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Abstract. Given a set S of line segments in the plane, we introduce a new
family of partitions of the convex hull of S called elementary partitions of
S. The set of faces of such a partition is a maximal set of disjoint triangles
that cut S at, and only at, their vertices. Surprisingly, several properties of
point set triangulations extend to elementary partitions. Thus, the number
of their faces is an invariant of S. In the same way, if S is in general position,
there exists a unique elementary partition of S whose faces are inscribable
in circles whose interiors do not intersect S. This partition, called elemen-
tary Delaunay partition, is dual to the segment Voronoi diagram. The main
result of this paper is that the local optimality which characterizes point
set Delaunay triangulations [8] extends to elementary Delaunay partitions.
A similar result holds for elementary partitions with same topology as the
Delaunay one.

1 Introduction

The Voronoi diagram of a set S of sites in the d-dimensional Euclidean space E
partitions E into regions, one per site; the region for a site s consists of all points
closer to s than to any other site. In very recent years, particular attention has been
paid to the study of the segment Voronoi diagram in three dimensions [10], [14], [7],
... However, the topology of this diagram is really known only for a set of three lines
[6]. The investigation for the point set Voronoi diagram has been fairly facilitated
by the well understanding of its dual, the Delaunay diagram. Recall that, if no d+1
points of S are cospherical, the Delaunay diagram of S is the unique triangulation of
S whose tetrahedra are inscribable in empty spheres, that is, spheres whose interiors
do not intersect S. Among all the triangulations of S, the Delaunay diagram of S

has many optimality properties, some of them extending in any dimension [12], [13].
Till now, no such properties have been given, even in the plane, for the dual of the
segment Voronoi diagram which has been introduced by Chew and Kedem [3].

In this paper, we introduce a new family of diagrams, called elementary par-
titions, which decompose the convex hull of a set S of points and line segments
in the plane. The set of faces of an elementary partition of S is a maximal set of
disjoint triangles such that the vertices of each triangle belong to three distinct sites
of S and no other point of the triangle belongs to S. The edges of the elementary
partition are the (possibly two-dimensional) connected components of the convex



hull of S when the sites and open faces are removed. The aim of this paper is,
after having shown that the dual of the segment Voronoi diagram is a particular
elementary partition, to characterize by local properties this diagram among the set
of elementary partitions.

In the two first sections, we study geometrical and topological properties of ele-
mentary partitions. Especially, we show that every edge of an elementary partition
of S is incident to two sites of S. It follows that the number of faces and edges of an
elementary partition of S is linear with the number of sites of S and is an invariant
of S.

In the next section, we prove that there exists one and only one elementary par-
tition of S whose faces are inscribable in empty circles. We show that this partition,
called elementary Delaunay partition, is the dual, introduced by Chew and Kedem,
of the segment Voronoi diagram.

The point set Delaunay triangulation admits an important local characteriza-
tion which is used to prove many of its optimality properties: A triangulation is
Delaunay if and only if every couple of faces sharing a common edge is in Delaunay
position with respect to its four defining sites [8]. The main result of this paper is
that this property also characterizes the elementary Delaunay partition among all
the elementary partitions of a set of line segments. We also give another local prop-
erty that characterizes the set of elementary partitions having the same topological
structure as the elementary Delaunay partition. These properties enable to test in
linear time whether an elementary partition is equal or topologically equivalent to
the Delaunay partition. By duality, they also enable to check the correctness of the
topological structure constructed by a program that should build a segment Voronoi
diagram. For more details on efficient program checkers in computational geometry
see, for example, [4] and [9].

2 Geometrical Properties of Elementary Partitions

Let S be a finite set of n ≥ 2 disjoint closed segments in the plane, which we call
sites. Throughout this paper, a closed segment may possibly be reduced to a single
point. We say that a circle is tangent to a site s if s meets the circle and s does not
meet its interior. The sites of S are supposed to be in general position, that is, we
suppose that no three segment endpoints are collinear and that no circle is tangent
to four sites.

Definition 1. An elementary partition P of S is a partition of the convex hull
conv(S) of S in disjoint sites, edges and faces such that:
(i) Every face of P is an open triangle whose vertices belong to three distinct sites
of S and whose open edges do not intersect S,
(ii) No face can be added without intersecting another one,
(iii) The edges of P are the connected components of conv(S) \ (F ∪S), where F is
the set of faces of P .

Note that the edges of an elementary partition are not necessarily one-dimensional
and that they may even not be convex (see Figures 1 and 2(a)).
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We first show that such a partition always exists, that is, for any set S, there is
a finite number of faces verifying Definition 1.

Proposition 1. Every set S of n ≥ 2 sites admits at least one elementary partition.

Proof. If n = 2, S admits a unique elementary partition which is reduced to the edge
conv(S) \ S. Suppose now that n = 3 and that S admits an elementary partition
with at least two faces t1 and t2. It is easy to see that this is only possible if one of
the triangles has exactly one edge on the boundary of conv(t1∪ t2) and if the other
triangle has either exactly one edge or exactly one vertex on this boundary. In both
cases, if the triangles are oriented in counter-clockwise direction, the three sites are
encountered in two distinct orders. This shows that, in an elementary partition of
n ≥ 3 sites, at most two faces can have their vertices on the three same sites. Thus,
the total number of faces of such a partition is bounded. ⊓⊔

Theorem 1. The closure of every edge of an elementary partition of S intersects
exactly two sites of S.

Proof. (i) Call S-polygon, any closed two-dimensional subset A of conv(S), equal
to the closure of its interior, such that A \ S is connected and the boundary of A is
composed of a finite number of line segments that are, either closed and contained
in S, or open and such that their interiors do not intersect S and their endpoints
belong to S.

Call triangulation of A, any partition T of A in triangles whose vertices belong
to S, whose interiors do not cut S, and whose open sides either do not cut S or are
contained in S.

Let ∆T (A) be the (possibly empty) set of triangles of T having one side in S.
We show, by induction on the number |∆T (A)| of triangles of ∆T (A), that, if A

intersects at least three sites of S, T contains at least one triangle whose vertices
belong to three distinct sites of S.

Obviously, if ∆T (A) = ∅, the vertices of every triangle of T belong to three
distinct sites. Suppose now the result true for every triangulation T with |∆T (A)| <

k (k ≥ 1).
For every triangulation T of A with |∆T (A)| = k and for every closed triangle t

of ∆T (A), the closure A \ t of A\t intersects the same sites as A. If A\t is connected,
A′ = A \ t is a S-polygon and, otherwise, A \ t has two connected components, one
at least whose closure is a S-polygon. In the latter case, each of the S-polygons
intersects the two sites to which the vertices of t belong, and it follows that at least
one of these S-polygons intersects at least three sites. Let A′ be this S-polygon.
In both cases, if T ′ is the restriction of T to A′, |∆T ′(A′)| < |∆T (A)|. Thus, by
induction hypothesis, T ′ contains at least one triangle whose vertices belong to
three distinct sites of S. It is the same for T .

(ii) Every edge e of an elementary partition P of S is a connected component of
conv(S) \ (F ∪ S), where F is the set of faces of P . It follows that e is
– either an open line segment connecting two points of S,
– or a two-dimensional connected subset of conv(S), equal to the closure of its
interior, whose boundary is composed of at least two closed line segments included
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in S and of some open line segments that are sides either of triangles of F or of
conv(S).

In the second case, e is a S-polygon. Since we cannot place in e a triangle whose
vertices belong to three distinct sites of S (such a triangle would belong to F ), it
follows from (i), that e intersects exactly two sites. ⊓⊔

The shape of the edges of an elementary partition P of S follows directly from
the proof above. The closure of an edge either is reduced to a line segment joining
two points in two distinct sites of S, or is a triangle with one side and its opposite
vertex in S, or is a (possibly non-convex) quadrilateral with two opposite sides in
S (see Figure 1). Moreover, every edge of P contains
– either two sides of two triangles of P ,
– or one side of one triangle of P and one side of conv(S) that is not a site,
– or two such sides of conv(S).

Fig. 1. Examples of edges (grey) connecting two sites in an elementary partition.

3 Topological Properties of Elementary Partitions

Theorem 1 shows that every edge of an elementary partition P of S “connects” two
sites of S. We can thus associate an abstract graph with P such that:

– the vertices of the graph are the sites of S,
– the edges connecting two sites s and t in the graph are the edges of P whose

closure intersects s and t.

Proposition 2. The abstract graph associated with an elementary partition P of
S is planar.

Proof. For every site s of S, let γs be a convex closed Jordan curve such that:
– s is inside γs (i.e. in the subset of the plane bounded by γs),
– S \ s is outside γs,
– the interior of γs intersects only the edges of P whose closures intersect s.
Replace now every site s by a point ps inside γs. For every edge e of P that intersects
γs, replace the subset of e inside γs by a line segment connecting ps to a point of
e on γs. While doing this, the order of the edges around s remains unchanged and
the reduced edges do not intersect. Once this transformation is fulfilled in every
Jordan curve γs, replace every reduced edge by a Jordan arc included in it. Finally,
we get a planar representation of the abstract graph associated with P (see Figure
2(b)). ⊓⊔
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(a) (b)

Fig. 2. An elementary partition (a) (the sites are in black, the edges in grey, and the faces
in white) and its associated graph (b).

Theorem 2. Every elementary partition P of a set S of n sites contains 3n−n′−3
edges and 2n−n′− 2 faces, where n′ is the number of edges of conv(S) that are not
sites.

Proof. Counting the edges and faces of P comes down to counting the edges and
bounded faces of the planar representation G constructed in the proof of Proposition
2. Moreover, the unbounded face of G corresponds to the complementary of conv(S).
The result is then an immediate consequence of Euler’s relation, of the fact that
every bounded face of G has three edges, and that the edges adjacent to one (resp.
no) bounded faces appear once (resp. twice) while traversing the boundary of the
unbounded face of G. ⊓⊔

An interesting consequence of this theorem is that the size of an elementary
partition is linear with the number of sites. Moreover, it shows that the number of
triangles of the partition is an invariant of the set of sites. This is an extension of a
well known property of the triangulations of planar point sets.

Using the planar representation G constructed in the proof of Proposition 2, we
can associate a combinatorial map M with the elementary partition P :

– the vertices of M are the vertices of G,
– the edges of M are the edges of G endowed with their two opposite orientations,
– for every vertex s of M , the sequence of oriented edges out of s is ordered in

the counter-clockwise direction as in the planar representation G.

The ordering of the edges around the vertices induces a set of directed circuits such
that an oriented edge st follows the oriented edge rs in a circuit if sr is the successor
of st around s. Every oriented edge of M belongs to one and only one circuit and
to every circuit corresponds one face of G, bounded or not. Note that, in general,
the same map M is associated with different elementary partitions of S. In order to
use M as a data structure to store the elementary partition P , we only need to add
the coordinates of the vertices of the triangles of P in the structure: One vertex per
oriented edge. Indeed, every oriented edge belongs to the circuit of a unique face
and issues from a unique vertex.

An elementary partition of a set S of n sites can thus be stored using O(n)
space. Furthermore, it can be shown that every constrained triangulation of S is a
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refinement of an elementary partition of S. There exists a sweep-line algorithm to
construct a constrained triangulation in O(n log n) time [5] and the algorithm can
easily be adapted to construct an elementary partition also in O(n log n) time.

4 Elementary Delaunay Partition and Segment Voronoi

Diagram

We want to prove the existence of a special elementary partition, which we call the
elementary Delaunay partition. By the way, we show that the elementary Delaunay
partition of S is dual to the segment Voronoi diagram of S. Our proof uses some
properties of the segment Voronoi diagram of a set of line segments in the plane,
which can be found in [1], [2], and [11].

Let now F be the set of triangles of the plane such that the vertices of each tri-
angle belong to three distinct sites of S and such that the interior of the circumcircle
of each triangle does not intersect S.

Theorem 3. (i) The triangles of F are the faces of an elementary partition P of
S that we call the elementary Delaunay partition.

(ii) The combinatorial map M associated to P is dual to the segment Voronoi
diagram of S.

Proof. Since the interior of the circumcircle of every triangle of F is empty, two such
triangles cannot intersect. Thus, they are faces of an elementary partition. On the
one hand, the number of vertices of the Voronoi diagram V or(S) of S is known and
by Theorem 2, it is the same as the number of triangles of an elementary partition
of S. On the other hand, each vertex of the Voronoi diagram corresponds to one
triangle of F . Therefore, the number of triangles of F is maximal which means that
F is the set of triangles of an elementary partition P . Furthermore, by definition of
the Voronoi diagram, there is a one to one correspondence between the regions of
V or(S) and the sites which are, by definition, the vertices of M .
It remains to study the edges of M and of V or(S). Let a be an edge of V or(S)
incident to the two Voronoi regions of s and t. Each point p in a is the center of
an empty circle Cp touching the two sites s and t at the points ps and pt. Such an
open segment pspt and a triangle f of F never meet, since both the interior of the
circumcircle of f and the interior of the circle Cp cannot intersect the sites. Thus,
for each p in a, the open segment pspt is included in an edge of the elementary
partition P . Furthermore, the union Ea of all the open segments pspt, p ∈ a, is a
connected subset of conv(S), therefore Ea is included in a single edge e of P . Since
the sites s and t intersect the closure of e, e is incident to s and t. The last thing
to show is that for each edge e of P there is exactly one edge a of V or(S) such
that Ea ⊂ e. Since the numbers of edges of P and of V or(S) are equal, it suffices
to prove that for each edge e of P there is at least an edge a such that Ea ⊂ e. Let
C be the set of open segments c which are either an open side of a triangle of F or
an open side of conv(S) which are not sites. For each c in C there is an edge a of
V or(S) such that c ⊂ Ea and for each edge e of P there is a c in C such that c ⊂ e,
therefore, all edges of P contains a set Ea where a is an edge of V or(S). ⊓⊔
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It is easy to see that the elementary Delaunay partition of S defined in this
theorem is equivalent to the dual of V or(S) introduced by Chew and Kedem, which
they called the edge Delaunay triangulation of S [3]. Using algorithms that construct
segment Voronoi diagrams, the elementary Delaunay partition can be computed in
O(n log n) time [11].

Fig. 3. An elementary Delaunay partition (a) and an illustration of the duality (b).

5 Legality in Elementary Partitions

An interesting property of the Delaunay triangulation of a planar point set is the
legal edge property. Consider an edge of a point set triangulation and its two adja-
cent triangles. The edge is illegal if a vertex of one of these triangles lies inside the
circumcircle of the other triangle. It is well known that the Delaunay triangulation
of a point set is the unique triangulation of this point set whithout illegal edge. In
the following, we are going to prove a similar property for elementary partitions.

Definition 2. An egde of a given elementary partition is legal if the circumcircles
of its adjacent triangles contain no point of the sites adjacent to these triangles in
their interiors.

Theorem 4. The elementary Delaunay partition of S is the unique elementary
partition of S whose edges are all legal.

Proof. Obviously, the elementary Delaunay partition has no illegal edge. Let P be
an elementary partition which is not Delaunay and let f be a face of P whose
circumcircle cf contains a point of S in its interior df . We have to prove that P has
an illegal edge. Let x be a point in f and p a point in df lying on a site. We can
assume that the interior of the segment xp does not intersect S. Denote by k the
number of edges crossed by the segment xp. Note that k ≥ 1, for, by definition, p

can neither be in f , nor in an edge adjacent to f . Denote e the first edge crossed by
xp, g the other face adjacent to e, cg its circumcircle, dg the interior of cg, ab the
side of g contained in e, and u the site which contains the vertex of g that is not a
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vertex of e. If k = 1, p lies on u and therefore the edge crossed by xp is illegal. Now
suppose that, if xp crosses k edges then at least one of them is illegal. We have to
prove that if xp crosses (k + 1) edges then P has an illegal edge. If the edge e is
illegal we are done. Otherwise the points a and b cannot be in the disk df , and the
point y = ab ∩ xp is in df (see Figure 4). Therefore, the segment ab splits df into
two parts. Denote d1 the part containing the face f , and d2 the other part. The
disk dg must contain at least d1 or d2 and since e is legal it can not contain d1. It
follows that the segment yp is in dg and crosses one edge less than xp. Using the
induction hypothesis, we conclude that P has an illegal edge. 2

x

p

f

g

e

u

Fig. 4. Illustration of the proof of the Theorem 4.

Definition 3. Let f be a face of an elementary partition of S. The tangency tri-
angle of f is the triangle such that:

– its vertices are on the same three sites as the vertices of f ,
– if f and its tangency triangle are traversed in counter-clockwise direction, they

encounter these three sites in the same order,
– the interior of its circumcircle does not intersect these three sites.

Definition 4. Let M be a map associated with an elementary partition of S. An
edge e of M is legal in the two following cases:

1. e is adjacent to at most one internal triangle.
2. e is adjacent to two internal triangles and the following property holds. Denote

T1 and T2 these two internal triangles and denote t, r, u, v the sites such that
t, r, u are incident to T1 and r, t, v are incident to T2 in counter-clockwise
direction. Let t1r1u1 and r2t2v2 be the tangency triangles of T1 and T2 with
ti ∈ t, ri ∈ r, u1 ∈ u, and v2 ∈ v. Then the polygon t1t2r2r1 is either reduced
to a segment, or a counter-clockwise oriented simple polygon (with three or four
edges), and the circumcircles’ interiors of t1r1u1 and r2t2v2 do not intersect the
sites t, r, u, v.

Theorem 5. Let M be a map associated with an elementary partition P of S.
Suppose that all the edges of this map are legal, then M is also the map associated
with the elementary Delaunay partition of S.
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Proof. We want to prove that the collection of the tangency triangles gives rise to
the elementary Delaunay partition. Making use of the previous Theorem, we see
that the only thing to prove is that the interiors of the tangency triangles T ′ are
pairwise disjoint and do not meet any site s ∈ S.

The main idea is to use a result of Devillers et al. [4] that can be stated as
follows. Let be a map C and let be a set of smooth curves representing C in the
plane. Suppose that:
i. all the curves representing the circuits of C are simple curves,
ii. the ordering of the edges out of every vertex s of C corresponds to the counter-
clockwise order of the curves incident to s in the representation,
then the representation is planar. Actually, the result of Devillers et al. is stated
with segments instead of smooth curves but an approximation argument leads to
the same result for smooth curves. We shall use this result with a new map M ′ and
not directly with the map M associated with P .

Step 1. We construct a representation of a new map M ′.

Choose ε > 0 sufficiently small. For each site s ∈ S, consider the simple closed
curve γs,ε made of all the points at distance ε from s. Choose the counter-clockwise
orientation for the curve γs,ε.

Let T be a triangle of P incident to the sites s, t, and u in counter-clockwise
direction. Choose three points pT,s, pT,t, and pT,u in the interior of T such that
pT,s ∈ γs,ε, pT,t ∈ γt,ε, and pT,u ∈ γu,ε. Next, join the points pT,s, pT,t, pT,u by
three smooth simple and disjoint curves γT,s,t, γT,t,u, and γT,u,s lying in the interior
of T at a distance smaller than 2ε from the boundary of T . These three curves can
be chosen so that they do not meet the closed curves γs,ε, γt,ε, and γu,ε except at
their endpoints. The same can be done with the external face of P : R2 \conv(S). In
the following, γT,s,t will denote the curve going from pT,s to pT,t and γT,t,s the curve
going from pT,t to pT,s, i.e, the same geometric curve but with reverse orientation.

Let s be a site and T0, ..., Tk−1 the faces of P incident to s in the counter-
clockwise direction (around s) (one of these faces could be the external face). We
split the closed curve γs,ε into k simple non overlapping curves γs,Ti,Ti+1

going from
the point ps,Ti

to the point ps,Ti+1
(i = i mod k). As before, γs,Ti+1,Ti

is the same
geometric curve as γs,Ti,Ti+1

but with the reverse orientation.

When ε is sufficiently small, this defines a geometric planar graph (see Figure
5) which is a geometric representation Γ of the map M ′.

Step 2. We associate to M ′ a second geometric representation. We proceed as
in step 1 with the tangency triangles T ′ instead of the triangles T of P . In each
triangle T ′ choose a point p′T,si

on each curve γsi,ε, si ∈ S which intersects T ′, and
choose a sequence of simple disjoint curves γ′

T,si,si+1
which join these points without

intersecting γsi,ε, si ∈ S. Only the definition of the curves turning around the sites
has to be changed compared to step 1.

Let s be a site and T0, ..., Tk−1 the faces of P incident to s in counter-clockwise
direction. For each i in {0, ..., k − 1} consider the curve γ′

s,Ti,Ti+1
going in counter-

clockwise direction from p′Ti,s
to p′Ti+1,s on γs,ε. The collection of curves γ′

T,s,t,

γ′

s,Ti,Ti+1
defines a new geometric representation Γ ′ of the map M ′.
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(a) (b)

Fig. 5. (a): Illustration of the step 1 of Theorem 5. (b): Illustration of the step 2 of Theorem
5, with an illegal edge.

Step 3. To prove the Theorem it is enough to show that this new geometric
representation of the map M ′ is planar. Indeed, letting ε going to 0, it will show
that the tangency triangles T ′ give rise to an elementary partition of S.

Since the tangency triangles T ′ have the same orientation as the triangles T of
P , the geometric ordering of the edges of Γ ′ around each vertex agrees with the
geometric ordering of the edges of Γ , therefore condition ii of Devillers et al. holds
for Γ ′. It remains to show that the representation of the circuits of M ′ are simple
closed curves. The map M ′ has three kinds of circuits:
- circuits with three edges corresponding to the faces of P , and the external circuit
corresponding to the boundary of conv(S).
- circuits with four edges corresponding to the edges of P ,
- circuits around each site of P .
The representations of the first kind of circuits are simple curves by construction.
The representations of the circuits associated with the edges are simple curves, for,
all edges of M are legal. The third kind is more difficult to handle.

Let s be a site and T0, ..., Tk−1 the faces of P incident to s in counter-clockwise
direction. For sake of simplicity, we suppose that these faces are all internal triangles.
Fix an arbitrary non zero vector

−→
U and an origin O lying on the site s. For a smooth

oriented curve γ : [a, b] → R2 not containing O, denote var(γ) the variation of the

angle ∡(
−→
U ,

−−−→
Oγ(t)) along the curve γ. Since the curves γ′

s,Ti,Ti+1
are all oriented in

counter-clockwise direction, it is enough to prove that

var(γ′

s,T0,T1
) + var(γ′

s,T1,T2
) + ... + var(γ′

s,Tk−1,T0
) = 2π.

Denote by t0, ..., tk−1 the sites (6= s) such that, for i ∈ {0, ..., k − 1}, Ti−1 and Ti

are incident to ti.
The representation α′

i, for each i ∈ {0, ..., k − 1}, of the circuit corresponding
to the face Ti is the closed curve beginning at p′Ti,s

made of the three curves
γ′

Ti,s,ti
, γ′

Ti,ti,ti+1
, and γ′

Ti,ti+1,s. It is clear that the curves α′

i do not enclosed the

origin O; therefore var(α′

i) = var(γ′

Ti,s,ti
) + var(γ′

Ti,ti,ti+1
) + var(γ′

Ti,ti+1,s) = 0.

The representation β′

i, for each i ∈ {0, ..., k − 1}, of the circuit corresponding to
the edge incident to Ti−1 and Ti is the closed curve beginning at p′Ti−1,s made of

the four curves γ′

Ti−1,s,ti
, γ′

ti,Ti−1,Ti
, γ′

Ti,ti,s
, γ′

s,Ti,Ti−1
. The legality of the edges
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of the partition implies that the curves β′

i do not enclosed the origin O; therefore,
var(β′

i) = var(γ′

Ti−1,s,ti
) + var(γ′

ti,Ti−1,Ti
) + var(γ′

Ti,ti,s
) + var(γ′

s,Ti,Ti−1
) = 0.

Now, summing var(β′

i) + var(α′

i), i ∈ {0, ..., k − 1}, all the terms of the form
var(γ′

Ti−1,s,ti
), var(γ′

Ti−1,ti,s
) cancel out as well as the terms var(γ′

Ti,s,ti
), var(γ′

Ti,ti,s
).

Indeed these terms are the variations of the angle along the same geometric curve
but with opposite orientations. Thus

k−1∑

i=0

var(γ′

s,Ti−1,Ti
) =

k−1∑

i=0

(var(γ′

ti,Ti−1,Ti
) + var(γ′

Ti,ti,ti+1
)).

The previous calculus has been done for the representation Γ ′ but it works for the
representation Γ as well. Therefore,

2π =

k−1∑

i=0

var(γs,Ti−1,Ti
) =

k−1∑

i=0

(var(γti,Ti−1,Ti
) + var(γTi,ti,ti+1

)).

The last thing to see is that both sums
∑k−1

i=0
(var(γ′

ti,Ti−1,Ti
)+ var(γ′

Ti,ti,ti+1
)) and

∑k−1

i=0
(var(γti,Ti−1,Ti

)+var(γTi,ti,ti+1
)) are equal. Indeed, on each curve γti,ε choose

a curve δi going from pti,Ti−1
to p′ti,Ti−1

. Since the triangles Ti and T ′

i have the same
orientation, the successive curves

γti,Ti−1,Ti
, γTi,ti,ti+1

, δi+1, γ′

Ti,ti+1,ti
, γ′

ti,Ti,Ti−1
, −δi

form a closed curve not enclosing the origin O, thus sum over i of the variation
leads to desired equality. 2

It is possible to derive directly from this theorem an algorithm that checks
whether a random elementary partition has the same topology as the Delaunay one.
For each edge, the algorithm computes in constant time the geometric representation
of this edge and its two adjacent tangency triangles, then it checks in constant time
the conditions of the legal edge property. From Theorem 2 the number of edges is
in O(n), then this algorithm runs in linear time.

6 Conclusion

In this paper we have introduced a new family of partitions of the convex hull of
a set of line segments in the plane that we called elementary partitions. We have
shown that several properties of point set triangulations extend to elementary parti-
tions. For example, there exists an elementary partition which is dual to the segment
Voronoi diagram, the elementary Delaunay partition. We have shown that this par-
tition is the unique elementary partition which is locally Delaunay in all its edges.
This result extends a fundamental property of the point set Delaunay triangulation,
which is used to prove different optimality properties of the Delaunay triangulation
among all point set triangulations. Especially, the Delaunay triangulation is the
most regular one, in the way that it maximizes the minimum angle of its triangles
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[15]. This property also enables to give a so-called flip algorithm, to transform any
triangulation in the Delaunay triangulation by a sequence of local improvements.
The local characterization of the elementary Delaunay partition, should allow us to
extend some optimality properties, as well as the flip algorithm, to this partition.
We also hope that the extension of elementary partitions to line segments in higher
dimensions will help to better understand the topological structure of the segment
Voronoi diagram in higher dimensions.
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