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Abstract

We will prove a d-dimensional version of the Geelen and Simpson theorem. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let � be in T1=R=Z, the points 0, �, 2�; : : : ; n� divide T1 into n+1 intervals having
at most three distinct lengths. This property is known as the three distance theorem
conjectured by Steinhaus. A �rst generalisation was conjectured by Graham.

Let �; �1; : : : ; �d be in T1 and n1; : : : ; nd be positive integers. Then the points
�i + k�; i = 1; : : : ; d; k = 0; : : : ; ni − 1; divide T1 into intervals having at most 3d
distinct lengths.

It was �rst proved by Chung and Graham in 1976 [4] but three years later Liang
found a very simple proof [6]. In 1993, Geelen and Simpson [5] proved a two-
dimensional version of the three distance theorem.

Let �1, �2 be in T1 and n1, n2 be positive integers. Then the points k1�1 + k2�2;
k1 = 0; : : : ; n1 − 1; k2 = 0; : : : ; n2 − 1, divide T1 into intervals having at most n1 + 3
distinct lengths.

Geelen and Simpson’s proof is long and complex. They also conjectured the follow-
ing d-dimensional generalisation.
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Let �1; : : : ; �d be in T1 and n1; : : : ; nd be positive integers. Then the points
k1�1 + · · · + kd�d; k1 = 0; : : : ; n1 − 1; : : : ; kd = 0; : : : ; nd − 1; divide T1 into intervals
having at most

∏d−1
i=1 ni + Cd distincts lengths where Cd depends only on d.

In this work we will prove a result which is close to this conjecture.

Theorem 1. Suppose d¿2. Let �1; : : : ; �d be in T1 and n1; : : : ; nd be positive integers.
Then the points k1�1 + · · ·+ kd�d; k1 = 0; : : : ; n1 − 1; : : : ; kd = 0; : : : ; nd − 1, divide T1
into intervals having at most

∏d−1
i=1 ni + 3

∏d−2
i=1 ni + 1 distinct lengths.

If d=2 our result is not as good as Geelen and Simpson’s; the upper bound is n1+4
instead of n1 + 3. Our proof decomposes in three steps. The �rst step (Lemma 2) uses
the argument of Liang’s proof of the three d distance theorem [6]. A combinatorial
formulation of the same argument using the Rauzy graph of words, can be found in an
article by Alessandri and Berth�e [1]. In the d-dimensional torus, a partial extension of
three distance theorem using Vorono�� diagrams was proved in [2,3], the basic argument
is also very similar to Liang’s. The second step uses the symmetry of T1 x → −x +∑d

i=1(ni−1)�i, this symmetry was already used in [1,2,5]. The aim of the third step is
mainly to estimate the number of connected components of a subgraph of the standard
grid graph on Zd.

2. Proof of Theorem 1

Notations. We choose the positive orientation on T1 =R=Z. An interval [a; b] of T1
is de�ned with respect to this orientation.
If A is a set, |A| denotes its cardinality.
Put E={∑d

i=1 ki�i: 06ki ¡ni; i=1; : : : ; d}. For each x ∈ E we call suc(x) the next
element of E after x, i.e. such that ]x; suc(x)[ ∩ E is empty.
First, we show we can suppose that 1; �1; : : : ; �d are independent over Q. Let � be

the smallest di�erence between the length of two intervals of di�erent lengths. We can
choose �′1; : : : ; �

′
d su�ciently close to the �i such that the Hausdor� distance between E

and E′= {∑d
i=1 ki�

′
i : 06ki ¡ni; i=1; : : : ; d} is smaller than �=6, we can also suppose

that 1; �′1; : : : ; �
′
d are independent over Q. In this case, if ]x; y[ is an interval of T1 \E

there exists an interval ]x′; y′[ of T1\E′ such that the di�erence between their lengths
is smaller than �=3. Hence, if {]x1; y1[; : : : ; ]xN ; yN [} is a set of intervals of T1 \E of
di�erent lengths then we can �nd a set {]x′1; y′1[; : : : ; ]x′N ; y′N [} of intervals of T1 \E′

whose lengths are all di�erent.
From now, we assume that 1; �1; : : : ; �d are independent over Q. Put f(x1; : : : ; xd) =∑d
i=1 xi�i, the map f is one to one on the set

R= {(x1; : : : ; xd) ∈ Zd: 06xi ¡ni; i = 1; : : : ; d}
and f(R)=E. Therefore, the intervals I(X )=]f(X ); suc(f(X ))[, X ∈ R, are all distinct.
Let e1; : : : ; ed be the canonical basis of Rd. Consider the non-oriented graph G whose
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vertices are the elements X=(x1; : : : ; xd) of R and whose edges are the pairs {X; X+ei}
such that I(X ) + �i = I(X + ei). If X and Y are in the same connected component
of G then I(X ) and I(Y ) have the same length so our aim is to estimate the number
of connected component of G. The graph G is a subgraph of the grid graph R whose
edges are all the pairs {X; X + ei}. We will call a pair {X; X + ei} an i-edge. The
graph G is obtained from the graph R by removing some of its edges. The number of
removed edges is given by the following lemma whose proof used Liang’s idea.

Lemma 2. The number of removed i-edges is smaller than 2�j 6=i nj.

Proof. Let X and X ′ = x + ei be two vertices of G. If {X; X ′} is not an edge of
G then either I(X ) + �i * I(X ′) or I(X ′) − �i * I(X ). Suppose I(X ) + �i *
I(X ′). This means that the interval ]f(X ) + �i; suc(f(X )) + �i[ = ]f(X ′); suc(f(X ))
+�i[ contains the point suc(f(X ′)). Then suc(f(X ′))−�i is in the open interval I(X )
and therefore is not in E. Call Y the element of R such that f(Y ) = suc(f(X ′)). We
have just shown that f(Y − ei) is not in E which means that Y − ei is not in R. Then
Y −ei must belong to the face Fi={(x1; : : : ; xd) ∈ Nd: xi=−1 and 06xj ¡nj; j 6= i}.
The map {X; X ′} → Y − ei ∈ Fi is such that f(Y − ei) ∈ I(X ). Since the intervals
I(X ), X ∈ R, are all distinct, each point f(Z), Z ∈ Fi, belongs to at most one interval
I(X ), this shows that there is at most card Fi = �j 6=i nj vertices X of G such
that, X +ei ∈ E and I(X )+�* I(X +ei). The same reasoning shows that there are at
most �j 6=i nj points X of R such that, X +ei ∈ E and I(X +ei)−�* I(X ). Therefore,
the number of removed i-edges is at most 2�j 6=i nj.

Some di�erent components of G correspond to intervals of the same length because
of the symmetry s: x ∈ T1 → −x +∑d

i=1(ni − 1)�i, this is the content of the next
lemma. Call C the set of connected components of G. For each C ∈ C, let l(C) be the
cardinality of the projection of C on the axis Red and A(C) be the cardinality of the
projection of C on the hyperplane Re1 + · · ·+ Red−1. Call C1 = {C ∈ C : A(C) = 1},
C2 = {C ∈ C : A(C)¿2}, N1 = |C1| and N2 = |C2|.

Lemma 3. The number of lengths of the intervals of T1\E is smaller than 2+1
2N1+N2.

Proof. We reproduce an argument of Berthe and Allessandri (cf. [1, Theorem 18]).
Let C ∈ C1, C = {X0; X1 = X0 + ed; : : : ; Xk = X0 + ked}. Since s(E) = E the inter-
vals s(I(X0)); : : : ; s(I(Xk)) are intervals of T1 \E, then there exists Y0 ∈ G such that
s(I(Xk)) = I(Y0), s(I(Xk−1)) = I(Y0) + �d; : : : ; s(I(X0)) = I(Y0) + k�d. Suppose Y0 = X0
then there are only two possibilities:

(1) There exists i such that s(I(Xi)) = I(Xi). Therefore, the middle of the interval
I(Xi) must be a �xed point of s.

(2) If s(I(Xi)) 6= I(Xi) for all i then k is even and s(I(Xk=2))= I(Xk=2+1)= I(Xk=2)+�d.
Therefore, the middle of the interval I(Xk=2) must be a �xed point of the symmetry
s′(x) = s(x)− �d.
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Since the symmetries s and s′ have 2 �xed points each, there are at most 4 compo-
nents in C1 such that Y0 =X0. Furthermore, if Y0 6= X0 then the length of the intervals
I(X ), X ∈ C, is the same than the length of the intervals of another component and
the lemma follows.

Let us now collect the constraints of the numbers l(C) and A(C).
First, we add to the graph R the boundary edges (i.e. the pairs {(x1; : : : ; xd);

(x1; : : : ; xd) ± ei} with (x1; : : : ; xd) ∈ R and xi = 0 or ni − 1, i = 1; : : : ; d). With these
new edges, to each vertex of R, there correspond two i-edges, and G is obtained from
R by removing 4�j 6=i nj i-edges instead of 2�j 6=i nj. Call A the set of edges of R.
Consider the set

Ai = {(a; C) ∈ A× C: a is a boundary i-edge of C}:
To each removed i-edge corresponds two vertices and therefore two components and
to each new i-edge corresponds one component, thus

|Ai|62(2�j 6=i nj) + 2�j 6=i nj:
Take i=d−1. If C ∈ C contains the point X =(a1; : : : ; ad) then the hyperplan xd=ad
must contain at least two i-edges of the boundary of C. The number of such hyperplane
is l(C), then∑

C∈C

2l(C)6|Ad−1|66�j 6=d−1 nj;

thus ∑
C∈C

l(C)63
∏
j 6=d−1

nj:

Now take i = d. If C ∈ C contains the point X = (a1; : : : ; ad) then the line x1 =
a1; : : : ; xd−1 = ad−1 must contain at least two d-edges of the boundary of C. The
number of such lines is A(C) then∑

C∈C

2A(C)6|Ad|66
∏
j¡d

nj:

Put

P =
∏

j¡d−1
nj (P = 1 if d= 2);

we have∑
C∈C

A(C)6 3
∏
j¡d

nj;

∑
C∈C

l(C)6 3Pnd:

Secondly, if C ∈ C we have |C|6l(C)A(C) then
∑
C∈C

l(C)A(C)¿
∑
C∈C

|C|=
d∏
i=1

ni:
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Thirdly, it is obvious that l(C)6nd for each C ∈ C. The theorem will follow from
the previous lemma and the following lemma.

Lemma 4. Put N = N1 + N2. If s1; : : : sN and h1; : : : ; hN are strictly positive integers
such that

(1)
N∑
i=1

sihi¿�di=1ni;

(2)
N∑
i=1

si63�d−1j=1 nj;

(3)
N∑
i=1

hi63Pnd;

(4) ∀i ∈ {1; : : : ; N}; hi6nd;

(5)

{
∀i ∈ {1; : : : ; N1}; si = 1

∀i ∈ {N1 + 1; : : : ; N}; si¿2
;

then

min
(
N;
[
1
2
N1 + N2 + 2

])
6

d−1∏
i=1

ni + 3P + 1

Proof. If we order the si and the hi in increasing order then
∑N

i=1 sihi will increase, so
(1)–(5) are still veri�ed. If hN ¡nd and one of the hi, i¡N , is ¿ 2, we can replace
hN by hN +1 and hi by hi−1, because this increases

∑N
i=1 sihi. Repeating this process

we can assume that

h1 = · · ·= hN−k−1 = 1; hN−k ¡nd;

hN−k+1 = · · ·= hN = nd;
where k is an integer not exceeding 3P. Moreover, if N63P + 1 there is nothing to
prove so we can assume that k63P6N−2. The idea of the proof lies in the following
simple calculus. Put S =

∑N−k−1
i=1 si. By (1) we have

S +
N∑

i=N−k
hisi¿

d∏
i=1

ni;

then by (2)

S + nd

(
3
d−1∏
i=1

ni − S
)
¿S + nd

N∑
i=N−k

si¿
d∏
i=1

ni:

Solving this inequality we get

S6
2

nd − 1
d∏
i=1

ni:
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On the other hand, if N1¡N − k − 1 we have

N1 + 2N26
N1∑
i=1

si +
N−k−1∑
i=N1+1

si +
N∑

i=N−k
2 = S + 2(k + 1)

and if N1¿N − k − 1 = N1 + N2 − k − 1 we have
N1 + 2N2 = N + N26N + k + 16S + 2(k + 1):

In both cases

N1 + 2N26S + 2(k + 1);

then

1
2
N1 + N26

1
2
S + k + 16

1
nd − 1

d∏
i=1

ni + 3P + 1 ≈
d−1∏
i=1

ni + 3P + 1:

In order to prove the lemma we have to consider di�erent cases.
If k = 3P then by (3) we have N = k = 3P and

N = 3P6
d−1∏
i=1

ni + 3P + 1;

so we can assume k ¡ 3P. If sN−k ¿ 2 we can replace sN by sN + sN−k − 2 and
sN−k by 2, so we can assume sN−k = 1 or 2 (the sequence (sn) may now loose its
monotonicity, but it does not matter for the proof).
Case 1: sN−k = 1.
By (5) we have N1¿N −k and S=N −k−1. Consequently, N26k and N1 +2N2 =

N + N26N + k = S + 1 + 2k. By (1)
d∏
i=1

ni6S + hN−k + nd
N∑

i=N−k+1
si = S + nd

N∑
i=N−k

si + hN−k − nd;

with (2) we get
d∏
i=1

ni6S + nd

(
3
d−1∏
i=1

ni − S
)
+ hN−k − nd;

and

S(nd − 1)62
d∏
i=1

ni + hN−k − nd:

By (3) we have hN−k63Pnd − knd − (N − k − 1). With the previous inequality this
gives

S(nd − 1)6 2
d∏
i=1

ni + 3Pnd − knd − N + k + 1− nd

= 2
d∏
i=1

ni + nd(3P − k − 1) + k + 1− N;
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but S + k + 1 = N then

S6
1
nd

(
2

d∏
i=1

ni + nd(3P − k − 1)
)
= 2

d−1∏
i=1

ni + 3P − k − 1;

and

1
2
N1 + N2 + 26

1
2
S +

1
2
+ k + 26

d−1∏
i=1

ni +
3
2
P +

k
2
+ 2

6
d−1∏
i=1

ni +
3
2
P +

3P − 1
2

+ 2 =
d−1∏
i=1

ni + 3P +
3
2

for k ¡ 3P.
Case 2: sN−k = 2:
We have 1

2N1 + N26
1
2S + k + 1. Since

d∏
i=1

ni6S + sN−khN−k + nd
N∑

i=N−k+1
si = S + nd

N∑
i=N−k

si + 2(hN−k − nd);

by (2) we get
d∏
i=1

ni6S + nd

(
3
d−1∏
i=1

ni − S
)
+ 2(hN−k − nd);

and

S(nd − 1)62
d∏
i=1

ni + 2(hN−k − nd):

By (3) we have hN−k63Pnd − knd − (N − k − 1). With the previous inequality this
gives

S(nd − 1)62
(

d∏
i=1

ni + 3Pnd − knd − N + k + 1− nd
)
:

If N¿
∏d−1
i=1 ni + 3P + 1 then

S(nd − 1)6 2

(
d∏
i=1

ni + 3Pnd − knd −
(
d−1∏
i=1

ni + 3P + 1

)
+ k + 1− nd

)

6 2(nd − 1)
(
d−1∏
i=1

ni + 3P − k − 1
)

− 2

and

1
2
N1 + N2 + 26

1
2
S + k + 36

d−1∏
i=1

ni + 3P − k − 1− 1
nd − 1 + k + 3

¡
d−1∏
i=1

ni + 3P + 2:
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In the two-dimensional case the upper bound
∏d−1
i=1 ni +3P+1=

∏d−1
i=1 ni +4 is not

the best. Our method of proof cannot reach the optimal bound given by Geelen and
Simpson. To see this, let us take an example.
n1 = 4 and n2 = 5 with the following removed edges: removed 1-edges = all the

1-edges inside {0}×{0; : : : ; 3} and all the 1-edges {(1; k); (2; k)} k=1; : : : ; 4; removed
2-edges = all the 2-edges between {k} × {0; : : : ; 3} and {k + 1} × {0; : : : ; 3}, k = 0
and 2. The inequalities are veri�ed and there are 8 connected components with
N1 = N2 = 4 and 1

2N1 + N2 + 2 = 8¿ 4 + 3.
When d¿3 our proof uses only the constraints on the (d−1)-edges and the d-edges,

so our bound
∏d−1
i=1 ni + 3P + 1 is probably not optimal.
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