

Discrete Mathematics 223 (2000) 355-362

www.elsevier.com/locate/disc

Note

Three distance theorem and grid graph

Nicolas Chevallier

Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse, France Received 5 May 1999; revised 3 August 1999; accepted 24 January 2000

Abstract

We will prove a *d*-dimensional version of the Geelen and Simpson theorem. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Irrational rotation; Three distance theorem; Graph; Connected component

1. Introduction

Let θ be in $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$, the points $0, \theta, 2\theta, \dots, n\theta$ divide \mathbb{T}^1 into n+1 intervals having at most three distinct lengths. This property is known as the three distance theorem conjectured by Steinhaus. A first generalisation was conjectured by Graham.

Let θ , $\alpha_1, \ldots, \alpha_d$ be in \mathbb{T}^1 and n_1, \ldots, n_d be positive integers. Then the points $\alpha_i + k\theta$, $i = 1, \ldots, d$, $k = 0, \ldots, n_i - 1$, divide \mathbb{T}^1 into intervals having at most 3d distinct lengths.

It was first proved by Chung and Graham in 1976 [4] but three years later Liang found a very simple proof [6]. In 1993, Geelen and Simpson [5] proved a two-dimensional version of the three distance theorem.

Let θ_1 , θ_2 be in \mathbb{T}^1 and n_1 , n_2 be positive integers. Then the points $k_1\theta_1 + k_2\theta_2$, $k_1 = 0, \ldots, n_1 - 1$, $k_2 = 0, \ldots, n_2 - 1$, divide \mathbb{T}^1 into intervals having at most $n_1 + 3$ distinct lengths.

Geelen and Simpson's proof is long and complex. They also conjectured the following d-dimensional generalisation.

E-mail address: n.chevallier@univ-mulhouse.fr (N. Chevallier).

⁰⁰¹²⁻³⁶⁵X/00/\$-see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0012-365X(00)00098-4

Let $\theta_1, \ldots, \theta_d$ be in \mathbb{T}^1 and n_1, \ldots, n_d be positive integers. Then the points $k_1\theta_1 + \cdots + k_d\theta_d$, $k_1 = 0, \ldots, n_1 - 1, \ldots, k_d = 0, \ldots, n_d - 1$, divide \mathbb{T}^1 into intervals having at most $\prod_{i=1}^{d-1} n_i + C_d$ distincts lengths where C_d depends only on d.

In this work we will prove a result which is close to this conjecture.

Theorem 1. Suppose $d \ge 2$. Let $\theta_1, \ldots, \theta_d$ be in \mathbb{T}^1 and n_1, \ldots, n_d be positive integers. Then the points $k_1\theta_1 + \cdots + k_d\theta_d$, $k_1 = 0, \ldots, n_1 - 1, \ldots, k_d = 0, \ldots, n_d - 1$, divide \mathbb{T}^1 into intervals having at most $\prod_{i=1}^{d-1} n_i + 3 \prod_{i=1}^{d-2} n_i + 1$ distinct lengths.

If d=2 our result is not as good as Geelen and Simpson's; the upper bound is n_1+4 instead of n_1+3 . Our proof decomposes in three steps. The first step (Lemma 2) uses the argument of Liang's proof of the three *d* distance theorem [6]. A combinatorial formulation of the same argument using the Rauzy graph of words, can be found in an article by Alessandri and Berthé [1]. In the *d*-dimensional torus, a partial extension of three distance theorem using Voronoï diagrams was proved in [2,3], the basic argument is also very similar to Liang's. The second step uses the symmetry of $\mathbb{T}^1 x \to -x + \sum_{i=1}^{d} (n_i - 1)\theta_i$, this symmetry was already used in [1,2,5]. The aim of the third step is mainly to estimate the number of connected components of a subgraph of the standard grid graph on \mathbb{Z}^d .

2. Proof of Theorem 1

Notations. We choose the positive orientation on $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$. An interval [a, b] of \mathbb{T}^1 is defined with respect to this orientation.

If A is a set, |A| denotes its cardinality.

Put $E = \{\sum_{i=1}^{d} k_i \theta_i : 0 \le k_i < n_i, i = 1, ..., d\}$. For each $x \in E$ we call suc(x) the next element of E after x, i.e. such that $]x, suc(x)[\cap E \text{ is empty.}]$

First, we show we can suppose that $1, \theta_1, \ldots, \theta_d$ are independent over \mathbb{Q} . Let δ be the smallest difference between the length of two intervals of different lengths. We can choose $\theta'_1, \ldots, \theta'_d$ sufficiently close to the θ_i such that the Hausdorff distance between E and $E' = \{\sum_{i=1}^{d} k_i \theta'_i: 0 \le k_i < n_i, i = 1, \ldots, d\}$ is smaller than $\delta/6$, we can also suppose that $1, \theta'_1, \ldots, \theta'_d$ are independent over \mathbb{Q} . In this case, if]x, y[is an interval of $\mathbb{T}^1 \setminus E$ there exists an interval]x', y'[of $\mathbb{T}^1 \setminus E'$ such that the difference between their lengths is smaller than $\delta/3$. Hence, if $\{]x_1, y_1[, \ldots,]x_N, y_N[\}$ is a set of intervals of $\mathbb{T}^1 \setminus E'$ whose lengths are all different.

From now, we assume that $1, \theta_1, \dots, \theta_d$ are independent over \mathbb{Q} . Put $f(x_1, \dots, x_d) = \sum_{i=1}^d x_i \theta_i$, the map f is one to one on the set

$$R = \{ (x_1, \dots, x_d) \in \mathbb{Z}^d : 0 \le x_i < n_i, \ i = 1, \dots, d \}$$

and f(R)=E. Therefore, the intervals I(X)=]f(X), suc $(f(X))[, X \in R)$, are all distinct. Let e_1, \ldots, e_d be the canonical basis of \mathbb{R}^d . Consider the non-oriented graph G whose vertices are the elements $X = (x_1, ..., x_d)$ of R and whose edges are the pairs $\{X, X + e_i\}$ such that $I(X) + \theta_i = I(X + e_i)$. If X and Y are in the same connected component of G then I(X) and I(Y) have the same length so our aim is to estimate the number of connected component of G. The graph G is a subgraph of the grid graph R whose edges are all the pairs $\{X, X + e_i\}$. We will call a pair $\{X, X + e_i\}$ an *i*-edge. The graph G is obtained from the graph R by removing some of its edges. The number of removed edges is given by the following lemma whose proof used Liang's idea.

Lemma 2. The number of removed *i*-edges is smaller than $2\prod_{i\neq i} n_i$.

Proof. Let X and $X' = x + e_i$ be two vertices of G. If $\{X, X'\}$ is not an edge of G then either $I(X) + \theta_i \notin I(X')$ or $I(X') - \theta_i \notin I(X)$. Suppose $I(X) + \theta_i \notin I(X')$. This means that the interval $]f(X) + \theta_i$, $\operatorname{suc}(f(X)) + \theta_i[=]f(X')$, $\operatorname{suc}(f(X)) + \theta_i[$ contains the point $\operatorname{suc}(f(X'))$. Then $\operatorname{suc}(f(X')) - \theta_i$ is in the open interval I(X) and therefore is not in E. Call Y the element of R such that $f(Y) = \operatorname{suc}(f(X'))$. We have just shown that $f(Y - e_i)$ is not in E which means that $Y - e_i$ is not in R. Then $Y - e_i$ must belong to the face $F_i = \{(x_1, \dots, x_d) \in \mathbb{N}^d : x_i = -1 \text{ and } 0 \leq x_j < n_j, j \neq i\}$. The map $\{X, X'\} \to Y - e_i \in F_i$ is such that $f(Y - e_i) \in I(X)$. Since the intervals I(X), $X \in R$, are all distinct, each point f(Z), $Z \in F_i$, belongs to at most one interval I(X), this shows that there is at most card $F_i = \prod_{j \neq i} n_j$ vertices X of G such that, $X + e_i \in E$ and $I(X) + \theta \notin I(X + e_i)$. The same reasoning shows that there are at most $\prod_{j \neq i} n_j$ points X of R such that, $X + e_i \in E$ and $I(X) + \theta \notin I(X + e_i)$. \Box

Some different components of *G* correspond to intervals of the same length because of the symmetry $s: x \in \mathbb{T}^1 \to -x + \sum_{i=1}^d (n_i - 1)\theta_i$, this is the content of the next lemma. Call \mathscr{C} the set of connected components of *G*. For each $C \in \mathscr{C}$, let l(C) be the cardinality of the projection of *C* on the axis $\mathbb{R}e_d$ and A(C) be the cardinality of the projection of *C* on the hyperplane $\mathbb{R}e_1 + \cdots + \mathbb{R}e_{d-1}$. Call $\mathscr{C}_1 = \{C \in \mathscr{C} : A(C) = 1\}$, $\mathscr{C}_2 = \{C \in \mathscr{C} : A(C) \ge 2\}, N_1 = |\mathscr{C}_1|$ and $N_2 = |\mathscr{C}_2|$.

Lemma 3. The number of lengths of the intervals of $\mathbb{T}^1 \setminus E$ is smaller than $2 + \frac{1}{2}N_1 + N_2$.

Proof. We reproduce an argument of Berthe and Allessandri (cf. [1, Theorem 18]). Let $C \in \mathscr{C}_1$, $C = \{X_0, X_1 = X_0 + e_d, \dots, X_k = X_0 + ke_d\}$. Since s(E) = E the intervals $s(I(X_0)), \dots, s(I(X_k))$ are intervals of $\mathbb{T}^1 \setminus E$, then there exists $Y_0 \in G$ such that $s(I(X_k)) = I(Y_0), s(I(X_{k-1})) = I(Y_0) + \theta_d, \dots, s(I(X_0)) = I(Y_0) + k\theta_d$. Suppose $Y_0 = X_0$ then there are only two possibilities:

- (1) There exists *i* such that $s(I(X_i)) = I(X_i)$. Therefore, the middle of the interval $I(X_i)$ must be a fixed point of *s*.
- (2) If $s(I(X_i)) \neq I(X_i)$ for all *i* then *k* is even and $s(I(X_{k/2})) = I(X_{k/2+1}) = I(X_{k/2}) + \theta_d$. Therefore, the middle of the interval $I(X_{k/2})$ must be a fixed point of the symmetry $s'(x) = s(x) - \theta_d$.

Since the symmetries *s* and *s'* have 2 fixed points each, there are at most 4 components in \mathscr{C}_1 such that $Y_0 = X_0$. Furthermore, if $Y_0 \neq X_0$ then the length of the intervals $I(X), X \in C$, is the same than the length of the intervals of another component and the lemma follows. \Box

Let us now collect the constraints of the numbers l(C) and A(C).

First, we add to the graph *R* the boundary edges (i.e. the pairs $\{(x_1, \ldots, x_d), (x_1, \ldots, x_d) \pm e_i\}$ with $(x_1, \ldots, x_d) \in R$ and $x_i = 0$ or $n_i - 1$, $i = 1, \ldots, d$). With these new edges, to each vertex of *R*, there correspond two *i*-edges, and *G* is obtained from *R* by removing $4\prod_{j \neq i} n_j$ *i*-edges instead of $2\prod_{j \neq i} n_j$. Call \mathscr{A} the set of edges of *R*. Consider the set

$$\mathscr{A}_i = \{(a, C) \in \mathscr{A} \times \mathscr{C}: a \text{ is a boundary } i \text{-edge of } C\}.$$

To each removed *i*-edge corresponds two vertices and therefore two components and to each new *i*-edge corresponds one component, thus

$$|\mathscr{A}_i| \leq 2(2\Pi_{j\neq i} n_j) + 2\Pi_{j\neq i} n_j.$$

Take i = d - 1. If $C \in \mathscr{C}$ contains the point $X = (a_1, ..., a_d)$ then the hyperplan $x_d = a_d$ must contain at least two *i*-edges of the boundary of *C*. The number of such hyperplane is l(C), then

$$\sum_{C\in\mathscr{C}} 2l(C) \leq |\mathscr{A}_{d-1}| \leq 6 \prod_{j\neq d-1} n_j,$$

thus

$$\sum_{C\in\mathscr{C}}l(C)\leqslant 3\prod_{j\neq d-1}n_j$$

Now take i = d. If $C \in \mathscr{C}$ contains the point $X = (a_1, \ldots, a_d)$ then the line $x_1 = a_1, \ldots, x_{d-1} = a_{d-1}$ must contain at least two *d*-edges of the boundary of *C*. The number of such lines is A(C) then

$$\sum_{C \in \mathscr{C}} 2A(C) \leq |\mathscr{A}_d| \leq 6 \prod_{j < d} n_j.$$

Put

$$P = \prod_{j < d-1} n_j$$
 (P = 1 if d = 2),

we have

$$\sum_{C \in \mathscr{C}} A(C) \leq 3 \prod_{j < d} n_j,$$
$$\sum_{C \in \mathscr{C}} l(C) \leq 3Pn_d.$$

Secondly, if $C \in \mathscr{C}$ we have $|C| \leq l(C)A(C)$ then

$$\sum_{C \in \mathscr{C}} l(C)A(C) \ge \sum_{C \in \mathscr{C}} |C| = \prod_{i=1}^{a} n_i.$$

Lemma 4. Put $N = N_1 + N_2$. If s_1, \ldots, s_N and h_1, \ldots, h_N are strictly positive integers such that

$$(1) \sum_{i=1}^{N} s_{i}h_{i} \ge \prod_{i=1}^{d} n_{i},$$

$$(2) \sum_{i=1}^{N} s_{i} \le 3\prod_{j=1}^{d-1} n_{j},$$

$$(3) \sum_{i=1}^{N} h_{i} \le 3Pn_{d},$$

$$(4) \forall i \in \{1, \dots, N\}, \quad h_{i} \le n_{d},$$

$$(5) \begin{cases} \forall i \in \{1, \dots, N_{1}\}, & s_{i} = 1\\ \forall i \in \{N_{1} + 1, \dots, N\}, & s_{i} \ge 2 \end{cases},$$

then

$$\min\left(N, \left[\frac{1}{2}N_1 + N_2 + 2\right]\right) \leqslant \prod_{i=1}^{d-1} n_i + 3P + 1$$

Proof. If we order the s_i and the h_i in increasing order then $\sum_{i=1}^{N} s_i h_i$ will increase, so (1)–(5) are still verified. If $h_N < n_d$ and one of the h_i , i < N, is > 2, we can replace h_N by $h_N + 1$ and h_i by $h_i - 1$, because this increases $\sum_{i=1}^{N} s_i h_i$. Repeating this process we can assume that

$$h_1 = \dots = h_{N-k-1} = 1, \quad h_{N-k} < n_d,$$

 $h_{N-k+1} = \dots = h_N = n_d,$

where *k* is an integer not exceeding 3*P*. Moreover, if $N \leq 3P + 1$ there is nothing to prove so we can assume that $k \leq 3P \leq N-2$. The idea of the proof lies in the following simple calculus. Put $S = \sum_{i=1}^{N-k-1} s_i$. By (1) we have

$$S + \sum_{i=N-k}^{N} h_i s_i \ge \prod_{i=1}^{d} n_i,$$

then by (2)

$$S + n_d \left(3 \prod_{i=1}^{d-1} n_i - S \right) \ge S + n_d \sum_{i=N-k}^N s_i \ge \prod_{i=1}^d n_i.$$

Solving this inequality we get

$$S \leqslant \frac{2}{n_d - 1} \prod_{i=1}^d n_i.$$

On the other hand, if $N_1 < N - k - 1$ we have

$$N_1 + 2N_2 \leq \sum_{i=1}^{N_1} s_i + \sum_{i=N_1+1}^{N-k-1} s_i + \sum_{i=N-k}^{N} 2 = S + 2(k+1)$$

and if $N_1 \ge N - k - 1 = N_1 + N_2 - k - 1$ we have

$$N_1 + 2N_2 = N + N_2 \leq N + k + 1 \leq S + 2(k + 1).$$

In both cases

$$N_1 + 2N_2 \leq S + 2(k+1),$$

then

$$\frac{1}{2}N_1 + N_2 \leqslant \frac{1}{2}S + k + 1 \leqslant \frac{1}{n_d - 1} \prod_{i=1}^d n_i + 3P + 1 \approx \prod_{i=1}^{d-1} n_i + 3P + 1.$$

In order to prove the lemma we have to consider different cases.

If k = 3P then by (3) we have N = k = 3P and

$$N = 3P \leqslant \prod_{i=1}^{d-1} n_i + 3P + 1$$

so we can assume k < 3P. If $s_{N-k} > 2$ we can replace s_N by $s_N + s_{N-k} - 2$ and s_{N-k} by 2, so we can assume $s_{N-k} = 1$ or 2 (the sequence (s_n) may now loose its monotonicity, but it does not matter for the proof).

Case 1: $s_{N-k} = 1$.

By (5) we have $N_1 \ge N - k$ and S = N - k - 1. Consequently, $N_2 \le k$ and $N_1 + 2N_2 = N + N_2 \le N + k = S + 1 + 2k$. By (1)

$$\prod_{i=1}^{d} n_i \leqslant S + h_{N-k} + n_d \sum_{i=N-k+1}^{N} s_i = S + n_d \sum_{i=N-k}^{N} s_i + h_{N-k} - n_d,$$

with (2) we get

$$\prod_{i=1}^{d} n_i \leqslant S + n_d \left(3 \prod_{i=1}^{d-1} n_i - S \right) + h_{N-k} - n_d,$$

and

$$S(n_d-1) \leqslant 2 \prod_{i=1}^d n_i + h_{N-k} - n_d.$$

By (3) we have $h_{N-k} \leq 3Pn_d - kn_d - (N - k - 1)$. With the previous inequality this gives

$$S(n_d - 1) \leq 2 \prod_{i=1}^d n_i + 3Pn_d - kn_d - N + k + 1 - n_d$$
$$= 2 \prod_{i=1}^d n_i + n_d(3P - k - 1) + k + 1 - N,$$

but S + k + 1 = N then

$$S \leq \frac{1}{n_d} \left(2 \prod_{i=1}^d n_i + n_d (3P - k - 1) \right) = 2 \prod_{i=1}^{d-1} n_i + 3P - k - 1,$$

and

$$\frac{1}{2}N_1 + N_2 + 2 \leq \frac{1}{2}S + \frac{1}{2} + k + 2 \leq \prod_{i=1}^{d-1} n_i + \frac{3}{2}P + \frac{k}{2} + 2$$
$$\leq \prod_{i=1}^{d-1} n_i + \frac{3}{2}P + \frac{3P-1}{2} + 2 = \prod_{i=1}^{d-1} n_i + 3P + \frac{3}{2}$$

for k < 3P.

Case 2: $s_{N-k} = 2$. We have $\frac{1}{2}N_1 + N_2 \leq \frac{1}{2}S + k + 1$. Since

$$\prod_{i=1}^{d} n_i \leq S + s_{N-k} h_{N-k} + n_d \sum_{i=N-k+1}^{N} s_i = S + n_d \sum_{i=N-k}^{N} s_i + 2(h_{N-k} - n_d),$$

by (2) we get

$$\prod_{i=1}^{d} n_i \leqslant S + n_d \left(3 \prod_{i=1}^{d-1} n_i - S \right) + 2(h_{N-k} - n_d),$$

and

$$S(n_d-1) \leq 2 \prod_{i=1}^d n_i + 2(h_{N-k} - n_d).$$

By (3) we have $h_{N-k} \leq 3Pn_d - kn_d - (N - k - 1)$. With the previous inequality this gives

$$S(n_d-1) \leq 2\left(\prod_{i=1}^d n_i + 3Pn_d - kn_d - N + k + 1 - n_d\right).$$

If $N \ge \prod_{i=1}^{d-1} n_i + 3P + 1$ then

$$S(n_d - 1) \leq 2\left(\prod_{i=1}^d n_i + 3Pn_d - kn_d - \left(\prod_{i=1}^{d-1} n_i + 3P + 1\right) + k + 1 - n_d\right)$$
$$\leq 2(n_d - 1)\left(\prod_{i=1}^{d-1} n_i + 3P - k - 1\right) - 2$$

and

$$\frac{1}{2}N_1 + N_2 + 2 \leqslant \frac{1}{2}S + k + 3 \leqslant \prod_{i=1}^{d-1} n_i + 3P - k - 1 - \frac{1}{n_d - 1} + k + 3$$
$$< \prod_{i=1}^{d-1} n_i + 3P + 2. \qquad \Box$$

In the two-dimensional case the upper bound $\prod_{i=1}^{d-1} n_i + 3P + 1 = \prod_{i=1}^{d-1} n_i + 4$ is not the best. Our method of proof cannot reach the optimal bound given by Geelen and Simpson. To see this, let us take an example.

 $n_1 = 4$ and $n_2 = 5$ with the following removed edges: removed 1-edges = all the 1-edges inside $\{0\} \times \{0, ..., 3\}$ and all the 1-edges $\{(1, k), (2, k)\} \ k = 1, ..., 4$; removed 2-edges = all the 2-edges between $\{k\} \times \{0, ..., 3\}$ and $\{k + 1\} \times \{0, ..., 3\}$, k = 0 and 2. The inequalities are verified and there are 8 connected components with $N_1 = N_2 = 4$ and $\frac{1}{2}N_1 + N_2 + 2 = 8 > 4 + 3$.

When $d \ge 3$ our proof uses only the constraints on the (d-1)-edges and the *d*-edges, so our bound $\prod_{i=1}^{d-1} n_i + 3P + 1$ is probably not optimal.

References

- [1] P. Allessandri, V. Berthé, Three distance theorem and combinatorics on words, Enseign. Math. (1998).
- [2] N. Chevallier, Meilleures approximations d'un élément du tore T² et géométrie de la suite des multiples de cet élément, Acta Arith. 78 (1996) 19–35.
- [3] N. Chevallier, Géométrie des suites de Kronecker, Manuscripta Math. 94 (1997) 231-241.
- [4] F.R.K. Chung, R.L. Graham, On the set of distances determined by the union of arithmetic progressions, Ars Combin. 1 (1976) 57–76.
- [5] J.F. Geelen, R.J. Simpson, A two dimensional Steinhaus theorem, Australas. J. Combin. 8 (1993) 169–197.
- [6] F.M. Liang, A short proof of the 3d distance theorem, Discrete Math. 28 (1979) 325–326.