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Abstract

We will prove a d-dimensional version of the Geelen and Simpson theorem. (©) 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let 0 be in T'=R/Z, the points 0, 0, 20,...,n0 divide T! into n+1 intervals having
at most three distinct lengths. This property is known as the three distance theorem
conjectured by Steinhaus. A first generalisation was conjectured by Graham.

Let 0, ay,...,04 be in T' and ny,...,ng be positive integers. Then the points
o + k0, i=1,....d, k=0,...,n;, — 1, divide T" into intervals having at most 3d
distinct lengths.

It was first proved by Chung and Graham in 1976 [4] but three years later Liang
found a very simple proof [6]. In 1993, Geelen and Simpson [5] proved a two-
dimensional version of the three distance theorem.

Let 0, 0y be in T' and ny, ny be positive integers. Then the points k0, + k20,,
k1=0,...,m —1, kh=0,...,n — 1, divide T into intervals having at most n, + 3
distinct lengths.

Geelen and Simpson’s proof is long and complex. They also conjectured the follow-
ing d-dimensional generalisation.
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Let 0y,...,0; be in T' and ny,...,ng be positive integers. Then the points
kO + -+ k04 k1 =0,....ny — 1,..., kg =0,....,ng — 1, divide T" into intervals
having at most H?:_ll n; + Cy distincts lengths where Cy depends only on d.

In this work we will prove a result which is close to this conjecture.

Theorem 1. Suppose d=2. Let 0,,...,04 be in T' and ny,...,n, be positive integers.
Then the points ki0y + - -+ ks04, ky =0,....ny — 1,..., kg=0,...,ny — 1, divide T'
into intervals having at most T[" n; + 3102 i + 1 distinct lengths.

If d =2 our result is not as good as Geelen and Simpson’s; the upper bound is n; +4
instead of n; 4+ 3. Our proof decomposes in three steps. The first step (Lemma 2) uses
the argument of Liang’s proof of the three d distance theorem [6]. A combinatorial
formulation of the same argument using the Rauzy graph of words, can be found in an
article by Alessandri and Berthé [1]. In the d-dimensional torus, a partial extension of
three distance theorem using Voronoi diagrams was proved in [2,3], the basic argument
is also very similar to Liang’s. The second step uses the symmetry of T' x — —x +
Zfil(ni — 1)6;, this symmetry was already used in [1,2,5]. The aim of the third step is
mainly to estimate the number of connected components of a subgraph of the standard
grid graph on 79,

2. Proof of Theorem 1

Notations. We choose the positive orientation on T! =R/Z. An interval [a, b] of T!
is defined with respect to this orientation.

If 4 is a set, |A| denotes its cardinality.

Put E:{Zil ki6;: 0<k; <mn;, i=1,...,d}. For each x € E we call suc(x) the next
element of E after x, i.e. such that ]x,suc(x)[ N E is empty.

First, we show we can suppose that 1,6,,...,60,; are independent over Q. Let o be
the smallest difference between the length of two intervals of different lengths. We can
choose 01,..., 0 sufficiently close to the 0; such that the Hausdorff distance between E
and E' = {Zil ki0: 0<k; <m;, i=1,...,d} is smaller than §/6, we can also suppose
that 1,01,...,0) are independent over Q. In this case, if Jx, y[ is an interval of T\E
there exists an interval Jx’, y'[ of T'\ £’ such that the difference between their lengths
is smaller than §/3. Hence, if {Jx1, yi[,..., xy, yn[} is a set of intervals of T'\ E of
different lengths then we can find a set {]x}, yi[,...,]xy, yy[} of intervals of T'\ E’
whose lengths are all different.

From now, we assume that 1,0,,...,0, are independent over Q. Put f(xy,...,x;)=
Z;j:l x;0;, the map f is one to one on the set

R={(x1,....xq) €7%: 0<x; <mj, i=1,...,d}

and f(R)=E. Therefore, the intervals /(X )=]/(X),suc(f(X))[, X € R, are all distinct.
Let e,...,e; be the canonical basis of R?. Consider the non-oriented graph G whose
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vertices are the elements X =(xj,...,x;) of R and whose edges are the pairs {X,X +e¢;}
such that /(X)+ 0; =I(X + ;). If X and Y are in the same connected component
of G then /(X)) and /(Y) have the same length so our aim is to estimate the number
of connected component of G. The graph G is a subgraph of the grid graph R whose
edges are all the pairs {X,X + ¢;}. We will call a pair {X,X + ¢;} an i-edge. The
graph G is obtained from the graph R by removing some of its edges. The number of
removed edges is given by the following lemma whose proof used Liang’s idea.

Lemma 2. The number of removed i-edges is smaller than 211 n;.

Proof. Let X and X' =x + ¢; be two vertices of G. If {X,X’} is not an edge of
G then either I(X) + 6, & I(X') or I(X') — 6, & I(X). Suppose I(X) + 0; &
I(X’). This means that the interval Jf(X) + 0;, suc(f(X))+ 0;[ =1f(X"), suc(f (X))
+ 6;[ contains the point suc( f(X”)). Then suc(f(X’))—6; is in the open interval I(X)
and therefore is not in E. Call Y the element of R such that f(Y) = suc(f(X’)). We
have just shown that (Y —¢;) is not in £ which means that ¥ — ¢; is not in R. Then
Y —e; must belong to the face F;={(x|,...,xs) € N: x;=—1 and 0<x; <nj, j#i}.
The map {X,X'} — Y —e¢; € F; is such that f(Y — ¢;) € I(X). Since the intervals
1(X), X € R, are all distinct, each point f(Z), Z € F;, belongs to at most one interval
1(X), this shows that there is at most card F; = II;n; vertices X of G such
that, X +e¢; € E and [(X)+0 & I(X +e¢;). The same reasoning shows that there are at
most I1;; n; points X of R such that, X +-¢; € E and /(X +¢;) —0 & I(X). Therefore,
the number of removed i-edges is at most 21,4 n;. [

Some different components of G correspond to intervals of the same length because
of the symmetry s: x € T! — —x + Zf.]:](n,- — 1)0;, this is the content of the next
lemma. Call & the set of connected components of G. For each C € €, let /(C) be the
cardinality of the projection of C on the axis Re; and A(C) be the cardinality of the
projection of C on the hyperplane Re; + --- + Rey_;. Call €, ={C € €: A(C)=1},
€, = {C IS A(C)>2}, Ny = |(51| and N, = |(52|

Lemma 3. The number of lengths of the intervals of T\E is smaller than 2+%N 1+Ns.

Proof. We reproduce an argument of Berthe and Allessandri (cf. [1, Theorem 18]).
Let C € 4, C ={Xo,X1 = Xo + eq,...,Xx = Xo + key}. Since s(E) = E the inter-
vals s(I(Xp)),...,s(I(Xy)) are intervals of T!\ E, then there exists Yo € G such that
s(I(Xi))=1(Yo), sU(Xk—1))=1(Yo) + Oa,...,s(I(Xo)) = 1(¥y) + kO,. Suppose Yo =X
then there are only two possibilities:

(1) There exists ¢ such that s(/(X;)) = I(X;). Therefore, the middle of the interval
1(X;) must be a fixed point of s.

(2) If s(1(X;)) # 1(X;) for all i then k is even and s(/(Xi2))=1(Xij2+1)=1(Xp2)+04.
Therefore, the middle of the interval /(Xj/,) must be a fixed point of the symmetry
s'(x) =s(x) — 0.
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Since the symmetries s and s’ have 2 fixed points each, there are at most 4 compo-
nents in %, such that Yy = Xj. Furthermore, if Yy # X; then the length of the intervals
I(X), X € C, is the same than the length of the intervals of another component and
the lemma follows. [

Let us now collect the constraints of the numbers /(C) and A(C).

First, we add to the graph R the boundary edges (i.e. the pairs {(x1,...,xz),
(x15...,x5) £ &} with (x1,...,x;) € Rand x;, =0 or n; — 1, i =1,...,d). With these
new edges, to each vertex of R, there correspond two i-edges, and G is obtained from
R by removing 4114 n; i-edges instead of 211, n;. Call o/ the set of edges of R.
Consider the set

o ={(a,C) € o x €: ais a boundary i-edge of C}.
To each removed i-edge corresponds two vertices and therefore two components and
to each new i-edge corresponds one component, thus

|- 1| <2(2H jzi ;) + 20 4 1.
Take i=d — 1. If C € € contains the point X =(ay,...,ay) then the hyperplan x; =ay

must contain at least two i-edges of the boundary of C. The number of such hyperplane
is I(C), then

> 2UC) <A g 1| <6 a1 1),

cev
thus
S uoy<s I »-
cew jAd—1

Now take i =d. If C € ¥ contains the point X = (ay,...,ay) then the line x; =
ai,...,Xq—1 = ag—, must contain at least two d-edges of the boundary of C. The
number of such lines is 4(C) then

> 24(C)<| ot <6 ] ny-

Cce% j<d
Put

p= ][ » P=1ifa=2),

j<d—1

we have

> a) <3 n

Ce% j<d

> U(C) < 3Pn,.

ce%

Secondly, if C € ¥ we have |C|<I(C)A(C) then

d
Y UOAC) =Y |l =]]n
i=1

Ce% cew
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Thirdly, it is obvious that /(C)<n, for each C € ¥. The theorem will follow from
the previous lemma and the following lemma.

Lemma 4. Put N =Ny + N,. If s1,...sy and hy,...,hy are strictly positive integers
such that

N
(1) Zsihi>nj'j:1nia

i=1

N
2) ) si<30] ' m,
i=1

N
(3) Y hi<3Png,
i=1

4 Vie{l,....N}, hi<ng,

) vie{l,...,Ni}, s;i=1
Vi e {N["‘l,...,N}, Si>2

s

then

d—1
1
=1

i=

Proof. If we order the s; and the 4; in increasing order then Zf\;l s;h; will increase, so
(1)—(5) are still verified. If Ay < ny; and one of the A;, i < N, is > 2, we can replace
hy by hy +1 and h; by h; — 1, because this increases va:l s;h;. Repeating this process
we can assume that

hy=--=hy__1=1, hy_; <ny,
hy_kp1 =+ =hy =ng,

where k is an integer not exceeding 3P. Moreover, if N <3P + 1 there is nothing to

prove so we can assume that k <3P <N —2. The idea of the proof lies in the following
N—k—1

simple calculus. Put S=73%"""""s;. By (1) we have
N d
S + Z hiSl' 2 Hl’ll,
i=N—k i=1

then by (2)

d—1 N
S+ ng <3Hn,-—S) =S +ny Z
i=1 j=N—

I

d
S; = H n;.
i=1

k
Solving this inequality we get
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On the other hand, if Ny <N — k — 1 we have

M N—k—1 N
N4 st D st Y 2=8+2k+1)
i=1 i=N;+1 i=N—k

and if =N —k—1=N;+ N, —k — 1 we have
Ni+2N; =N+ N, <N +k+1<S+2(k+1).
In both cases
Ny + 2N, <8 + 2(k + 1),

then
d—1

d
1 1
N N, < S+ k4 1< A3P L1~ L3P .
SN+ M <oS+k+ nd_lgn-l- + En—i— +

In order to prove the lemma we have to consider different cases.
If k =3P then by (3) we have N =k =3P and
d—1
N=3P<[[m+3P+1,
i=1
so we can assume k < 3P. If sy_; > 2 we can replace sy by sy + sy—x — 2 and
Sy—k by 2, so we can assume sy_; = | or 2 (the sequence (s,) may now loose its
monotonicity, but it does not matter for the proof).
Case 1: sy_; = 1.
By (5) we have Ny =N —k and S=N —k — 1. Consequently, N, <k and N; +2N, =
N+N<N+Ek=S+1+2k By (1)

d N N
HnisS—i—thk—knd Z s;i=S8+ng Z S+ hy_f — na,
i=1 i=N—k+1 i=N—k

with (2) we get

d d—1
Hm<S+nd <3Hn,- S) + hy—k — ng,

i=1 i=1
and
d
S(ng — 1)<2Hni + hy_f — ng.
i=1
By (3) we have hy_; <3Pny; — kng — (N — k — 1). With the previous inequality this
gives
d
S(ng — 1) < 2] mi+3Png —kng =N +k+1—ng
i=1
d
=2]]m+nGBP—k—-1)+k+1-N,
i=1
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but S+ %k + 1 =N then

d d—1
1
S<— <2Hni+nd(3P—k—l)> =2[[m+3P k-1,
i=1

ftd i=1
and
1 1, 1 o3k
SN+ N +2< 8+ +k+2< Hn,»+§1>+5+2
d—1 d—1
< Hn,-+%P+3P2_1+2—Hn,-+3P+%
for k < 3P.

Case 2: sy_p =2.
We have %Nl +N2<%S + k 4+ 1. Since

d N N
H i <S + Sy—ihy—k + na Z s;i=8+ng Z S+ 2(hy—k — ng),
i=1 i=N—k+1 i=N—k

by (2) we get

d d—1
Hni<S+nd (3 H"i - S) + 2(hy—k — na),

i=1 i=1
and
d

S(ng — l)<2Hfl, + 2(hy—k — ng).

i=1
By (3) we have hy_;<3Pny — kng — (N — k — 1). With the previous inequality this
gives

d
S(ng —1)<2 (Hni+3Pnd—knd—N—|—k+l—nd>.

i=1

If N> 15 n + 3P + 1 then

d d—1
S(nd—1)<2(Hn,»+3Pnd—knd— <Hni+3P+1> +k+1—nd>

i=1 i=1

d—1
<2(nd1)<Hn,-+3Pkl> -2

i=1
and
1 1 d—1
§N1+N2+2<ES+k+3< Hn[+3P—k—1—

i=1

1
ng —

1+k+3

d—1
<[[m+3P+2. O
i=1
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In the two-dimensional case the upper bound Hfl:_ll n+3P+1= Hfl:_ll n; +4 is not
the best. Our method of proof cannot reach the optimal bound given by Geelen and
Simpson. To see this, let us take an example.

ny =4 and n, =5 with the following removed edges: removed 1-edges = all the
1-edges inside {0} x {0,...,3} and all the 1-edges {(1,k),(2,k)} k=1,...,4; removed
2-edges = all the 2-edges between {k} x {0,...,3} and {k + 1} x {0,...,3}, k=0
and 2. The inequalities are verified and there are 8 connected components with
Ni=N,=4and SN+ N, +2=8>4+3.

When d >3 our proof uses only the constraints on the (d —1)-edges and the d-edges,
so our bound H;‘:l n; + 3P + 1 is probably not optimal.
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