(0)
∅ +Z(1)

∅ = 1.

Next we prove by induction that the image by φn of the probability measure
Q, is µ2,n. Suppose the image by φn−1 of the probability measure Q is µ2,n−1.
Using the sequence of maps (ψn)n≥1, it is easy to find an induction relation
satisfied by the sequence of maps (φn)n≥1, we have

φn(ω) = ψn−1(φn−1(ω), (Zi(ω))i∈{0,1}n−1)).

Now φn−1 and (Zi)i∈{0,1}n−1 are independent random variables, therefore the
image by ω ∈ Ω → (φn−1(ω), (Zi(ω))i∈{0,1}n−1) of the probability measure Q
is the product of the image by φn−1 of Q and of the Lebesgue measure on
[0, 1]{0,1}n−1

which is λn−1. By induction hypothesis we get µ2,n−1 ⊗ λn−1 and
by definition, the image of µ2,n−1 ⊗ λn−1 by ψn−1 is µ2,n. ¤

6 Calculation of the first two moments of p ∈
∆n → Ln(p)(k)

Notations. Let n be a positive integer.
1. For each subset F of {0, 1}n, we shall denote by LF the map defined by

p = (pi)i∈{0,1}n ∈ ∆n → LF (p) =
∑

i∈F

pi.

2. For all integers k in {0, ...n}, Fn,k denote the subset of element i = (il)l∈{1,...,n} ∈
{0, 1}n such that

∑n
l=1 il = k.

Let n ≥ 1 be an integer and let k be an integer in {0, ..., n}. We would like
to estimate

E2,n(k) = Eµ2,n(Ln(.)(k)) = Eµ2,n(LFn,k
)

=
∫

∆n

∑

i∈Fk

pi dµ2,n((pi)i∈{0,1}n−1)

=
∫

Ω

∑

i∈Fk

pri(φn(ω)) dQ(ω).

and

Eµ2,n(L2
n(.)(k)) = Eµ2,n(L2

Fn,k
) =

∫

∆n

(
∑

i∈Fk

pi)2 dµ2,n((pi)i∈{0,1}n−1)

=
∫

Ω

(
∑

i∈Fk

pri(φn(ω)))2 dQ(ω).

Set fn,k =
∑

i∈Fk
pri ◦ φn.

1. By proposition 2,

EQ(fn,k) = EQ(
∑

i∈Fn,k

pri ◦ φn) = EQ(
∑

(i1,...,in)∈Fn,k

pr(i1,...,in−1) ◦ φn−1 × Zin

(i1,...,in−1)
)

=
∑

(i1,...,in)∈Fn,k

EQ(pr(i1,...,in−1) ◦ φn−1 × Z
(in)
(i1,...,in−1)

))
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and since φn−1 and Zin

(i1,...,in−1)
are independent,

EQ(fn,k) =
∑

(i1,...,in)∈Fn,k

EQ(pr(i1,...,in−1) ◦ φn−1)EQ(Z(in)
(i1,...,in−1)

))

=
1
2

∑

(i1,...,in)∈Fn,k

EQ(pr(i1,...,in−1) ◦ φn−1).

Furthermore, Fn,k = Fn−1,k−1 × {1} ∪ Fn−1,k × {0}, thus

EQ(fn,k) =
1
2
(

∑

(i1,...,in)∈Fn−1,k−1×{1}
EQ(pr(i1,...,in−1) ◦ φn−1) +

∑

(i1,...,in)∈Fn−1,k×{0}
EQ(pr(i1,...,in−1) ◦ φn−1))

=
1
2
(EQ(fn−1,k−1) + EQ(fn−1,k)).

We have also

EQ(f1,0) = EQ(Z(0)
∅ ) = EQ(Z(1)

∅ ) = EQ(f1,1) =
1
2
,

therefore, by induction, we get

EQ(fn,k) = Ck
n2−n.

Hence
E2,n(k) = Ck

n2−n.

2. The quadratic mean EQ(f2
n,k) is a little more difficult to estimate. The

main idea is to decompose Fn,k in the two sets

F 0
n,k = {(i1, ..., in) ∈ Fn,k : i1 = 0},
F 1

n,k = {(i1, ..., in) ∈ Fn,k : i1 = 1}

and to observe that for each i in F 0
n,k and each j in F 1

n,k, the two variables

Z
(i2)
(i1)

Z
(i3)
(i1,i2)

...Z
(in)
(i1,...,in−1)

, Z
(j2)
(j1)

Z
(j3)
(j1,j2)

...Z
(jn)
(j1,...,jn−1)

are independent. We have

EQ(f2
n,k) = EQ((

∑

i∈F 0
n,k

pri ◦ φn)2) + EQ((
∑

i∈F 1
n,k

pri ◦ φn)2)

+ 2EQ((
∑

i∈F 0
n,k

pri ◦ φn)(
∑

j∈F 1
n,k

pri ◦ φn))

= T1 + T2 + 2T3.

The first term gives

T1 = EQ((
∑

i∈F 0
n,k

Z
(0)
∅ Z

(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2...,in−1)

)2)

= EQ(Z2
∅(

∑

i∈F 0
n,k

Z
(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2...,in−1)

)2),

since Z∅ is independent of the others Zi, we get

EQ((
∑

i∈F 0
n,k

pri ◦ φn)2) = EQ(Z2
∅)EQ(

∑

i∈F 0
n,k

Z
(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2,...,in−1)

)2).

9



The last thing to see for the computation of the first term is that

EQ((
∑

i∈F 0
n,k

Z
(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2,...,in−1)

)2) = EQ((
∑

i∈Fn−1,k

Z
(i1)
(∅) Z

(i2)
(i1)

...Z
(in−1)
(i1,...,in−2)

)2) = EQ(f2
n−1,k),

thus
T1 =

1
3
EQ(f2

n−1,k).

Exactly the same arguments show that

T2 =
1
3
EQ(f2

n−1,k−1).

By independence, the last term gives

T3 = EQ((
∑

i∈F 0
n,k

Z
(0)
∅ Z

(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2,...,in−1)

)(
∑

i∈F 1
n,k

Z
(1)
∅ Z

(i2)
(1) Z

(i3)
(1,i2)

...Z
(in)
(1,i2,...,in−1)

))

= EQ(Z(0)
∅ Z

(1)
∅ )EQ((

∑

i∈F 0
n,k

Z
(i2)
(0) Z

(i3)
(0,i2)

...Z
(in)
(0,i2,...,in−1)

))EQ((
∑

i∈F 1
n,k

Z
(i2)
(1) Z

(i3)
(1,i2)

...Z
(in)
(0,i2,...,in−1)

))

=
1
6
EQ(fn−1,k)EQ(fn−1,k−1).

Finally, we get the relation

EQ(f2
n,k) =

1
3
[EQ(f2

n−1,k) + EQ(f2
n−1,k−1) + EQ(fn−1,k)EQ(fn−1,k−1)].

3. This recursion relation and the equality EQ(fm,l) = 2−mCl
m, enable to find

a recursion relation between VQ(fn−1,k−1), VQ(fn−1,k) and VQ(fn,k):

VQ(fn,k) = EQ(f2
n,k)− EQ(fn,k)2

=
1
3
[EQ(f2

n−1,k) + EQ(f2
n−1,k−1) + EQ(fn−1,k)EQ(fn−1,k−1)]

− 1
4
[EQ(fn−1,k) + EQ(fn−1,k−1)]2

=
1
3
(VQ(fn−1,k) + VQ(fn−1,k−1) + EQ(fn−1,k)EQ(fn−1,k−1))

+
1
12

[EQ(fn−1,k)2 + EQ(fn−1,k−1)2]− 1
2
EQ(fn−1,k)EQ(fn−1,k−1)

=
1
3
(VQ(fn−1,k) + VQ(fn−1,k−1)) +

1
12

(EQ(fn−1,k)− EQ(fn−1,k−1))2

=
1
3
(VQ(fn−1,k) + VQ(fn−1,k−1)) +

1
12

[2−n+1(Ck
n−1 − Ck−1

n−1)]
2.

Hence,

Vµ2,n(LFn,k
) =

1
3
[Vµ2,n−1(LFn−1,k

)+Vµ2,n−1(LFn−1,k−1)]+
1
12

[2−n+1(Ck−1
n−1−Ck

n−1)]
2.

6.1 An upper bound for V2,n(k) = Vµ2,n(LFn,k
)

We shall need the following lemma.

Lemma 1 There exists a constant C such that for all integers n ≥ 1 we have:
1. for all k in {0, ..., n},

2−n|Ck−1
n − Ck

n| ≤
c

n
.

10



2. for all k in {0, ..., n} such that
∣∣k − n

2

∣∣ ≥
√
n lnn,

2−n|Ck−1
n − Ck

n| ≤
c

n5/2
.

Proof. In what follows, C denotes a constant whose value may change at
each line. Since

2−n|Ck−1
n − Ck

n| = 2−n n!
(n− k)!k!

∣∣∣∣
k

n− k + 1
− 1

∣∣∣∣

= 2−nCk
n

∣∣∣∣
n+ 1− 2k
n+ 1− k

∣∣∣∣ ,

we can use the classical Laplace-Moivre estimate about the binomial law:
Let (an)n≥1 be a sequence of non negative real numbers which go to 0 as n
goes to infinity. Then for all positive integers n and all integers k such that∣∣k − n

2

∣∣ ≤ ann
2/3 we have

2−nCk
n =

1 + δn(k)√
π
2n

exp
(
−2(k − n

2 )2

n

)

where
lim

n→∞
sup

k:|k−n/2|≤ann2/3
|δn(k)| = 0

(actually, it is a slight extension of the Laplace-Moivre theorem which deals only
with integers k such that

∣∣k − n
2

∣∣ ≤ a
√
n where a is a fix real number; see [Fe]

p. 185 theorem 1, or [Le] p. 36 proposition 8.2). It follows that for all positive
integers n and all integers k such that

∣∣k − n
2

∣∣ ≤ ann
2/3,

2−nCk
n ≤

C√
n

exp
(
−2(k − n

2 )2

n

)

where the constant C does not depend on n. Making use of the monotonicity
of the binomial coefficients, we get the following inequality

2−nCk
n ≤

C

n5/2

for all integers n and all integers k such that
∣∣k − n

2

∣∣ ≥
√
n lnn. This last

inequality implies 2. Now let us prove 1. For all positive integers n and all
integers k such that

∣∣k − n
2

∣∣ ≤
√
n lnn, we have

2−n|Ck−1
n − Ck

n| ≤
C√
n

exp
(
−2(k − n

2 )2

n

) |n− 2k|+ 1
n

.

Put t = k−n
2√

n
. We get

2−n|Ck−1
n − Ck

n| ≤
C |t|
n

exp
(−2t2

)
+

C

n3/2

and since the function t ∈ R → |t| e−2t2 is bounded, 2−n|Ck−1
n − Ck

n| ≤ C
n . ¤

Proposition 3 There exists a constant C such that or all positive integers n,

vn := sup
k∈{0,...,n}

Vµ2,n(LFn,k
) ≤ C

n2
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Proof. Let n ≥ 2 be an integer. Since for all k in {0, ..., n},

Vµ2,n
(LFn,k

) =
1
3
(Vµ2,n−1(LFn−1,k−1)+Vµ2,n−1(LFn−1,k

))+
1
12

[2−n+1(Ck−1
n−1−Ck

n−1)]
2,

we have
vn ≤ 2

3
vn−1 +

1
12

[2−n+1(Ck−1
n−1 − Ck

n−1)]
2.

With the previous lemma we get

vn ≤ 2
3
vn−1 +

C

n2
.

By induction, we get that for all integers n ≥ 2,

vn ≤ (
2
3
)n−1v1 + C

n−2∑

i=0

1
(n− i)2

(
2
3
)i.

The sum
∑n−2

i=0
1

(n−i)2 ( 2
3 )k is easy to estimate:

n−2∑

i=0

1
(n− i)2

(
2
3
)i =

∑

0≤i≤n/2

+
∑

n/2<i≤n−2

,

since ∑

0≤i≤n/2

1
(n− i)2

(
2
3
)i ≤ 4

n2

∑

0≤i≤n/2

(
2
3
)i ≤ 12

n2

and since ∑

n/2<i≤n−2

1
(n− i)2

(
2
3
)i ≤ n

2
(
2
3
)n/2 ≤ C

n2
,

we have

vn ≤ (
2
3
)nv1 +

C

n2

≤ C

n2
. ¤

Proposition 4 There exists a constant C such that or all positive integers n

un := sup
k∈{0,...,n}:|k−n

2 |≥2
√

n ln n

Vµ2,n(LFn,k
) ≤ C

n5
.

Dem. Let n ≥ 2 be an integer. First note that the two variables LFn,k
and

LFn,n−k
have the same law, so it suffices to prove the proposition for k ≥ n/2.

By lemma 1, for all k in {0, ..., n} such that k − n
2 ≥

√
n lnn, we have

Vµ2,n(LFn,k
) =

1
3
[Vµ2,n−1(LFn−1,k−1) + Vµ2,n−1(LFn−1,k

)] +
1
12

[2−n+1(Ck−1
n−1 − Ck

n−1)]
2

≤ 1
3
[Vµ2,n−1(LFn−1,k−1) + Vµ2,n−1(LFn−1,k

)] +
C

n5
,

Fix an integer k ≥ n
2 +2

√
n lnn. We prove by induction on l that for all integer

l ≤
√
n lnn,

Vµ2,n(LFn,k
) ≤ 1

3l

l∑

i=0

Ci
lVµ2,n−l

(LFn−l,k−i
) + C

l−1∑

i=0

1
(n− i)5

(
2
3
)i.

12



Indeed, if l ≤
√
n lnn, then for all i ∈ {0, ..., l},

k − i− n− l

2
≥
√
n lnn ≥

√
(n− l) ln(n− l),

therefore

Vµ2,n−l
(LFn−l,k−i

) ≤ 1
3
(Vµ2,n−l−1(LFn−l−1,k−i−1)+Vµ2,n−l−1(LFn−l−1,k−i

))+
C

(n− l)5
.

Together with the induction hypothesis, this imply that

Vµ2,n(LFn,k
) ≤ 1

3l

l∑

i=0

Ci
l [

1
3
(Vµ2,n−l−1(LFn−l−1,k−i−1) + Vµ2,n−l−1(LFn−l−1,k−i

)) +
C

(n− l)5
]

+ C

l−1∑

i=0

1
(n− i)5

(
2
3
)i

=
1

3l+1
{1
3
(Vµ2,n−(l+1)(LFn−(l+1),k−(l+1)) + Vµ2,n−(l+1)(LFn−l−1,k

)

+
l∑

j=1

(Cj−1
l + Cj

l )Vµ2,n−(l+1)(LFn−(l+1),k−j
)}

+ C

l∑

j=0

1
(n− j)5

(
2
3
)j

=
1

3l+1

l+1∑

i=0

Ci
l+1Vµ2,n−(l+1)(LFn−(l+1),k−i

) + C

l∑

j=0

1
(n− j)5

(
2
3
)j .

As before, it is easy to prove that

l−1∑

j=0

1
(n− j)5

(
2
3
)j ≤ C

n5
.

Furthermore (remember that 0 ≤ LF ≤ 1),

1
3l

l∑

i=0

Ci
lVµ2,n−l

(LFn−l,k−i
) ≤ 1

3l

l∑

i=0

Ci
l = (

2
3
)l.

Thus, with l =
√
n lnn we find that

Vµ2,n(LFn,k
) ≤ 1

3l

l∑

i=0

Ci
lVµ2,n−l

(LFn−l,k−i
) + C

l−1∑

i=0

1
(n− i)5

(
2
3
)i

≤ (
2
3
)
√

n ln n +
C

n5

≤ C

n5
. ¤

6.2 End of proof of theorem 2

Let k be an integer between n
2 − 2

√
n lnn and n

2 + 2
√
n lnn. By proposition 3

and Chebyshev inequality, for all positive numbers ε,

(1) µ2,n({p ∈ ∆n :
∣∣LFn,k

(p)− Ck
n2−n

∣∣ ≥ ε}) ≤ C

ε2n2
,
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thus

µ2,n({p ∈ ∆n : max
n
2−2

√
n ln n≤k≤n

2 +2
√

n ln n

∣∣LFn,k
(p)− Ck

n2−n
∣∣ ≥ ε}) ≤ 4

√
n lnn

C

ε2n2
.

Let k be an integer in {0, ..., n} such that
∣∣n
2 − k

∣∣ ≥ 2
√
n lnn. By proposition 4

and Chebyshev inequality, for all positive numbers ε,

(2) µ2,n({p ∈ ∆n :
∣∣LFn,k

(p)− Ck
n2−n

∣∣ ≥ ε}) ≤ C

ε2n5
,

thus

µ2,n({p ∈ ∆n : max
k:|n

2−2|≥2
√

n ln n

∣∣LFn,k
(p)− Ck

n2−n
∣∣ ≥ ε}) ≤ n

C

ε2n5
.

It follows that

µ2,n({p ∈ ∆n : max
k∈{0,...,n}

|Ln(p)(k)− Ln(Bn)(p)| ≤ ε}) ≥ 1− C lnn
ε2n3/2

.

Let δ be a positive number. We shall use inequality (1) with ε1 = δ
4
√

n ln n
and

inequality (2) with ε2 = δ
n . For each subset I of {0, ..., n}, the set

{p ∈ ∆n : |Ln(p)(I)− Ln(Bn)(I)| ≥ δ}
is included in the union of

⋃

k:|n
2−k|≤2

√
n ln n

{p ∈ ∆n : |Ln(p)(k)− Ln(Bn)(k)| ≥ δ

4
√
n lnn

}

and of ⋃

k:|n
2−k|≥2

√
n ln n

{p ∈ ∆n : |Ln(p)(k)− Ln(Bn)(k)| ≥ δ

n
}

which does not depend on I, therefore (remember that Ln(p)(k) = LFn,k
(p))

µ2,n({p ∈ ∆n : sup
I⊂{1,...,n}

|Ln(p)(I)− Ln(Bn)(I)| ≥ δ)}

≤
∑

k:|n
2−k|≤2

√
n ln n

µ2,n({p ∈ ∆n : |Ln(p)(k)− Ln(Bn)(k)| ≥ δ

4
√
n lnn

})

+
∑

k:|n
2−k|≥2

√
n ln n

µ2,n({p ∈ ∆n : |Ln(p)(k)− Ln(Bn)(k)| ≥ δ

n
})

≤ C
√
n lnn
ε21n

2
+

C

ε22n
4

=
C

δ2
(
16
√
n ln3/2 n

n
+

1
n2
}

≤ C ln3/2 n√
nδ2

. ¤
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