DISCRETE MATHEMATICS

Note
 Three distance theorem and grid graph

Nicolas Chevallier
Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse, France
Received 5 May 1999; revised 3 August 1999; accepted 24 January 2000

Abstract

We will prove a d-dimensional version of the Geelen and Simpson theorem. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Irrational rotation; Three distance theorem; Graph; Connected component

1. Introduction

Let θ be in $\mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$, the points $0, \theta, 2 \theta, \ldots, n \theta$ divide \mathbb{T}^{1} into $n+1$ intervals having at most three distinct lengths. This property is known as the three distance theorem conjectured by Steinhaus. A first generalisation was conjectured by Graham.

Let $\theta, \alpha_{1}, \ldots, \alpha_{d}$ be in \mathbb{T}^{1} and n_{1}, \ldots, n_{d} be positive integers. Then the points $\alpha_{i}+k \theta, i=1, \ldots, d, k=0, \ldots, n_{i}-1$, divide \mathbb{T}^{1} into intervals having at most $3 d$ distinct lengths.

It was first proved by Chung and Graham in 1976 [4] but three years later Liang found a very simple proof [6]. In 1993, Geelen and Simpson [5] proved a twodimensional version of the three distance theorem.

Let θ_{1}, θ_{2} be in \mathbb{T}^{1} and n_{1}, n_{2} be positive integers. Then the points $k_{1} \theta_{1}+k_{2} \theta_{2}$, $k_{1}=0, \ldots, n_{1}-1, k_{2}=0, \ldots, n_{2}-1$, divide \mathbb{T}^{1} into intervals having at most $n_{1}+3$ distinct lengths.

Geelen and Simpson's proof is long and complex. They also conjectured the following d-dimensional generalisation.

[^0]Let $\theta_{1}, \ldots, \theta_{d}$ be in \mathbb{T}^{1} and n_{1}, \ldots, n_{d} be positive integers. Then the points $k_{1} \theta_{1}+\cdots+k_{d} \theta_{d}, k_{1}=0, \ldots, n_{1}-1, \ldots, k_{d}=0, \ldots, n_{d}-1$, divide \mathbb{T}^{1} into intervals having at most $\prod_{i=1}^{d-1} n_{i}+C_{d}$ distincts lengths where C_{d} depends only on d.

In this work we will prove a result which is close to this conjecture.
Theorem 1. Suppose $d \geqslant 2$. Let $\theta_{1}, \ldots, \theta_{d}$ be in \mathbb{T}^{1} and n_{1}, \ldots, n_{d} be positive integers. Then the points $k_{1} \theta_{1}+\cdots+k_{d} \theta_{d}, k_{1}=0, \ldots, n_{1}-1, \ldots, k_{d}=0, \ldots, n_{d}-1$, divide \mathbb{T}^{1} into intervals having at most $\prod_{i=1}^{d-1} n_{i}+3 \prod_{i=1}^{d-2} n_{i}+1$ distinct lengths.

If $d=2$ our result is not as good as Geelen and Simpson's; the upper bound is $n_{1}+4$ instead of $n_{1}+3$. Our proof decomposes in three steps. The first step (Lemma 2) uses the argument of Liang's proof of the three d distance theorem [6]. A combinatorial formulation of the same argument using the Rauzy graph of words, can be found in an article by Alessandri and Berthé [1]. In the d-dimensional torus, a partial extension of three distance theorem using Voronoï diagrams was proved in [2,3], the basic argument is also very similar to Liang's. The second step uses the symmetry of $\mathbb{T}^{1} x \rightarrow-x+$ $\sum_{i=1}^{d}\left(n_{i}-1\right) \theta_{i}$, this symmetry was already used in $[1,2,5]$. The aim of the third step is mainly to estimate the number of connected components of a subgraph of the standard grid graph on \mathbb{Z}^{d}.

2. Proof of Theorem 1

Notations. We choose the positive orientation on $\mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$. An interval $[a, b]$ of \mathbb{T}^{1} is defined with respect to this orientation.

If A is a set, $|A|$ denotes its cardinality.
Put $E=\left\{\sum_{i=1}^{d} k_{i} \theta_{i}: 0 \leqslant k_{i}<n_{i}, i=1, \ldots, d\right\}$. For each $x \in E$ we call $\operatorname{suc}(x)$ the next element of E after x, i.e. such that $] x, \operatorname{suc}(x)[\cap E$ is empty.

First, we show we can suppose that $1, \theta_{1}, \ldots, \theta_{d}$ are independent over \mathbb{Q}. Let δ be the smallest difference between the length of two intervals of different lengths. We can choose $\theta_{1}^{\prime}, \ldots, \theta_{d}^{\prime}$ sufficiently close to the θ_{i} such that the Hausdorff distance between E and $E^{\prime}=\left\{\sum_{i=1}^{d} k_{i} \theta_{i}^{\prime}: 0 \leqslant k_{i}<n_{i}, i=1, \ldots, d\right\}$ is smaller than $\delta / 6$, we can also suppose that $1, \theta_{1}^{\prime}, \ldots, \theta_{d}^{\prime}$ are independent over \mathbb{Q}. In this case, if $] x, y\left[\right.$ is an interval of $\mathbb{T}^{1} \backslash E$ there exists an interval $] x^{\prime}, y^{\prime}\left[\right.$ of $\mathbb{T}^{1} \backslash E^{\prime}$ such that the difference between their lengths is smaller than $\delta / 3$. Hence, if $\left] x_{1}, y_{1}[, \ldots,] x_{N}, y_{N}[\}\right.$ is a set of intervals of $\mathbb{T}^{1} \backslash E$ of different lengths then we can find a set $\left] x_{1}^{\prime}, y_{1}^{\prime}[, \ldots,] x_{N}^{\prime}, y_{N}^{\prime}[\}\right.$ of intervals of $\mathbb{T}^{1} \backslash E^{\prime}$ whose lengths are all different.

From now, we assume that $1, \theta_{1}, \ldots, \theta_{d}$ are independent over \mathbb{Q}. Put $f\left(x_{1}, \ldots, x_{d}\right)=$ $\sum_{i=1}^{d} x_{i} \theta_{i}$, the map f is one to one on the set

$$
R=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}: 0 \leqslant x_{i}<n_{i}, i=1, \ldots, d\right\}
$$

and $f(R)=E$. Therefore, the intervals $I(X)=] f(X), \operatorname{suc}(f(X))[, X \in R$, are all distinct. Let e_{1}, \ldots, e_{d} be the canonical basis of \mathbb{R}^{d}. Consider the non-oriented graph G whose
vertices are the elements $X=\left(x_{1}, \ldots, x_{d}\right)$ of R and whose edges are the pairs $\left\{X, X+e_{i}\right\}$ such that $I(X)+\theta_{i}=I\left(X+e_{i}\right)$. If X and Y are in the same connected component of G then $I(X)$ and $I(Y)$ have the same length so our aim is to estimate the number of connected component of G. The graph G is a subgraph of the grid graph R whose edges are all the pairs $\left\{X, X+e_{i}\right\}$. We will call a pair $\left\{X, X+e_{i}\right\}$ an i-edge. The graph G is obtained from the graph R by removing some of its edges. The number of removed edges is given by the following lemma whose proof used Liang's idea.

Lemma 2. The number of removed i-edges is smaller than $2 \Pi_{j \neq i} n_{j}$.
Proof. Let X and $X^{\prime}=x+e_{i}$ be two vertices of G. If $\left\{X, X^{\prime}\right\}$ is not an edge of G then either $I(X)+\theta_{i} \nsubseteq I\left(X^{\prime}\right)$ or $I\left(X^{\prime}\right)-\theta_{i} \nsubseteq I(X)$. Suppose $I(X)+\theta_{i} \nsubseteq$ $I\left(X^{\prime}\right)$. This means that the interval $] f(X)+\theta_{i}, \operatorname{suc}(f(X))+\theta_{i}[=] f\left(X^{\prime}\right), \operatorname{suc}(f(X))$ $+\theta_{i}\left[\right.$ contains the point $\operatorname{suc}\left(f\left(X^{\prime}\right)\right)$. Then $\operatorname{suc}\left(f\left(X^{\prime}\right)\right)-\theta_{i}$ is in the open interval $I(X)$ and therefore is not in E. Call Y the element of R such that $f(Y)=\operatorname{suc}\left(f\left(X^{\prime}\right)\right)$. We have just shown that $f\left(Y-e_{i}\right)$ is not in E which means that $Y-e_{i}$ is not in R. Then $Y-e_{i}$ must belong to the face $F_{i}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d}: x_{i}=-1\right.$ and $\left.0 \leqslant x_{j}<n_{j}, j \neq i\right\}$. The map $\left\{X, X^{\prime}\right\} \rightarrow Y-e_{i} \in F_{i}$ is such that $f\left(Y-e_{i}\right) \in I(X)$. Since the intervals $I(X), X \in R$, are all distinct, each point $f(Z), Z \in F_{i}$, belongs to at most one interval $I(X)$, this shows that there is at most card $F_{i}=\Pi_{j \neq i} n_{j}$ vertices X of G such that, $X+e_{i} \in E$ and $I(X)+\theta \nsubseteq I\left(X+e_{i}\right)$. The same reasoning shows that there are at most $\Pi_{j \neq i} n_{j}$ points X of R such that, $X+e_{i} \in E$ and $I\left(X+e_{i}\right)-\theta \nsubseteq I(X)$. Therefore, the number of removed i-edges is at most $2 \Pi_{j \neq i} n_{j}$.

Some different components of G correspond to intervals of the same length because of the symmetry $s: x \in \mathbb{T}^{1} \rightarrow-x+\sum_{i=1}^{d}\left(n_{i}-1\right) \theta_{i}$, this is the content of the next lemma. Call \mathscr{C} the set of connected components of G. For each $C \in \mathscr{C}$, let $l(C)$ be the cardinality of the projection of C on the axis $\mathbb{R} e_{d}$ and $A(C)$ be the cardinality of the projection of C on the hyperplane $\mathbb{R} e_{1}+\cdots+\mathbb{R} e_{d-1}$. Call $\mathscr{C}_{1}=\{C \in \mathscr{C}: A(C)=1\}$, $\mathscr{C}_{2}=\{C \in \mathscr{C}: A(C) \geqslant 2\}, N_{1}=\left|\mathscr{C}_{1}\right|$ and $N_{2}=\left|\mathscr{C}_{2}\right|$.

Lemma 3. The number of lengths of the intervals of $\mathbb{T}^{1} \backslash E$ is smaller than $2+\frac{1}{2} N_{1}+N_{2}$.

Proof. We reproduce an argument of Berthe and Allessandri (cf. [1, Theorem 18]). Let $C \in \mathscr{C}_{1}, C=\left\{X_{0}, X_{1}=X_{0}+e_{d}, \ldots, X_{k}=X_{0}+k e_{d}\right\}$. Since $s(E)=E$ the intervals $s\left(I\left(X_{0}\right)\right), \ldots, s\left(I\left(X_{k}\right)\right)$ are intervals of $\mathbb{T}^{1} \backslash E$, then there exists $Y_{0} \in G$ such that $s\left(I\left(X_{k}\right)\right)=I\left(Y_{0}\right), s\left(I\left(X_{k-1}\right)\right)=I\left(Y_{0}\right)+\theta_{d}, \ldots, s\left(I\left(X_{0}\right)\right)=I\left(Y_{0}\right)+k \theta_{d}$. Suppose $Y_{0}=X_{0}$ then there are only two possibilities:
(1) There exists i such that $s\left(I\left(X_{i}\right)\right)=I\left(X_{i}\right)$. Therefore, the middle of the interval $I\left(X_{i}\right)$ must be a fixed point of s.
(2) If $s\left(I\left(X_{i}\right)\right) \neq I\left(X_{i}\right)$ for all i then k is even and $s\left(I\left(X_{k / 2}\right)\right)=I\left(X_{k / 2+1}\right)=I\left(X_{k / 2}\right)+\theta_{d}$. Therefore, the middle of the interval $I\left(X_{k / 2}\right)$ must be a fixed point of the symmetry $s^{\prime}(x)=s(x)-\theta_{d}$.

Since the symmetries s and s^{\prime} have 2 fixed points each, there are at most 4 components in \mathscr{C}_{1} such that $Y_{0}=X_{0}$. Furthermore, if $Y_{0} \neq X_{0}$ then the length of the intervals $I(X), X \in C$, is the same than the length of the intervals of another component and the lemma follows.

Let us now collect the constraints of the numbers $l(C)$ and $A(C)$.
First, we add to the graph R the boundary edges (i.e. the pairs $\left\{\left(x_{1}, \ldots, x_{d}\right)\right.$, $\left.\left(x_{1}, \ldots, x_{d}\right) \pm e_{i}\right\}$ with $\left(x_{1}, \ldots, x_{d}\right) \in R$ and $x_{i}=0$ or $\left.n_{i}-1, i=1, \ldots, d\right)$. With these new edges, to each vertex of R, there correspond two i-edges, and G is obtained from R by removing $4 \Pi_{j \neq i} n_{j} i$-edges instead of $2 \Pi_{j \neq i} n_{j}$. Call \mathscr{A} the set of edges of R. Consider the set

$$
\mathscr{A}_{i}=\{(a, C) \in \mathscr{A} \times \mathscr{C}: a \text { is a boundary } i \text {-edge of } C\} .
$$

To each removed i-edge corresponds two vertices and therefore two components and to each new i-edge corresponds one component, thus

$$
\left|\mathscr{A}_{i}\right| \leqslant 2\left(2 \Pi_{j \neq i} n_{j}\right)+2 \Pi_{j \neq i} n_{j} .
$$

Take $i=d-1$. If $C \in \mathscr{C}$ contains the point $X=\left(a_{1}, \ldots, a_{d}\right)$ then the hyperplan $x_{d}=a_{d}$ must contain at least two i-edges of the boundary of C. The number of such hyperplane is $l(C)$, then

$$
\sum_{C \in \mathscr{C}} 2 l(C) \leqslant\left|\mathscr{A}_{d-1}\right| \leqslant 6 \prod_{j \neq d-1} n_{j},
$$

thus

$$
\sum_{C \in \mathscr{C}} l(C) \leqslant 3 \prod_{j \neq d-1} n_{j} .
$$

Now take $i=d$. If $C \in \mathscr{C}$ contains the point $X=\left(a_{1}, \ldots, a_{d}\right)$ then the line $x_{1}=$ $a_{1}, \ldots, x_{d-1}=a_{d-1}$ must contain at least two d-edges of the boundary of C. The number of such lines is $A(C)$ then

$$
\sum_{C \in \mathscr{C}} 2 A(C) \leqslant\left|\mathscr{A}_{d}\right| \leqslant 6 \prod_{j<d} n_{j} .
$$

Put

$$
P=\prod_{j<d-1} n_{j} \quad(P=1 \text { if } d=2)
$$

we have

$$
\begin{aligned}
& \sum_{C \in \mathscr{C}} A(C) \leqslant 3 \prod_{j<d} n_{j}, \\
& \sum_{C \in \mathscr{C}} l(C) \leqslant 3 P n_{d} .
\end{aligned}
$$

Secondly, if $C \in \mathscr{C}$ we have $|C| \leqslant l(C) A(C)$ then

$$
\sum_{C \in \mathscr{C}} l(C) A(C) \geqslant \sum_{C \in \mathscr{C}}|C|=\prod_{i=1}^{d} n_{i} .
$$

Thirdly, it is obvious that $l(C) \leqslant n_{d}$ for each $C \in \mathscr{C}$. The theorem will follow from the previous lemma and the following lemma.

Lemma 4. Put $N=N_{1}+N_{2}$. If $s_{1}, \ldots s_{N}$ and h_{1}, \ldots, h_{N} are strictly positive integers such that
(1) $\sum_{i=1}^{N} s_{i} h_{i} \geqslant \Pi_{i=1}^{d} n_{i}$,
(2) $\sum_{i=1}^{N} s_{i} \leqslant 3 \Pi_{j=1}^{d-1} n_{j}$,
(3) $\sum_{i=1}^{N} h_{i} \leqslant 3 P n_{d}$,
(4) $\forall i \in\{1, \ldots, N\}, \quad h_{i} \leqslant n_{d}$,
(5) $\left\{\begin{array}{ll}\forall i \in\left\{1, \ldots, N_{1}\right\}, & s_{i}=1 \\ \forall i \in\left\{N_{1}+1, \ldots, N\right\}, & s_{i} \geqslant 2\end{array}\right.$,
then

$$
\min \left(N,\left[\frac{1}{2} N_{1}+N_{2}+2\right]\right) \leqslant \prod_{i=1}^{d-1} n_{i}+3 P+1
$$

Proof. If we order the s_{i} and the h_{i} in increasing order then $\sum_{i=1}^{N} s_{i} h_{i}$ will increase, so (1)-(5) are still verified. If $h_{N}<n_{d}$ and one of the $h_{i}, i<N$, is >2, we can replace h_{N} by $h_{N}+1$ and h_{i} by $h_{i}-1$, because this increases $\sum_{i=1}^{N} s_{i} h_{i}$. Repeating this process we can assume that

$$
\begin{aligned}
& h_{1}=\cdots=h_{N-k-1}=1, \quad h_{N-k}<n_{d}, \\
& h_{N-k+1}=\cdots=h_{N}=n_{d},
\end{aligned}
$$

where k is an integer not exceeding $3 P$. Moreover, if $N \leqslant 3 P+1$ there is nothing to prove so we can assume that $k \leqslant 3 P \leqslant N-2$. The idea of the proof lies in the following simple calculus. Put $S=\sum_{i=1}^{N-k-1} s_{i}$. By (1) we have

$$
S+\sum_{i=N-k}^{N} h_{i} s_{i} \geqslant \prod_{i=1}^{d} n_{i}
$$

then by (2)

$$
S+n_{d}\left(3 \prod_{i=1}^{d-1} n_{i}-S\right) \geqslant S+n_{d} \sum_{i=N-k}^{N} s_{i} \geqslant \prod_{i=1}^{d} n_{i} .
$$

Solving this inequality we get

$$
S \leqslant \frac{2}{n_{d}-1} \prod_{i=1}^{d} n_{i}
$$

On the other hand, if $N_{1}<N-k-1$ we have

$$
N_{1}+2 N_{2} \leqslant \sum_{i=1}^{N_{1}} s_{i}+\sum_{i=N_{1}+1}^{N-k-1} s_{i}+\sum_{i=N-k}^{N} 2=S+2(k+1)
$$

and if $N_{1} \geqslant N-k-1=N_{1}+N_{2}-k-1$ we have

$$
N_{1}+2 N_{2}=N+N_{2} \leqslant N+k+1 \leqslant S+2(k+1) .
$$

In both cases

$$
N_{1}+2 N_{2} \leqslant S+2(k+1),
$$

then

$$
\frac{1}{2} N_{1}+N_{2} \leqslant \frac{1}{2} S+k+1 \leqslant \frac{1}{n_{d}-1} \prod_{i=1}^{d} n_{i}+3 P+1 \approx \prod_{i=1}^{d-1} n_{i}+3 P+1
$$

In order to prove the lemma we have to consider different cases.
If $k=3 P$ then by (3) we have $N=k=3 P$ and

$$
N=3 P \leqslant \prod_{i=1}^{d-1} n_{i}+3 P+1
$$

so we can assume $k<3 P$. If $s_{N-k}>2$ we can replace s_{N} by $s_{N}+s_{N-k}-2$ and s_{N-k} by 2 , so we can assume $s_{N-k}=1$ or 2 (the sequence (s_{n}) may now loose its monotonicity, but it does not matter for the proof).

Case 1: $s_{N-k}=1$.
By (5) we have $N_{1} \geqslant N-k$ and $S=N-k-1$. Consequently, $N_{2} \leqslant k$ and $N_{1}+2 N_{2}=$ $N+N_{2} \leqslant N+k=S+1+2 k$. By (1)

$$
\prod_{i=1}^{d} n_{i} \leqslant S+h_{N-k}+n_{d} \sum_{i=N-k+1}^{N} s_{i}=S+n_{d} \sum_{i=N-k}^{N} s_{i}+h_{N-k}-n_{d},
$$

with (2) we get

$$
\prod_{i=1}^{d} n_{i} \leqslant S+n_{d}\left(3 \prod_{i=1}^{d-1} n_{i}-S\right)+h_{N-k}-n_{d}
$$

and

$$
S\left(n_{d}-1\right) \leqslant 2 \prod_{i=1}^{d} n_{i}+h_{N-k}-n_{d} .
$$

By (3) we have $h_{N-k} \leqslant 3 P n_{d}-k n_{d}-(N-k-1)$. With the previous inequality this gives

$$
\begin{aligned}
S\left(n_{d}-1\right) & \leqslant 2 \prod_{i=1}^{d} n_{i}+3 P n_{d}-k n_{d}-N+k+1-n_{d} \\
& =2 \prod_{i=1}^{d} n_{i}+n_{d}(3 P-k-1)+k+1-N,
\end{aligned}
$$

but $S+k+1=N$ then

$$
S \leqslant \frac{1}{n_{d}}\left(2 \prod_{i=1}^{d} n_{i}+n_{d}(3 P-k-1)\right)=2 \prod_{i=1}^{d-1} n_{i}+3 P-k-1,
$$

and

$$
\begin{aligned}
\frac{1}{2} N_{1}+N_{2}+2 & \leqslant \frac{1}{2} S+\frac{1}{2}+k+2 \leqslant \prod_{i=1}^{d-1} n_{i}+\frac{3}{2} P+\frac{k}{2}+2 \\
& \leqslant \prod_{i=1}^{d-1} n_{i}+\frac{3}{2} P+\frac{3 P-1}{2}+2=\prod_{i=1}^{d-1} n_{i}+3 P+\frac{3}{2}
\end{aligned}
$$

for $k<3 P$.
Case 2: $s_{N-k}=2$.
We have $\frac{1}{2} N_{1}+N_{2} \leqslant \frac{1}{2} S+k+1$. Since

$$
\prod_{i=1}^{d} n_{i} \leqslant S+s_{N-k} h_{N-k}+n_{d} \sum_{i=N-k+1}^{N} s_{i}=S+n_{d} \sum_{i=N-k}^{N} s_{i}+2\left(h_{N-k}-n_{d}\right),
$$

by (2) we get

$$
\prod_{i=1}^{d} n_{i} \leqslant S+n_{d}\left(3 \prod_{i=1}^{d-1} n_{i}-S\right)+2\left(h_{N-k}-n_{d}\right),
$$

and

$$
S\left(n_{d}-1\right) \leqslant 2 \prod_{i=1}^{d} n_{i}+2\left(h_{N-k}-n_{d}\right)
$$

By (3) we have $h_{N-k} \leqslant 3 P n_{d}-k n_{d}-(N-k-1)$. With the previous inequality this gives

$$
S\left(n_{d}-1\right) \leqslant 2\left(\prod_{i=1}^{d} n_{i}+3 P n_{d}-k n_{d}-N+k+1-n_{d}\right) .
$$

If $N \geqslant \prod_{i=1}^{d-1} n_{i}+3 P+1$ then

$$
\begin{aligned}
S\left(n_{d}-1\right) & \leqslant 2\left(\prod_{i=1}^{d} n_{i}+3 P n_{d}-k n_{d}-\left(\prod_{i=1}^{d-1} n_{i}+3 P+1\right)+k+1-n_{d}\right) \\
& \leqslant 2\left(n_{d}-1\right)\left(\prod_{i=1}^{d-1} n_{i}+3 P-k-1\right)-2
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2} N_{1}+N_{2}+2 & \leqslant \frac{1}{2} S+k+3 \leqslant \prod_{i=1}^{d-1} n_{i}+3 P-k-1-\frac{1}{n_{d}-1}+k+3 \\
& <\prod_{i=1}^{d-1} n_{i}+3 P+2 . \quad \square
\end{aligned}
$$

In the two-dimensional case the upper bound $\prod_{i=1}^{d-1} n_{i}+3 P+1=\prod_{i=1}^{d-1} n_{i}+4$ is not the best. Our method of proof cannot reach the optimal bound given by Geelen and Simpson. To see this, let us take an example.
$n_{1}=4$ and $n_{2}=5$ with the following removed edges: removed 1-edges $=$ all the 1 -edges inside $\{0\} \times\{0, \ldots, 3\}$ and all the 1 -edges $\{(1, k),(2, k)\} k=1, \ldots, 4$; removed 2 -edges $=$ all the 2-edges between $\{k\} \times\{0, \ldots, 3\}$ and $\{k+1\} \times\{0, \ldots, 3\}, k=0$ and 2. The inequalities are verified and there are 8 connected components with $N_{1}=N_{2}=4$ and $\frac{1}{2} N_{1}+N_{2}+2=8>4+3$.

When $d \geqslant 3$ our proof uses only the constraints on the ($d-1$)-edges and the d-edges, so our bound $\prod_{i=1}^{d-1} n_{i}+3 P+1$ is probably not optimal.

References

[1] P. Allessandri, V. Berthé, Three distance theorem and combinatorics on words, Enseign. Math. (1998).
[2] N. Chevallier, Meilleures approximations d'un élément du tore \mathbb{T}^{2} et géométrie de la suite des multiples de cet élément, Acta Arith. 78 (1996) 19-35.
[3] N. Chevallier, Géométrie des suites de Kronecker, Manuscripta Math. 94 (1997) 231-241.
[4] F.R.K. Chung, R.L. Graham, On the set of distances determined by the union of arithmetic progressions, Ars Combin. 1 (1976) 57-76.
[5] J.F. Geelen, R.J. Simpson, A two dimensional Steinhaus theorem, Australas. J. Combin. 8 (1993) 169-197.
[6] F.M. Liang, A short proof of the $3 d$ distance theorem, Discrete Math. 28 (1979) 325-326.

[^0]: E-mail address: n.chevallier@univ-mulhouse.fr (N. Chevallier).

