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1 Introduction

In 1936, Aleksandr Khintchin showed that there exists a constant v such that the denominators
(Gn)n>0 of the convergents of the continued fraction expansions of almost all real numbers 6
satisfy
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(see [12]). Soon afterward, in [21], in the footnote page 289, Paul Lévy gave the explicit value

of the constant,
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In 1983, Wieb Bosma, Hendrik Jager and Freek Wiedijk, proved the following conjecture
due to Hendrik Lenstra: for almost all real numbers 6,
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for all t € [0, 1], where
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Later, Jager proved variants of this result in particular with the quantity gx.1 d(gx0,Z) instead
The aim of the paper is to extend to best simultaneous Diophantine approximations, both
Lévy-Khintchin’s result and Bosma, Jager and Wiedijk’s result.
Let d and ¢ be two positive integers. Suppose R? and R¢ are endowed with the standard
Euclidean norms ||.||gs and ||.||z.. We prove

Theorem 1. There exists a constant Ly, such that for almost all matrices 6 € My .(R),
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where Q,(0) € Z°, n > 0, is the sequence of best Diophantine approximation denominators of
6 associated with the norms ||.||ga and ||.
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(See section 2.1, the definition of best Diophantine approximation denominators).
For a matrix 6 in My .(R), let denote 3,(0) = ||Qn+1(0)|/g. Ad(0Q.(6), Z9)".

Theorem 2. 1. There exists a probability measure vy, on R such that for almost all matrices
0 € My.(R), va. is the weak limit of the sequence of probability measures

n Br(0)
k=0

where 0, s the Dirac measure at a.
2. The support of the measure vy, is included in a bounded interval, and contains 0 provided
that ¢ +d > 3.

Lévy-Khintchin’s result has already been extended to multi-dimensional settings. For in-
stance, for almost all § in R%, the denominators (J,,(9)),>0 of the Jacobi-Perron expansion of ¢
satisfy limy,_o = In J,,(#) = ¢4 for some constant ¢4 (see [4]). The common proofs of such results
use ergodic theory. The one-dimensional Lévy-Khintchin’s result can be proved with Birkhoff
ergodic Theorem, while the growth rate of the Jacobi-Perron denominators can be derived from
Oseledec multiplicative ergodic Theorem. In both cases, the proof depends on the existence of
an underlying dynamical system: the Gauss map or the Jacobi-Perron map (see [25] for many
examples of these kinds of maps). However, no such map associated with best Diophantine
approximations is known when d + ¢ > 3. One classical way to circumvent this problem is to
use the action of the diagonal flow

el 0
g = ( Od - ) € SL(d + ¢, R)

on the space of unimodular lattices L4, = SL(d + ¢,R)/SL(d + ¢,Z). For instance, in [10]
this flow is used to prove that the sequence of best Diophantine approximation denominators
of almost all 6 in M, .(R) satisfies

lim sup l111 1Qn(0)]|ge < Kapc
n—oo T

for some constant K;.. When ¢ = 1, it is also possible to derive this inequality from a Theorem

of W. M. Schmidt (see [9]).

In this work, as in [10], the flow (g;) is the main tool. Together with the flow, an important
ingredient is a surface S of co—dimension 1 transverse to the flow and the first return map
associated with the flow. Such transversals have been widely used and we only mention two
closely related works.

Firstly, P. Arnoux and A. Nogueira in [1], have used transversals to naturally obtain invari-
ant measures associated with multidimensional continued fraction algorithms. Furthermore,
in the case of the one dimensional continued fraction algorithm, their approach leads to an
interpretation of the Lévy’s constant as the average return time of the flow on the transversal.

Secondly, in some cases, the transformation induced on a sub-interval by an interval ex-
change transformation 7} is an interval exchange transformation 75 of the same kind as 7;.
In such situations, the map 77 — T, can be seen as the Gauss map of a “multidimensional



continued fraction algorithm". In [27], W. Veech used a transversal to prove that this Gauss
map admits an unique absolutely continuous invariant measure up to a scalar multiple.

In our case, the transversal is the set of unimodular lattices the first two minimums of
which are equal (actually, the definition is slightly more restrictive, see section 3.1 for the exact
definition of the transversal). It is crucial to observe that the visiting times of the transversal
are given by a formula involving best simultaneous Diophantine approximations, see Lemma
15. Making use of Birkhoff Theorem, this observation leads to a Lévy-Khintchin result in the
space of lattices and to a formula close to the Arnoux-Nogueira interpretation of the Lévy’s

constant:
_ /7_ d,uS _ d x N<£d+c) (1)
ns(S) Js f15(S)
where p is the invariant measure in the space of lattices, pg the invariant measure induced by
the flow on the transversal S and 7 the return time to S, see Theorem 20 and Corollary 22.
The second step of the proof of Theorem 1 consists in converting an almost all result in
the space of lattices L4 into an almost all result in M, .(R). To achieve this goal, we prove
a general result, Theorem 24, which might be of independent interest. At first sight, this
result might appear as an easy consequence of the following standard fact: the set of lattices
associated with the matrices 6 in My .(R), is the expanding direction of the flow ¢;. However,

an example shows that Theorem 24 depends on some properties of the transversal, see section
8.

Ld,c

When d = 1 or 2 and ¢ = 1, the submanifold S and the measure ug can be entirely calculated
(see section 7). When d = ¢ = 1, thanks to Siegel formula giving the volume of the modular
space SL(2,R)/SL(2,7Z), computing Lévy’s constant L, ; = In~y is easy; it is even possible to
determine the first return map to the transversal. It turns out that this first return map is a
2-fold extension of the natural extension of the Gauss map (see subsection 7.3). However, when
d =2 and ¢ = 1, the calculation of Lo ; leads to a seven-tuple integral and we only succeed in
reducing it to a triple integral that can be evaluated numerically (see subsection 7.4).

When d = ¢ = 1, the double inequality % < @na1d(gn0,2) < 1 shows that the behaviors
of the two sequences (£ 1Ing,), and (= Ind(g.0,Z)), are the same and each of the limits in
Theorem 1 implies the other. When d is larger or equal than two, no such double inequality
exists. Indeed, it has been proved in [9] that when ¢ =1 and d > 2,

lim inf g1 d(g.0,Z)% =0
n—oo

for almost all # in R?. Observe that Theorem 2 implies this latter result; it is an immediate
consequence of the fact that 0 is in the support of the measure v,4.. Hopefully for the proof of
Theorem 1, the weaker inequality

S 1
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which holds almost surely by the convergence part of the Khintchin-Groshev Theorem, is enough
to link both of the limits in Theorem 1.

In the last section, we extend the aforementioned result of [9] to best simultaneous approx-
imations of matrices. Our proof leads to the stronger result

lim_ inf [|Quk ()5 d(6Qn(6), Z%)" = 0

d(0Qn(0),27)




for almost all 6 in M, .(R) and all £ € N.
Obviously, if the matrix 6 is badly approximable, then

lim 0 [|Qusa ()] A(6Q. (). 2 > 0

because by definition liminf, .« ||@n(0)|/g. d(0Q,(0),Z9)? > 0. When d = 2 and ¢ = 1, we
prove that the set of § with liminf, o ¢ny1 d(g.0,Z)% > 0 is not reduced to the set of badly
approximable vectors.

Historical Note: Lévy’s proof does not rely on the Ergodic Theorem which was not known
for non-invertible maps at that time. A proof of the Birkhoff Theorem for non-invertible maps
was given by Frédéric Riesz in 1945 (see [23]) and then a proof of Lévy’s Theorem using the
Ergodic Theorem was given in [24]. The authors would like to thank Vitaly Bergelson for
bringing [24] to their attention.

2 Notation

Let d and ¢ be two positive integers.

2.1 Vectors and distances

Let ||-||g» denote the usual Euclidean norm on R™.
We assume R? and R¢ are equipped with the usual Euclidean norms and R%*¢ is equipped
with the norm (v, &) gare = meoc{ g e

For X = (u, h) in R¥¢, let | X'|_ = ||h]|. denote the height of the vector X and |X| | = ||ul|a
denote the norm of the projection of X in the horizontal space. We also denote X, = u and
X_ = h the vertical and horizontal components of X.

For a vector X in R let C'(X) denote the closed cylinder
C(X) = Bpa(0,|X|,) x Bre(0, | X]|_),
and if Y is another vector, let C'(X,Y’) denote the closed cylinder
C(X,Y) = Bga(0,|X|,) x Bre(0,[Y]_).

In all situations, let d(x,y) denote the distance associated with the underlying norm between
the two points x and y and d(z, A) the distance between the point x and the set A.

2.2 Matrices

Let I,, denote the identity matrix in M, (R).

We fix once and for all a norm on My, .(R). All the distances and the balls in the space of
matrices are associated with this norm. When F is a subset of My, .(R), let Bg(z,r) denote
the set of matrices in £/ within a distance from z smaller than r.

Let £ = L. denote the space of (d+ c)-dimensional unimodular lattices in R4 which we

identify with SL(d + ¢,R)/SL(d + ¢, Z).



For 6 € M4 .(R), let My denote the matrix

I, —0
( 0 L )ESL(d—I—c,R)

and Ay = MyZ%*¢ the lattice associated with M,.

Let H-( denote the subgroup of all matrices My, § € My .(R), and let Ty . denote its image
in £d+c-

In the same manner, let H. denote the subgroup of SL(d + ¢, R) of matrices of the form

I; 0
B 1.

and let H< denote the subgroup of SL(d + ¢, R) of matrices of the form

A0
B C
where A € GL(d,R), B € M 4(R) and C' € GL(c, R).
Let

e 0
g = ( 0 d ity ) € SL(d + ¢, R),

t € R, denote the standard diagonal flow, F_ = {0} x R¢ denote the contracting direction of
the flow and E, = R? x {0} denote the expanding direction of the flow. We also refer to E,
as the horizontal subspace and to E_ as the vertical subspace.

2.3 Lattices

Suppose R" is equipped with a norm ||.||. For a lattice A and an integer ¢ € {1,...,n}, let \;(A)
denote the i-th minimum of the lattice A with respect to the norm |||, i.e.,

Ai(AL]]]) = min{A > 0: B(0, A\) N A contains at least ¢ independent vectors}.

Observe that A;(A) is the length of the shortest nonzero vector in A. When there is no ambiguity
about the norm we write \;(A) instead of \;(A, [|.])-

3 Best approximations

3.1 Best Diophantine approximations

Multidimensional extensions of the classical continued fraction expansion cannot conciliate all
the properties of the one dimensional expansion. For instance, it is not possible to conciliate
the unimodularity and the best approximation property (see [17] and [22]). The “best si-
multaneous Diophantine approximations” is the multidimensional extension based solely on
the best approximation property. It has been studied by many Authors, see for instance
[14, 15, 16, 17, 18, 7, 9, 11, 22].



Definition 3. Let 0 € M, .(R).
1. A nonzero vector (Q € Z° is a best simultaneous Diophantine approzimation denominator of
0 if for all nonzero U in Z°,

1Ullge < 1Qllge = d(6Q, Z) < d(6U, Z)
1Ullge < 1Qllze = d(6Q, Z%) < d(0U, Z7).

2. An element (P,Q) in Z% x Z¢ is a best Diophantine approzimation vector of 0 if Q is a best
simultaneous Diophantine approximation denominator of 0 and if

160Q = Pllga = d(6Q, Z).

If the equation #Q = 0 mod Z? has no nontrivial solution Q € Z?, the set of best Dio-
phantine approximation denominators of f is infinite. Numbering the set of best approximation
denominators in ascending order of the norm ¢ = [|Q||.. we obtain two sequences

do = QO<9) = /\1(ZC) <q = Q1(9) = HQI(Q)”C <o <@n= %(9) = HQn(Q)Hc <

and
ro = ro(0) = d(0Qo, Z%) > r1 = r1(0) = d(0Q1,Z%) > ... > 1, = r,(0) = d(0Q,,, Z%) > ...

When d = ¢ = 1, by the best approximation property, the integers qo, q1, ..., ¢pn, ... are the
denominators of the ordinary continued fraction expansion of #. The only slight difference is
that in the ordinary continued fraction expansion, it can happen that ¢y = ¢; = 1. In this case,
the indices are shifted by one.

3.2 Minimal vectors in lattices

The notion of minimal vector goes back to Voronoi. He used minimal vectors to find units in
cubic fields (see [28] and also [5, 6]). It allows to convert statements about best simultaneous
Diophantine approximations of vectors or of matrices into statements about lattices (see [7, 11]).

Definition 4. Let M € SL(d + ¢,R) and let A = MZ*° € Lq,.. A nonzero vector X € A is
a minimal vector of A (with respect to the norms ||-||ga and ||-||g.) if the only nonzero vectors
Y € A in the cylinder C(X) are such that C(X) = C(Y), i.e.,

(X1, =Y, [X]o =Y.
If two minimal vectors X and Y define the same cylinder we say that they are equivalent.

Observe that for each lattice A, there exists a minimal vector X that is a shortest vector of
A with respect to the norm ||.||ga+c. There might exist other shortest vectors and even other
shortest vector that are minimal. The set of minimal vectors is generally infinite but might be
finite. For d,c > 1, it is easily shown that there are at least two linearly independent minimal
vectors in any lattice. This lower bound may be achieved, for instance with A = Z!*1,

Given a lattice A in L4,., we select one minimal vector in each equivalent class of minimal
vectors. We number these vectors in ascending order of heights. Such a numbering exists



because 0 is the only possible limit point of the set of heights of minimal vectors (see the proof
of Lemma 7) We get a sequence

X n(A)s ey X1 (M), Xo(A), X1(A), ...

This sequence might be finite, infinite one-sided or two-sided. The sequence (|X,(A)[, ), is
decreasing while the sequence (| X,,(A)|_),, is increasing. The numbering with increasing heights
is unique up to a shift on the indices. Though, this shift is not really relevant, we will fix later
a convenient way of choosing Xo(A) (see the section about return times).

We shall always use the following notations
Gn(A) = [Xn(A)|_ and 7 (A) = [Xa(A)]

The following Lemma is easy and very important. It shows that for 8 € M, .(R), the
sequences (¢,(Ag)), and (¢, (0)), are deduced one another by a shift. Therefore, if one of the
two limits

1 1
lim —Ing,(#), and lim —Ing,(Ap)

n—oo N n—oo 1,

exists, then the other exists and have the same value. The same results holds with the sequences
(rn(0)), and (7,(Ag) )n-

Lemma 5. Let 0 be in My .(R).

1. If X = MyY is a minimal vector of the lattice Ay with positive height , | X|_ >0, then Y is
best a approximation vector of 6.

2. Conversely if Y in Z97¢ is a best approrimation vector of 0 such that

Ve = OVl < M (27)
then X = MyY is a minimal vector of Ay.

Proof. 1. Set @ = Y_. Since X is a minimal vector, d(/Q,Z?) = | X|,. Suppose that U € Z¢
and V € Z? are such that

10U = V[|gae = d(0U, Z%) < d(6Q, Z7) = | X|,

and
1Ullge < Qlge = Y],

“(2)-("3*)

is in the cylinder C'(X), and therefore by definition of minimal vectors, we have

then the vector

10U — Vlga = d(0U, Z¢) = d(0Q, Z7)

and
U

Re — ||Q
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It follows that () is a best approximation denominator.
2. Conversely suppose that Y = (P, Q) is a best approximation vector such that

1P = 0Qlga < M(Z).

If a nonzero vector

Z—Mg(g)eC(X),

|V = 0U||ga < ||P = 0Q]|ga < M(Z7),

then we have

hence U is not zero. We also have

1Ullge < 1Qlge
hence by definition of best approximation denominator, we have |Z| = ||U|lg. = [|Q|lg = | X]|_
and |Z], = ||V = 0U||ga = [|P — 0Q||ga = | X|,, hence X is minimal. O
The classical inequality
An+1Tn § 1

which holds for the one-dimensional continued fraction expansion of a real number can be
extended to minimal vectors of lattices or to best approximation vectors. This fact is well
known but it is worth stating it.

Lemma 6. There is a constant Cy . depending only on c and d such that for all lattice A € L.
or all matrices 0 € My, and all integers n, we have

Grpa(M)r(A) < Cg,
G 1(0)75(0) < Cae.

Proof. Just use the first Minkowski Theorem with the cylinder defined by two consecutive
minimal vectors or best approximation vectors. L]

The classical inequality
Ini2 = 2qn
which holds for the denominators of the one-dimensional continued fraction expansion of a real
number can be extended to minimal vector of lattices. This inequality has already been ex-
tended to best simultaneous Diophantine approximations, see [16], [17] and [11]. The extension
to minimal vectors of lattices is straightforward.

Lemma 7. There is a posilive integer constant A = A(d,c) such that for any A in L4y, and
any n € Z, if Xp,(A), Xpi1(A), ., Xnra(A) exist, then

an (A>,

[\)

QnJrA(A) Z

Tn—i—A(A) S



Proof. Let A be an integer constant such that if A points (x1,1), ..., (x4, y4) are in the product
of balls Bra(0,7r1) X Bgre(0,72) with 71,79 > 0 then there exist two indices ¢ # j such that
|z; — 2j|lga < %7‘1 and ||y — yjllge < %7"2. With this choice of the constant A, if £ > A is a
positive integer such that g, x(A) < 2¢,(A), then there are two integers 0 < i < j < k such

that the vector X,,4;(A) — X, (A) satisfies both conditions

{ | X (M) = Xori (M), < 37a(A)
[ X (M) = Xori (M) < 5200(A)

which contradicts the definition of X,(A). The same way of reasoning leads to the other
inequality. O

We shall use several times the following very simple Lemma which is a consequence of the
following observation. For any minimal vector X of a lattice A in R%*¢ and any t € R, ¢, X is
a minimal vector of the lattice g;A. It follows that

Lemma 8. Let A be in Ly, and let t be in R. The sequence of minimal vectors of the lattice
gel\ is (g1 (Xn(A)))n-

4 The surfaces S and 5’

We assume that R is endowed with the norm

I, ) lgare = max{|[z]lga s [[Yllge -

The main idea of the proofs of Theorems 1 and 2 is to induce the flow g; on the surface
{A S £d+c : /\Q(A) = )\1(/\)}

where A;(A) and A2(A) are the first two minima of the lattice A associated with the above
norm. And then, to use Birkhoff ergodic Theorem with the first return map associated with
the flow g;. For technical reason it is better to slightly change the surface. For instance the
above set is not a submanifold of L4, .. It could have some “branching points” while a slightly
smaller set is clearly a submanifold, see Lemma 11. It will be convenient to use two surfaces S
and S’ for the proof of Theorem 1. These two surfaces are very similar; we state all the results
we need for both surfaces but we only perform the proofs for the first surface S.

4.1 Definition of S

The surface S is the set of lattices A in L4, such that there exist two independent vectors
vy (A) and v¥(A) in A such that:

. ‘vls(A)L_ and |v5 (A)|_ are < [P (A)|_ = |vg(A)

+7
e the only nonzero points of A in the ball Bgatc(0, A\;(A)) are £v5(A) and £of(A).

Observe that for A in S, v5(A) and v7(A) are unique up two sign and are consecutive
minimal vectors of A.

Since +v5 (A) and 07 (A) are the only nonzero points of A in the ball Brai(0, A1 (A)), S is
included in the set

(A€ Lape: M(A) = Aa(A)}.



4.2 Definition of S’

The surface S’ is the set of lattices in L4, such that there exists a vectors wj (A) in A such
that:

e the only nonzero points of A in the ball Bgatc(0, A (A)) are +w§' (A),

e the ball Braic(0, \;(A)) is equal to the cylinder C(wy (A)).

Observe that wj (A) is unique up to sign and is a minimal vector of A.

4.3 Lattices bases and minima

We shall need the following results about lattices.

Lemma 9. Suppose R" is equipped with any norm ||.|. Let A be a lattice in R™ and let vy, vy
be two independent vectors of A such that ||vi|| = A (A) and ||vs]| = Aa(A). Then Zvy + Zvs is
a primitive sub-lattice of A unless (v +v2) € A and |Jv1]| = ||Jva|| = ||3 (v1 + v2)]|-

Proof. Consider the parallelogram P defined by the vectors v; and vy. Let v be an element of A
that belongs to the interior of P. If v is not in the segment joining v; and v, then the distance
from v to either 0 or vy 4 vy is of the form |[t;v; + tavs|| for some positive real numbers ¢; and
to with t; + ¢ < 1. Hence this distance is < ¢ ||vy|| + t2 ||v2|| < A2(A) which contradicts the
definition of A\y(A). If v is in the the segment joining v; and vy but is not the point %(vl +vy) then
the distance from v to either vy or vy is of the form ||¢(v; — vo)|| with ¢ < 3 which implies that
this distance is < A2(A), again a contradiction. If v = £ (vy +vs), we have [[v]| < 3(||lo1]| + [Jv2])
which is < Ag(A) unless ||v1|| = ||va]| = [|v]| - O

It follows that when the norm is strictly convex, the sub-lattice Zwv,+Zuv, is always primitive.
In our setting despite that the norm is not strictly convex it is possible to use the above Lemma.
With our choice of the norm on R+, the triangle inequality is strict for two vectors one inside
the “top” of the cylinder Bga+c(0,7) and one inside the lateral side of Bga+c(0,7). Therefore,

Corollary 10. Let A be in S. Then the vectors v (A) and vi(A) associated with A are the first
two vectors of a basis of A.

4.4 Geometric properties of S and 5’

Lemma 11. S and S’ are a submanifolds of Lq,. of dimension (d + c)? — 2, transverse to the
diagonal flow g;.

Proof. Let Ag be in S and call v§(Ag) and v7(Ag) the two vectors provided by the definition of
S. By Corollary 10, v5(Ag) and v{(Ag) are the first two vectors of a basis (by, ..., bgre) of Ay.
We can find a small enough positive real number e such that for any (vy, ..., v44.) in the open
set

W = BRd+c(b1,€) X ... X BRd+c(bd+c,€),

e the matrix M = M (vy, ..., v44.) the columns of which are the v;, is in GL(d + ¢,R) and
the sets WP, P € SL(d + ¢,Z) are disjoint,

10



e the vectors +v; and +wv, are the only nonzero vectors of the lattice A = MZ¢ in the
cylinder C(vy,v9),

e |vi]+ >0,
e ||v|| > [Jv1]| and |lve|| for all v in A\ {0, Loy, Fuvo}.
Consider the map

f:W =R
M = (v1, e Vaye) = (f1(M) =det M, fo(M) = |1)1|3r — |v2|2_)

Then a lattice A = MZ¥" with M € W, is in S iff f(M) = (1,0). To prove that S is a
submanifold, it is enough to show that the differential D f(M) is onto at every point M in W.
The differential of f; is given by

D fo(M).(wy, ..., ware) = 207w — 205wy .

The linear map D fo(M) depends only on w; and ws and since v # 0 for all M in W, D fo(M)
is never the zero map. The differential of f; is given by

d+c

D fi(M).(wy, .y wae) = Y (=1 A jwi

4,j=1

where w; = (w;)i=1,..d+es J = 1,...,d + c and A, is the (4, j)-minor of the matrix M. Since
det M # 0, one at least one of the minors A;3, ¢ < d + ¢, is not zero. Therefore the linear
Dfi(M) is not zero and depends on ws. It follows that the two linear maps D f;(M) and
D fo(M) are linearly independent for all M in W which implies that S is a submanifold of L4
To show that the flow is transverse to S, we have to check that for a matrix M = M (vy, ..., v41c)
in W such that f(M) = 0 we have Df(M).(w1, ..., wqrc) # 0 when w; = (cv), —dv; ). Now,
for such w;, D fo(M).(wy, ..., Waye) = 20|vl|i +2d |vy]® > 0, hence Df(M).(wy, ..., wase) is not
Z€ro. O

4.5 Negligible sets

A important ingredient of the proof of Theorem 1 is that, for a given lattice A, the visiting
times ¢, i.e. the times ¢ such that ;A € S, can be read from the sequence (X, (A)),, of minimal
vectors. However, this reading is straightforward only for generic lattices, a small subset of
lattices has to be avoided.

4.5.1 A negligible set N in the space lattices
Let N = Ng,. be the set of lattices A in L4, such that either

e there exist two vectors vy, and v, such that v; # £vy and |vi|, = |va], > 0 or |vy|_ =
|U2|_ > 0,

11



e or there exists a nonzero vector in A lying in the vertical space {0} x R° or in the
horizontal subspace R? x {0}.

Remark 1. All the lattices Ay are in N.
Lemma 12. N is negligible and g; invariant.

Proof. Clearly N is g; invariant and the set of lattices with a nonzero vector in the vertical
subspace or in the horizontal subspace is negligible. So we are reduced to prove that if X # +Y
are two nonzero vectors in Zt¢ the set of matrices M in SL(d + ¢, R) satisfying one of the
equations

MXP — MY =0
or

IMX|> —|MY|> =0
is of zero measure. Firstly, by symmetry, it is enough to deal with one of the equations, say the
first. Secondly, by homogeneity it is equivalent to prove that the set of matrices in My .(R)
that satisfy this equation is of zero measure. Since this is an algebraic equation, it is enough to
prove that there exists at least one matrix M such that ]MX\%F — |MY\i #0. If X and Y are
proportional just choose a matrix M such that |M X|, # 0. Otherwise, first choose a vector Z
in the subspace spanned by X and Y that is orthogonal to X. Observe that Z.Y # 0. Next
choose a d-dimensional subspace V of R containing Z and orthogonal to X. A matrix M
the first d rows of which are a basis of V, is such that [M X[, =0 and [MY|,_ # 0. O

Remark 2. A lattice A that is not in N has a bi-infinite sequence of minimal vectors and is in
Sff A (A) = A (A).

4.5.2 A negligible set M in the space of matrices M, .(R)

Let C be a positive real constant and let M = M,;. = M,.(C) be the set of matrices
6 € My.(R) such that either

e there exist two nonzero vectors X # £Y in Z%*¢ with nonzero heights such that My X|, =
|M9Y’+
e or there exist infinitely many pairs X # +Y in Z%" such that |X|_ = |Y|_ # 0 and
|MpX |, , [MpY], <CIX]|_*%
The set M depends on the constant C. Actually, we will only use the value C = Cy,. where
Ci,. is given by Lemma 6.
Lemma 13. M is negligible.

Proof. We prove that M is included in a countable union of negligible sets.

Given X # Y two nonzero vectors in Z*¢ with nonzero heights, consider the set M(X,Y)
of matrices 6 € My (R) such that [MyX|, = |[MpY|,. In order to show that M(X,Y’) has zero
measure it is enough to show that the polynomial

£(0) = |MoX | — [ MpY 2
= | X lloe — IV llma — 2(X4.0X_ — Y, .0Y2) + [|0X_ |50 — [|0Y_ |7
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is not the zero polynomial.

If X # 4Y_, we can choose 6 such that || X _ |24 — [|oY_||3> # 0. With this choice, the
one variable polynomial P(t) = f(tfy) has a nonzero degree two monomial which implies that
the polynomial f is not the zero polynomial.

If X_ =Y_ (the case X_ = —Y_ is similar), f(0) = |X|i - |Y|i —2(X; —Y,).0X_. Since
X_#0, themap ¢ : 0 € My.(R) — 6X_ € R? is onto. Tt follows that we can choose 6 such
that #X_ = X, — Y,. With this value of #, we obtain f(0) — f(—6) = —4|X, —Y,|* # 0
which implies that the polynomial f is not the zero polynomial. It follows that M(X,Y) is
negligible.

Consider now, for a positive integer n, the set M,, of matrices § € M, .(R) such that there
a pair of linearly independent vectors (X,Y) in Z4¢ x Z4¢ such that n < |X|_, |[Y]_<n+1
and .
IMpX]|, , |MpY|, < C|X|27.

We want to prove that the set of matrices 6 that are in infinitely many M,, is negligible. We
can move in the space My .(R/Z) and consider instead the set 7, of 6 € M .(R/Z) such that
there exist ¢, ¢ € Z¢ linearly independent with n < ||¢||gc, [|¢|lge < 7+ 1 and

d(q,72%), d(6¢,Z%) < Cn~a.

For ¢ fixed, the measure of the set of § € My.(R/Z) such that d(fq,Z°) < Cn~d is ag.n"°
where the constant ag. depends only on C and the dimensions. When the inequality holds
simultaneously for two linearly independent integer vectors ¢ and ¢’, the measure is the square
of ag.n~°. It follows that the measure of 7, is bounded above by

2c

un = card{(q,q') € Z° x Z¢ : n < ||qllge » ¢'[lge <1+ 1} x af 0%

By Borel-Cantelli, it is enough to prove that the ¥,u, < co. Now card{q € Z¢ : n < ||q
n+1} < n° !, hence

Re <

Uy K n=2

and we are done.

4.6 Visiting and return times

Let A be in L4, .. By definition of S, when g,A is in S, v5(g;A) and v{(g;A) are two consecutive
minimal vectors of g;A. Therefore,

{ Ug(gtA) = g: Xi(N)
v (geN) = g Xps1(A)

for an integer k. Hence e | Xy (A)|, = e % | X}, 1(A)|_ which implies

+
1 In Qk+1 (A)

t:d+c ri(A)

13



It follows that the set of real numbers ¢ such that g;A € S is included in the set

409 = = e Gy

. keZ}.

It can happen that some values t;, are skipped, but in that case, A must be in A/. So, when A
is not in NV, g, A € S iff t € V5(S). For the surface S’, the same results hold with

1 qr(A)

In

VA(S,):{%:d—f—c e (M) :

keZ}.

[t follows that for almost all A, both the backward trajectory (g:A):<o and the forward trajectory
(g:\)i>0 visit the two surfaces S and S’ infinitely often. Therefore the first return/entrance
times in .S and 5’,

7(A) =inf{t > 0: g:(A) € S} € Ry U {00},
7(A) =inf{t > 0: g;(A) € S’} € Rog U {0},
are finite almost everywhere and the first return/entrance maps
R(A) = gr(mA,
R'(A) = grmA
are defined for all A that are not in N.
For an integer n > 1, denote 7,, the n-th return (or entrance) time in S, i.e.

-1

Ta(A) =) T(R(A))

k=0

3

(R°(A) = A for all A in £4.1). It will be convenient to choose the numbering of the sequence
of minimal vectors (X,,(A)) in order to have simple formulas for the return time and the return
map.

Numbering convention: For a lattice A € Lgy., n = 0 is the smallest integer n € Z such
that
[ Xnpa (M) = [ Xn(A)]

when the set of such integers is non empty.

With this numbering convention, for all A is in S, we have

and for all A is in S, we have
Xo(A) = w§' (A).

Moreover when A ¢ S is not in N,
[ X1(A)]- = [Xo(A)], >0,
1 [ X1 (M)
A) = 1
@ = ()

4
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and
gra)Xo(A) = £v5 (R(A)) = £Xo(R(A)).
Let us summarize the above.
Lemma 14. Let A be a lattice in Ly,
1. The set of visiting times in S is included in Vy(S) and the set of visiting times in S’ is
included in Vy(S").

2. Suppose A is not in N'. The set of visiting times in S is equals to Vy(S) and the set of
visiting times in S’ is equals to Vo (S").

For 6§ in M, .(R), we also need to connect the visiting times of the surface S with the best
approximation vectors of 6.

Lemma 15. Let 0 be in My .(R) \ M. Then for all large enough integers n,

1 Qn+1<9)
= 1
W) = e
and ) (9)
/ dn
= 1
WO = e )

are visiting times for the surfaces S and S’ respectively.

Proof. Let 6 be in My (R) \ M. Consider the sequence of all best approximation vectors
(Y,.(0))nen of 6. By Lemma 5, there are integers ny and k such that X, x(Ag) = MyY,,(0) for
all n > ny. Since # is not in M, by Lemma 6 there is another integer ny such that for all
n > ng, the only nonzero vector of Ag in the box C(X,4x(0), Xnir+1(0)) are £X,,41(0) and
+ X, 1 xr1. This means that for all n large enough, the times

1 Qn+1<9) / 1 qn(0>
t.(0) = 1 dt (0)=—-1
0) = goen gy a0 =i
are visting times for the surfaces S and S’. m

4.7 Functions defined on S
Let A be in S. By definition of .S, the functions

vY (A S(A
p,p*:AES—)ln’l( >‘ g( )’+ER>0U{+OO}
1

|vg (A)] (M)
are well defined on S. The next Lemma is easy, its proof is close to beginning of the proof of
Lemma 11 and is omitted.

e
, In
lv

Lemma 16. The functions A € Lg. — [v5(A)|=, [v5(A)|4, [vf(A)|-, [vf(A)|+ are continuous
and thus the functions p and p* are continuous.

The following Lemma is important. On the one hand, it will imply that the functions p
and p* are integrable. On the other hand, it will explain the connection between the Lévy’s
constant Lg. and the average return times on S.

15



Lemma 17. Let A be a lattice in S\ N. Then

= (R + 7 (4))

Proof. Let A be in S\ N. By definition of S, ¢;(A) = r9(A). Hence, by Lemma 14,

7(A)

(d+c)r(A) =1

=

5 Finiteness of the induced measure on S and S’

Fix a measure p on Ly, invariant by the SL(d + ¢, R) action. Recall that p is unique up to a
multiplicative constant. Since S is a submanifold of L4, transverse to the flow (g;)icr there
exists a unique measure pg defined on S by the following property:

For all A in S, there exists a neighborhood W of A in S and €5 > 0 such that for all Borel
subsets V. C W and all 0 < e < gy,

(Ute,e9:V) = eps(V).

The measure pug is the measure induced by the flow. It is well known that the measure ug is
R-invariant.

The flow induces a measure ug on S” as well. Let us prove that these measures are finite.
This is a simple consequence of the next Lemma which will be very important in the proof of
Theorem 24 about the almost sur convergence in M, .(R).

Lemma 18. 1. There exists an integer constant A such that Ta(A) > 1 for all A in S and
Th(A) > 1 for all A in 5.

Proof. Let A be the constant given by Lemma 7?7 about the growth rate of the sequences
(gn(A)),, and (rp(A)),. For all integers k, we have

1 <ln Grari(d) Qk+1(A>> > L Geean (D)
d+c TktA (A) ’f'k(A) d+c qk+1<A)
1
> In 2.
“dtc

Since by Lemma 14, the set of visiting times of A is included in

1 Qr1(A)
A(5) =t dtc ri(A) €7}
Ta(A) > ﬁc In2. Multiplying A by the smallest integer larger thna 4 we are done. O
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Proposition 19. pus(S) and ps/(S') are finite and nonzero.

Proof. Since S is nonempty and transverse to the flow, pug(S) > 0.
Since g is R-invariant, for all k

/ST(RkA>d,uS(A) — /gT(A)dMS(A)7

and by Kac’s return time Theorem,

/S (M) dus(A) = p(Lasr).

therefore,

/ A)dps(A /Z (R*A)dps(A) = Ap(Laye).

o S k=0
By the above Lemma, 74 > 1 on S, hence ug(S) < Ap(Lgr.) which is finite by Siegel’s
Theorem. O

6 Almost sure convergence in the space of lattices

6.1 Consequence of the Birkhoff Theorem

Theorem 20. There exist two positive constants Lq. and Ly . such that for almost all lattices
A in £d+c7

1 1
lim = In g, (A dis = Lg. > 0,
Jim —lng (A) = us(S)/p pus = Lg,
-1 1
lim — In7,(A) = d L. >0,
n1—>nolo n nr ( ) ,U/S(S) /p Hs = Lg .
! 1 1(Laye)
lim —7,(A Ly, + L% ) = .
nl)I]é}OnTn( ) d+ ( dc ,C) [/JS(S)

Moreover, these two constants do not depend on the particular choice of the Fuclidean norms
on R? and R°.

Proof. Tet A be in S\ N. By Lemma 17, 7(A) = 2=(p(R(A)) + p*(A)). Because the spaces
of lattices has finite measure, the return time 7 is in £*(S) and therefore the non negative
functions p o R and p* are also in £!(S). Making use of the Birkhoff’s Theorem with the

functions p and p*, we obtain the almost everywhere convergence of the sums

1 N—-1 1 N—-1
- Rn’ - * o R™
N ;po N ;p °

on S to R-invariant functions. Now the ergodicity of the flow g, implies the ergodicity of the
return map R. Therefore % Z,]j:_ol po R" and + ij 01 p* o R™ converge almost everywhere on
S to the constants

1 / 1
pdus and L = —/p*du :
ns(S) Js© e ps(S) Jo© T

17
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We would like to see that the Birkhoff sums converge to the same limits almost everywhere in
the whole space of lattices. Let A be in L4, \ (SUN) and let n be a positive integer. By
Lemma 14 and the numbering convention, for all n > 1,

| X1(RM(A))]_

!Xo(R”(A))L
|9mA( ‘

|97 () (X ( )|
| X (A )|,

|Xn—1(A)|_

poR"(A) =1In

=1In

=1In
and

- Xo(R"(A))],
p o R"(A) = In )

‘XI(RH(A ‘Jr
|X (A)]

=ln—— "+

+

as well. It follows that if the Birkhoff sums + SN poR™(A) and %~ SN p* o R*(A) converge
to Lg. and Ly ., then

1
lim N Ingn(A) = L,

N—oo

]\}1_13;0 WllnrN(A) =Lg..
Now the image by the map R : L. — S of a subset of nonzero measure in L4, is a set of
nonzero measure in S, therefore the sums % ij:l po R" and + Z _, p* o R" converge almost
everywhere in L4, to Ly, and Ly ..

By Lemma 7, we know that the sequences (¢,(A)), and (r,(A)™!), have at least exponential
growth rate; therefore, the constants Lg. and Lj . are > 0.

By Lemma 17, for all A in S\ N and k € N,

1

Tt A) = 71(A) = —— (R0 + " (R(A),
hence ) |
nlggo ETH(A) = d+ C(Ld7c + Ld,c)

almost everywhere.
Finally, let us proof that the constants Ly, and Lj . do not depend on the Euclidean norm
on R? and R¢. For a matrix Ag in SL(d,R) and a matrix A, in SL(c, R), let denote A the matrix

Ag 0
A—( od AC>€SL(d+c,R).

18



Since the action of A on L, . is measure preserving,

1
lim —Ing,(AA) = L,

n—oo N,

. —1 .
nh_)rglo — Inr,(AA) = Ly,
almost everywhere L;,.1. Now a vectors AX in the lattice AA is minimal iff X is a minimal
vector of the of the lattice A with respect to the new Euclidean norms ||.||, ge and .||, g
where

[ull g ga = [[Aul[ga , and ||U||A,]Rc = [|Av||ge -

Since up to multiplicative constants, all the Euclidean norms are of the above form, the con-
stants L. and Lj;,c do not depend on the Euclidean norm on R¢ and R°. O

6.2 A consequence of Borel-Cantelli Lemma

Proposition 21. With the notation of Theorem 20 we have
CLd7c = dL;kZ’C.

Proof. The inequality cLg. < dLj . is easy to prove. By Lemma 6, for all lattices A in Lg.
and all n, we have ¢5,,(A)ré(A) < Cy.. Hence for a lattice A such that

1
lim —Ing,(A) = Lg.

n—oo M
=1 .
a2 nrn(A) = Lo,
we have,
1 n A 1 n A 1 (A d A
¢Lg. —dLy, = ¢ lim —2 (A) +d lim nra(d) o @) () <0.
7 n—roo n n—00 n n—00 n

The converse inequality uses Borel-Cantelli Lemma. Let ¢ :]0, 00[—]0,00] be a decreasing
function such that Y, ., ¢(n) < oo, for instance ¢(f) = ;& with a > 1. Since for such a
function ¢, lim infn_m%ln ¢(n) = 0, the inequality c¢Ly — dL > 0 holds provided that for
almost all lattices A, we have ¢¢(A)rd(A) > ¢(n)4* for n large enough. Let K be a constant
that will be chosen later. For each integer n > 1, consider the set A, of lattices A in L4, . such
that

M(A) < Ke(n)

and the set B, = g, A, where t, = L(Inp(n) —n). It is well known that the function A7’ :
Laic. — R is integrable, see for instance |3| p. 27 (actually, the only important fact is that a
positive power of A\[! is integrable). Making use of the Markov inequality, we obtain

1(Bn) = p(An) < M < ¢(n).

Ke(n)
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Therefore, by Borel-Cantelli Lemma, the set B of lattices A in L4, such that A € B, for
infinitely many integers n, is negligible. Suppose now that A is a lattice such that ¢¢(A)rd(A) <
©(n)?*¢ for infinitely many n. For each integer n > 1, set k,, = k,(A) = |[Ing,(A)|. By Theorem
20, for almost all lattices we have k,, < (Lg.+ 1)n for n large enough. Therefore for almost all
lattices, for n large enough, if ¢ (A)ré(A) < ¢(n)* ¢ then the vector gt_k: (X, (A)) satisfies both

Gk (X, (A)]| = ra(A)ef ottt

p(n) ) !
< ok, < Ko(ky,
= P (e + ) Pl)
for some constant K depending only on ¢ (we use that ﬁ is bounded above which is

1

obviously true when ¢(t) = ) and

G (Xa(A)] = au(W)e o) < eplh,) < Kip(ky).

Thus there are infinitely many n such that A € By, . Since the sequence (k,), goes to infinity,
A € B. Tt follows that for almost all lattices A, ¢5(A)rd(A) > p(n) for n large enough and we
are done. O

As an immediate consequence of the previous Proposition and of Theorem 20 we have:

d / d X p(Lay1)
Lg.= T dpg = ———
e us(S) ST T T us(9)

Corollary 22.

7 Parametrization of S when c=1

This section is not necessary neither for the proofs of Theorems 1 and 2, nor for sections 8 and
9.

The aim is to show that the computation of the constant L, is theoretically feasible in the
case ¢ = 1. However if the case d = 1 is easy (see below), the case d = 2 is already difficult.
It is possible to give an integral formula for L,;. However, we are not able to compute the
integral, only a numerical estimation of the integral has been carried out. An exact description
of S when d > 3 seems to be rather difficult.

In this section we assume ¢ = 1.
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7.1 rkN decomposition

In this subsection we give a parametrization of a set of lattices that contains S.

Let A be a lattice in S and let v§(A) = u; and v¥(A) = uy be the two vectors associated
with A by the definition of S (see the definition of S section 4.1). When d > 2, we suppose
these two vectors have non negative heights and when d = 1, we only suppose that uy, has a
nonnegative height. Since u; and uy are independent shortest vectors, by Corollary 10, they
are the first two vectors of a basis of A. Thus, there is a matrix M € SL(d 4+ 1,R) defining A
the first two columns of which are the vectors u; and us.

When d = 1, using the scaling factor r = |ui|, = |ug|_ > 0, we can write

M =rN,
where N is in the set U; of 2 x 2 matrices such that

det N > 0,
N1 =MnN22 = 1,

]n2,1|, ‘”1,2\ < 1.

When d > 2, let denote (ey, ey, ..., e411) the standard basis of R4, Using the same scaling

factor r = |uy|, = |ug|_ > 0 and an orthogonal matrix k that fixes ez and sends e; onto
%ul,—ﬂ we can find a matrix N = (niVj)lsz"de_H such that
M =rkN,
det N > 0,
nig = Nay12 = 1> ngp11 = [w|_ >0, (2)
[(n12, s na2) |lga < 1, (3)
Ng1=...=MNgqg1 = 0. (4)

When d > 2, k is chosen in the group
Kd = {k € SO(d+ 1) . k€d+1 = €d+1}-

and using the decomposition of a d x d matrix in a product of an orthogonal matrix with
positive determinant and of an upper triangular matrix we can even suppose that

n;; =0, forall 1 <j <i<d. (5)

For d > 2, let denote Uy the set of (d+ 1) x (d+ 1)-matrices such that (2), (3), and (5) hold
((5 implies (4)).
Since det M = 1, the scaling factor » must be equal to (det N)fﬁ. Puting K = {1}, for
all d > 1, the map
(k,N) € Ky x Uy — (det N)”#1kN

provides a natural parametrization of a subset ¥ in SL(d + 1,R) the projection in L4y of
which contains S. The main problem is now to find which of these couples (k, N') are such that
rkNZ! € S and to select a fundamental domain in this set of couples. This problem reduces
to finding the set of matrices NV such that

21



o N c Uy,

e The first two columns u; and us of N are in the unit ball Bra+1(0,1) and are the only
nonzero vectors of the lattice NZ4*! in this ball,

then select a fundamental domain in this set of matrices V.

This is easy when d = 1 and doable when d = 2. When d = 1, it is even possible to find the
first return map R.

Another issue is to find the measure pug on S induced by the flow ¢, and the invariant
measure p of L;.1. This comparatively easier issue can be performed for all d without knowing
explicitly S.

7.2 The induced measure g
Consider the manifold V; = Ryy x Rx Ky x Uy and the submanifold
W={(At,k,N)eVy:t=0, A=1} = {1} x {0} x K4 x Uy.
together with the maps
F:V;— GL(d+ 1,R)

A d+1
. (A,t,k’,N) — (m) gtk'N

and F : V; — GL(d + 1,R)/SL(d + 1, Z) defined by
F(At k,N) = F(A,t k, N)Z
By the discussion of the previous subsection, F provides a parametrization of S:
S c EFW).

We would like to compute the measure pg in the coordinates (1,0, &, N). The submanifold W
is equipped with the reference measure

Hi, @ Au,

where Ay, is the Lebesgue measure on Uy and pug, is the invariant measure on Ky associated
with the invariant volume form v on K, that is dual to the exterior product of the invariant
vector fields generated by the standard skew symmetric matrices (4; ; = E;j — Eji)1<j<i<a. The
induce measure pg can be expressed with the parametrization F, we give without proof an
explicit formula in next Proposition.

Proposition 23. Assgme d > 2. Suppose that D is an open subset of W such that F(D)c S
and the restriction of F' to D is one to one. Then the image by F' of the measure

d—1
1 d+1 d—j
1D (det N) (gn],] ) 120:¢ ® )\Ud

is the restriction of ps to F(D).
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Remark 3. Recall that n;; = 1 in the above formula.

Remark 4. When d = 1, the above measure has the density
1

(1 - 712,1”1,2)2.

f(N) = f(”2,1,n1,2) =

with respect to the Lebesgue measure on the two dimensional set U; of matrices N.

7.3 Determination of the surface S, c=1,d=1
We already have a map

U1 — ;CQ

N = (det N) "z NZ>

that sends U; onto a set that contains S. By definition of S, the image of a matrix

. 1 nio2
N = < Mo 1 ) e U;

is in S iff the only nonzero vectors of the lattice A = NZ? in the ball Bgi+1(0,1) are the two
columns of N up to sign. We obtain that A € S iff

e )< ]ng,ll, ‘nLQ‘ < 1,
e the signs of n; 5 and ny; are opposite.

So the map F defined on |0, 1[2x{—1,1} defined by

1 1 —€XT 2
. Z
(:E,y,e) (1 —f—l‘y)l/Q ( €y 1 )

provide a parametrization of S and it is easy to see that F'is a bijection. By Remark 4, with

these coordinates, the function
1

(1 +zy)?

is density the measure pg with respect to the Lebesgue measure. Therefore pug(S) = 21In2.
With the Siegel formula (|26]) and Corollary 22, we obtain the Lévy’s constant

p(Lare) _ C(2) 7
ps(S)  2In2  12In2’

f<x7y7€) =

Ly =
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7.3.1 Determination of the first return map, c=1, d=1

1 1 —ex 9
A=Flay.e= (1+xy>1/2(y 1 )Z

be in S. By Lemma 14, to find the first return R(A) in S, it is enough to find the minimal
vector Xp(A). Then R(A) is given by g, (A) with

=3 ()

By corollary 10, the first minimal vectors X(A) and Xl(A) form a basis of A. The minimal
vector Xy(A) is the vector of the form X = aXo(A) +bX1(A) in the strip [ X[, < [X1(A)|, ==
with a,b € Z, and with the smallest height. It is not difficult to see that

Xo(A) = Xo(A) + X (A).

Let

4

So we obtain R(A) = F(2',y/,€) where

€ = —¢€
1

J— —

e

y = !
y+ 2]

and we see that return map R is a two-fold extension of the natural extension of the Gauss
map.

7.4 Value of Lévy’s constant when d =2 and c =1,

An exact description of S is possible when d = 2 and ¢ = 1. Together with the expression of
the measure pg in Proposition 23, this lead to a closed formula for Lévy’s constant as a seven-
tuple integral of an algebraic function over an union of domains the boundaries of which are
algebraic surfaces of degree at most two. We are not able to compute this seven-tuple integral.
However using Octave, Seraphine Xieu (see [29]) has compute a numerical approximation of

Levy’s constant
Loy = 1.135256974 . ..

This can be compared with the one dimensional Levy’s constant

Ly = 1.186569111 . ..

8 Almost sure convergence in M, .(R)

8.1 A general result
Recall that H< is the subgroup of SL(d + ¢,R) defined by

He—{heSL(d+eR): h— (g g>}
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with A € GL(d,R), B € M.4(R) and C' € GL(¢,R). We say that a function f : L4y, - R
is uniformly continuous in the H<-direction if for all € there exists 5 > 0 such that for all
A € Loy and all h € By (Iupe, B), |F(AA) — F(A)] < e.

Theorem 24. 1. Let ¢ : S — R be a function continuous almost everywhere on S. Suppose
there exists a non negative function f : Lqi. — Rso that is continuous, uniformly continuous
in the H<-direction, integrable and such that |¢| < f on S. Then,

/fd,us < 400

s

and for almost all 6 in My .(R),
lim lnz_igoo]%k(/\g) _ /gpdus.
n—vo0 1 £~ wus(S) Js

2. The same result holds for S’ instead of S

We can formulate Theorem 24 for a general surface S. The assumptions about S are:

e S is a co—dimension one submanifold transverse to the flow,

e the number of visiting times in a time interval of length 1 is bounded above by a universal
constant A (Lemma 18),

e Lemma 25 below holds for S.

The other assumptions and the conclusion are the same as in Theorem 24.

For a compact subset K of the submanifold S and § > 0, let denote
U(K,0) ={g:hA:t€[0,1], h € By_(lare,0), A€ S\ K}.

Lemma 25. For all ¢ > 0, there exists a compact subset K in S and 0 > 0 such that
wU(K,d)) <e.

This Lemma also holds for S’ and is proven below only for S. This is the key Lemma
because it explains that the part of S near its “boundary” is not relevant.

Next Proposition is an important step toward Theorem 24. An example shows that with-
out some assumptions about the boundary of S such as Lemma 25, neither Theorem 24 nor
Proposition 26 hold.

Proposition 26. Let ¢ : S — R be a bounded continuous function. Then for almost all 6 in
Md,C(R);

n—1

1 1
lim — o RE(Ay) = / dus.
n—)oon;(p ( 9) HS(S) 5'(’0 Hs
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8.1.1 Auxiliary Lemmas

We will need three Lemmas the proofs of which are omitted. The first one only use that S and
S’ are transverse to the flow together with the inverse mapping Theorem.

Lemma 27. For all compact subset K in S (orin S'), there exist a and n > 0 such that

- the map (t,\) — g;\ is one to one on [—a,a] x K,

- for all h € B(Igie,n) and all A in K, there exists an unique t = t(h,\) € [—«, a] such that
g_+hA €S.

- the maps o : (h,A) — t = t(h,A) and 7 : (h,A) — g_hA\ are continuous on B(lgic,n) X K
and the values of T are in [—a/4, o /4].

The second Lemma is a purely theoretical measure result.

Lemma 28. Let X and Y be locally compact second countable metric spaces. Let ux and py
be two measures on X and Y finite on compact subsets. Suppose ¥ : X — Y is a continuous
map such that every y in'Y has at most N preimages and such that for all x in X there exists
a compact neighborhood w, of x with the following property:

- 15 one to one on wy,

- the image by v of the measure 1., p1x is the measure Ly, )y -

Then for all nonnegative measurable function f:Y — R,

/Xfowdux SN/yfduy.

The last Lemma is an easy consequence of the previous Lemma and of the definition of the
induced measure pg.

Lemma 29. Let U be an open subset in Ly . such that for all A in U, g;A € U for all t in a
time interval Iy of length 1 containing 0. Then

ps(UNS) < 4ApU)

where A is the mazimum number of entrance times in S of a flow trajectory during a time
interval of length 1 (see Lemma 18).

Remark 5. The constant 4A is certainly not the best one.

Remark 6. The assumption U Borel subset should be sufficient.

8.1.2 An example

We want to construct a co-dimension one submanifold V' in L;,. transverse to the flow g;
together with a bounded continuous function ¢ : V' — R such that for a set of positive measure
of § € My.(R), the sequence %Zz;é ¢ o RY.(Ay) does not converge to W;(V) [y wdpy where
Ry is the first return map in V' and py is the invariant measure induced by the flow. The idea
is the following. Take V' an open set in S. Then puy is the restriction of ug to V. Suppose that

the open set V' can be chosen in order that for all § € M, .(R), and all £ > 1,

Ry (Mg) = R§(No)(= R*(A)).
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Then if ¢ : S — R is a non negative continuous function not identically zero with support
included in V', the sequences

_ZSOORVAG ngoRSAg

converge to the same limit which cannot be equal to both fs wdis and fv pdpy =

[ wdus provided that pg(V) < pg(S). So we are reduced to constructmg V
6bserve that Theorem 24 implies that for such a V, ¢ = 1y is not almost everywhere
continuous on S which means that the boundary of V' in S has positive measure. Moreover, it
shows that the assumption about the continuity of the function ¢ in Theorem 24, cannot be
dropped.

8.1.3 Construction of V

Consider the set T of lattices Ay such that the coefficients of 0 are all in [0, 1]. Tt is a compact
subset in L. containing all the lattices Ag. Denote W, the open ball B(I.,¢) in SL(d+ ¢, R).
We consider the open sets

Un(e) = U g (W.T)

t€n,n+1]

and for a sequence (g,)nen of positive real numbers, we consider the open set

U:U 5nn6N UU€n

neN
Take V =SNU. For all t > and all 0, g;Ag = g:14..M\g is in U, hence for all k£ € N, we have
R5(Ag) = Ry (Ag).
So we are reduce to show that when the sequence (g,), is small enough,

ps(V) < ps(S).

By definition of U, (), if A = g;gA\g with t € [n,n + 1], g € W. and Ay € T, then

9s9190g € U, ()

for all s in the interval [n —¢,n + 1 —t]. So U satisfies the assumption of the Lemma 29 and
therefore

ps(U N1 S) <44 pUn(en))

neN

Using that g:gA = gn(9r—ngg—(t-n))gi—n\, We see that

Un(e) = {9kt € [nn + 1], A€ W.T)
C goWeo{gsA: s €[0,1], A € T}
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where €’ is such that g;W.g_s C W. for all s in [0, 1]. Furthermore, the compact set {gsA :
s € [0,1], A € T} has zero measure because it has dimension cd + 1 which is < (¢ + d)? — 1.
Therefore

lim p(Wer{gsA = s € [0,1], A€ T}) =0,

which implies
lim 11(Un (€)) = 0.

So there exists a sequence (€;,),en such that

S U (en)) < £m(S)
4A

neN

and for such a sequence, the sets U = U,enUy(e,) and V = U N S are the ones we are looking
for which ends the construction of a counter-example to Theorem 24 without assumption about
the boundary of S.

8.2 Proof of Proposition 26

Let ¢ : S — R be a continuous bounded function.

Let ¢ be a positive real number, let K and ¢ be associated with ¢ by Lemma 25, and « and
71 associated with K by Lemma 27.

Preliminary observations. Let (an)nen be a decreasing sequence of reals numbers in |0, 7|
tending to zero and set L,, = B(Ij..,a,) X K. Since the intersection of all the compact sets
L,,,n €N, is Ly = {l4s.} X K and since the map ¢ (g, A) = ¢(7(g,A)) — ¢(A) is continuous,
we have

ng(ﬂﬁ(Lan)

Therefore, for n large enough ¥(L,,)
all A € K and all g € B(Iy4, ),

Y(Mn>0La,) = ¥ (Lo) = {0}.

C| — €, e[ which implies there exists 5 > 0 such that for

p(m(g, A)) —p(A)] < e. (6)

Finally, let v > 0 be such that for all s > 0 and all h € By_ (g4, 'y)B,ftl< (Lgte,7),

d(gshg_s, lare) < min(d, B, n).
For T'> 0, A a lattice, and E a subset of S, denote
I(T,AE)={t€[0,T]: ¢\ € E}.

For almost all 0 € M, .(R), we can fix hy € By_(Iz4¢,y) such that the conclusion of Birkhoff
Theorem holds for the flot g, or the first return map in S and the lattice hgAy. Observe that
he = hy . depends on €. It is understood that we shall use Birkhoff Theorem in countably many
situations. We fix a sequence ¢, going to zero and for each ¢ = ¢, and we use three times
Birkhoff Theorem and the ergodicity of the flow: for almost all 6,

1
N’(EdJrc)

1t
fim T/ Lu(x.6)(gehoAg)dt = wU(K,0)) <, (7)
0

T—o00
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. 1 1 :u('cd—I—c)
lim — card I(T, hgA = dpus = ———
Jim o car (T, hgAg, S) MS(S)/STS s (8)

where 7g is the first return time in .S, and

1 1
li Ng) = —— .
T card I (T, hyAy, S) Z #laiholo) ps(S) s () ®)

tel(T,hg\g,S)

Let T be positive and let s; < ... < s,, be the elements of I(T, Ay, S\ K), we have
gthoNo = gi—s,(9s,h09-5,)95: Mo € U(K, 0)

for all ¢t € [s;,s; + 1] and we can extract a subsequence s, , .sy S, defined by n; = 1 and
nit1 = min{j : s; > s,, + 1}. Now by Lemma 18, there is an absolute constant A such that
there are at most A elements of I(T, Ag, S\ K) (C I(T, Ay, S)) in an interval of length 1, hence
Ap > m. Therefore, by (7)

m T4+1
1 <p< / Lu(x.s)(gehoNg)dt < 2(T + 1)e
0
and hence
card [(T, Ay, S\ K) < 3ATe (10)

for T large enough: T > T (Ag,e). We will also need to bound above the number of elements
of I(T, hoMp, S\ K) and making use of (7), the same way of reasoning leads to the same result

for T > T'(Ap,¢).
Heart of the proof. We want to compare

1
1= card I (T, Ay, S) Z #(gke)

teI(T,Ag,S)
with )
Yo = hoA
27 card I(T, holg, S) Z #(giholo)

teI(T,hoMg,S)

because by (9), this latter sum tends to MS;(S)L[S wdus when T goes to infinity. We split

D tel(TAy,5) M TWO SUMS D7,y gy and 3o ppa, o\g)- Observe that for ¢ € I(T), Ay, K),
gtheNo = (gihgg_1)gi\g is of the form gA with ¢ € B(Izie,n) and A € K, this allows
to use Lemma 27. We use the notation of Lemma 27 and for ¢t in I(T, Ay, K), we denote
t' = o(giheg_+, g:\g). By (6), we have

Z o(gi\g) — Z o(m(geheg—i, g1l\g))| < ecard I(T, Ag, K).

tel(T,Ap,K) tel(T,Ag,K)

Now,
T(gthog—t, :\o) = g—v gihog—1giho = gi—vholg
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hence
S wlghe) = D @lgivhely)| < ecard I(T, Ag, K).
tel(T,Ag,K) tel(T,Ag,K)

Observe that the map ¢ € I(T, Ay, K) — t — 1’ is one to one because t' € [-F, ] and the gap

between two visiting times of K is > «. Observe also that ¢t —t' € I(T, hy/Ag, S) except possibly
for the first and the last element of t € I(T, hyAy, S). On the one hand, it follows that

Z ©(g:\g) — Z ©(gtholo)

tEI(T,Ag,S) tEI(T,thg,S)
< ecard I(T, Ay, K)
+ |l (card I(T', Ag, K\ S) + card I (T, hgAg, S) — card I(T, Ag, K) + 2).

On the other hand, it follows that

card I (T, hgAg, S) > card I(T, Ay, K) — 2
and the same way of reasoning leads to

card I (T, Ay, S) > card I(T, hgAp, K) — 2.
Making use of (10) and (11), we obtain

—2 < card I(T, hgAp, S) — card (T, Ny, K) =
card I(T, hgAg, S) — card I(T', hgAg, K)
+ card I (T, hgNg, K) — card I(T, Ay, S)
+ card I(T, Ay, S) — card I(T, Ay, K)
< 3ATe + 2+ 3ATe = 6AT= + 2,

hence (using (10) once again)

D elahe) = Y plgihele)| < ecard I(T, Ag, K) + (94T + 2) [|p]|
tGI(T,AQ,S) tEI(T,thg,S)

for T > T'(Ap,c). We obtain

|card I(T', hoAg, S) — card I(T, Ay, S)| < |card I(T, hoAg, S) — card I(T', Ay, K)|
+ [card I(T, Ap, S\ K)|
< 9ATe + 2

1 (L)
2 ps(S)”

as well. Relation (8) implies that card I(T, hyAg,S) > aT for T > T(Ay,€) where a =

30



All together, for T' > T'(Ag, ), we obtain

_card I(T, Ay, 5)
card I(T, hgAy, S)

card I (T, Ay, S) — card I(T, hyAy, S)
card I(T, hgAy, S)

X0 — 34| < ‘22 |31

1
< p—
= card I(T, hghg, S) Y. elahede) = Y elghe)

tE[(T hgAg,S tel TAQ S)
card I(T, Ay, S) — card I( T thg, ||
card I (T, hgAy, S

< ecard (T, Ng, K) + (9AT5+2) el 9AT€—|—2)H<pH

- card I (T, hyAyg, S) card I (T, hyAyg, S)
L8AT ||¢| 4ol

< el S

se(l+ al )+ al

which is < € when 7' is large enough.

8.3 Proof of Theorem 24

Step 1. Let us show that the restriction of f to S is integrable with respect to ug.

We use Lemma 28 with X =]0,1[xS, Y = L4y, the map 9 :]0,1[xS — L defined by
¥(t,A) = g\, the measures uy = dt ® ug and py = p, and the function f. By definition of
the induced measure, we know that the image of the restriction of dt ® g to any small enough
open subset w is the restriction to 1(w) of the invariant measure p on L4,.. Now, by Lemma
7 each element of L4, . has at most A 4 1 i-preimages, therefore by Lemma 28

1
/0 /S FlgNdpsdt < (A+1) [ fdu.

Ld+c

Since f is uniformly continuous in the H< direction, there exists A > 0 such that for all A, and
all t € [0,A], f(g:A) > f(A) — 1. Therefore

/ / — Ddpgdt < (A+1) fdu,
£d+c

which implies [, f(A)dps < ps(S) + 4 fEd+c fdp < +o0.

Step 2: Tt is enough to prove the Theorem for continuous functions .

Indeed, since ¢ is continuous almost everywhere and since |p| < f with f continuous and
in L'(us), for all positive integer p, there exist two continuous functions ¢, and ¢ such that

—f<e, <p<gr<f

1 _ 1
/sodus——S/sopdusé/s@;dusS/@duva—.
S p S s S p

and
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Therefore, if the convergence holds for almost every  for all the functions ¢, and ¢, we have

n—1 n—1

/appd,ug_nhm Z%OR (Ag) <lim inf —ngoR (Ay)

n—oo N,
n—1 n—1
< k < k +
hmpsggo . ZgooR (Ag) nh_g)lo - ZSOP o R*(Ag) = /S‘Pp dpis

which implies that for almost all 6,

n—1

1 RF(A dpis.
nggonZsoo (Ag) = /Sso s

So, we are reduce to prove the Theorem for ¢ continuous.

Step 3.

Writing ¢ = o — ¢~, we can suppose ¢ > 0. Using Proposition 26 with the minimum of
¢ and of a constant M, we obtain for almost all 6,

n—1
1
Jingoinfgkz()(pof{k (Ag) > nh_>nolo - me @, M) o RF(Ay) = M)dpus,

hence, letting M going to infinity, we obtain

1
lim inf — o Rk A / dug.
oo Z 2 9) MS(S) S paps

So we have to bound above the sums 37— ¢ o R¥(Ay).
Since f is in L! there exists ¢ > 0 such that for any measurable subset B in L4 ., we have

wu(B) Se’:/de,uga

This allows to strengthen Lemma 25:

Lemma 30. For all ¢ > 0, there exists a compact subset K in S and 6 > 0 such that
fU(K5 fdp and S7— (U(K 9)) are < e.

N’(Ld+c)

We keep all the choices and the notations of the proof of Proposition 26, and we use Birkhoff
Theorem with one more function:

1
lim —/ J(gehoNo) 1y (i 5)(gehoNg)dt = / fdu < e (12)
1(Lase) U(K.5)

T—oo 1’

so that (7), (8), (9) and (12) hold for almost all .

Since the function f is uniformly continuous in the H<-direction, there exists x > 0 such
that f(hA) > f(A) — 3 for all A and all h € By_(Igse, k). By choosing v small enough we can
suppose that (gshg_s) € By_ (ljie, k) forall s > 0 and all h € By _ (g4, y). Furthermore, there
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exists a positive constant A = A(x) such that g, € By, (lytc, k) for all t € [0, A]. Therefore
for all lattices A, all non negative real number s, all h € BHS(Id+C,7) and all ¢ € [0,A], we
have

F(9e(gshg—s)gsA) > f((gshg—s)gsA) — % > flgsA) —1
and hence
f(girshA) = f(9i(gshg—s)gsA) > f(gsA) — 1. (13)

As in the proof of Proposition 26, let s; < ... < s, be the elements of I(T, A, S\ K). On
the one hand g,heg € U(K,0) for all t € [s;,s; + 1], and on the other hand, for almost all 6,
(10) and (11) hold for T > T'(Ag,e). We can suppose A < 1 and since there are at most A
elements of I(T, Ay, S\ K) (C I(T, Ay, S)) in an interval of length 1, by (13) we obtain

Z SD(QSAG) < Z f(gsAB)

s€l(T,Ag,S\K) s€I(T,Ag,S\K)

m 1 si+A
< Z Z/ (1 + lU(K”g) (gtheAO)f(gthOAG))dt
i=1 Si

k3

A T+1
<m+ Z/ Lu(r.5)(gehoNa) f (gehoNg)dt
0
and with (10) and (12), this gives

A A
g flgshg) < 3ATe + Zng < GZTE
s€I(T,Ag,S\K)

for all T > T'(Ag, €).
We want to bound above

1
Y(T) = A
1( ) card ](T, AG, S) teI(TZA 5 Sp(gt 9)
s 400

with

1
22(1) = hoA
2( ) card [(T, hoy, S) te[(q%/\g 5 (p(gt 60 9)

because this last sum tends to #(S) fs wdus when T goes to infinity. We split ZteI(T’A%S) in
two sums EtGI(T’A%K) and ZteI(T,Ag,S\K)‘ As in the previous proof for T' large enough, we have

(T, hoha, S) — I(T, Ao, S)| < 9AT= +2,

I<T7 h9A07 S) > G,T,

and

Z ©(g:Ng) — Z O(gi—vholg)| < ecard (T, Ay, K)
teI(T,Ag,K) teI(T,Ag,K)
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where ' = 7(gihgg_+, g:\g) is defined in Lemma 27. Taking into account of the first element
tmin and of the last element in I(7T, As, K), the latter inequality implies that

Z o(gilNg) < ©(g1,,...MNg) + Z ©(gr—1holg) + ecard I(T, Ay, K)

tel(T,Ag,K) tel(T, Ao, K)\{tmin }

< p(RAg) + Z ©(gihoNg) + ecard I(T, Ay, K).
tel(T+1,hgAg,S)

All together, we obtain (recall that ¢ > 0)

1 card I (T + 1, hoMp, S) 1
Y1 (T) < =p(RA Yo(T+1
(7)< TSO( o)+ card I(T, Ay, S) 2T+ )+€+cardI(T,A9,S) Z

f (gs AO)
s€I(T,Ag,5\K)

1 card I(T + 1, hgAy, S) — card I(T, Ay, S)
< — A 1 Yo(T+ 1
_T('O(R 9>+( * card I(T, Ay, S) AT+ 1) +¢
1 A
—T

+card](T,A9,S)6A c

1 9ATe +2+ A 6A
< (T +1 — A do(T+ 1 1
< T+ D)+ pelBho) + or— g —o e+ H( +(aT—gATg—Q)A>6

and we are done. [J

8.4 Proofs of Lemma 25
We need an auxiliary Lemma.

Lemma 31. Let E()\,n) be the set of lattices A in Lg. such that there exist two nonzero vectors
X # +X' of A in the open ball Bra+.(0, \) with ﬁ < |‘))<{’|\i < 1+4mn or a nonzero vector X in

the open ball Bga+(0,\) with |X|,. <n. For all A > 0, we have lim,_,o p1(E(X\, 7)) = 0.

Proof. Since lim, o u({\1(A) < p}) = 0, it is enough to show that for all p > 0, u(E(X,n) N
{M(A) > p}) — 0 when 75 goes to 0. Choose a Siegel reduction domain & C SL(d + 1,R).
There is a constant ¢ = ¢(S) > 0 such that for all matrices M in S and all vectors Y in R4t
we have

||MYH]Rd+C > C)\l(A) ’|YHRd+C ’

where A = MZ4*¢ (this inequality holds for all norms with a constant ¢ depending only on
the norm, just use the norm equivalence). It follows that we can find a finite subset F, of
Z%*¢ such that for all matrices M in S with A\ (MZ%¢) > p, the only Y in Z%*¢ such that
| MY ||gase < A, are in F,. Therefore, if a matrix M in S is such that A = MZ*™ belongs to
E(A\,n) N{A(A) > p} then there exist a nonzero Y in F, or two nonzero vectors Y # £Y" in
F, with

|MY|i <n
or
! < MY, <1+
T+n MY, "
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For a fixed Y or a fixed pair Y # £Y” of nonzero vectors in F),, the measure of the set of M in
S for which the above inequality holds, goes to 0 as 7 goes to 0. Since F), is finite and since a
Siegel domain contains a fundamental domain we are done. O]

Proof of Lemma 25 . Consider the set V/(\,n,p) = E(A\,n) U{A\1(A) < p}.
Step 1: The complementary VC of V(\,n,p) is a closed subset of Ly

Let (An)nen be a sequence of points of V¢ which converge to I' in L4.. First, since \; is
continuous, A{(I') = lim A;(A,) > p. There is a sequence of matrices (M, ),en such that
A, = M, Z%*¢ for all n € N and such that (M,,),ecn converges to M with I' = MZ¢, We have
to show that I"is not in E(\,n). Let X = MY and X' = MY’ be two nonzero vectors in I" with
X # £X" and || X ||gase, || X||gare < A. When n is large enough, X,, = M, Y and X| = M,Y’
are in the open ball B(0,\) and since A,, = M, Z%*¢ is not in E(\,n) we have both

|Mny|i >
and

|MnY/’i I+n

141

and passing through the limit we obtain

|X’|jE |]\4Y’|jE 1+n’

14|

and
|X‘i > 1.

Therefore I' is not in E(\, n).

Step 2: F =S\ V(A n,p) is a compact subset of S when X\ > 2max{\(A) : A € L4.}.
Thanks to Malher compactness Theorem it is enough to prove that F' is a closed subset of L.
Let (A,)nen be a sequence of points of F' which converges to I' in £;.. We want to prove that
I is in F. By the first step it is enough to prove that I' is in S. Choose a Siegel domain S.
There is a sequence of matrices M, € S such that A, = M,Z% for all n € N and such that
(M,,)nen converges to M € S. For each n, there are two vectors Y}, and Y, in Z%"¢ such that
Xin = M,Y1,, and Xo,, = M,Y5, are the two vectors associated with A, by the definition
of S. Since the matrices M, are all in the Siegel domain S and that || M,Y, | gare = A1(An),
i = 1,2, the sequences (Y;,)nen, ¢ = 1,2, are bounded sequence in Z*™¢. Therefore extracting
subsequences, we can suppose that the two sequences (Y;,)nen are constant: Y;,, =Y; for all n,
i =1,2. It follows that ||MY;||gare = limy, o0 || M, Y ||gare = limy 00 A1 (Ay) = A (). Moreover

MY, = lim A (A,) = A (D)
n—oo

4

= g M

and
|MYs|_ = lim |M,Ys|_ = lim A\ (A,) = A (T).
n—oo n—oo

Suppose now that A > 2max{\(A) : A € L.}, then making use of the first step we conclude
that I" is in S.
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Step 3. For a neighborhood W of I;,. in SL(d + ¢, R), set
Uw = {ghA £ € [0,1], he W, A€ V(\7,p)}.

Let us show that we can choose W in order that Uy C V(2edte)\, 5edten, 2e%t¢p). Tt will finish
the proof of Lemma 25. Indeed, we first fix A > 2max{\(A) : A € L;.}, next we take 7
and p such that p(E(2e?te\ 5en)) < £ and p({\ < 2e?*p}) < £, then we take W such
that Uy C V(2e?Te), 5edten, 2e4¢p) and 6 such that B(Ig.,d) C W. Now by the second step
K = S\ V(\mn,p) is compact and since U(K,d) C Uy C V(2e4TN, bed™n, 2¢?t¢p), we have
uU(K,9)) <e.

Let A be in V(A,n,p), hin W and t € [0, 1]. We explain how to successively reduce W in
order to obtain the above inclusion.

Case 1. Suppose A\(A) < p. We can choose W small enough in order that ||hX||gire <
2| X ||ga+. for all h in W and all X in R%". This implies that A;(g:hA) < 24T\ (A) < 2e®¢p,
hence g:hA € V(2e4Te), bedten, 2edtep).

Case 2. Suppose there exist a nonzero vector X in AN B(0,\) with | X|_ < n (the case
| X|, < nis easier). Call pi the projections on the subspaces E and [[u|| the norm of the linear
operator u associated with the norm ||.|[gas.. The vector g;hX is in the open ball B(0,2\e?")
and we have

p-gthX = gip-hp_X + gip_hp4 X,

hence
lgchX|_ < ™ |lp_hlln+ ™ lp_hpi|| A

We can choose W in order that |[p_hp.| < % and |[p_h|| < 1. Then we have [g;hX|_ < 3e“t*p
which implies that g;hA € V(2edte\, 5edten, 2e4T¢p).
Case 3. Suppose there exists two distinct nonzero vectors X and X’ in A N B(0, A) such

lha'
| X|_,|X'|_>n and <| | <1l+n
’ L+n X[ '

The case with [.|, is similar,
As above,

(WX < llp-R[lX]Z + [lp-hp ] A

A
< (l[p-nll + llp-hp+|] 5) X1

We can choose W in order that ||p_hl|| + ||p—hp4 || % < 1+ 7. We also have
WX = [lp-hp-X"|| = [lp-hp [ | X"]] -

We can choose W in order that ||p_hp, || % <mnand ||p- — p_hp_|| <n. With this choice, we
have
[PXI| = X = [ X = | X

It follows that

lgenX]__ IX|_ _[X]L 14 (14n)
g:h X' [RX| T X T =27 1-2p

<1+5n
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when 7 is small enough. Inverting the role of X and X’ we get the inequality % <1+5n

and we are done. O

8.5 Proofs of Theorems 1 and 2.1.

We begin by the proof of Theorem 1 which is more difficult. We want to prove that for almost
all 6 in M, (R),

1 1
lim —Ing,(0) = Ly = —— A) dus(A
lim 00,(0) = Lo = —=5 [ p(3) dis()
and that
lim _—11117“ (Q)ZEL
n—oo n " d de-

By Khintchin-Groshev Theorem, the convergence almost everywhere of %ln qn(0) to L. =
ﬁ [ p(A) dus(A), implies the convergence almost everywhere of =t Inr,,(6) to <Lg.. There-
fore the proof of Theorem 1 reduces in the first almost everywhere limit.

As soon as Theorem 1 is proven, the formula in the introduction

d / d X p(Laye)
L c = T d = ———
v us(S) Js T T T us(S)

is a consequence of Proposition 21 and Lemma 17. Indeed, by Proposition 21 and by Lemma
}117, GLic = L. = =5 Js P (A) dus(A) and 7(A) = Z(p(R(A)) + p*(A)) for Ain S\ N,
ence

d 1 .
“dte ps(S) /s(p(R(A)) s )

d
-5 / r(A)dus(A)

_ d :u('cd-‘rc)
ps(S)

Let us now prove the first almost everywhere limit. We need two Lemmas. The first one is
clear.

Ld,c

Lemma 32. For all compact set K in R and all € > 0 there exists o > 0 such that for all
g€ B(ljie,a0) and all x € K, d(gx,x) < e.

Lemma 33. Let A be in 8"\ N. Then return map R = Rg is defined on neighborhood of A
and is continuous at A.

Proof. Consider the minimal vectors Xy = Xo(A) and X; = X;(A). By definition of S” the
only nonzero vector B(0,A\;(A)) = C(Xy) are £X,. Therefore there exists ¢ > 0 such that all
X in A\ {0,+X,} are at a distance > ¢ from C(Xy). Since A is not in N/, £X, and +X; are
the only nonzero vector of A in the cylinder C(Xy, X;). Therefore reducing ¢ if necessary, all
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X in A\ {0, £Xo, £X,} are at a distance > ¢ from C(Xy, X;). By the above Lemma we can
choose 0 > 0 such that Vg € B(l44.,0), VX € C(Xo, X1) + B(0, 1),

max(d(g ' X, X),d(¢gX, X)) < /3.

It follows that for all g € B(lgye,d), £9Xo are the only nonzero vector of gA in C(gXy) and
that £¢9X, and +¢X; are the only nonzero vectors of A in C(gXo, gX;). It follows that if the
lattice I' = gA is in the set of lattices B(ljic,d)A NS’ then Xo(I') = X and X (I") = gX;.
By definition of S the return times are from A and I" are well defined we have

") = o T
d+1 " |Xo|,’
1 X
() = In 9 1’7,
d+1 |gX0’+
hence R(A) is defined and
1 | X1]_ g Xol
T(A) —7(I)| = n
) =) = o [ (R e
1 X X
< <‘1n Xl ‘ ‘m@ )
d+17 [gXu| | Xol,.
which goes to zero d goes to zero. O]

End of proof of Theorem 1. We use Theorem 24 with S’ and the function ¢ : 8" — R>( defined
by p(A) = po R(A) = ln% when R(A) is defined and by ¢(A) = 0 otherwise. Since p is
continuous on S and R is continuous on S’ \ N, ¢ is almost everywhere continuous on S’. We

need to find a uniformly continuous function f : £ — R such that || < f. Observe that ¢ is
nonnegative. By Minkowski convex body Theorem, for all lattice A € L.

a(N)r(A)? < C = Ca,c
where Cy. depends only on ¢ and d. It follows that for all A in S” we have

@ (A)

QO(A)

@ (M)ro(A)¥e
Qo(A)ro(A)¥/e

<InCY —Ingo(A)ro(A)Ve.

For A is in S’ we have ¢o(A) = 79(A) = A1 (A). Therefore

©(A) =1In

=In

d+c

() < InC¥e — In A;(A).

It is well known that the function In \; is uniformly continuous and integrable on L., 4, conse-
quently we can use Theorem 24 with 5" and ¢. It follows that for almost all § in M, .(R) we

have
n—1

1 1
lim — 0o RY/(Ag) = —/ o dug
n—oo N, kZ:O S( ) ,U/S/(S/) S’
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where Rg is the first return map on S’. Now by Lemmas 5 and 15, for almost all 6, there is an
integer ky such that

Aot ko +1(0)
@ o RE,(Ag) = In =02
dho) = @)
for all large enough k, where ko depend only on 6. It follows that for almost all 8

1 n—1 1 n—1 q (0) 1
: - k T - k+ko+1 _ T -
nh_r)glo - E po RS (Ag) = lim E In =—/——= = lim —Ing,(0)

pr n—00 N “— Qhe+ko (49) n—oco T

So that the only thing left is the equality

/pdus=/ o dpgr.
S S’

Now, the image of ug by R is ug, hence

/sodMS/z/poRdqu
:/Pd,u&
S

Proof of Theorem 2.1. Consider the map F': S — R defined by
F(A) = gf(A)rg(A) = o7 ()| ]og (A)]1

and call v = v, the image of the measure MS;(S)/LS by F. Let ¢ : R — R be a continuous and

bounded function. We want to prove that

tim " 0(650) = [ (o) vl

for almost all 8 € My .(R).
Now by Lemmas 5 and 15, for almost all 6,
F(R"(A9)) = i1 ()i, (0) = Brsno (0)

for all £ large enough. Now the function ¢ o F'is bounded and continuous, thus by Theorem
24 (or Proposition 26) we have for almost all 6,

' 1 n—1 i B 1
T}LIEOE;@OF(R (Ag)) = m/SWF(A)dus(A)
~ [ ety v
which implies that
. 1 n—1 ‘ 1 n—1 i
lim = 0(3(60) = lim 3 o PIRHA) = [ ¢lo) dvla)
k=0 k=0 R

and finishes the proof of Theorem 2.1. The proof of Theorem 2.2. is postponed at the end of
section 9. n
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d

n

9 On liminfg; ,r

For each 6 in M, .(R), we consider the sequence of best approximation denominators (Q,,(9))nen,
their norms ¢, = ||@Q,(0)|/g., and the sequence (7,),>¢ defined by

o = dpa(0Qn, Z9).

For a nonnegative integer k, call Bady, the subset of My .(R) defined by

Bady(d,c) = Bady, = {6 € Mg .(R) \ My.(Q) : i161£I qfl+krg >0}

(if r, = 0 for some integer n, 6 is not in Bady). The sequence of sets (Bady)r>o is clearly
nondecreasing and the set Bady is the usual set of badly approximable matrices. When d =
¢ = 1, the classical inequality g,,17, > % shows that Bad; = R\ Q while in [9] it has been
shown that for ¢ = 1 and d > 2, Bad, is negligible. Our first goal is to show that Bad; \ Bad,

is nonempty for ¢ = 1 and d = 2. Next we will prove that the set
B(d, C) =B = UkZOBadk
is negligible and does not depend on the choice of the norm.

Proposition 34. If c =1 and d = 2 then Bad, \ Bady contains uncountably many elements.

Remark 7. The set Z6 + Z* is everywhere dense in R? for all in § € Bad,. Indeed it is known
that the first minimum of the lattice

A, =72+ 72
n

is < r,_1 where p, is an integer vector such that r, = d(g,0,Z?). This implies that the second
1

minimum of this lattice is As(A,) < ——. Now a lower bound ¢,72_; > a > 0 implies that
1

< =L which goes to zero when n — oco. The convergence to zero of A\a(A,,) implies that

dnTn—1 — @

7.0 + 7 is everywhere dense in R? (see [11] or [8]).

Proof. We assume that R? is equipped with the standard Euclidean norm. Set 6, = (0,0) and

0, = (%, %) We construct inductively a sequence (6,,),>o of rational vectors in R%. For each

nin N, let A,, = Z% + 0,7 be the lattice associated with 6,. Observe that the least common
denominator (),, of the coordinates of the rational vector 6,, is the inverse of the volume of the
lattice A, det A, = QL (even for n =0). For 1 <i < n, set

M;, = min{d (g0, Z2) - d(Qi—19n>Z2) PQi1 < q < Qi
Min = d(Qi—19m 22) - d(Qie’m Z2)
The sequence (6,,),>0 is constructed such that the following properties hold for all n > 1:

1. Q=1<@Q1=5< Qs <---<Q, are the best approximations (denominators) of 6,

2. Q, > 2nQ,_, and given 6y,60,, ...,0,_1, there are at least two possible choices of 6,
leading to two different values of @), (to ensure that we construct an uncountable set),
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3. forall 1 <i <n-—1, M;,, > 0 (we need to avoid the situation where d(qb,,Z?) =
d(Q;_10,,7Z?) for some q between @Q;_; and Q;),

4|0 = Ona]] < o min{ M1 1 <i<j<n-—1},

5. |0 — On—1| < 8Qﬁmin{flm,j 1<i<j<n-—1},

6. €n1=Qn_1(0, —0,_1) is a shortest vector of A, i.e. \i(A,) = ||en_1], and (—=1)""te,
has positive coordinates,

7. 20(A,) < Aa(An) < 3001 (A,).

Observe that, with our choices of 6, and 6; all these conditions holds for n = 1 (the condi-
tions 3 and 4 are empty for n = 1).

First, let us show that the above conditions imply that the sequence (6,,),en converges to
0 in Bad; \ Bady. By 2 and 4, the sequence [|6,,—1 — 6,,|| converges to 0 at least at a geometric
rate, hence the sequence (6,),>1 converge to § € R% Furthermore, by 4, for all n > 2,

10 =0l < > 116, = Op

p>n+1

1
<
T 4Qn

Using 5 instead of 4, we obtain

min{M,;, : 1 <i<n}.

10, min{m,, : 1 <i <n}

as well. It follows that for all 1 <¢<n —1and all Q;_; < ¢ < @Q;, we have

d(q8,Z%) > d(qn, Z%) — q |0 — 6, ||
> d(Qi-10n,Z) + M;,, — q |0 — 6,.]]
> d(Qi10,72%) — Qi1 10 — Ol + M, — ¢ 1|60 — 6]
> d(Qi10,Z%) + M, —2Q; |0 — 6,,] .

Since [0 — O] < 35 Min, d(¢0,Z7) > d(Qi-10,Z7). For all 1 <i <n — 1, we also have
d(Qif, Z%) < d(Qibn, Z%) + Q: 110 — 6,

< d(Qi_10,,7%) — My + %mzn

< d(Qi-19, ZZ) + Qi1 |0 — 0n|| — My +

4Qn i,n i,n 4Qn i,n

Qi
Q"

< d(Qi-16,77) +
< d(Qi_lﬁ,Zz).
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It follows that Qo, @1, ..., @Q,_1 are the first n best approximations of #. Therefore (Q,,)n>0 is
the sequence of best approximations of . The standard inequality (see for instance [11])

)\I(An) = d(Qn_lé’, ZQ)
together with 7 imply that 6 € Bad, \ Bad;.

Let n be integer > 1. Let us explain the construction 6, given that 6y, ..., 0, are already
constructed. First choose a primitive point «,, = k.0, + (a,,b,) of A, with 0 < k,, < @Q,, and
(an,by) € Z?, in either R2, when n is even or in R%, when n is odd. Just take a, a point
of A, in a square [z, z + 1[x]0, 1] with minimal ordinate when n is even and a point of A,, in
a square [z,x + 1[x[—1,0[ with maximal ordinate when n is odd. Observe that ||«a,| can be
made arbitrarily large by choosing|z| large enough.

Call L,, = ||ay|| the length of the segment [0, a,]. The (Euclidean) distance between two
consecutive lines of the set H,, = A,, + Ray, is

_detd, 1

We can choose «,, such that
L2 > ndetA,,

hence

sn = deﬁ'\n > n. There are at least two integers p, > 2 such that

L, Ly,
10— < p, < 20—.

dp =77 7 dy
Suppose p,, is one of these and set
1
Ep = «
n pn % ny
€
6)n—‘rl = en + Q_27

and
Qn—H = ann — k.
Since by 1, Qo =1 < Q1 = 5 < ... < ; are the best approximations of 0;, j = 1, ..., n, the real
number min{m, ; : 1 <i < j <n} is strictly positive. Moreover,
L,
—1 = P_ - 10Ln
pn 2 E

lenll <

and a,, can be chosen in order that d,, is arbitrarily small, hence we can choose «,, such that
lenll < llen-1]] and

1 : .
HenJrl - enH = Q HgnH > mln{mi,j 1<i<j< n}

8Qn
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which is condition 5. Next by 3, min{M,; : 1 <i < j < n} is strictly positive. As above, it
follows that «,, can be chosen such that

1 1 ) ) .
61 = Bull = - llenl < g7 min{My 1< < j <)

which is condition 4. Clearly Q,+1 > Qn(p, — 1) > 2n@Q),. Notice that the lattice A, =
70,11 + Z? is included in H,,. Next observe that

)

@n
n

Qn(pn - %)
= annen + (a’na bn) S ZQ'

Qn+19n+1 = (ann - kn)(en +

= (ann - kn)(en + )

It follows that @, 41 det A, 11 =1 € N. On the other hand, consider the one dimensional lattice
Ani1 N Ray,,. Because Q,0, € Z? and Q0,1 = Q.0, + ,, it contains &, and is spanned
by a vector v, = = where m is an integer. Next observe that 6, € A,y + Ra,, hence
A1+ Ray,, = H,. It follows that

[

= det Apyy = |[vn]| dn

Qn+1
L
m an+1
1
anJrl ’
which implies m = [ = 1. Therefore det A, 11 = Qn;ﬂ and

Api1 =10, ...,Qn — 130,41 + Ze, + 7°.
Since ||e,|| < d?”, and A, 1 C H,, €, is the shortest vector of A, ;. The choice of the signs for
o, now implies that condition 6 holds. Next

>\1<An+1) = HgnH )
5llenll < dp < Ao(Ans1) < dn + [lenl| -

Since
fenl > 22 > Lo _ dn
En|l|l 2 — =2 = T
P 20&2 20
we obtain

SA1(Ani1) < Ao(Anpa) < 21 len]] < 30A1(Ania)

which contains condition 7. Let us show that @, ..., Q,_1 are the first best approximations of
0.

43



Forall1 <i<n-—1andall Q,_; < ¢ < Q;, we have
d(qbn11,2%) > d(q0n, Z*) — q [|6ni1 — 6,
> d(Qi—10n, ZQ) + Mip — q|0ni1 — 0]
> d(Qi-10n+1, Z%) — Qi1 |01 — Oal| + M;n — q|0n1 — 0nl
> d(Qi—10n41, Z%) + M;p, — 2Q; |0ns1 — 0n]] -
Since [|0n41 — 0n]] < 3 ]\/[m, d(¢0ny1,7Z?) > d(Qi_10p41,7Z*) and hence M;,.1 > 0. We also

have

d(Qibn11,Z%) < A(Qibr, Z%) + Qi [|0n11 — 6,

Qz
< d(Qi-10n, Z%) — mi +
< A(Qi10n:1,Z%) + Qi1 |01 — Onll — miim + 8%
Qz 1 Q’L

S d(Qi—19n+17 ZQ)

< d(Qi—10n+1, 7 ).

It follows that Qg, @1, ..., Q,_1 are the first n best approximations of #,,.1. The proof will be
done once we will have explained that (), and ), are the only best approximations that
follow @),,—1 and that M, ,,+1 > 0. These are the places where the sign condition 6 plays a role.
First observe that ¢, and —&,, are the only two shortest vectors of A, and that

En = Qn9n+1 - Qnen

m’l’l’b

SQn SQn

and

—E&n = (QHH - Qn>9n+1 - Qn+19n+1 + Qb
= (Qni1 — Qn)0ny1 + a vector in Z2,

Together with the inequality Q,.1 — @, > @, this implies that @), is a best approximation of
6,,+1 and that there is no best approximation of 6,1 between @, and @),,.1. Next, denoting by
= the equivalence mod Z?, we have

Q1041 = Qn_1(0n +@) Qn—1(0n-1 + Qn ; +@)
=en_1+ Qanlsn
and
(Qn - Qn71>9n+1 = (Qn - anl)<9n + ;_n)
= _Qn—len + (1 - QQR;I)gn
- ~ Qua
=—c,1+(1— %)En,

@n
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by the choice of the signs we obtain that

d(Qn710n+17Z2> <d((Q, — Qn71)9n+17Z2)~

If ¢ is an integer # Q,, — Q1 lying in |Q,_1, @[, then ¢b, cannot be = +¢,_; which are the
shortest vectors of A,,. Hence

A(q0a 22) = min(2]|zn-1 |, As(An)) = 2l ]|
It follows that

d(q9n+1, Z2) 2 d(qeerZ) —q H9n+1 - enH

q
> 2|len-1ll = =~ lleall
n
> 2 |len-1ll = llenll > llen—1ll
_ anl o 2
>= ||5n—1 + —EnH - d(Qn—len-l—la Z )
@n
which implies both that @), 1 and (), are consecutive best approximations of 6,1 and that
Mnm_;'_l > 0. [l

It is not clear whether the set Bad;, depends on the norm. However, using an easy result
about the relations between best approximation vectors associated with two norms, we can
prove:

Proposition 35. The set B(d,c) does not depend on the norms.

Proof. We give the proof only in the case ¢ = 1. When ¢ > 1 one has to extend first, the
following result about best approximations:

Consider two norms N and N’ on RL.  For € R?, call (q,)nen the sequence of best
approzimation denominators associated with the norm N and (¢,)nen the sequence associated
with the norm N'. Then (see [11] ) there exists an integer k depending only on the norms N and
N’ such that each interval |q,, ¢nik], contains a best approzimation denominator ¢, associated
with the norm N'.

It is enough to prove that R?\ Bady, C R?\ Bad,, for all p. Let 6 be in R? and n > k be an
integer. By the above result, their exists at least one best approximation denominator in each
interval |gn4(j—1)k> Gnjk)> J = 0,...,p. Let q;j be the largest best approximation denominator
in each of these intervals |¢,+(j—1)k, ¢ntjk]. For each j we have

/
oy, < CTngji

where C' is the constant involved in the norm equivalence. Making use of the above inequality

with j = 0, we obtain ¢, ¢ < C%;, e, Next ¢, ., < gnikp, hence,

! d d d
qn0+prn0 S C anrkan'

4 — (. [l

It follows that liminf, o @nyxpre = 0 implies lim inf,, . ¢, T

Theorem 36. The set B(d, c) = Up>oBady, has zero measure.
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By the above Proposition B(d, c¢) doesn’t depend on the norms and we can suppose that R?
and R¢ are equipped with the standard Fuclidean norms. Let us show that for each k, Badj
has zero measure. We need two lemmas.

-----

be a sequence of vectors in 79%¢. Suppose that for n = a, ..., b,
e X, (A) =MY,,
e the only nonzero points of A in the cylinder C(X,,(A), Xp41(A)) are £X,,(A) and £X,,11(A).

Then there exists a open neighborhood W of M such that for all lattices N = M'Z9¢ € L.
with M’ in W, the vectors Z, = M'Y,, are consecutive minimal vectors of ' and

201, € [yra(8), 20(A),

12, € [5n(A), 200(A)

forn=a,...b.
2. Suppose furthermore that a < 0, b > 1 and A € S. Then for all lattices N' = M'Z%¢ € S
with M' in W, we have X, (N') = M'Y,, forn=a,...,b..

Proof. 1. Consider a ball Bga+.(0, R) that contains all the points MY,,, n = a,...,b. There is a
neighborhood w of the identity matrix I ;. such that for all A in w and all X in R4+,

1
5 IXlgare < [[AX [gare < 2 [ X|gare ,

so that

X ¢ Bpa+e(0,8R) = AX ¢ Bga+(0,4R)
X € Bga+e(0,R) = AX € Byasc(0,2R).

Two vectors Z, = AMY,, and Z,,,1 = AMY,,; are consecutive minimal vectors of AA as soon
as
’ZnJrlL > ’Zn‘fv |Zn+1|+ < ’Zn|+

and the cylinder C(Z,,, Z,+1) contains no other nonzero vector of AA than +7, and +7,, ;.
Since, |Xpi1]_ > [Xn|_, [Xngal, < [Xal|,, by reducing w, we can assume |Z,,1|_ > |Z,|_
and |Zy1|, < |Znly, n = a,...,b. Since C(Zy, Zni1) = C(AXy, AXyq1) C Brate(0,2R),
the image by A of a vector of A that is not in the ball Bra+.(0,8R), cannot enter in the
cylinder C(AX,,, AX,1). Therefore, there are only finitely many X in A such that AX is in
C(AX,,AX,1). Since by assumption all these vectors X, except £X, and £X,,,, are at
a positive distance from C(X,,, X,.1), we obtain that Z, and Z,,; are consecutive minimal
vectors by reducing once again w. It follows that Z,, ..., Z, are consecutive minimal vectors of
the lattice AA. A new reduction of w ensures that the two inequalities of the Lemma hold.

2. We want to see that there is no shift on the indices. By the numbering convention (see
section ?77),

[ Xo(M)[, = [Xa(A)[-, [Xa (M) > [ Xo(A)] X (A)], < [ X2(A)]
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By a further reduction of w, we can assume that the two inequalities hold for the vectors
Z_1=AMY_,, Zy = AMY,, Z; = AMY; and Zy, = AMY,. Therefore if AMZ ¢ is in S we
must have

Xo(AA) = AMY, and X;(AA) = AMY,
which implies that X,,(AA) = Z, for n = a, ..., b. ]

Lemma 38. Assume that d+ ¢ > 3. Let T be a two dimensional lattice in Lo\ No which is in
Sy and let k be a non negative integer. Then for all positive real number 0, there exists € < 2

and a lattice A, in S\ N such that

forn=0,... k.
Proof. Let I' = AZ? be a lattice in Sy \ Ny where

ail Az
A= )
a21 A2

Consider the matrix M;s € SL(d + ¢, R) defined by

5@11 0 0 0 (SGIQ
0 ¢ @2 0 0
0 0 ez 0
M; = i ) )
0 0 §Tarer ()
5@21 0 0 5&22

Let (U, = (Un.1,Un2))nez be the sequence of vectors in Z?* such that (X, (T') = AU, )nez is
the sequence of minimal vectors of I'. For each n € Z, let Y,, be the element of Z*¢ defined by
Y1 = Un1, Yo = . = Yare—1 = 0 and yYgye = upo. If 6 > 0 is small enough, then for all Z € Z*¢
not in the Re; + Reyy~plane, we have

| M52 ||gare = max(|MsZ|, ,|MsZ|_) > 5w > max (20r_1(I'), 20qk+1(I)).

It follows that none of these vectors MsZ are in one of the cylinders C(M;sY,,, MsY, 1), n =
—1,...,k. Therefore the vectors X,, = MsY,, n = —1,....k + 1 are all consecutive minimal
vectors of Ag = M;Z4™! and As is in S. With our numbering convention we have X, (A;) = X,
for all n = —1,...,k + 1. Now we fix 0 small enough. By the previous Lemma applied to As,
there is sequence of matrices (M,), in S\ N which converges to M; such for all p,

X, (M, Z) = M,Y,
n=20,....,k. When p goes to infinity,
(M, Z) = \M,Zy| . — |MsZy|, = 6r, (D),
QR(MpZd+1) = |MpZn|7 — |M62n|_ = 5QR(F)

for n =0,...,k. So we can take A. = M,Z*"! for some p large enough. O]
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End of proof of Theorem 36. Let k and n > 0 be fixed. We want to prove that the set of 6 in
Ma.(R) such that
lim mf qn+k(9) d0) <n

has full measure. By Lemma 5, it is enough to show that

lim inf g5, (Ag)ra(Ag) <7
n—oo

for almost all 6. Fix a two-dimensional lattice T" in Sy \ N> and let ¢ be a positive real number
with § < + (W)# By Lemma 38, there exist ¢ < 2§ and a lattice A. in .S\ NV such that

rn(Ae) < er,(T)

gn(As) < gn(T)

for n =0, ..., k. Hence,

c Ui
qk(Aa)Tg(As) < odtc

By Lemma 37, there exists an open neighborhood W of A, such that for all A in W and some
integer m(A), we have both
T'm(A) (A) S 267“0(F)

and
QﬁL(A)M(A)T%(A)(A) <.
Let us show that if for a given lattice A, there exists a sequence (t,),en going to infinity
such that ¢g,, A € W for all n € N, then
lim inf ¢, (A)re(A) <mn.

n—o0

Indeed, if g;, A € W, then for some integer m(A,t,) we have

(€™ Gt (A)) (€ Tin(a e, (M) < 0.

So, the only thing to see is that m(A,,) — oo when n — co. Now 7,4 41 (A) < 2ero(T),
hence 7,,(a4,)(A) goes to zero when m goes to infinity which implies that m(A n) goes to
infinity.

Making use of Birkhoff Theorem with the flow g;, the proof would be already finished if our
goal were liminf,, o g5, (A)rE(A) < n for almost all lattices. However we want an “almost all"
with respect of the Lebesgue measure of M, .(R).

Let U be a relatively compact nonempty open set in Lg,. such that U C W. One can find
a neighborhood V' of I in H< such that for all € M, .(R), all ¢ > 0 and all h € V', we have

gthAg = (gthg—t)gtAe - U — gtAg € W

Call V the set of 6 such that g;Ag ¢ W for all ¢ large enough. By the choices of U and V, for
all h € V and all 0 € V, g.h\g ¢ U for all t large enough. If the Lebesgue measure of V were
nonzero then the set of lattices of the form gshAg with s € [0,1], h € V and 6 € V, would have
a nonzero measure. Now, by Birkhoff Theorem, for almost all lattices A, there exist a sequence
t, — oo such that g;, A € U for all n, therefore ¥V has zero measure. O
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Proof of Theorem 2. 2. By the proof of the first part of Theorem 2, we know that the measure
V4. is the image of the measure S Hs by the map F': S — R deﬁned by

F(A) = QT(A)TS(A) = [0y (W[ o5 (M)]4-

We want to prove that the support of the measure v, contains zero, i.e., that v4.([0,n]) > 0
for all n > 0. By Birkhoftf Theorem and by definition of v, ., it is enough to prove that

lim — Z 1[07,7] )) >0

n—oo M,

for almost all A € S. By Lemmas 37 and 38, there exists a non empty open set W in S such
that

c d
[P (M) o5 (M)} <
for all A € WW. Hence 1y < 1y, o F. By Birkhoff Theorem, for almost all A in S

1< , 1
lim — 1WoR’A:—/1wdu5:a>O.
n—>oon; ( ) NS(S) g
therefore,

lim — Zlon A))) >a>0.

10 Miscellaneous Questions

1. In Theorems 1 and 2, we assume that R? and R¢ are equipped with the standard Euclidean
norms. Do these Theorems hold when R? and R¢ are equipped with any norms?
If Theorem 1 holds for any norms, does the Levy’s constant depend on the norms?

2. Is the measure v, in Theorem 2, absolutely continuous with respect to Lebesgue measure?
Is the support of v4. an interval?

3. Suppose ¢ = 1. Consider a flow (g;);er defined by the matrices
= Diag(e™!, ..., e%" e %) € SL(d + 1,R)

where the a;s are positive real numbers with sum d. Best approximation vectors of § € R?
with respect to the flow (g;);er can be defined as follow. A nonzero vector X in Z4*! is
a best approximation vector of @ if there exists ¢ > 0 such that the interior of the ball
B(g:MyX) C R? x R contains no nonzero vector of the lattice g;MpZ*** (equivalently
lg: Mo X ||gatr = A1 (g:MpZ*1)). Arranging the set of best approximation vector according
to their heights, we obtain a sequence (X,,(6)),en of best approximation vectors associated
with 6. Does Theorem 1 hold for these new sequences of best approximation vectors?
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4. For a fixed k > 1, does the set

Bady(d, ¢) = Bady = {0 € Myo(R) \ Mq,(Q) : inf g7, > 0}

depends on the norms used to define best approximations vectors?
Observe that by Proposition 35, the union Uy>;Bad), does not depend on the choice of
the norms.
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