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Abstract

Let α be in the two-dimensional torus T2 = R2/Z2. Assume
that the translation map T : x → x + α acts ergodically. We
present a symbolic coding of the map T which shares several prop-
erties with the Sturmian coding of a one-dimensional translation.
The symbolic dynamical system is metrically isomorphic to the
geometric dynamical system (T2, T ). The coding is of quadratic
growth complexity and 2-balanced. Moreover, there is a geomet-
ric underpinning, the coding is related to a fundamental domain
for the action of Z2 on R2 and also to bounded remainder sets.
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approximation.

1 Introduction

Let (X,T ) be a dynamical system and W = {W1, ...,Wk} a finite par-
tition of X. Each point x in X can be coded by its itinerary under the
action of T :

π : x ∈ X → ω ∈ WN

where T nx ∈ ω(n) for all integer n in N. The map π is called the coding
map. This gives rise to a symbolic dynamical system (π(X), S) where S
is the shift map defined by

ω = (ω(0), ω(1), ω(2), ...) → Sω = (ω(1), ω(2), ω(3), ....).

The symbolic dynamical system (π(X), S) and the geometric dynamical
system (X,T ) are related by π ◦ T = S ◦ π and the simultaneous study
of both dynamical systems can be very fruitful. We shall study a very
particular case: the translations T : T2 = R2/Z2 → T2 defined by

T : x→ x+ α

where α ∈ T2. In this setting, there are two well known examples of cod-
ing, Sturmian or natural coding of translations of the one-dimensional
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torus, and Rauzy’s coding of some “cubic” translations of the two-dimensional
torus. Our aim is to find a coding of a general translation of the two-
dimensional torus sharing most properties with these two examples. The
algebraic setting of Rauzy’s example makes impossible to use directly
Rauzy’s ideas. It is the reason why we take the one-dimensional Stur-
mian coding as a starting point. There is an alternative way to introduce
a Sturmian sequence associated with an irrational number. This way
which seems to be unusual, is inspired by Rauzy’s original presentation
([13]) of his example, and is easy to extend to the two-dimensional case.
This enables to find a coding which gives rise to a minimal, uniquely er-
godic symbolic dynamical system metrically isomorphic to a translation
of the two-dimensional torus. Together with these dynamical properties,
we also show some geometric and combinatorial properties of this coding.

2 The two examples

We recall the facts which make clear the march leading to our two-
dimensional coding as well as the aims we have in mind.

1. Rauzy’s coding. Let ξ be the unique real root of the equation
x + x2 + x3 = 1 and set α = (ξ, ξ2). Let u = (un)n∈N the unique fixed
point in {0, 1, 2}N of the Tribonacci substitution τ :

τ(0) = 01, τ(1) = 02, τ(2) = 0,

u = 01020100102....

Set

P0 = 0, Pn =
n∑

i=1

uiei

where e0 = (0, 0) e1 = (1, 0) and e2 = (0, 1). The Rauzy fractal is the set

R = {nα− Pn : n ∈ N}
which is split into three parts

Ri = {nα− Pn : un = i}, i = 0, 1, 2.

G. Rauzy has shown that R0,R1 and R2 enjoy some nice properties [13],
[8]:
- The interiors Ω0,Ω1 and Ω2 of R0,R1 and R2 respectively, are disjoint
and their boundaries are of zero Lebesgue measure.
- R is a “fundamental domain” for the action of Z2 on R2: ∪a∈Z2(a +
R) = R2 and the sets a+ Ω0 ∪ Ω1 ∪ Ω2, a ∈ Z2, are disjoint.
- The translation x ∈ T2 → x + α can be seen as a domain exchange:
there exist three lattice vectors u0, u1, u2 ∈ Z2 such that

R1 + u0 + α ⊂ R,
R2 + u1 + α ⊂ R,
R3 + u2 + α ⊂ R.
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- The coding map π associated to W = {Ω0,Ω1,Ω2} can be defined almost
everywhere and is one to one. Moreover the coding map π is onto the
dynamical system generated by the sequence u:

Y = {Snu : n ∈ N}.

- (Y, S) is uniquely ergodic, and π is an isomorphism of the measurable
dynamical systems (T2, T ) and (Y, S).
- For all integer n ≥ 0, the complexity of the infinite sequence u is
pu(n) = 2n+ 1 (see below the definition of the complexity).
- The three sets R0, R1 and R2 are bounded remainder sets (see below
the definition of a bounded remainder set).

2. Sturmian sequences. Let α be in R\Q. Sturmian sequences are
codings of translations T : x ∈ T1 → x+ α with respect to the partition
W = {[0, 1− α[, [1− α, 1[} (or {]0, 1− α], ]1− α, 1]}). This gives rise to
a symbolic minimal and uniquely ergodic dynamical system (Y, S) which
is metrically isomorphic to (T1, µ, T ) where µ is the Lebesgue measure
on T1 (see [8], [3]). This geometric definition of Sturmian sequences is
equivalent to a combinatorial property:
A sequence ω ∈ {0, 1}N is Sturmian if and only if for all integer n ≥ 0,
the complexity pω(n) is exactly n+ 1.
Sturmian sequences have been extensively studied (see [8]). Let us now
show how to introduce the Sturmian partition {[0, 1− α[, [1− α, 1[} in a
way which reminds Rauzy’s example:
Let (pn) be the sequence of integers defined inductively by p0 = 0 and
pn+1 is the closest integer from (n+ 1)α among pn and pn + 1. It is not
difficult to show that (pn+1− pn)n∈N is a Sturmian sequence which is the
coding of 0 according to the partition mod 0:

{nα− pn : pn+1 − pn = 0} = [−1

2
,
1

2
− α],

{nα− pn : pn+1 − pn = 1} = [
1

2
− α,

1

2
].

We shall use exactly the same idea to associate to each α in the two-
dimensional torus, a partition with three pieces.

3 Statements of results

We recall some definitions. The first two are standard combinatorial
definitions.

Definition 1 1. Let A be a finite set (an alphabet). The complexity
function of a sequence ω in AN is the map pω : N∗ → N defined by,

pω(n) = card{(ω(k), ..., ω(k + n− 1)) : k ≥ 0}.
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2. Let C be a real number and let a be an element of A. A sequence ω in
AN is C-balanced over the letter a if for all integers p, q ≥ 0 and l > 0,

card{n ∈ {p, ..., p+l−1} : ω(n) = a}−card{n ∈ {q, ..., q+l−1} : ω(n) = a} ≤ C.

When A and B are two measurable subsets of Rd, the equality A =
B mod 0 means that the symmetric difference of A and B is a set of
zero Lebesgue measure. To make our results precise, we explain what we
mean by a fundamental domain:

Definition 2 A measurable subset D of Rd is a fundamental domain if
- D + Zd = Rd mod 0,
- the sets (D + n), n ∈ Zd, are disjoint mod 0.
Moreover if D is a compact set, and if Do = D, we say that D is a regular
fundamental domain.

Remark. If D is a fundamental domain, the sets Do +n, n ∈ Zd, are
disjoint and if D is a compact fundamental domain, we have D+Zd = Rd.

The next definition can be found in many sources, see for example [8]
or [3].

Definition 3 Let α be in Rd and T : Td → Td the translation defined
by Tx = x + α. A sequence u is a natural coding of the translation T
if there exist a fundamental domain D together with a finite partition
D = D1 ∪ ... ∪ Dp such that for each i in {1, ..., p}, there exists a lattice
vector ei ∈ Zd with Di + α + ei ⊂ D, and there exists a point x in D
such that u is the coding of x under the action of T with respect to the
partition {D1, ...,Dp}.

Let α = (α1, α2) be in R2. Remember that the translation T : x ∈
T2 → x + α ∈ T2 is ergodic if and only if, T is minimal, or if and only
if, 1, α1 and α2 are linearly independent over the rational numbers. Our
main result is:

Theorem 1 Let α = (α1, α2) be in R2. Assume that α1, α2 > 0, α1 +
α2 < 1, and that the translation T : x ∈ T2 → x+α ∈ T2 is ergodic. Set
e0 = (0, 0), e1 = (1, 0) and e2 = (0, 1) and define the sequence (Pn)n∈N

of lattice points by induction: P0 = (0, 0) and Pn+1 is the point closest
to (n+ 1)α among the three points Pn + e0, Pn + e1 and Pn + e2 for the
Euclidean distance.
Denote Ω = {e0, e1, e2}N, ω0(n) = Pn+1 − Pn, and Y the orbit closure of
ω0 under the shift map S : Ω → Ω.
Then
1. the dynamical system (Y, S) is uniquely ergodic and minimal,
2. the two dynamical systems (T2, T ) and (Y, S) endowed with their
unique invariant probability measures are metrically isomorphic,
3. the sequence ω0 is a natural coding of the translation T and Dα =
{nα− Pn : n ∈ N} is a regular fundamental domain.
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Moreover two combinatorial properties hold for the sequence ω0:
4. the complexity of the sequence ω0 is of quadratic growth,
5. the sequence ω0 is 2-balanced over the letters e1 and e2.

Bounded remainder sets for a sequence in [0, 1[ were introduce a long
time ago. Hecke proved in 1922 [9] that for a real number α and for
an interval I ⊂ [0, 1[ whose length l = p + qα belongs to Z + αZ, the
following property holds

∀n ∈ N, |card{k ∈ {0, ..., n− 1} : nαmod 1 ∈ I} − nl| ≤ 2q.

This leads to the following definitions.

Definition 4 1. Let (xn)n∈N be a sequence in a set X and let A be
a subset of X. The set A is a bounded remainder set for the sequence
(xn)n∈N if there is a real number a and a constant C such that for all
integer n,

|card{k ∈ {0, ..., n− 1} : xk ∈ A} − na| ≤ C.

2. Let α be in Td and let T : Td → Td be the translation defined by
Tx = x+ α. A subset A of Td is a bounded remainder set for α if A is
a bounded remainder set for almost all sequences (T nx)n∈N with respect
to the Lebesgue measure where a and C are independent of x.

By Hecke’s result, if α is in T, the sets [0, 1−α[ and [1−α, 1[ associated
to Sturmian’s coding, are bounded remainder sets for all sequences (x+
nαmod 1)n∈N with the same a and C. Therefore these two sets are
bounded remainder sets for α. In Rauzy’s example, the same holds for
the three setsR0, R1, R2, and α = (ξ, ξ2). The converse of Hecke’s result
was proved by Kesten [10] in 1966, and Liardet [12] extended Kesten’s
result to boxes Πd

i=1Ii. Liardet proved that if the product Πd
i=1Ii is a

bounded remainder set for α = (α1, ..., αd) in Td and if 1, α1, ..., αd are
linearly independents over Q, then the length li of the intervals Ii are
equal to 1 except for a single i in {1, ..., d} for which the length li must
be in Z + αiZ. This shows that bounded remainder sets for α are rather
exceptional sets. It is also well known that bounded remainder sets are
related to balanced sequences and this is indeed the case in our work.

Let p : R2 → R2/Z2 be the canonical projection.

Corollary 5 Let (Pn)n∈N be defined as in the previous theorem. Then
the three sets

p({nα− Pn : Pn+1 − Pn = ei}), i = 0, 1, 2,

are bounded remainder sets. Moreover, they have disjoint nonempty in-
teriors and their boundaries are a finite union of segments.
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In fact the conclusion of the proposition is even stronger for the
boundaries of the sets we are dealing with, are made of a finite num-
ber of segments; lemma 12 below, allows us to remove the ”almost all”
in the definition of bounded remainder sets.

Remark. It is easily deduced from the proof that

µ(p({nα− Pn : Pn+1 − Pn = ei})) = αi, i = 1, 2,

where µ is the Lebesgue measure on the two-dimensional torus.

4 Ingredients of the proof of Theorem 1

4.1 General results

One part of the proof of theorem 1 rests on several independent results.
The first two are very likely to be “folklore”results. They connect the
properties of the geometric dynamical system (Td, Tx = x + α) and
of the partition with the properties of the symbolic dynamical system
associated with the partition. There are various ways to formulate these
properties for a homeomorphism T of a compact metric space X. Most
of the time, the partition needs to “separate” the points of X under the
action of T (see [6] section 15). In the next definition, the aperiodicity
condition will imply that the points of Td are separated under the action
of the translation Tx = x+ α.

Definition 6 Let (G,+) be a topological Abelian group and let W =
{W1, ...,Wn} be a finite partition of the group G.
1. The partition W is aperiodic if for all a in G\{0} there is an x in
G such that x is in the interior Wo

i for some i and x + a is not in the
closure Wi of the same Wi.
2. The partition is regular if for all i, Wi is included in the closure of
its interior.

In the following, we shall assume that Ω = WN is endowed with the
product topology (W is finite and endowed with the discrete topology).

Theorem A. Let T : T2 → T2 be an ergodic translation of the
two-dimensional torus and W = {W1, ...,Wk} be a finite, regular, and
aperiodic partition of T2. Set G = T2\⋃

n∈N

⋃k
i=1 T

−n∂Wi and Y =

π(G) where π is the coding map associated with the partition W.
Then the coding map π : T2 → Ω (see the introduction) is one-to-one
and there exists a continuous map φ : Y → T2 such that
i. φ ◦ π(x) = x for all x in G,
ii. (T2, T ) is a topological factor of (Y, S): φ(Y ) = T2, φ ◦ S = T ◦ φ,
furthermore the topological dynamical system (Y, S) is minimal.

Remark. The space Y depends on the Wo
i , i = 1, ..., k rather on the

Wi, i = 1, ..., k.
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Theorem B. Let µ denote the Lebesgue measure on T2. Let T :
T2 → T2 be an ergodic translation of the two-dimensional torus and let
W = {W1, ...,Wk} be a finite, regular, and aperiodic partition of T2.
If the boundaries ∂Wi, i = 1, ..., k, are µ-negligible, then the topological
dynamical system (Y, S) is uniquely ergodic and π is an isomorphism of
the two measurable dynamical systems (T2, T, µ) and (Y, S, ν) where ν
is the unique S-invariant probability on Y .

We shall give the complete proof of these two theorems in the ap-
pendix.

Remark. Theorem A and B can be formulated in a more abstract
setting of Abelian compact metric groups.

The complexity of symbolic sequences arising from translation in com-
pact groups has already been studied. Steineder and Winkler [16] proved
the following result. Let X be a compact group, let W be a subset of
X whose boundary is of zero measure for the Haar measure and x and g
be in X. Then the complexity of the sequence ω defined by ω(n) = 1 if
x + ng ∈ W and ω(n) = 0 if x + ng ∈ X\W is always subexponential.
In the case of the torus X = Td and of a box W = Πd

i=1Ii they proved
that limn→∞ n−dpω(n) = 2dΠld−1

i where li is the length of the interval Ii,
i = 1, ..., n. In the two-dimensional case, the next result give the behav-
ior of the complexity of the coding for polygonal subsets rather than for
boxes.

Theorem 2 Let T : T2 → T2 be an ergodic translation of the two-
dimensional torus and W = {W1, ...,Wk} be a finite partition of T2. If
the partition W is regular, aperiodic, and if the boundaries of each Wi is
a finite union of segments then there exist two positive constants c and
C such that for all ω in Y (see Theorem A)

cn2 ≤ pω(n) ≤ Cn2.

In view of the lemma 12 below, for all x in T2, the trajectory (T nx)n∈N

may stay only a finite time in the ∂Wi; this shows that the complexity
pπ(x) is of quadratic growth for all x in T2.

4.2 Stable sets

In order to prove Theorem 1, we introduce a class of partitions which
agrees with Theorems A, B and 2. Propositions 8, 9 and 10 below sum-
marize the properties of this class of partitions. Proposition 8 may be of
independent interest.

Definition 7 Let α be in Rdand let W1, ...,Wp be compact subsets of
Rd. Denote by K the union ∪p

i=1Wi.
1. The set of compact subsets W = {W1, ...,Wp} is α-stable if K is not
empty, and if for each i in {1, ..., p}, there exists a lattice vector ei ∈ Zd

such that Wi + α+ ei ⊂ K.
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2. The set of compact subsets W = {W1, ...,Wp} is regular if:
- for i in {1, ..., p}, Wi = Wo

i

- for all i 6= j in {1, ..., p}, Wo
i ∩Wj = ∅.

- for all i in {1, ..., p}, the Lebesgue measure of the boundary of Wi is 0.

Let us illustrate this definition by a simple example in one dimension.
Take α ∈ [0, 1/2], W1 = [0, 1] and W2 = [1, 3/2]. Since W1 +α ⊂ [0, 3/2]
and W2 + α− 1 ⊂ [0, 3/2], W = {W1,W2} is α-stable.

Notation. Let α be in Rd and let W = {W1, ...,Wp} be an α-stable
set of compact subsets. Fix e1, ..., ep in Zd such that Wi + α + ei ⊂ K.
We denote FW the map defined on all subsets of Rd by

∀A ⊂ Rd, FW(A) = ∪p
i=1(A ∩Wi + α + ei).

The stability of a set of compact subsets is a crucial property linked
to pieces exchange and to natural coding. Given closed subsets V1, ...,Vp

of Rd, it is always possible to define a map by

∀A ⊂ Rd, F (A) = ∪p
i=1(A ∩ Vi + α + ei).

The property F (K) ⊂ K means that W = {V1∩K, ...,Vp∩K} is α-stable,
but it is not always easy to find a compact set K with this property. In the
one-dimensional case, the sets V1 =] −∞,−1

2
+ α], V2 = [−1

2
+ α,+∞[

and K = [−1
2
, 1

2
] give rise to the “Sturmian” α-stable set of compacts

subsets W = {V1 ∩ K = [−1
2
,−1

2
+ α], V2 ∩ K = [−1

2
+ α, 1

2
]}. In

the two-dimensional case, the product of the α1-stable set of compacts
subsetsW1 = {[−1

2
,−1

2
+α1], [−1

2
+α1,

1
2
]} and of the the α2-stable set of

compacts subsets W2 = {[−1
2
,−1

2
+ α2], [−1

2
+ α2,

1
2
]} gives an (α1, α2)-

stable set W = {W i ×Wj, 1 ≤ i, j ≤ 2} with 4 elements. However, we
wish to find an α-stable set of compact subsets with only three elements
because it implies that the associated coding sequences are C-balanced.

Each of the three next propositions corresponds to one property of
the Rauzy fractal R:
- R is a fundamental domain,
- there is a pieces exchange which induces the translation x ∈ T2 →
x+ α ∈ T2,
- the dynamical system (T2, T ) is isomorphic to a symbolic dynamical
system.

In the propositions 8, 9, and 10 we assume the following hypothesis:
α is an element of Rd such that the translation x ∈ Td → x + α is
ergodic, W = {W1, ...,Wp} is a regular α-stable set of compact subsets
of Rd, and x0 is in K = ∪p

i=1Wi. Set

Dα = ∪n∈NF n
W({x0}).

Proposition 8 If the Lebesgue measure of K is strictly less than 2, then
Dα is a fundamental domain.
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For i = 1, ..., p, set
Ri = ∪F n

W({x0})
where the union is taken over all the integer n such that F n

W({x0}) ⊂ Wi.

Proposition 9 1. Suppose that the Lebesgue measure of K is strictly
less than 2 and suppose that
- x0 + Zα+ Zd and N = ∪p

i=1∂Wi have empty intersection,
- there exists an integer k such that F k

W(K) ∩ (x0 + Zd) = {x0}.
Then Dα is a regular fundamental domain, FW(Dα) = Dα, for all i in
{1, ..., p},

Ri = Wi ∩ Dα,

and
Ro

i = Ri.

2. Moreover, if for each i in {1, ..., p}, the boundary of Wi is a finite
union of segments then the boundary of Ri, i = 1, ..., p, is a finite union
of segments too.

Finally, we need a technical condition about the partition W which
implies that the sets Wi ∩ Dα, i = 1, ..., p, give rise to an aperiodic
partition of the torus (see definition 6). This condition is given in the
next proposition which, together with Theorem B, will show that the
translation x ∈ Td → x + α ∈ Td is isomorphic to the desired symbolic
dynamical system.

Notation. p : Rd → Td denotes the canonical projection.

Proposition 10 Assume the hypothesis of proposition 9.1 and suppose
moreover that there exists an open subset T included in K with the fol-
lowing properties:
- (T + Zd\{0}) ∩ K = ∅,
- for all a in Rd\Zd there exist i in {1, ..., p} and x in T ∩Wo

i such that
x+ a /∈ Wi + Zd.
Then

{p(R1),p(R2)\p(R1), ....,p(Rp)\ ∪p−1
i=1 p(Ri)}

is a finite regular and aperiodic partition of Td.

While the proof of proposition 8 is interesting, the proofs of propo-
sitions 9 and 10 are somewhat tedious. We shall use these propositions
with a very simple set W = {W1,W2W3} for which these propositions
may seem to be too general. But we think that a direct proof of theorem
1 avoiding propositions 9 and 10, would be quite technical. In fact, the
set W is given explicitly, but the resulting fundamental domain Dα and
the resulting partition depend on α and are rather difficult to foresee.
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5 Proof of Theorem 2

Definition 11 A segment of Td is the projection of a segment [a, b] of
Rd.

Notation. for an integer n, πn : T2 → W{0,...,n} denote the map
defined by π(x)(k) = Wi if T kx ∈ Wi.

Since by Theorem 2, (Y, S) is minimal, the set of finite subwords of
any ω in Y does not depend on the choice of ω ∈ Y . It follows that for
all ω, ω′ ∈ Y and for all n ∈ N, pω(n) = pω′(n). Therefore, it is enough
to choose an x0 in G and to compute the complexity of ω0 = π(x0).

We shall first prove the upper bound. Set

Un = T2\
n−1⋃
j=0

k⋃
i=1

T−j∂Wi.

Note that if U is a connected component of Un then the coding of all
the elements x in U begin by the same word ωU = ω(0)...ω(n − 1) of
length n. Since for every integer m ≥ 0, Tmx0 belongs to a connected
component of Un, the number of subwords of ω0 of length n is less than
the number of connected components of Un. Denote by U the set of
connected components of Un

The set
⋃k

i=1 ∂Wi is a finite union of segments. Denote by n0 the
number of such segments. Now, the boundary of Un is a finite union of
segments Un, S1 ∪ ... ∪ SN with

N ≤ n0n (∗)

(there could exist a segment of
⋃k

i=1 T
−j∂Wi included in

⋃k
i=1 T

−l∂Wi).
We can assume that the segments Si are non overlapping. Thus for each
pair (i, j) of distinct integers in {1, ..., N}, the intersection Si∩Sj is finite
(remember that we are working in T2 and not in R2). Set I =

⋂
i 6=j Si∩Sj

and S=
⋃N

i=1 Si\I. Denote by S the set of connected components of S.
The cardinality of S will give us the upper bound. Indeed, consider the
set P of pairs (s, U) in S ×U such that s is in the boundary of U . We
have

cardU ≤ cardP ≤ 2 cardS.

Let L be the maximum of the length of the segments in the boundaries
of the Wi. Since the intersection of two segments of T2 of length L meet
themselves in L+1 points at most, the cardinal number of I is (L+2)N2

at most. It follows that

cardS ≤ (L+ 2)N2 +N ≤ Cn2

where C = 2n2
0(L+ 2), in view of (∗).

It remains to find a lower bound. We can assume thatW = {W1,W2}.
Making use of the hypothesis, Wo

i = Wi, it is obvious that for i = 1, 2,
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∂Wi contains no isolated point and ∂Wi = ∂Wi = ∂Wo
i . It is also im-

portant to notice that ∂W1 = ∂W2. Making use of the aperiodicity,
we shall prove that the boundary of W1 and W2 contains at least two
segments say S1 and S2 which are not parallel. Indeed, suppose on the
contrary that the boundary of W1 consists of one segment or two parallel
segments. In the former case, there exist a,−→u in R2 and λ in R such
that ∂W1 = p([a, a + λ−→u ]), |−→u | < 1 and λ > 1. If x ∈ Wo

i , i = 1 or 2,
and y = x+p(−→u ) then y must be in Wo

i or in ∂Wi, therefore y is in Wi.
Since the partition {W1,W2} is aperiodic, −→u is a lattice vector and since
|−→u | < 1, −→u = 0. It follows that ∂Wi is reduced to a single point which
is impossible. In the latter case there exists a1, a2,

−→u in R2 and λ1, λ2

in R such that ∂W1 = p([a1, a1 + λ1
−→u ]) ∪ p([a2, a2 + λ2

−→u ]), |−→u | < 1
and λ1, λ2 > 1. As in former case we see that −→u = 0 which leads to a
contradiction.

We have ∂W1 = ∂W2, and these boundaries contain the two segments
S1 and S2 which are not reduced to single points, therefore there exist
two open balls B1 and B2 such that for i = 1, 2,

Bi ∩ (∂W1 = ∂W2) = Bi ∩ Si,

is a diameter of the ball Bi. Hence, each ball Bi is the disjoint union
of the two open half disks Bi ∩ Wo

1 , and Bi ∩ Wo
2 and of the diameter

Bi ∩ Si. This means that for i = 1, 2, there exist a point Ai in R2 and
two vectors −→ui and −→vi in R2\{0} such that ,

p([Ai −−→ui , Ai +−→ui ]) ⊂ Si,
−→ui ⊥ −→vi ,

p(Ai +R+
i ) ⊂ W2,

p(Ai +R−
i ) ⊂ W1

where

R+
i = {t−→ui + s−→vi : t ∈]− 1, 1[, s ∈]0, 1[},

R−
i = {t−→ui + s−→vi : t ∈]− 1, 1[, s ∈]− 1, 0[},

i = 1, 2. Since the segments S1 and S2 are not parallel, the vectors −→u1

and −→u2 are not collinear. Choosing some shorter vectors we can assume
that

R+
1 = {t−→u1 + s−→u2 : t ∈]0, 1[, s ∈]0, 1[},

R−
1 = {t−→u1 + s−→u2 : t ∈]0, 1[, s ∈]− 1, 0[}

and that

R+
2 = {t−→u2 + s−→u1 : t ∈]0, 1[, s ∈]0, 1[} = R+

1 ,

R−
2 = {t−→u2 + s−→u1 : t ∈]0, 1[, s ∈]− 1, 0[}.

Consider the parallelograms P, P1 and P2 defined by

P = {t−→u1 + s−→u2 : t ∈]0, 1/2[, s ∈]0, 1/2[},
P1 = {t−→u1 + s−→u2 : t ∈]− 1/2, 0[, s ∈]0, 1/2[},
P2 = {t−→u1 + s−→u2 : t ∈]0, 1/2[, s ∈]− 1/2, 0[},

11



For all integer n, set

Ji,n = {k ∈ {0, ..., n} : T−kAi ∈ p(Pi)}, i = 1, 2.

By uniform distribution of the sequence (T−k(Ai))k∈N, there exist a pos-
itive constant c and an integer N , such that for all n ≥ N ,

card Ji,n ≥ cn, i = 1, 2.

By the lemma 12 (below), there is a constant K and two subsets J ′1,n and
J ′2,n of J1,n and J2,n such that

ni = card J ′i,n ≥
c

K
n, i = 1, 2

and for all p, q ∈ J ′i,n,

(T−pAi+p({t−→ui : t ∈ [0, 1]}))∩(T−qAi+p({t−→ui : t ∈ [0, 1]}) = ∅, i = 1, 2.

Now, for all p ∈ J ′i,n, P is included in the union of T−pAi +R+
i , T−pAi +

R−
i and the segment T−pSi, i = 1, 2. Furthermore,

P ∩ (T−pAi +R+
i ) 6= ∅, P ∩ (T−pAi +R−

i ) 6= ∅, i = 1, 2.

P

P1

P2

Figure 1:

Hence for each p ∈ J ′1,n, the horizontal segment T−pA1 + p({t−→u1 : t ∈
[0, 1]}) crosses the parallelogram P and splits it into two parts (see figure
1). The lower one is in T−p(W1) and the above one is in T−p(W2). The
same holds for each inclined segment T−pA2 + p({t−→u2 : t ∈ [0, 1]}) with
p ∈ J ′2,n.

Therefore, P is divided in m = (n1 + 1)(n2 + 1) parallelograms
Q1, ...,Qm (see figure 1) such that if x ∈ Qo

i and y ∈ Qo
j with i 6= j

there exists p1 in J ′1,n or p2 in J ′2,n, with

card({x, y} ∩ (T−p1A1 +R−
1 )) = 1

or
card({x, y} ∩ (T−p2A2 +R−

1 )) = 1.

12



It follows that the p1-th or the p2-th letter of the words πn(x) and πn(y)
are different. The number of such words is therefore at least m. By
minimality, it follows that

pn(π(x0)) ≥ m ≥ c2

K2
n2. ¤

Lemma 12 Let α ∈ R2 and T : T2 → T2 be the translation defined by
T (x) = x + α. If T is ergodic and S = [s0, s1] is a segment of R2, then
there exists a constant K such that for any x in T2,

cardp(S) ∩ {T nx : n ∈ N} ≤ K.

Proof. If the slope of S is rational then for all x in T2 there is at
most one integer n with T nx ∈ p(S) for the translation T is ergodic.
Therefore we can assume that the slope of S is irrational. Consider the
line D parallel to S containing 0. The projection p is one to one on D.
Set q0 = min{q ∈ N\{0} : qα ∈ D + Z2}. There is a point P0 in Z2 such
that q0α+P0 ∈ D. Set r = d(0, q0α+P0) and λ = l

r
where l is the length

of the segment S.
Let us show that if A is in S + Z2 and if k > λ then A+ kq0α is not

in S + Z2. Suppose on the contrary that the point A + kq0α ∈ S + Z2.
It follows that kq0α is in S − S + Z2 and that there exists P in Z2

such that kq0α + P ∈ S − S. Since S − S ⊂ D, the point P − kP0 =
kq0α+ P − k(q0α + P0) is in D which implies that P = kP0 and that

|kq0α+ P | = k |q0α + P0| > l.

But kq0α + P belongs to the segment S − S which is included in {x :
|x| < l}. This contradicts the above inequality.

Fix an integer k0 > λ and set Q = k0q0. For each r = 0, ..., Q − 1
there is at most one integer a such that (aQ+r)α ∈ S+Z2 and therefore
there is at most Q integers q such that qα ∈ S + Z2. ¤

6 Proof of proposition 8

6.1 Pieces exchange

The proof of proposition 8 needs several easy auxiliary results. Among
them, proposition 13 and lemma 15 may be of independent interest.

Let W1, ...,Wk, and A be a measurable subsets of Rd. Recall that
{W1, ...,Wp} is a measurable partition of A modulo 0 if
- A = W1 ∪ ... ∪Wp mod 0,
- the set W1, ...,Wp are disjoint modulo 0.

Proposition 13 Let α = (α1, ..., αd) be in Rd and let D be a measurable
subset of Rd. Assume that 1,α1,...,αd are linearly independent over Q.

13



If there exist a measurable partition modulo 0, {W1, ...,Wp} of D and
e1, ..., ep in Zd such that

D =

p⋃
i=1

(Wi + α− ei) mod 0,

then the map X ∈ Td 7→ card(X ∩ D) ∈ N is a.e. constant (an element
X in Td is a subset of Rd).

Notation: Let µ(A) denote the Lebesgue measure of a measurable
subset A of Rd of Td.

Proof of proposition 13.
The sets Wi + α − ei have the same Lebesgue measure as the sets Wi,
i = 1, ..., p, which are disjoint, moreover

p⋃
i=1

(Wi + α− ei) = D =

p⋃
i=1

Wi mod 0,

therefore µ((Wi +αi− ei)∩ (Wj +αj − ej)) = 0, for all i 6= j. Removing
a subset of zero measure to each Wi, we can assume that the sets Wi are
disjoint as well as the sets Wi + α − ei, and that

⋃p
i=1(Wi + α − ei) is

included in D.
Consider the map nb : X ∈ Td 7→ card(X∩D) and for each integer k, the
set Ek = {X ∈ Td : nb(X) ≥ k}. We wish to prove that the measure of
Ek is 0 or 1 for all integers k. Since the translation T : X ∈ T2 → X +α
is ergodic and since the Lebesgue measure is T -invariant, it is enough to
prove that for all integer k, T (Ek) ⊆ Ek mod 0. Fix an integer k.

Denote by N the set of X in Td which have an empty intersection
with D\⋃p

i=1Wi. The set N is of zero measure. Let X be in Ek\N and
let x 6= y be two elements of X ∩ D. There is two integers i(x) and i(y)
such that x ∈ Wi(x) and y ∈ Wi(y). If i(x) = i(y) = i then x+α− ei and
y+α−ei are distinct. If i(x) 6= i(y) then x+α−ei and y+α−ei belong
to Wi(x) + α− ei and to Wi(y) + α− ei which are disjoint sets, therefore
x+α− ei(x) and y+α− ei(y) are distinct in all cases. It follows that the
cardinality of the set T (X)∩D is greater or equal to k, thus T (X) ∈ Ek.
¤

Fix α = (α1, ..., αd) in Rd such that 1,α1,...,αd are independent over
Q.

Corollary 14 Let W1, ...,Wp, and K be compact subsets of Rd and let
e1, ..., ep be in Zd. Assume that {W1, ...,Wp} is a measurable partition of
K modulo 0. Consider the map F defined over the subsets of Rd by

F : A ⊆ Rd 7→
p⋃

i=1

(A ∩Wi + α− ei) ⊆ Rd.

Set
D =

⋂

n∈N
F n(K).

14



If F (K) ⊆ K, then the map X ∈ T2 7→ card(X ∩ D) is a.e. constant on
Td.

This corollary is a simple consequence of the proposition 13 and of
the following lemma which is a slight extension of the well known fact:

If (Kn) is a sequence of nested compact sets and if f : K0 → K0 is a
continuous map, then f(∩n≥0Kn) = ∩n≥0f(Kn).

Lemma 15 Let W1,..., Wp, and K be compact subsets of Rd such that
K = W1∪ ...∪Wp. Assume that fi : Wi → K, i = 1, ..., p, are continuous
maps. Consider the map F defined over the subsets of K by

F : A ⊆ K →
p⋃

i=1

fi(A ∩Wi) ⊆ K.

Set D =
⋂

n∈N F
n(K). Then F (D) = D.

The proof of lemma 15 is easy and we leave it to the reader.

6.2 End of proof of proposition 8

We have to show that the set Dα = {F n({x0}) : n ∈ N} is a funda-
mental domain. We first prove that the set A = ∩n≥0∪k≥nF k({x0})
is a fundamental domain. Next, we prove that Dα is equal to the set
∪n≥0F

n({x0}) ∪A. Proposition 8 will follow for ∪n≥0F
n({x0}) is count-

able.
Since x0 ∈ K, A is included in

⋂
n≥0 F

n(K) = D. By the previous

corollary, the map X ∈ Td 7→ card(X ∩ D) is a.e. constant on Td. By
hypothesis µ(K) < 2 and since D is included in K, we have µ(D) < 2.
Hence, card(X ∩D) = 0 for almost every X ∈ Td or card(X ∩D) = 1 for
almost every X ∈ Td. Thus the only thing to show is that A contains
a fundamental domain. Recall that p : Rd → Td denote the canonical
projection. For each integer k > 0, choose a point xk in F k(x0). Since
p(xk) = p(x0 + kα), the set S = {p(xk) : k ∈ N} is everywhere dense in
Td. Let Y be an element of Td and (Yp = p(xkp))p∈N be a sequence in
S which converges to Y . The subsequence (xkp)p being bounded, we can
assume, that (xkp)p converge to y ∈ Rd. Since A is closed, y ∈ A, hence
Y ∈ p(A). Therefore A contains a fundamental domain.

Let x be a point in Dα not in ∪n≥0F
n({x0}). There exists a sequence

(kp)p∈N of integers and a sequence (yp)p∈N such that limp→∞ yp = x
and for all p, yp ∈ F kp({x0}). If the sequence (kp)p∈N is bounded by
an integer N , then for each p, yp belongs to ∪n≤NF

n({x0}) which is
a finite set. Therefore, x = limp→∞ yp must belongs to this finite set
which is included in ∪n≥0F

k({x0}). It follows that the sequence (kp)p∈N

is unbounded. Extracting a subsequence we may suppose that kp → ∞
as p goes to infinity. It follows that x = limp→∞ yp is in ∪k≥nF k({x0})
for all integers n which shows that x is in A. ¤
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7 Proof of proposition 9

1. Since W = {W1, ...,Wp} is an α-stable set of compact subsets, we
have F (K = ∪p

i=1Wi) ⊂ K, where the map F : A ⊂ Rd → F (A) ⊂ Rd is
defined by F (A) =

⋃p
i=1(A ∩Wi + α + ei).

Step 1. For all integer n, F n({x0}) consists of a single point xn and
x0 is a limit point of the sequence (xn)n∈N.
Since the set W = {W1, ...,Wp} is a regular set of compact subsets, the
interiors of the Wi, i = 1, ..., p, are disjoint and since x0 + Nα+ Zd does
not meet the boundaries of Wi, i = 1, ..., p, for all integer n, F n({x0})
consists of a single point which we denote by xn. Hence

Dα = {xn : n ∈ N}.

By proposition 8, Dα is a fundamental domain. The set

A = ∩n≥0{xk : k ≥ n}

of limit point of the sequence (xn)n∈N is a closed subset ofDα andDα\A is
countable, thereforeA is fundamental domain. It follows that there exists
a sequence of lattice points (Pn)n∈N in Zd such that x0 is a limit point
of the sequence (xn + Pn)n∈N. Since the sequence (xn)n∈N is bounded,
Pn = P for infinitely many integers n. Therefore, x0 − P belongs to
F k(K) for all integer k. But by hypothesis, there is an integer k such
that F k(K)∩ (x0 + Zd) = {x0}, thus P = 0 and x0 is a limit point of the
sequence (xn)n∈N.

Step 2. F (Dα) = Dα.
It follows from step 1 that x0 is in ∩n∈NF

n(K) = D and that

Dα = {xn : n ∈ N} ⊂ D.

Since
F ({xn : n ∈ N}) ⊂ {xn : n ∈ N},

F (Dα) = F ({xn : n ∈ N}) ⊂ F ({xn : n ∈ N})
⊂ {xn : n ∈ N}
= Dα.

It follows that the sequence (F n(Dα))n∈N is nested. Since x0 is a limit
point of the sequence (xn)n∈N, x0 belongs to ∩n∈NF

n(Dα). But F (∩n∈NF
n(Dα)) ⊂

∩n∈NF
n(Dα), therefore the whole sequence (xn)n∈N is in ∩n∈NF

n(Dα).
Finally, this shows that F (Dα) = Dα.

Step 3. Do
α = Dα.

By Bair’s theorem, the interior of a compact set which is a fundamental
domain can’t be empty. Therefore the interior Do

α of Dα is nonempty. Let
x be in Do

α\N where N = ∪p
i=1∂Wi. There is a positive real number r

such that B(x, r) ⊂ Do
α\N . This ball B(x, r) is included in the interior of

one of the Wi, therefore F (B(x, r)) is a ball B(y, r) where {y} = F ({x}).
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Moreover F (Dα) ⊂ Dα, thus y is in Do
α.

Since the translation T : u ∈ T2 → u + α ∈ T2 is minimal, the set
∪n∈NF

n(Do
α) contains a fundamental domain. But this set is included in

∪n∈NF
n(Dα) = Dα

⊂ D = ∩n∈NF
n(K)

and by hypothesis, (x0 + Z2) ∩ F k(K) = {x0}, therefore, there exists
an integer k0 ≥ 0 and an element z in the interior of Do

α such that
x0 ∈ F k0({z}). The point z is in x0 − k0α+ Z2 which does not intersect
N , thus F ({z}) is a single point which is in Do

α. Iterating this process,
we see that

F ({z}), F 2({z}), ..., F k({z}) = x0, x1, ..., xn, .... ∈ Do
α.

It follows that Do
α = Dα. This shows that for each point x in Do

α there is
no lattice point P 6= 0 such that x+P ∈ Dα, for, x ∈ Do

α and x+P ∈ Do
α

contradict the fact that Dα is fundamental domain.
Step 4. Set Ri = {xn : xn ∈ Wi} and Ui = Wi ∩ Dα. We have

Ri ⊂ Ui, Ro
i = Ri and Ro

i = Do
α ∩Wo

i , i = 1, ..., p.
Clearly

Ri = {xn : xn ∈ Wi} ⊂ Wi ∩ Dα = Ui,

and

Dα = {xn : n ∈ N}
= ∪p

i=1{xn : xn ∈ Wi}
= ∪p

i=1Ri.

Let x be in Uo
i . Since the setW = {W1, ...,Wp} is a regular (see definition

7), the point x which is in Wo
i is not in ∪j 6=iWj. Therefore x is not in

∪j 6=iRj and since Uo
i = Wo

i ∩ Do
α, we get

Uo
i ⊂ Do

α\ ∪j 6=i Rj.

It follows that Uo
i ⊂ Ri and that Ro

i = Uo
i = Do

α ∩ Wo
i . But, for all

integer n, xn is never on the boundary of the Wi, i = 1, ..., p, thus

{xn : xn ∈ Wi} ⊂ Wo
i ∩ Do

α

and therefore Ri ⊂ Wo
i ∩ Do

α and

Ro
i = Ri.

2. Suppose now that the boundary of each Wi is a finite union of
segments and let us show that the boundary of each Ri is a finite union
of segments. Choose a closed square C of nonempty interior included in
Do

α. Since the translation T : x ∈ T2 → x+α ∈ T2 is minimal and since
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T2 is compact, there exists n0 in N such that ∪n0
n=0T

n(p(Co)) = T2. It
follows that ∪n0

n=0F
n(C) is a fundamental domain which is included in Dα.

Since Do
α ∩ (Do

α + P ) = ∅ for all non zero P in Zd, Do
α must be included

in ∪n0
n=0F

n(C), this shows that Dα = ∪n0
n=0F

n(C).
Finally, by our hypothesis, the boundary of each Wi is a finite union

of segments, therefore the boundary of Dα = ∪n0
n=0F

n(C) is also a finite
union of segments. It follows that the same property holds for Ui and
thus for Uo

i (see lemma below whose proof is left to the reader). But
Uo

i = Ro
i and ∂Ri = ∂Ro

i therefore the boundary of Ri is a finite union
of segments. ¤

Lemma 16 Let F be closed subset of R2. If its boundary is a finite
union of segments then the boundary of the interior of F is finite union
of segments (the boundary of the interior may be strictly included in the
boundary of F ).

8 Proof of proposition 10

Let us show that the partition of the torus

R = {p(R1),p(R2)\p(R1), ....,p(Rp)\ ∪p
i=1 p(Ri)}

is aperiodic.
Let a be in Rd\Zd. By assumption, there exist an x in T and i in

{1, ..., p} such that x ∈ T ∩ Wo
i and x + a /∈ Wi + Zd. Since (T +

Zd\{0}) ∩ K = ∅ and since Dα is a fundamental domain included in K,
T must be included in Dα. Therefore x ∈ Do

α ∩Wo
i = Ro

i (see the proof
of proposition 9, step 4). It follows that y = p(x) is in p(Ro

i ) and that
y+a = p(x+a) is in Td\p(Wi) which is included in T2\p(Ri). It follows
that the partition R is aperiodic.

For all i, p(Ro
i ) contains p(Ro

i ) = p(Ri), thus the partition R is
regular. The last thing to prove is that ∂p(Ro

i ) = p(∂Ro
i ) for it will

show that the boundary of p(Ro
i ) is a finite union of segments. On the

one hand,

∂p(Ro
i ) = p(Ro

i )\p(Ro
i ) ⊂ p(Ri)\p(Ro

i )

⊂ p(Ri\Ro
i ) = p(∂Ro

i ).

On the other hand, p(Dα\Ro
i ) and p(Ro

i ) have empty intersection for
Dα = Do

α; therefore p(Ri\Ro
i ) and p(Ro

i ) have empty intersection. Since
p(Ri\Ro

i ) is included in p(Ri), it is also included in p(Ri)\p(Ro
i ). ¤

9 Proof of Theorem 1

9.1 The compact K
Recall that e0 = (0, 0), e1 = (1, 0) and e2 = (0, 1). We wish to use
propositions 8, 9 and 10. This is why we want to find an α-stable and
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regular set W = {W0,W1,W2} of compact subsets. The set W will be
linked to the sequence (Pn)n∈N whose definition use the the Voronöı’s
cells V0,V1,V2 of the points e0, e1 and e2 (i.e. Vi = {x ∈ R2 : d(x, ei) ≤
d(x, ej), j 6= i}). We have

V0 = {(x1, x2) ∈ R2 : x1, x2 ≤ 1

2
},

V1 = {(x1, x2) ∈ R2 : x1 ≥ 1

2
and x1 ≥ x2},

V2 = {(x1, x2) ∈ R2 : x2 ≥ 1

2
and x1 ≤ x2}.

Luckily, it is not hard to find a compact set K such that {W0 = K ∩
(V0 − α), W1 = K ∩ (V1 − α), W2 = K ∩ (V2 − α)} is an α-stable set of
compact subsets. Set (see figure 2)

K = conv({(−1

2
,−1

2
), (

1

2
,−1

2
), (1, 0), (0, 1), (−1

2
,
1

2
)},

T0 = conv{(0, 0), (1, 0), (0, 1)}

where conv(A) denote the convex hull of a subset A of R2.

(0,0)

(0,1)

(0,1)

K

Figure 2: The domain K. The distance between vertical or horizontal
lines is 1

2
.

Lemma 17 We have

(i) (K + T0) ∩ V0 ⊆ K,
(ii) (K + T0) ∩ V1 − e1 ⊆ K,

(iii) (K + T0) ∩ V2 − e2 ⊆ K.
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We leave the proof to the reader, it reduces to straightforward com-
putations.

Corollary 18 Let α be in R2. Set Ai = {x ∈ R2 : x + α ∈ Vi} and
Wi = K ∩ Ai, i = 0, 1, 2. Consider the map F defined on the subsets of
R2 by

F : A ⊆ R2 →
2⋃

i=0

(A ∩Wi + α− ei) ⊆ R2.

If α ∈ T0 then F (K) ⊂ K.

Proof. Let x be in K∩Wi. Since x is in Wi, the point x+α is in Vi.
Since α is in T0, x+ α is in K + T0. Therefore x+ α is in (K + T0) ∩ Vi.
By the previous lemma, it follows that the point x+ α− ei is in K. ¤

9.2 Proof of Theorem 1: 1, 2, 3 and 4.

In order to use propositions 8, 9 and 10 with the set of compact subsets
{W0,W1,W2} defined in corollary 18, we have to check all the assump-
tions these propositions.
- The above corollary asserts that the collection {W0,W1,W2} of com-
pact subsets is α-stable and it is easily seen that {W0,W1,W2} is regular.
- Let x0 = 0. The boundaries of the Wi are are made of segments which
are either included in rational line or included in a rational line trans-
lated by −α. Since these boundaries do not contains 0, the full orbit
x0 + Zα+ Z2 never meet them. Moreover the points (0, 1) and (1, 0) are
not in F (K), thus F (K) ∩ (x0 + Z2) = {x0}.
- Let T be the interior of the triangle ∆ = conv{(−1

2
, 1

2
), (1

2
, 1

2
), (1

2
,−1

2
)}.

Clearly
(T + Z2\{0}) ∩ K = ∅.

Denote by A the set of elements a in R2\Z2 such that there is an integer
i in {0, 1, 2} and a point x in T ∩Wo

i such that x + a /∈ Wi + Z2.
The last assumption of proposition 10 which remains to be checked is:
A = R2\Z2, or equivalently, A contains ]− 1, 0]× [0, 1[\Z2.

This depends on elementary but rather tedious computations that we
present below.

We can assume that α1 < α2. Set a1 = 1
2
− α1 and a2 = 1

2
− α2.

Note that the conditions α1, α2 > 0, α1 +α2 < 1 and α1 < α2 imply that
0 < a1 <

1
2

and −a1 < a2 < a1 for α1, α2 /∈ Q.
Set Si = T ∩Wo

i , i = 0, 1, 2,

O = (0, 0), A = (
1

2
− α1,

1

2
− α2) = (a1, a2),

B = (a1,−a1), C = (
1

2
,−1

2
), D = (

1

2
, a2 − a1 +

1

2
)
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and

E = (
1

2
,
1

2
), F = (−1

2
,
1

2
), G = (−a2, a2),

H = (−1

2
,−1

2
), I = (a1,−1

2
), K = (−1

2
, a2)

(see figure 3).

(0,0)

(0,1)

(0,1)

K

α

A

F

E

G

H
C

B

I

D

K

Figure 3:

It is easy to check that

S0 = conv{A,G,B}o,

S1 = conv{A,B,C,D}o,

S2 = conv{A,D,E, F,G}o.

Since W0 = conv{A, I,H,K}, W0 + Z2 does not meet the strip B0 =
{(α, β) ∈ R2 : a2 < β < 1

2
}. Thus, for all a in the strip B1 = {(α, β) :

0 < β < 1
2
− a2} there is an x in S0 such that x+a is in B0 and therefore

is not in W0 + Z2.
For all x in T , the equivalence class x + Z2 intersects K at exactly

one point which is x, therefore the set S2 does not intersect W1 + Z2.
It follows that for all a in S2 − S1, there exists x in T ∩ Wo

1 such that
x+ a /∈ Wi + Z2. The set S2 − S1 contains

C1 = conv{D − A,A−D,G−D,F −D,F − C,E − C}o
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and D − A = (1
2
− a1,

1
2
− a1), G − D = (−a2 − 1

2
, a1 − 1

2
), F − D =

(−1, a1 − a2), F − C = (−1, 1), and E − C = (0, 1). Since the point
F −D is in the strip B1, the set A contains the square ]− 1, 0]×]0, 1[. So
it remains to prove that A contains the ”segment” S =]− 1, 0[×{0}.

It is easy to see that E1 = conv(O,H, I, B)o and W1 + Z2 have an
empty intersection. It follows that E1 − S1 is included in A. The set
E1 − S1 contains

C2 = conv{O = C − C,−C,H − C,H −D}
= conv{(0, 0), (−1

2
,
1

2
), (−1, 0), (−1,−1− a2 + a1)}o.

Since −1− a2 + a1 < 0, the segment S is included in C2 and therefore in
A.

Finally, we have proved that all the assumptions of propositions 8,
9 and 10 hold with W = {W0,W1,W2} defined in corollary 18, K,
T = conv{(−1

2
, 1

2
), (1

2
, 1

2
), (1

2
,−1

2
)}o, and x0 = 0. It follows that:

- Dα = {nα− Pn : n ∈ N} is a regular fundamental domain,
- Ri = {nα− Pn : Pn+1 − Pn = ei} = Wi ∩ Dα, i = 0, 1, 2,
- {p(R0),p(R1)\p(R0),p(R2)\(p(R0)∪p(R1)} is a finite aperiodic and
regular partition of T2, and the boundaries of the elements of this parti-
tion are finite union of segments.

Note that T nx0 ∈ Ri if and only if Pn+1 − Pn = ei. Now by Theorem
A, (Y, S) is minimal, by Theorem B, (Y, S) is uniquely ergodic, and the
two dynamical systems (T2, T ) and (Y, S) endowed with their unique
invariant probability measures are metrically isomorphic. Furthermore,
by Theorem 2, the complexity of the coding sequences is of quadratic
growth. Finally the sequence ω0 = (Pn+1 − Pn)n∈N is a natural coding,
for

Ri + α− ei ⊂ {nα− Pn + α− ei : Pn+1 − Pn} ⊂ Dα. ¤

9.3 Proof of Theorem 1: 5.

Let w = (Pn+1 − Pn)n=p,...,p+l−1 and w′ = (Pn+1 − Pn)n=q,...,p+l−1 be two
subwords of the same length of the sequence (Pn+1 − Pn)n∈N. Set for
i = 1, 2,

ai = card{n ∈ {p, ..., p+ l − 1} : Pn+1 − Pn = ei},
a′i = card{n ∈ {q, ..., q + l − 1} : Pn+1 − Pn = ei}.

By lemma 17, the sequence (nα − Pn)n∈N lies in K. Since 1, α1, α2 are
independent over the rational numbers, nα − Pn never belongs to the
boundary of K which is composed of segments with rational endpoints.
Since the distance associated with the supremum norm between two in-
terior points of K is < 3

2
, it follows that for all integers n and m,

‖nα− Pn − (mα− Pm)‖∞ <
3

2
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where ‖.‖∞ denotes the supremum norm. Thus

‖lα− (Pp+l − Pp)‖∞ = ‖((p+ l)α− Pp+l)− (pα− Pp)‖∞ <
3

2
,

‖lα− (Pq+l − Pq)‖∞ = ‖((q + l)α− Pq+l)− (pα− Pq)‖∞ <
3

2
,

and
‖(Pp − Pp+l)− (Pq − Pq+l)‖∞ < 3,

but this last norm is an integer, therefore

‖(Pp − Pp+l)− (Pq − Pq+l)‖∞ ≤ 2.

Finally,

Pp+l − Pp = lα− a1e1 − a2e2,

Pq+l − Pq = lα− a′1e1 − a′2e2,

thus
‖(a1 − a′1)e1 + (a2 − a′2)e2‖∞ ≤ 2. ¤

9.4 Proof of corollary 5

We have just seen that the sequence ω0 = (Pn+1 − Pn)n∈N is 2-balanced
over the letters e1 and e2. Since the alphabet of the sequence ω0 has only
three letters, the sequence ω0 is 4-balanced over the three letters. This
means that the coding sequence of x0 = 0 with respect of the partition

{P0,P1,P2} = {p(R0),p(R1)\p(R0),p(R2)\(p(R0) ∪ p(R1)}
is 4-balanced.

Since the dynamical system (Y, S) is minimal, all element of Y are 4-
balanced sequences. Moreover the coding map π is a metric isomorphism
of the two dynamical systems (T2, T ) and (Y, S), thus, for almost all x
in T2, the coding sequence π(x) is 4-balanced. By the Birkhoff ergodic
theorem, for almost all x in T2 and for i = 0, 1, 2,

lim
n→∞

1

n

n−1∑

k=0

1Pi
(T kx) = µ(Pi).

Fix a positive integer q and set Ni = Ni(x, q) = card
{
k < q:T kx ∈ Pi

}
.

Let x be in T2 such that the sequence π(x) is 4-balanced. For i = 0, 1, 2
and for all n in N,

Ni − 4 ≤ card{nq ≤ k < (n+ 1)q : T kx ∈ Pi} ≤ Ni + 4.

Hence, for all n in N,

n(Ni − 4)

nq
≤ 1

nq

qn−1∑

k=0

1Pi
(T kx) ≤ n(Ni + 4)

nq
,
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thus, letting n go to infinity,

Ni − 4 ≤ qµ(Pi) ≤ Ni + 4

which shows that Pi is a bounded remainder set. The rest of the propo-
sition 1 follows immediately from proposition 10. ¤

10 Description of the fundamental domain

Dα

It is possible to compute explicitly the fundamental domain Dα in Theo-
rem 1. The next Theorem explains it. We shall not prove this Theorem
whose proof is elementary but rather tedious. We need some notations.
The point

S = (
1

2
,
1

2
)

plays a particular role as well as the square

C = [−1

2
,
1

2
]2,

and the triangles

T = conv{(1
2
,−1

2
), (

1

2
,
1

2
), (−1

2
,
1

2
)},

T1 = conv{(1
2
,−1

2
), (

1

2
,
1

2
), (1, 0)}\C,

T2 = conv{(1
2
,
1

2
), (−1

2
,
1

2
), (0, 1)}\C.

Observe that K = C ∪ T1 ∪ T2.

Theorem 3 Let n0 be the smallest integer n ≥ 1 such that F n(S) ∈ C.
Set

D1 = ∪n0−1
n=0 F

n(T ) ∩ T1,

D2 = ∪n0−1
n=0 F

n(T ) ∩ T2.

Then
Dα = T ∪ D1 ∪ D2 ∪ (T1\D1 − e1) ∪ (T2\D2 − e2).

In figure 4, the two regions are translates of the fundamental domain
Dα associated to α = (0.263361..., 0.715678...).
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Figure 4: The y-axis is downward and the distance between vertical or
horizontal lines is 1

2

11 Miscellaneous remarks

1. Both Sturmian’s and Rauzy’s coding are closely related to Diophantine
approximations. Sturmian sequences are linked to the continued fraction
algorithm ([2], [3]) and the Tribonacci sequence is linked to the best
Diophantine approximations of (ξ, ξ2) with respect to a well chosen norm
([4], [5], [11]). We do not know whether the coding described in Theorem
1 enjoys any properties of that kind.

2. Let 0 < α < 1
2

be a real number and T : x ∈ T1 → x + α the
associated translation. Consider the Sturmian partition I0 = [0, 1 − α[,
I1 = [1− α, 1[. A key fact to understand the link between the continued
fraction expansion of α and the coding with respect to the partition I0, I1,
is that the map T0 induced by T on I0:
T0x = T n(x)x where n(x) = min{n ≥ 1 : T nx ∈ I0} (i.e. the first return
map),
is an exchange of two intervals (see [Bé, Fe, Za]). Therefore, this map is
itself a translation of a one-dimensional torus which allows a recursion
process. In the case of α ∈ R2, a natural question arises:
Call Ti the induced map (the first return map) on the set

Ri = {nα− Pn : Pn+1 − Pn = ei},
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i = 0, 1, and 2. Is there an i and a lattice Λi of R2 such that Ri is a
fundamental domain of R2 for the action of Λi and such that Ti induces
a minimal translation on R2/Λi ?

A necessary condition is that Ri is a bounded remainder set for α,
which was shown by Rauzy ([14]). By Proposition 5, this is actually the
case. In the one-dimensional case it is not difficult to see that [0, 2α]
is a bounded remainder set for which the induced transformation is an
exchange of three intervals rather than two (see [7]), so Rauzy’s condi-
tion is not sufficient. Nevertheless, Ferenczi [7] has found a necessary
and sufficient condition for a subset A of T2 to be bounded remainder
set. Whereas Ferenczi’s condition does not give a direct answer to the
previous question, it might help.

3. One can try to characterize the sequences ω0 obtained in Theorem
1. They have two combinatorial properties, the complexity pω0 is of
quadratic growth and the sequence ω0 is 2-balanced over the letters 1
and 2. But it is very likely that there exist sequences ω ∈ {0, 1, 2}N for
which these properties both hold and which are not associated with an α
by Theorem 1. Nevertheless, on can observe that the property of being
balanced is crucial. Indeed, if ω ∈ {e0, e1, e2}N is C-balanced over the
letters 1 and 2, one can prove that there exits a unique α in R2 such that
(nα−∑n−1

k=0 ω(k))n≥1 is a bounded sequence.

4. Although the extension of Theorem 1 in the tree-dimensional case
could be possible, it may be better to break the symmetry between the
coordinates. Indeed, if want to keep exactly the same process which
defines the sequence (Pn)n∈N of lattice points in Theorem 1, we have
to consider α = (α1, α2, α2) in the tetrahedron T = {α = (α1, α2, α2) :
α1, α2, α2 ≥ 0 and α1 + α2 + α2 ≤ 1}. But unlike in the two-dimensional
case, there are some β = (β1, β2, β3) in R3 for which there are no α =
(α1, α2, α3) in T such that βi = ±αi modZ. To overcome this drawback,
one can try to extend to the three-dimensional case the following two-
dimensional process: take α in the box B = {α = (α1, α2) : 0 ≤ α1, α2 ≤
1
2
} instead of the triangle T and define the sequence (Pn = (xn, yn))n∈N

by P0 = (0, 0) and
- Pn+1 = Pn + e2 if (n+ 1)α2 ≥ yn + 1

2
,

- Pn+1 = Pn + e1 if (n+ 1)α2 < yn + 1
2

and (n+ 1)α1 ≥ xn + 1
2
,

- Pn+1 = Pn + e0 if (n+ 1)α2 < yn + 1
2

and (n+ 1)α1 < xn + 1
2
.

It is easy to see that the sequence (nα−Pn)n∈N stays in the compact set
K = [−1

2
, 1

2
]2 ∪ [1

2
, 1]× [−1

2
, 0], which is the key argument in the proof of

Theorem 1 (see section 8.1).

12 Appendix

12.1 Proof of Theorem A

Notation. For all finite sequences Wi0 , ...,Win of elements of W , we
denote by [Wi1 , ...,Win ] the set of all ω = (ω(n))n∈N in Ω such that
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ω(0) = Wi0 , ..., ω(n) = Win . These sets are called cylinders and they
generate the topology of Ω.

Let Z be the set of ω in Ω such thatWω = ∩n≥0T
−nω(n) is nonempty.

We wish to show that Wω consists of exactly one point for all ω in Z.
Suppose on the contrary that two distinct points x and y are in Wω.
Since the partition W is aperiodic, there exists a point x′ in the interior
of some Wi such that y′ = x′ + (y− x) is not in the closure of Wi. Thus,
there exists a positive number ε such that the ball B(x′, ε) is inside the
interior of Wi and the ball B(y′, ε) is outside of the closure of Wi. Since
the map T is minimal, we can find an integer n ≥ 0 with T nx ∈ B(x′, ε).
The map T is a translation, therefore T ny = y − x+ T nx and the point
T ny is in the ball B(y′, ε). It follows that T nx ∈ Wo

i and T ny /∈ Wi

which shows that ω(n) = Wi and ω(n) 6= Wi, which is impossible.
Since for every ω in Z, Wω consists of exactly one point, we can

define a map ψ : Z → T2 by ψ(ω) = x where x is the unique point
of Wω. Obviously, for all x in T2, x ∈ Wπ(x), therefore, π(x) ∈ Z,
ψ(π(x)) = x and ψ ◦ π = IdT2 .

Let us show the continuity of the map ψ. Let ω0 be in Z and x0

be the image of ω0. Again, by definition of ψ, for all ω in Z, ψ(ω) ∈
Wω = ∩n≥0T

−nω(n), thus T nψ(ω) ∈ ω(n) for all integer n ≥ 0. By
definition of ψ, the image of the cylinder [ω0(0), ..., ω0(n)] is included in
the closed set Fn = ∩0≤p≤nT

−pω0(p). The intersection of the closed sets
Fn, n ∈ N, is {x0}, therefore for all ε > 0, there exists an integer nε such
that Fnε ⊂ B(x0, ε). It follows that ψ([ω0(0), ..., ω0(nε)] ⊂ B(x0, ε).

Let us show that Z is closed. Suppose that (ωp)p∈N is a sequence in
Z which converges to ω in Ω. By definition of the topology of Ω, for
each integer n there is an integer pn such that ω(0) = ωpn(0), ω(1) =

ωpn(1)..., ω(n) = ωpn(n). Therefore, for all integer n, ∩k≤nT
−kω(k) =

∩k≤nT
−kωpn(k) is a nonempty closed set of T2, it follows that ∩k∈NT

−kω(k)
is non empty and that ω is in Z.

Let ω be in Z. We haveWSω = ∩n≥0T
−nω(n+ 1) = T (∩n≥1T

−nω(n))
for the map T is bijective. Using again the argument of the beginning of
the proof, we see that the intersection ∩n≥1T

−nω(n) contains at most one

point and since ψ(ω) is in ∩n≥0T
−nω(n), we get ∩n≥1T

−nω(n) = {ψ(ω)}.
Therefore, WSω = {Tψ(ω)}, WSω is in Z, and ψS(ω) = Tψ(ω). Hence
S(Z) ⊂ Z and ψS = Tψ on Z.

Since the partition W is regular, the boundary of an element Wi of
W is the same than the boundary of its interior. Therefore the boundary
of each Wi is a closed set of empty interior. It follows by Baire’s theorem
that

G = T2\
⋃
n∈N

k⋃
i=1

T−n∂Wi

is everywhere dense in T2. Clearly T (G) ⊂ G. Moreover, for all x in G
there exists an unique ω in Z such that ψ(ω) = x because for each n there
exists an unique i with T nx ∈ Wi. This implies that the restriction of ψ to
ψ−1(G) is one to one and that ψ−1(G) = π(G). Set L = ψ−1(G) = π(G),
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Y = L, and φ = ψ|Y . By definition, L is everywhere dense in Y and
φ(Y ) is a compact set containing φ(L) = φ(π(G)) = G. It follows that
φ(Y ) = T2.

Let us show that S(Y ) ⊂ Y . If ω ∈ L, then φS(ω) = Tφ(ω) ∈ G and
S(ω) belongs to L. By continuity of S, it follows that S(Y ) = S(L) ⊂
S(L) ⊂ L = Y .

Let ω0 be in L, let ω be in Z, and let U = [ω0(0), ..., ω0(n)] be a
neighborhood of ω0. The open set V =

⋂n
i=0 T

−iω0(i)
o is nonempty for

x = φ(ω0) is in V . Since T is minimal, there exists an integer m ≥ 0
such that Tmψ(ω) belongs to V . But Tmψ = ψSm, thus ψSm(ω) belongs
to V . Since W is a partition, for each i ≤ k, the interior of Wi and the
closure of the other Wj have empty intersection; by definition of ψ, we
have ψ−1(V) ⊂ U and therefore Sm(ω) ∈ U . So all the elements of L are
limit points of the sequence (Sm(ω))m≥0 which shows that the restriction
of S to Y is minimal. It also follows that S(Y ) which is compact is equal
to Y . ¤

Remark. It can happen that Y 6= π(T2) 6= Z (obviously π(T2) ⊂
Z). We give an example in T1:
let α be in [0, 1

3
]\Q, let T : T1 → T1 be the map defined by Tx = x+α,

and let W = {W1 = [0, α],W2 =]α, 2α],W3 =]2α, 1[}. On the one hand,
a coding of a point x in T1\{0, α, 2α} cannot begin by

W1W1,

but π(0) = W1W1W2 therefore π(0) /∈ π(G). On the other hand, a coding
of point can never contain the subword W2W2, but ωα = W2W2π(3α) is
in Z, for Wωα = {α}, therefore ωα ∈ Z\π(T1).

13 Proof of Theorem B

We keep the notation of the previous proof. Assume that the boundaries
of the Wi are of zero measure. This means that G has full measure.
We claim that the coding map π is continuous on G. Indeed, let n be an
integer ≥ 0 and let x be in G. Set ω0 = π(x). The open set

⋂n
i=0 T

−iω0(i)
o

contains x and its image by π is included in the cylinder [ω0(0), ..., ω0(n)].
Let f : Y → R be a continuous map. The map g = f ◦ π : G →

R is continuous and bounded. Since G is everywhere dense in T2, we
can extend g to T2 as a SCS map g+ and also as SCI map g−. These
extensions are simply defined by

g+(x) = limy→x, y∈Gg(x) and g−(x) = limy→x, y∈Gg(x).

Obviously g− ≤ g+.
Since π is continuous on G, g is continuous as well and g = g+ = g−

on G. Moreover T2\G is of zero measure, whence
∫

T2

g dx =

∫

T2

g+ dx =

∫

T2

g− dx.
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Let ε > 0. There exist h− : T2 → R and h+ : T2 → R continuous such
that

h− ≤ g− ≤ g+ ≤ h+

and ∫

T2

(g− − h−) dx,

∫

T2

(h+ − g+) dx ≤ ε.

Since the translation T is uniquely ergodic, for all x in T2,

∫

T2

g dx− ε ≤ lim
n→∞

1

n

n−1∑

k=0

h−(T kx) ≤ limn→∞
1

n

n−1∑

k=0

g−(T kx)

and

limn→∞
1

n

n−1∑

k=0

g+(T kx) ≤ lim
n→∞

1

n

n−1∑

k=0

h+(T kx) ≤
∫

T2

g dx+ ε.

These inequalities hold for all ε, thus for all x in T2,

lim
n→∞

1

n

n−1∑

k=0

g−(T kx) = lim
n→∞

1

n

n−1∑

k=0

g+(T kx) =

∫

T2

g dx.

Call ν the image of the Lebesgue measure of T2 by π. Since g− = g+ = g
on G and since S ◦ π = π ◦ T , we get that for all ω = π(x) in π(G) and
all continuous map f : Y → R

lim
n→∞

1

n

n−1∑

k=0

f(Skω) = lim
n→∞

1

n

n−1∑

k=0

g(T kx)) =

∫

T2

g dµ =

∫

Y

f dν.

If λ is an other S-invariant ergodic probability on Y then by Birkhoff
theorem, we have λ(π(G)) = 0. But the image of λ by φ (see Theorem
A) is a T -invariant probability λφ with λφ(G) = λ(φ−1(G)) = λ(π(G)) = 0
which is impossible for T is uniquely ergodic. This shows that (Y, S) is
uniquely ergodic.

Finally, the map π : G → L is a metric isomorphism of the measurable
dynamical systems (G, T, µ) and (π(G), S, ν). ¤

References

[1]: P. ARNOUX, S. ITO, Pisot substitutions and Rauzy fractals.
Journes Montoises d’Informatique Thorique (Marne-la-Valle, 2000). Bull.
Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, 181–207.

[2]: P. ARNOUX, G. RAUZY, Représentation géométrique des suites
de complexité 2n+ 1, Bull. Soc. Math. France 119 (1991), 199-215.

[3]: V. BERTHE, S. FERENCZI, Q. ZAMBONI, Interactions be-
tween Dynamics, Arithmetics and Combinatorics: the Good, The Bad,
The Ugly, Contemp. Math. 385 (2005), 333-364.

29



[4]: N. CHECHKHOVA, P. HUBERT, A. MESSAOUDI, Propriétés
combinatoires, ergodiques et arithmétiques de la substitution de Tri-
bonacci, J. Théor. Nombres Bordeaux 13 (2001), 371-394.

[5]: N. CHEVALLIER, Best simultaneous diophantine approxima-
tions of some cubic algebraic numbers, J. Théor. Nombres Bordeaux 14
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