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1 Introduction

In 1936, Aleksandr Khintchin showed that there exists a constant γ such that the denominators
(qn)n≥0 of the convergents of the continued fraction expansions of almost all real numbers θ
satisfy

lim
n→∞

q1/n
n = γ

(see [12]). Soon afterward, in [21], in the footnote page 289, Paul Lévy gave the explicit value
of the constant,

γ = exp
π2

12 ln 2
.

In 1983, Wieb Bosma, Hendrik Jager and Freek Wiedijk, proved the following conjecture
due to Hendrik Lenstra: for almost all real numbers θ,

lim
n→∞

1

n
card{0 ≤ k < n : qk d(qkθ,Z) ≤ t} = g(t)

for all t ∈ [0, 1], where

g(t) =

∫ t

0

1

2 ln 2

1− |1− 2s|
s

ds.

Later, Jager proved variants of this result in particular with the quantity qk+1 d(qkθ,Z) instead
of qk d(qkθ,Z).

The aim of the paper is to extend to best simultaneous Diophantine approximations, both
Lévy-Khintchin's result and Bosma, Jager and Wiedijk's result.

Let d and c be two positive integers. Suppose Rd and Rc are endowed with the standard
Euclidean norms ‖.‖Rd and ‖.‖Rc . We prove

Theorem 1. There exists a constant Ld,c such that for almost all matrices θ ∈ Md,c(R),

lim
n→∞

1

n
ln ‖Qn(θ)‖Rc = Ld,c ,

lim
n→∞

1

n
ln(d(θQn(θ),Zd)) = − c

d
Ld,c

where Qn(θ) ∈ Zc, n ≥ 0, is the sequence of best Diophantine approximation denominators of
θ associated with the norms ‖.‖Rd and ‖.‖Rc.
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(See section 2.1, the de�nition of best Diophantine approximation denominators).
For a matrix θ in Md,c(R), let denote βn(θ) = ‖Qn+1(θ)‖cRc d(θQn(θ),Zd)d.

Theorem 2. 1. There exists a probability measure νd,c on R such that for almost all matrices
θ ∈ Md,c(R), νd,c is the weak limit of the sequence of probability measures

1

n

n−1∑
k=0

δβk(θ)

where δa is the Dirac measure at a.
2. The support of the measure νd,c is included in a bounded interval, and contains 0 provided
that c+ d ≥ 3.

Lévy-Khintchin's result has already been extended to multi-dimensional settings. For in-
stance, for almost all θ in Rd, the denominators (Jn(θ))n≥0 of the Jacobi-Perron expansion of θ
satisfy limn→∞

1
n

ln Jn(θ) = cd for some constant cd (see [4]). The common proofs of such results
use ergodic theory. The one-dimensional Lévy-Khintchin's result can be proved with Birkho�
ergodic Theorem, while the growth rate of the Jacobi-Perron denominators can be derived from
Oseledec multiplicative ergodic Theorem. In both cases, the proof depends on the existence of
an underlying dynamical system: the Gauss map or the Jacobi-Perron map (see [25] for many
examples of these kinds of maps). However, no such map associated with best Diophantine
approximations is known when d + c ≥ 3. One classical way to circumvent this problem is to
use the action of the diagonal �ow

gt =

(
ectId 0

0 e−dtIc

)
∈ SL(d+ c,R)

on the space of unimodular lattices Ld+c = SL(d + c,R)/ SL(d + c,Z). For instance, in [10]
this �ow is used to prove that the sequence of best Diophantine approximation denominators
of almost all θ in Md,c(R) satis�es

lim sup
n→∞

1

n
ln ‖Qn(θ)‖Rc ≤ Kd,c

for some constant Kd,c. When c = 1, it is also possible to derive this inequality from a Theorem
of W. M. Schmidt (see [9]).

In this work, as in [10], the �ow (gt) is the main tool. Together with the �ow, an important
ingredient is a surface S of co�dimension 1 transverse to the �ow and the �rst return map
associated with the �ow. Such transversals have been widely used and we only mention two
closely related works.

Firstly, P. Arnoux and A. Nogueira in [1], have used transversals to naturally obtain invari-
ant measures associated with multidimensional continued fraction algorithms. Furthermore,
in the case of the one dimensional continued fraction algorithm, their approach leads to an
interpretation of the Lévy's constant as the average return time of the �ow on the transversal.

Secondly, in some cases, the transformation induced on a sub-interval by an interval ex-
change transformation T1 is an interval exchange transformation T2 of the same kind as T1.
In such situations, the map T1 → T2 can be seen as the Gauss map of a �multidimensional
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continued fraction algorithm". In [27], W. Veech used a transversal to prove that this Gauss
map admits an unique absolutely continuous invariant measure up to a scalar multiple.

In our case, the transversal is the set of unimodular lattices the �rst two minimums of
which are equal (actually, the de�nition is slightly more restrictive, see section 3.1 for the exact
de�nition of the transversal). It is crucial to observe that the visiting times of the transversal
are given by a formula involving best simultaneous Diophantine approximations, see Lemma
15. Making use of Birkho� Theorem, this observation leads to a Lévy-Khintchin result in the
space of lattices and to a formula close to the Arnoux-Nogueira interpretation of the Lévy's
constant:

Ld,c =
d

µS(S)

∫
S

τ dµS =
d× µ(Ld+c)

µS(S)
(1)

where µ is the invariant measure in the space of lattices, µS the invariant measure induced by
the �ow on the transversal S and τ the return time to S, see Theorem 20 and Corollary 22.

The second step of the proof of Theorem 1 consists in converting an almost all result in
the space of lattices Ld+c into an almost all result in Md,c(R). To achieve this goal, we prove
a general result, Theorem 24, which might be of independent interest. At �rst sight, this
result might appear as an easy consequence of the following standard fact: the set of lattices
associated with the matrices θ in Md,c(R), is the expanding direction of the �ow gt. However,
an example shows that Theorem 24 depends on some properties of the transversal, see section
8.

When d = 1 or 2 and c = 1, the submanifold S and the measure µS can be entirely calculated
(see section 7). When d = c = 1, thanks to Siegel formula giving the volume of the modular
space SL(2,R)/ SL(2,Z), computing Lévy's constant L1,1 = ln γ is easy; it is even possible to
determine the �rst return map to the transversal. It turns out that this �rst return map is a
2-fold extension of the natural extension of the Gauss map (see subsection 7.3). However, when
d = 2 and c = 1, the calculation of L2,1 leads to a seven-tuple integral and we only succeed in
reducing it to a triple integral that can be evaluated numerically (see subsection 7.4).

When d = c = 1, the double inequality 1
2
≤ qn+1 d(qnθ,Z) ≤ 1 shows that the behaviors

of the two sequences ( 1
n

ln qn)n and (−1
n

ln d(qnθ,Z))n are the same and each of the limits in
Theorem 1 implies the other. When d is larger or equal than two, no such double inequality
exists. Indeed, it has been proved in [9] that when c = 1 and d ≥ 2,

lim inf
n→∞

qn+1 d(qnθ,Zd)d = 0

for almost all θ in Rd. Observe that Theorem 2 implies this latter result; it is an immediate
consequence of the fact that 0 is in the support of the measure νd,c. Hopefully for the proof of
Theorem 1, the weaker inequality

d(θQn(θ),Zd) ≥ 1

‖Qn(θ)‖c/dRc ln ‖Qn(θ)‖

which holds almost surely by the convergence part of the Khintchin-Groshev Theorem, is enough
to link both of the limits in Theorem 1.

In the last section, we extend the aforementioned result of [9] to best simultaneous approx-
imations of matrices. Our proof leads to the stronger result

lim inf
n→∞

‖Qn+k(θ)‖cRc d(θQn(θ),Zd)d = 0
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for almost all θ in Md,c(R) and all k ∈ N.
Obviously, if the matrix θ is badly approximable, then

lim inf
n→∞

‖Qn+k(θ)‖cRc d(θQn(θ),Zd)d > 0

because by de�nition lim infn→∞ ‖Qn(θ)‖cRc d(θQn(θ),Zd)d > 0. When d = 2 and c = 1, we
prove that the set of θ with lim infn→∞ qn+1 d(qnθ,Z)2 > 0 is not reduced to the set of badly
approximable vectors.

Historical Note: Lévy's proof does not rely on the Ergodic Theorem which was not known
for non-invertible maps at that time. A proof of the Birkho� Theorem for non-invertible maps
was given by Frédéric Riesz in 1945 (see [23]) and then a proof of Lévy's Theorem using the
Ergodic Theorem was given in [24]. The authors would like to thank Vitaly Bergelson for
bringing [24] to their attention.

2 Notation

Let d and c be two positive integers.

2.1 Vectors and distances

Let ‖·‖Rn denote the usual Euclidean norm on Rn.
We assume Rd and Rc are equipped with the usual Euclidean norms and Rd+c is equipped

with the norm ‖(u, h)‖Rd+c = max{‖u‖Rd , ‖h‖Rc}.
ForX = (u, h) in Rd+c, let |X|− = ‖h‖Rc denote the height of the vectorX and |X|+ = ‖u‖Rd

denote the norm of the projection of X in the horizontal space. We also denote X+ = u and
X− = h the vertical and horizontal components of X.

For a vector X in Rd+c, let C(X) denote the closed cylinder

C(X) = BRd(0, |X|+)×BRc(0, |X|−),

and if Y is another vector, let C(X, Y ) denote the closed cylinder

C(X, Y ) = BRd(0, |X|+)×BRc(0, |Y |−).

In all situations, let d(x, y) denote the distance associated with the underlying norm between
the two points x and y and d(x,A) the distance between the point x and the set A.

2.2 Matrices

Let In denote the identity matrix in Mn(R).
We �x once and for all a norm on Md+c(R). All the distances and the balls in the space of

matrices are associated with this norm. When E is a subset of Md+c(R), let BE(x, r) denote
the set of matrices in E within a distance from x smaller than r.

Let L = Ld+c denote the space of (d+ c)-dimensional unimodular lattices in Rd+c which we
identify with SL(d+ c,R)/ SL(d+ c,Z).
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For θ ∈ Md,c(R), let Mθ denote the matrix(
Id −θ
0 Ic

)
∈ SL(d+ c,R)

and Λθ = MθZd+c the lattice associated with Mθ.
Let H>0 denote the subgroup of all matrices Mθ, θ ∈ Md,c(R), and let Td,c denote its image

in Ld+c.
In the same manner, let H< denote the subgroup of SL(d+ c,R) of matrices of the form(

Id 0
B Ic

)
and let H≤ denote the subgroup of SL(d+ c,R) of matrices of the form(

A 0
B C

)
where A ∈ GL(d,R), B ∈Mc,d(R) and C ∈ GL(c,R).

Let

gt =

(
ectId 0

0 e−dtIc

)
∈ SL(d+ c,R),

t ∈ R, denote the standard diagonal �ow, E− = {0} × Rc denote the contracting direction of
the �ow and E+ = Rd × {0} denote the expanding direction of the �ow. We also refer to E+

as the horizontal subspace and to E− as the vertical subspace.

2.3 Lattices

Suppose Rn is equipped with a norm ‖.‖. For a lattice Λ and an integer i ∈ {1, ..., n}, let λi(Λ)
denote the i-th minimum of the lattice Λ with respect to the norm ‖.‖, i.e.,

λi(Λ, ‖.‖) = min{λ > 0 : B(0, λ) ∩ Λ contains at least i independent vectors}.

Observe that λ1(Λ) is the length of the shortest nonzero vector in Λ. When there is no ambiguity
about the norm we write λi(Λ) instead of λi(Λ, ‖.‖).

3 Best approximations

3.1 Best Diophantine approximations

Multidimensional extensions of the classical continued fraction expansion cannot conciliate all
the properties of the one dimensional expansion. For instance, it is not possible to conciliate
the unimodularity and the best approximation property (see [17] and [22]). The �best si-
multaneous Diophantine approximations� is the multidimensional extension based solely on
the best approximation property. It has been studied by many Authors, see for instance
[14, 15, 16, 17, 18, 7, 9, 11, 22].
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De�nition 3. Let θ ∈ Md,c(R).
1. A nonzero vector Q ∈ Zc is a best simultaneous Diophantine approximation denominator of
θ if for all nonzero U in Zc,

‖U‖Rc < ‖Q‖Rc ⇒ d(θQ,Zd) < d(θU,Zd)
‖U‖Rc ≤ ‖Q‖Rc ⇒ d(θQ,Zd) ≤ d(θU,Zd).

2. An element (P,Q) in Zd ×Zc is a best Diophantine approximation vector of θ if Q is a best
simultaneous Diophantine approximation denominator of θ and if

‖θQ− P‖Rd = d(θQ,Zd).

If the equation θQ = 0 mod Zd has no nontrivial solution Q ∈ Zd, the set of best Dio-
phantine approximation denominators of θ is in�nite. Numbering the set of best approximation
denominators in ascending order of the norm q = ‖Q‖c, we obtain two sequences

q0 = q0(θ) = λ1(Zc) < q1 = q1(θ) = ‖Q1(θ)‖c < ... < qn = qn(θ) = ‖Qn(θ)‖c < ....

and

r0 = r0(θ) = d(θQ0,Zd) > r1 = r1(θ) = d(θQ1,Zd) > ... > rn = rn(θ) = d(θQn,Zd) > ....

When d = c = 1, by the best approximation property, the integers q0, q1, ..., qn, ... are the
denominators of the ordinary continued fraction expansion of θ. The only slight di�erence is
that in the ordinary continued fraction expansion, it can happen that q0 = q1 = 1. In this case,
the indices are shifted by one.

3.2 Minimal vectors in lattices

The notion of minimal vector goes back to Voronoï. He used minimal vectors to �nd units in
cubic �elds (see [28] and also [5, 6]). It allows to convert statements about best simultaneous
Diophantine approximations of vectors or of matrices into statements about lattices (see [7, 11]).

De�nition 4. Let M ∈ SL(d + c,R) and let Λ = MZd+c ∈ Ld+c. A nonzero vector X ∈ Λ is
a minimal vector of Λ (with respect to the norms ‖·‖Rd and ‖·‖Rc) if the only nonzero vectors
Y ∈ Λ in the cylinder C(X) are such that C(X) = C(Y ), i.e.,

|X|+ = |Y |+ , |X|− = |Y |− .

If two minimal vectors X and Y de�ne the same cylinder we say that they are equivalent.

Observe that for each lattice Λ, there exists a minimal vector X that is a shortest vector of
Λ with respect to the norm ‖.‖Rd+c . There might exist other shortest vectors and even other
shortest vector that are minimal. The set of minimal vectors is generally in�nite but might be
�nite. For d, c ≥ 1, it is easily shown that there are at least two linearly independent minimal
vectors in any lattice. This lower bound may be achieved, for instance with Λ = Z1+1.

Given a lattice Λ in Ld+c, we select one minimal vector in each equivalent class of minimal
vectors. We number these vectors in ascending order of heights. Such a numbering exists
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because 0 is the only possible limit point of the set of heights of minimal vectors (see the proof
of Lemma 7) We get a sequence

...X−n(Λ), ..., X−1 (Λ) , X0(Λ), X1(Λ), ...

This sequence might be �nite, in�nite one-sided or two-sided. The sequence (|Xn(Λ)|+)n is
decreasing while the sequence (|Xn(Λ)|−)n is increasing. The numbering with increasing heights
is unique up to a shift on the indices. Though, this shift is not really relevant, we will �x later
a convenient way of choosing X0(Λ) (see the section about return times).

We shall always use the following notations

qn(Λ) = |Xn(Λ)|− and rn(Λ) = |Xn(Λ)|+ .

The following Lemma is easy and very important. It shows that for θ ∈ Md,c(R), the
sequences (qn(Λθ))n and (qn(θ))n are deduced one another by a shift. Therefore, if one of the
two limits

lim
n→∞

1

n
ln qn(θ), and lim

n→∞

1

n
ln qn(Λθ)

exists, then the other exists and have the same value. The same results holds with the sequences
(rn(θ))n and (rn(Λθ))n.

Lemma 5. Let θ be in Md,c(R).
1. If X = MθY is a minimal vector of the lattice Λθ with positive height , |X|− > 0, then Y is
best a approximation vector of θ.
2. Conversely if Y in Zd+c is a best approximation vector of θ such that

‖Y+ − θY−‖Rd < λ1(Zd)

then X = MθY is a minimal vector of Λθ.

Proof. 1. Set Q = Y−. Since X is a minimal vector, d(θQ,Zd) = |X|+. Suppose that U ∈ Zc
and V ∈ Zd are such that

‖θU − V ‖Rd = d(θU,Zd) ≤ d(θQ,Zd) = |X|+

and
‖U‖Rc ≤ ‖Q‖Rc = |Y |− ,

then the vector

Mθ

(
U
V

)
=

(
V − θU
V

)
is in the cylinder C(X), and therefore by de�nition of minimal vectors, we have

‖θU − V ‖Rd = d(θU,Zd) = d(θQ,Zd)

and
‖U‖Rc = ‖Q‖Rc .
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It follows that Q is a best approximation denominator.
2. Conversely suppose that Y = (P,Q) is a best approximation vector such that

‖P − θQ‖Rd < λ1(Zd).

If a nonzero vector

Z = Mθ

(
V
U

)
∈ C(X),

then we have
‖V − θU‖Rd ≤ ‖P − θQ‖Rd < λ1(Zd),

hence U is not zero. We also have
‖U‖Rc ≤ ‖Q‖Rc

hence by de�nition of best approximation denominator, we have |Z|− = ‖U‖Rc = ‖Q‖Rc = |X|−
and |Z|+ = ‖V − θU‖Rd = ‖P − θQ‖Rd = |X|+, hence X is minimal.

The classical inequality
qn+1rn ≤ 1

which holds for the one-dimensional continued fraction expansion of a real number can be
extended to minimal vectors of lattices or to best approximation vectors. This fact is well
known but it is worth stating it.

Lemma 6. There is a constant Cd,c depending only on c and d such that for all lattice Λ ∈ Ld+c

or all matrices θ ∈ Md,c and all integers n, we have

qcn+1(Λ)rdn(Λ) ≤ Cd,c,

qcn+1(θ)rdn(θ) ≤ Cd,c.

Proof. Just use the �rst Minkowski Theorem with the cylinder de�ned by two consecutive
minimal vectors or best approximation vectors.

The classical inequality
qn+2 ≥ 2qn

which holds for the denominators of the one-dimensional continued fraction expansion of a real
number can be extended to minimal vector of lattices. This inequality has already been ex-
tended to best simultaneous Diophantine approximations, see [16], [17] and [11]. The extension
to minimal vectors of lattices is straightforward.

Lemma 7. There is a positive integer constant A = A(d, c) such that for any Λ in Ld+c and
any n ∈ Z, if Xn(Λ), Xn+1(Λ), ...., Xn+A(Λ) exist, then

qn+A(Λ) ≥ 2qn(Λ),

rn+A(Λ) ≤ 1

2
rn(Λ)
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Proof. Let A be an integer constant such that if A points (x1, y1), ..., (xA, yA) are in the product
of balls BRd(0, r1) × BRc(0, r2) with r1, r2 ≥ 0 then there exist two indices i 6= j such that
‖xi − xj‖Rd ≤

1
2
r1 and ‖yi − yj‖Rc ≤

1
2
r2. With this choice of the constant A, if k ≥ A is a

positive integer such that qn+k(Λ) ≤ 2qn(Λ), then there are two integers 0 ≤ i < j ≤ k such
that the vector Xn+j(Λ)−Xn+i(Λ) satis�es both conditions{

|Xn+j(Λ)−Xn+i(Λ)|+ ≤
1
2
rn(Λ)

|Xn+j(Λ)−Xn+i(Λ)|− ≤
1
2
2qn(Λ)

which contradicts the de�nition of Xn(Λ). The same way of reasoning leads to the other
inequality.

We shall use several times the following very simple Lemma which is a consequence of the
following observation. For any minimal vector X of a lattice Λ in Rd+c and any t ∈ R, gtX is
a minimal vector of the lattice gtΛ. It follows that

Lemma 8. Let Λ be in Ld+c and let t be in R. The sequence of minimal vectors of the lattice
gtΛ is (gt(Xn(Λ)))n.

4 The surfaces S and S ′

We assume that Rd+c is endowed with the norm

‖(x, y)‖Rd+c = max{‖x‖Rd , ‖y‖Rc}.
The main idea of the proofs of Theorems 1 and 2 is to induce the �ow gt on the surface

{Λ ∈ Ld+c : λ2(Λ) = λ1(Λ)}
where λ1(Λ) and λ2(Λ) are the �rst two minima of the lattice Λ associated with the above
norm. And then, to use Birkho� ergodic Theorem with the �rst return map associated with
the �ow gt. For technical reason it is better to slightly change the surface. For instance the
above set is not a submanifold of Ld+c. It could have some �branching points� while a slightly
smaller set is clearly a submanifold, see Lemma 11. It will be convenient to use two surfaces S
and S ′ for the proof of Theorem 1. These two surfaces are very similar; we state all the results
we need for both surfaces but we only perform the proofs for the �rst surface S.

4.1 De�nition of S

The surface S is the set of lattices Λ in Ld+c such that there exist two independent vectors
vS0 (Λ) and vS1 (Λ) in Λ such that:

•
∣∣vS1 (Λ)

∣∣
+
and

∣∣vS0 (Λ)
∣∣
− are <

∣∣vS1 (Λ)
∣∣
− =

∣∣vS0 (Λ)
∣∣
+
,

• the only nonzero points of Λ in the ball BRd+c(0, λ1(Λ)) are ±vS0 (Λ) and ±vS1 (Λ).

Observe that for Λ in S, vS0 (Λ) and vS1 (Λ) are unique up two sign and are consecutive
minimal vectors of Λ.

Since ±vS0 (Λ) and ±vS1 (Λ) are the only nonzero points of Λ in the ball BRd+c(0, λ1(Λ)), S is
included in the set

{Λ ∈ Ld+c : λ1(Λ) = λ2(Λ)}.
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4.2 De�nition of S ′

The surface S ′ is the set of lattices in Ld+c such that there exists a vectors wS
′

0 (Λ) in Λ such
that:

• the only nonzero points of Λ in the ball BRd+c(0, λ1(Λ)) are ±wS′0 (Λ),

• the ball BRd+c(0, λ1(Λ)) is equal to the cylinder C(wS
′

0 (Λ)).

Observe that wS
′

0 (Λ) is unique up to sign and is a minimal vector of Λ.

4.3 Lattices bases and minima

We shall need the following results about lattices.

Lemma 9. Suppose Rn is equipped with any norm ‖.‖. Let Λ be a lattice in Rn and let v1, v2

be two independent vectors of Λ such that ‖v1‖ = λ1(Λ) and ‖v2‖ = λ2(Λ). Then Zv1 +Zv2 is
a primitive sub-lattice of Λ unless 1

2
(v1 + v2) ∈ Λ and ‖v1‖ = ‖v2‖ =

∥∥1
2
(v1 + v2)

∥∥.
Proof. Consider the parallelogram P de�ned by the vectors v1 and v2. Let v be an element of Λ
that belongs to the interior of P . If v is not in the segment joining v1 and v2 then the distance
from v to either 0 or v1 + v2 is of the form ‖t1v1 + t2v2‖ for some positive real numbers t1 and
t2 with t1 + t2 < 1. Hence this distance is ≤ t1 ‖v1‖ + t2 ‖v2‖ < λ2(Λ) which contradicts the
de�nition of λ2(Λ). If v is in the the segment joining v1 and v2 but is not the point

1
2
(v1+v2) then

the distance from v to either v1 or v2 is of the form ‖t(v1 − v2)‖ with t < 1
2
which implies that

this distance is < λ2(Λ), again a contradiction. If v = 1
2
(v1 + v2), we have ‖v‖ ≤ 1

2
(‖v1‖+‖v2‖)

which is < λ2(Λ) unless ‖v1‖ = ‖v2‖ = ‖v‖ .

It follows that when the norm is strictly convex, the sub-lattice Zv1+Zv2 is always primitive.
In our setting despite that the norm is not strictly convex it is possible to use the above Lemma.
With our choice of the norm on Rd+c, the triangle inequality is strict for two vectors one inside
the �top� of the cylinder BRd+c(0, r) and one inside the lateral side of BRd+c(0, r). Therefore,

Corollary 10. Let Λ be in S. Then the vectors vS0 (Λ) and vS1 (Λ) associated with Λ are the �rst
two vectors of a basis of Λ.

4.4 Geometric properties of S and S ′

Lemma 11. S and S ′ are a submanifolds of Ld+c of dimension (d+ c)2 − 2, transverse to the
diagonal �ow gt.

Proof. Let Λ0 be in S and call vS0 (Λ0) and vS1 (Λ0) the two vectors provided by the de�nition of
S. By Corollary 10, vS0 (Λ0) and vS1 (Λ0) are the �rst two vectors of a basis (b1, ..., bd+c) of Λ0.
We can �nd a small enough positive real number ε such that for any (v1, ..., vd+c) in the open
set

W = BRd+c(b1, ε)× ...×BRd+c(bd+c, ε),

• the matrix M = M(v1, ..., vd+c) the columns of which are the vi, is in GL(d + c,R) and
the sets WP , P ∈ SL(d+ c,Z) are disjoint,
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• the vectors ±v1 and ±v2 are the only nonzero vectors of the lattice Λ = MZd+c in the
cylinder C(v1, v2),

• |v1|+ > 0,

• ‖v‖ > ‖v1‖ and ‖v2‖ for all v in Λ \ {0,±v1,±v2}.

Consider the map

f : W → R2

: M = (v1, ..., vd+c)→ (f1(M) = detM, f2(M) = |v1|2+ − |v2|2−).

Then a lattice Λ = MZd+1 with M ∈ W , is in S i� f(M) = (1, 0). To prove that S is a
submanifold, it is enough to show that the di�erential Df(M) is onto at every point M in W .
The di�erential of f2 is given by

Df2(M).(w1, ..., wd+c) = 2v+
1 .w

+
1 − 2v−2 .w

−
2 .

The linear map Df2(M) depends only on w1 and w2 and since v+
1 6= 0 for all M in W , Df2(M)

is never the zero map. The di�erential of f1 is given by

Df1(M).(w1, ..., wd+c) =
d+c∑
i,j=1

(−1)i+j∆i,jwi,j

where wj = (wi,j)i=1,...,d+c, j = 1, ..., d + c and ∆i,j is the (i, j)-minor of the matrix M . Since
detM 6= 0, one at least one of the minors ∆i,3, i ≤ d + c, is not zero. Therefore the linear
Df1(M) is not zero and depends on w3. It follows that the two linear maps Df1(M) and
Df2(M) are linearly independent for allM inW which implies that S is a submanifold of Ld+c.
To show that the �ow is transverse to S, we have to check that for a matrixM = M(v1, . . . , vd+c)
in W such that f(M) = 0 we have Df(M).(w1, ..., wd+c) 6= 0 when wi = (cv+

i ,−dv−i ). Now,
for such wi, Df2(M).(w1, ..., wd+c) = 2c |v1|2+ +2d |v2|2− > 0, hence Df(M).(w1, ..., wd+c) is not
zero.

4.5 Negligible sets

A important ingredient of the proof of Theorem 1 is that, for a given lattice Λ, the visiting
times t, i.e. the times t such that gtΛ ∈ S, can be read from the sequence (Xn(Λ))n of minimal
vectors. However, this reading is straightforward only for generic lattices, a small subset of
lattices has to be avoided.

4.5.1 A negligible set N in the space lattices

Let N = Nd+c be the set of lattices Λ in Ld+c such that either

• there exist two vectors v1, and v2, such that v1 6= ±v2 and |v1|+ = |v2|+ > 0 or |v1|− =
|v2|− > 0,

11



• or there exists a nonzero vector in Λ lying in the vertical space {0} × Rc, or in the
horizontal subspace Rd × {0}.

Remark 1. All the lattices Λθ are in N .

Lemma 12. N is negligible and gt invariant.

Proof. Clearly N is gt invariant and the set of lattices with a nonzero vector in the vertical
subspace or in the horizontal subspace is negligible. So we are reduced to prove that if X 6= ±Y
are two nonzero vectors in Zd+c the set of matrices M in SL(d + c,R) satisfying one of the
equations

|MX|2+ − |MY |2+ = 0

or
|MX|2− − |MY |2− = 0

is of zero measure. Firstly, by symmetry, it is enough to deal with one of the equations, say the
�rst. Secondly, by homogeneity it is equivalent to prove that the set of matrices in Md+c(R)
that satisfy this equation is of zero measure. Since this is an algebraic equation, it is enough to
prove that there exists at least one matrix M such that |MX|2+ − |MY |2+ 6= 0. If X and Y are
proportional just choose a matrix M such that |MX|+ 6= 0. Otherwise, �rst choose a vector Z
in the subspace spanned by X and Y that is orthogonal to X. Observe that Z.Y 6= 0. Next
choose a d-dimensional subspace V of Rd+c containing Z and orthogonal to X. A matrix M
the �rst d rows of which are a basis of V , is such that |MX|+ = 0 and |MY |+ 6= 0.

Remark 2. A lattice Λ that is not in N has a bi-in�nite sequence of minimal vectors and is in
S i� λ1(Λ) = λ2(Λ).

4.5.2 A negligible set M in the space of matrices Md,c(R)

Let C be a positive real constant and let M = Md,c = Md,c(C) be the set of matrices
θ ∈ Md,c(R) such that either

• there exist two nonzero vectorsX 6= ±Y in Zd+c with nonzero heights such that |MθX|+ =
|MθY |+
• or there exist in�nitely many pairs X 6= ±Y in Zd+c such that |X|− = |Y |− 6= 0 and

|MθX|+ , |MθY |+ ≤ C |X|−
c
d
− .

The set M depends on the constant C. Actually, we will only use the value C = Cd,c where
Cd,c is given by Lemma 6.

Lemma 13. M is negligible.

Proof. We prove thatM is included in a countable union of negligible sets.
Given X 6= ±Y two nonzero vectors in Zd+c with nonzero heights, consider the setM(X, Y )

of matrices θ ∈ Md,c(R) such that |MθX|+ = |MθY |+. In order to show thatM(X, Y ) has zero
measure it is enough to show that the polynomial

f(θ) = |MθX|2+ − |MθY |2+
= ‖X+‖2

Rd − ‖Y+‖2
Rd − 2(X+.θX− − Y+.θY−) + ‖θX−‖2

Rd − ‖θY−‖
2
Rd

12



is not the zero polynomial.
If X− 6= ±Y−, we can choose θ0 such that ‖θ0X−‖2

Rd − ‖θ0Y−‖2
R2 6= 0. With this choice, the

one variable polynomial P (t) = f(tθ0) has a nonzero degree two monomial which implies that
the polynomial f is not the zero polynomial.

If X− = Y− (the case X− = −Y− is similar), f(θ) = |X|2+ − |Y |
2
+ − 2(X+ − Y+).θX−. Since

X− 6= 0, the map ϕ : θ ∈ Md,c(R) → θX− ∈ Rd is onto. It follows that we can choose θ such
that θX− = X+ − Y+. With this value of θ, we obtain f(θ) − f(−θ) = −4 |X+ − Y+|2 6= 0
which implies that the polynomial f is not the zero polynomial. It follows that M(X, Y ) is
negligible.

Consider now, for a positive integer n, the setMn of matrices θ ∈ Md,c(R) such that there
a pair of linearly independent vectors (X, Y ) in Zd+c×Zd+c such that n ≤ |X|− , |Y |− < n+ 1
and

|MθX|+ , |MθY |+ ≤ C |X|−
c
d
− .

We want to prove that the set of matrices θ that are in in�nitely manyMn is negligible. We
can move in the space Md,c(R/Z) and consider instead the set Tn of θ ∈ Md,c(R/Z) such that
there exist q, q′ ∈ Zc linearly independent with n ≤ ‖q‖Rc , ‖q′‖Rc < n+ 1 and

d(θq,Zd), d(θq′,Zd) ≤ Cn−
c
d .

For q �xed, the measure of the set of θ ∈ Md,c(R/Z) such that d(θq,Zc) ≤ Cn−
c
d is ad,cn

−c

where the constant ad,c depends only on C and the dimensions. When the inequality holds
simultaneously for two linearly independent integer vectors q and q′, the measure is the square
of ad,cn

−c. It follows that the measure of Tn is bounded above by

un = card{(q, q′) ∈ Zc × Zc : n ≤ ‖q‖Rc , ‖q
′‖Rc < n+ 1} × a2

d,cn
−2c.

By Borel-Cantelli, it is enough to prove that the Σnun < ∞. Now card{q ∈ Zc : n ≤ ‖q‖Rc <
n+ 1} � nc−1, hence

un � n−2

and we are done.

4.6 Visiting and return times

Let Λ be in Ld+c. By de�nition of S, when gtΛ is in S, vS0 (gtΛ) and vS1 (gtΛ) are two consecutive
minimal vectors of gtΛ. Therefore,{

vS0 (gtΛ) = gtXk(Λ)
vS1 (gtΛ) = gtXk+1(Λ)

.

for an integer k. Hence ect |Xk(Λ)|+ = e−dt |Xk+1(Λ)|− which implies

t =
1

d+ c
ln
qk+1(Λ)

rk(Λ)
.

13



It follows that the set of real numbers t such that gtΛ ∈ S is included in the set

VΛ(S) = {tk =
1

d+ c
ln
qk+1(Λ)

rk(Λ)
: k ∈ Z}.

It can happen that some values tk are skipped, but in that case, Λ must be in N . So, when Λ
is not in N , gtΛ ∈ S i� t ∈ VΛ(S). For the surface S ′, the same results hold with

VΛ(S ′) = {t′k =
1

d+ c
ln
qk(Λ)

rk(Λ)
: k ∈ Z}.

It follows that for almost all Λ, both the backward trajectory (gtΛ)t≤0 and the forward trajectory
(gtΛ)t≥0 visit the two surfaces S and S ′ in�nitely often. Therefore the �rst return/entrance
times in S and S ′,

τ(Λ) = inf{t > 0 : gt(Λ) ∈ S} ∈ R>0 ∪ {∞},
τ ′(Λ) = inf{t > 0 : gt(Λ) ∈ S ′} ∈ R>0 ∪ {∞},

are �nite almost everywhere and the �rst return/entrance maps

R(Λ) = gτ(Λ)Λ,

R′(Λ) = gτ ′(Λ)Λ

are de�ned for all Λ that are not in N .
For an integer n ≥ 1, denote τn the n-th return (or entrance) time in S, i.e.

τn(Λ) =
n−1∑
k=0

τ(Rk(Λ))

(R0(Λ) = Λ for all Λ in Ld+1). It will be convenient to choose the numbering of the sequence
of minimal vectors (Xn(Λ)) in order to have simple formulas for the return time and the return
map.

Numbering convention: For a lattice Λ ∈ Ld+c, n = 0 is the smallest integer n ∈ Z such
that

|Xn+1(Λ)|− ≥ |Xn(Λ)|+
when the set of such integers is non empty.

With this numbering convention, for all Λ is in S, we have

X0(Λ) = vS0 (Λ)

and for all Λ is in S ′, we have
X0(Λ) = wS

′

0 (Λ).

Moreover when Λ /∈ S is not in N ,

|X1(Λ)|− − |X0(Λ)|+ > 0,

τ(Λ) =
1

d+ c
ln

( |X1(Λ)|−
|X0(Λ)|+

)
,
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and
gτ(Λ)X0(Λ) = ±vS0 (R(Λ)) = ±X0(R(Λ)).

Let us summarize the above.

Lemma 14. Let Λ be a lattice in Ld+c.
1. The set of visiting times in S is included in VΛ(S) and the set of visiting times in S ′ is
included in VΛ(S ′).
2. Suppose Λ is not in N . The set of visiting times in S is equals to VΛ(S) and the set of
visiting times in S ′ is equals to VΛ(S ′).

For θ in Md,c(R), we also need to connect the visiting times of the surface S with the best
approximation vectors of θ.

Lemma 15. Let θ be in Md,c(R) \M. Then for all large enough integers n,

tn(θ) =
1

d+ c
ln
qn+1(θ)

rn(θ)

and

t′n(θ) =
1

d+ c
ln
qn(θ)

rn(θ)

are visiting times for the surfaces S and S ′ respectively.

Proof. Let θ be in Md,c(R) \ M. Consider the sequence of all best approximation vectors
(Yn(θ))n∈N of θ. By Lemma 5, there are integers n1 and k such that Xn+k(Λθ) = MθYn(θ) for
all n ≥ n1. Since θ is not in M, by Lemma 6 there is another integer n2 such that for all
n ≥ n2, the only nonzero vector of Λθ in the box C(Xn+k(θ), Xn+k+1(θ)) are ±Xn+k(θ) and
±Xn+k+1. This means that for all n large enough, the times

tn(θ) =
1

d+ c
ln
qn+1(θ)

rn(θ)
and t′n(θ)) =

1

d+ c
ln
qn(θ)

rn(θ)

are visting times for the surfaces S and S ′.

4.7 Functions de�ned on S

Let Λ be in S. By de�nition of S, the functions

ρ, ρ∗ : Λ ∈ S → ln

∣∣vS1 (Λ)
∣∣
−

|vS0 (Λ)|−
, ln

∣∣vS0 (Λ)
∣∣
+

|vS1 (Λ)|+
∈ R>0 ∪ {+∞}

are well de�ned on S. The next Lemma is easy, its proof is close to beginning of the proof of
Lemma 11 and is omitted.

Lemma 16. The functions Λ ∈ Ld,c → |vS0 (Λ)|−, |vS0 (Λ)|+, |vS1 (Λ)|−, |vS1 (Λ)|+ are continuous
and thus the functions ρ and ρ∗ are continuous.

The following Lemma is important. On the one hand, it will imply that the functions ρ
and ρ∗ are integrable. On the other hand, it will explain the connection between the Lévy's
constant Ld,c and the average return times on S.
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Lemma 17. Let Λ be a lattice in S \ N . Then

τ(Λ) =
1

d+ c
(ρ(R(Λ)) + ρ∗(Λ)).

Proof. Let Λ be in S \ N . By de�nition of S, q1(Λ) = r0(Λ). Hence, by Lemma 14,

(d+ c)τ(Λ) = ln
q2(Λ)

r1(Λ)
× r0(Λ)

q1(Λ)

= ln
q2(Λ)

q1(Λ)
+ ln

r0(Λ)

r1(Λ)

= ρ(R(Λ)) + ρ∗(Λ).

5 Finiteness of the induced measure on S and S ′

Fix a measure µ on Ld+c invariant by the SL(d+ c,R) action. Recall that µ is unique up to a
multiplicative constant. Since S is a submanifold of Ld+c transverse to the �ow (gt)t∈R there
exists a unique measure µS de�ned on S by the following property:

For all Λ in S, there exists a neighborhood W of Λ in S and εΛ > 0 such that for all Borel
subsets V ⊂ W and all 0 ≤ ε ≤ εΛ,

µ(∪t∈[0,ε]gtV ) = εµS(V ).

The measure µS is the measure induced by the �ow. It is well known that the measure µS is
R-invariant.

The �ow induces a measure µS′ on S
′ as well. Let us prove that these measures are �nite.

This is a simple consequence of the next Lemma which will be very important in the proof of
Theorem 24 about the almost sur convergence in Md,c(R).

Lemma 18. 1. There exists an integer constant A such that τA(Λ) ≥ 1 for all Λ in S and
τ ′A(Λ) ≥ 1 for all Λ in S ′.

Proof. Let A be the constant given by Lemma ?? about the growth rate of the sequences
(qn(Λ))n and (rn(Λ))n. For all integers k, we have

1

d+ c

(
ln
qk+A+1(Λ)

rk+A(Λ)
− ln

qk+1(Λ)

rk(Λ)

)
≥ 1

d+ c
ln
qk+A+1(Λ)

qk+1(Λ)

≥ 1

d+ c
ln 2.

Since by Lemma 14, the set of visiting times of Λ is included in

VΛ(S) = {tk =
1

d+ c
ln
qk+1(Λ)

rk(Λ)
: k ∈ Z},

τA(Λ) ≥ 1
d+c

ln 2. Multiplying A by the smallest integer larger thna d+c
ln 2

we are done.
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Proposition 19. µS(S) and µS′(S ′) are �nite and nonzero.

Proof. Since S is nonempty and transverse to the �ow, µS(S) > 0.
Since µS is R-invariant, for all k∫

S

τ(RkΛ)dµS(Λ) =

∫
S

τ(Λ)dµS(Λ),

and by Kac's return time Theorem,∫
S

τ(Λ)dµS(Λ) = µ(Ld+1),

therefore, ∫
S

τA(Λ)dµS(Λ) =

∫
S

A−1∑
k=0

τ(RkΛ)dµS(Λ) = Aµ(Ld+c).

By the above Lemma, τA ≥ 1 on S, hence µS(S) ≤ Aµ(Ld+c) which is �nite by Siegel's
Theorem.

6 Almost sure convergence in the space of lattices

6.1 Consequence of the Birkho� Theorem

Theorem 20. There exist two positive constants Ld,c and L∗d,c such that for almost all lattices
Λ in Ld+c,

lim
n→∞

1

n
ln qn(Λ) =

1

µS(S)

∫
S

ρdµS = Ld,c > 0,

lim
n→∞

−1

n
ln rn(Λ) =

1

µS(S)

∫
S

ρ∗dµS = L∗d,c > 0,

lim
n→∞

1

n
τn(Λ) =

1

d+ c
(Ld,c + L∗d,c) =

µ(Ld+c)

µS(S)
.

Moreover, these two constants do not depend on the particular choice of the Euclidean norms
on Rd and Rc.

Proof. Let Λ be in S \ N . By Lemma 17, τ(Λ) = 1
d+c

(ρ(R(Λ)) + ρ∗(Λ)). Because the spaces
of lattices has �nite measure, the return time τ is in L1(S) and therefore the non negative
functions ρ ◦ R and ρ∗ are also in L1(S). Making use of the Birkho�'s Theorem with the
functions ρ and ρ∗, we obtain the almost everywhere convergence of the sums

1

N

N−1∑
n=0

ρ ◦Rn,
1

N

N−1∑
n=0

ρ∗ ◦Rn

on S to R-invariant functions. Now the ergodicity of the �ow gt implies the ergodicity of the
return map R. Therefore 1

N

∑N−1
k=0 ρ ◦ Rn and 1

N

∑N−1
n=0 ρ

∗ ◦ Rn converge almost everywhere on
S to the constants

Ld,c =
1

µS(S)

∫
S

ρdµS and L∗d,c =
1

µS(S)

∫
S

ρ∗dµS.
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We would like to see that the Birkho� sums converge to the same limits almost everywhere in
the whole space of lattices. Let Λ be in Ld+c \ (S ∪ N ) and let n be a positive integer. By
Lemma 14 and the numbering convention, for all n ≥ 1,

ρ ◦Rn(Λ) = ln
|X1(Rn(Λ))|−
|X0(Rn(Λ))|−

= ln

∣∣gτn(Λ)(Xn(Λ))
∣∣
−∣∣gτn(Λ)(Xn−1(Λ))
∣∣
−

= ln
|Xn(Λ)|−
|Xn−1(Λ)|−

and

ρ∗ ◦Rn(Λ) = ln
|X0(Rn(Λ))|+
|X1(Rn(Λ))|+

= ln
|Xn−1(Λ)|+
|Xn(Λ)|+

.

as well. It follows that if the Birkho� sums 1
N

∑N
n=1 ρ ◦Rn(Λ) and 1

N

∑N
n=1 ρ

∗ ◦Rn(Λ) converge
to Ld,c and L

∗
d,c, then

lim
N→∞

1

N
ln qN(Λ) = Ld,c

lim
N→∞

−1

N
ln rN(Λ) = L∗d,c.

Now the image by the map R : Ld+c → S of a subset of nonzero measure in Ld+c is a set of
nonzero measure in S, therefore the sums 1

N

∑N
n=1 ρ ◦Rn and 1

N

∑N
n=1 ρ

∗ ◦Rn converge almost
everywhere in Ld+c to Ld,c and L

∗
d,c.

By Lemma 7, we know that the sequences (qn(Λ))n and (rn(Λ)−1)n have at least exponential
growth rate; therefore, the constants Ld,c and L

∗
d,c are > 0.

By Lemma 17, for all Λ in S \ N and k ∈ N,

τk+1(Λ)− τk(Λ) =
1

d+ c
(ρ(Rk+1(Λ)) + ρ∗(Rk(Λ))),

hence

lim
n→∞

1

n
τn(Λ) =

1

d+ c
(Ld,c + L∗d,c)

almost everywhere.
Finally, let us proof that the constants Ld,c and L

∗
d,c do not depend on the Euclidean norm

on Rd and Rc. For a matrix Ad in SL(d,R) and a matrix Ac in SL(c,R), let denote A the matrix

A =

(
Ad 0
0 Ac

)
∈ SL(d+ c,R).
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Since the action of A on Ld+c is measure preserving,

lim
n→∞

1

n
ln qn(AΛ) = Ld,c

lim
n→∞

−1

n
ln rn(AΛ) = L∗d,c

almost everywhere Ld+1. Now a vectors AX in the lattice AΛ is minimal i� X is a minimal
vector of the of the lattice Λ with respect to the new Euclidean norms ‖.‖Ad,Rd and ‖.‖Ac,Rc
where

‖u‖A,Rd = ‖Au‖Rd , and ‖v‖A,Rc = ‖Av‖Rc .

Since up to multiplicative constants, all the Euclidean norms are of the above form, the con-
stants Ld,c and L

∗
d,c do not depend on the Euclidean norm on Rd and Rc.

6.2 A consequence of Borel-Cantelli Lemma

Proposition 21. With the notation of Theorem 20 we have

cLd,c = dL∗d,c.

Proof. The inequality cLd,c ≤ dL∗d,c is easy to prove. By Lemma 6, for all lattices Λ in Ld+c

and all n, we have qcn+1(Λ)rdn(Λ) ≤ Cd,c. Hence for a lattice Λ such that

lim
n→∞

1

n
ln qn(Λ) = Ld,c

lim
n→∞

−1

n
ln rn(Λ) = L∗d,c,

we have,

cLd,c − dL∗d,c = c lim
n→∞

ln qn(Λ)

n
+ d lim

n→∞

ln rn(Λ)

n
= lim

n→∞

ln qcn(Λ)rdn(Λ)

n
≤ 0.

The converse inequality uses Borel-Cantelli Lemma. Let ϕ :]0,∞[→]0,∞[ be a decreasing
function such that

∑
n≥1 ϕ(n) < ∞, for instance ϕ(t) = 1

tα
with α > 1. Since for such a

function ϕ, lim infn→∞
1
n

lnϕ(n) = 0, the inequality cLd − dL∗d ≥ 0 holds provided that for
almost all lattices Λ, we have qcn(Λ)rdn(Λ) ≥ ϕ(n)d+c for n large enough. Let K be a constant
that will be chosen later. For each integer n ≥ 1, consider the set An of lattices Λ in Ld+c such
that

λ1(Λ) ≤ Kϕ(n)

and the set Bn = gtnAn where tn = 1
d
(lnϕ(n) − n). It is well known that the function λ−1

1 :
Ld+c → R is integrable, see for instance [3] p. 27 (actually, the only important fact is that a
positive power of λ−1

1 is integrable). Making use of the Markov inequality, we obtain

µ(Bn) = µ(An) ≤
∥∥λ−1

1

∥∥
1

1
Kϕ(n)

� ϕ(n).
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Therefore, by Borel-Cantelli Lemma, the set B of lattices Λ in Ld+c such that Λ ∈ Bn for
in�nitely many integers n, is negligible. Suppose now that Λ is a lattice such that qcn(Λ)rdn(Λ) ≤
ϕ(n)d+c for in�nitely many n. For each integer n ≥ 1, set kn = kn(Λ) = bln qn(Λ)c. By Theorem
20, for almost all lattices we have kn ≤ (Ld,c + 1)n for n large enough. Therefore for almost all
lattices, for n large enough, if qcn(Λ)rdn(Λ) ≤ ϕ(n)d+c then the vector g−1

tkn
(Xn(Λ)) satis�es both∣∣∣g−1

tkn
(Xn(Λ))

∣∣∣
+

= rn(Λ)e
c
d

(kn−lnϕ(kn))

≤ rn(Λ)q
c
d
n (Λ)ϕ(kn)−

c
d

≤ ϕ(n)
d+c
d ϕ(kn)−

c
d

= ϕ(kn)×
(
ϕ(n)

ϕ(kn)

) d+c
d

≤ ϕ(kn)×
(

ϕ(n)

ϕ((Ld,c + 1)n)

) d+c
d

≤ Kϕ(kn)

for some constant K depending only on ϕ (we use that ϕ(t)
ϕ((Ld,c+1)t)

is bounded above which is

obviously true when ϕ(t) = 1
tα
) and∣∣∣g−1

tkn
(Xn(Λ))

∣∣∣
−

= qn(Λ)e−kn+lnϕ(kn) ≤ eϕ(kn) ≤ Kϕ(kn).

Thus there are in�nitely many n such that Λ ∈ Bkn . Since the sequence (kn)n goes to in�nity,
Λ ∈ B. It follows that for almost all lattices Λ, qcn(Λ)rdn(Λ) ≥ ϕ(n) for n large enough and we
are done.

As an immediate consequence of the previous Proposition and of Theorem 20 we have:

Corollary 22.

Ld,c =
d

µS(S)

∫
S

τ dµS =
d× µ(Ld+1)

µS(S)
.

7 Parametrization of S when c = 1

This section is not necessary neither for the proofs of Theorems 1 and 2, nor for sections 8 and
9.

The aim is to show that the computation of the constant Ld,c is theoretically feasible in the
case c = 1. However if the case d = 1 is easy (see below), the case d = 2 is already di�cult.
It is possible to give an integral formula for L2,1. However, we are not able to compute the
integral, only a numerical estimation of the integral has been carried out. An exact description
of S when d ≥ 3 seems to be rather di�cult.

In this section we assume c = 1.
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7.1 rkN decomposition

In this subsection we give a parametrization of a set of lattices that contains S.
Let Λ be a lattice in S and let vS0 (Λ) = u1 and vS1 (Λ) = u2 be the two vectors associated

with Λ by the de�nition of S (see the de�nition of S section 4.1). When d ≥ 2, we suppose
these two vectors have non negative heights and when d = 1, we only suppose that u2 has a
nonnegative height. Since u1 and u2 are independent shortest vectors, by Corollary 10, they
are the �rst two vectors of a basis of Λ. Thus, there is a matrix M ∈ SL(d + 1,R) de�ning Λ
the �rst two columns of which are the vectors u1 and u2.

When d = 1, using the scaling factor r = |u1|+ = |u2|− > 0, we can write

M = rN,

where N is in the set U1 of 2× 2 matrices such that

detN > 0,

n1,1 = n2,2 = 1,

|n2,1| , |n1,2| < 1.

When d ≥ 2, let denote (e1, e2, ..., ed+1) the standard basis of Rd+1. Using the same scaling
factor r = |u1|+ = |u2|− > 0 and an orthogonal matrix k that �xes ed+1 and sends e1 onto
1
r
u1,+, we can �nd a matrix N = (ni,j)1≤i,j≤d+1 such that

M = rkN,

detN > 0,

n1,1 = nd+1,2 = 1 > nd+1,1 = |u1|− ≥ 0, (2)

‖(n1,2, ..., nd,2)‖Rd < 1, (3)

n2,1 = ... = nd,1 = 0. (4)

When d ≥ 2, k is chosen in the group

Kd = {k ∈ SO(d+ 1) : ked+1 = ed+1}.

and using the decomposition of a d × d matrix in a product of an orthogonal matrix with
positive determinant and of an upper triangular matrix we can even suppose that

ni,j = 0, for all 1 ≤ j < i ≤ d. (5)

For d ≥ 2, let denote Ud the set of (d+ 1)× (d+ 1)-matrices such that (2), (3), and (5) hold
((5 implies (4)).

Since detM = 1, the scaling factor r must be equal to (detN)−
1
d+1 . Puting K1 = {I2}, for

all d ≥ 1, the map

(k,N) ∈ Kd × Ud → (detN)−
1
d+1kN

provides a natural parametrization of a subset Σ in SL(d + 1,R) the projection in Ld+1 of
which contains S. The main problem is now to �nd which of these couples (k,N) are such that
rkNZd+1 ∈ S and to select a fundamental domain in this set of couples. This problem reduces
to �nding the set of matrices N such that
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• N ∈ Ud,

• The �rst two columns u1 and u2 of N are in the unit ball BRd+1(0, 1) and are the only
nonzero vectors of the lattice NZd+1 in this ball,

then select a fundamental domain in this set of matrices N .
This is easy when d = 1 and doable when d = 2. When d = 1, it is even possible to �nd the

�rst return map R.
Another issue is to �nd the measure µS on S induced by the �ow gt and the invariant

measure µ of Ld+1. This comparatively easier issue can be performed for all d without knowing
explicitly S.

7.2 The induced measure µS

Consider the manifold Vd = R>0 × R×Kd × Ud and the submanifold

W = {(∆, t, k,N) ∈ Vd : t = 0, ∆ = 1} = {1} × {0} ×Kd × Ud.

together with the maps

F : Vd → GL(d+ 1,R)

: (∆, t, k,N)→
(

∆

detN

) 1
d+1

gtkN

and F : Vd → GL(d+ 1,R)/ SL(d+ 1,Z) de�ned by

F (∆, t, k,N) = F (∆, t, k,N)Zd+1.

By the discussion of the previous subsection, F provides a parametrization of S:

S ⊂ F (W ).

We would like to compute the measure µS in the coordinates (1, 0, k,N). The submanifold W
is equipped with the reference measure

µKd ⊗ λUd
where λUd is the Lebesgue measure on Ud and µKd is the invariant measure on Kd associated
with the invariant volume form γ on Kd that is dual to the exterior product of the invariant
vector �elds generated by the standard skew symmetric matrices (Ai,j = Eij−Eji)1≤j<i≤d. The
induce measure µS can be expressed with the parametrization F , we give without proof an
explicit formula in next Proposition.

Proposition 23. Assume d ≥ 2. Suppose that D is an open subset of W such that F (D) ⊂ S
and the restriction of F to D is one to one. Then the image by F of the measure

1D (
1

detN
)d+1(

d−1∏
j=1

nd−jj,j )µKd ⊗ λUd

is the restriction of µS to F (D).
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Remark 3. Recall that n1,1 = 1 in the above formula.

Remark 4. When d = 1, the above measure has the density

f(N) = f(n2,1, n1,2) =
1

(1− n2,1n1,2)2
.

with respect to the Lebesgue measure on the two dimensional set U1 of matrices N .

7.3 Determination of the surface S, c = 1, d = 1

We already have a map

U1 → L2

N → (detN)−
1
2NZ2

that sends U1 onto a set that contains S. By de�nition of S, the image of a matrix

N =

(
1 n1,2

n2,1 1

)
∈ U1

is in S i� the only nonzero vectors of the lattice Λ = NZ2 in the ball BR1+1(0, 1) are the two
columns of N up to sign. We obtain that Λ ∈ S i�

• 0 < |n2,1| , |n1,2| < 1,

• the signs of n1,2 and n2,1 are opposite.

So the map F de�ned on ]0, 1[2×{−1, 1} de�ned by

(x, y, ε)→ 1

(1 + xy)1/2

(
1 −εx
εy 1

)
Z2

provide a parametrization of S and it is easy to see that F is a bijection. By Remark 4, with
these coordinates, the function

f(x, y, ε) =
1

(1 + xy)2
.

is density the measure µS with respect to the Lebesgue measure. Therefore µS(S) = 2 ln 2.
With the Siegel formula ([26]) and Corollary 22, we obtain the Lévy's constant

L1,1 =
µ(Ld+c)

µS(S)
=

ζ(2)

2 ln 2
=

π2

12 ln 2
.
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7.3.1 Determination of the �rst return map, c = 1, d = 1

Let

Λ = F (x, y, ε) =
1

(1 + xy)1/2

(
1 −εx
εy 1

)
Z2

be in S. By Lemma 14, to �nd the �rst return R(Λ) in S, it is enough to �nd the minimal
vector X2(Λ). Then R(Λ) is given by gτ(λ)(Λ) with

τ(Λ) =
1

2
ln

( |X2(Λ)|−
|X1(Λ)|+

)
.

By corollary 10, the �rst minimal vectors X0(Λ) and X1(Λ) form a basis of Λ. The minimal
vector X2(Λ) is the vector of the form X = aX0(Λ) + bX1(Λ) in the strip |X|+ < |X1(Λ)|+ = x
with a, b ∈ Z, and with the smallest height. It is not di�cult to see that

X2(Λ) = εX0(Λ) + b1
x
cX1(Λ).

So we obtain R(Λ) = F (x′, y′, ε′) where

ε′ = −ε

x′ = {1

x
}

y′ =
1

y + b 1
x
c

and we see that return map R is a two-fold extension of the natural extension of the Gauss
map.

7.4 Value of Lévy's constant when d = 2 and c = 1,

An exact description of S is possible when d = 2 and c = 1. Together with the expression of
the measure µS in Proposition 23, this lead to a closed formula for Lévy's constant as a seven-
tuple integral of an algebraic function over an union of domains the boundaries of which are
algebraic surfaces of degree at most two. We are not able to compute this seven-tuple integral.
However using Octave, Seraphine Xieu (see [29]) has compute a numerical approximation of
Levy's constant

L2,1 = 1.135256974 . . .

This can be compared with the one dimensional Levy's constant

L1,1 = 1.186569111 . . .

8 Almost sure convergence in Md,c(R)

8.1 A general result

Recall that H≤ is the subgroup of SL(d+ c,R) de�ned by

H≤ = {h ∈ SL(d+ c,R) : h =

(
A 0
B C

)
}
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with A ∈ GL(d,R), B ∈ Mc,d(R) and C ∈ GL(c,R). We say that a function f : Ld+c → R
is uniformly continuous in the H≤-direction if for all ε there exists β > 0 such that for all
Λ ∈ Ld+c and all h ∈ BH≤(Id+c, β), |f(hΛ)− f(Λ)| ≤ ε.

Theorem 24. 1. Let ϕ : S → R be a function continuous almost everywhere on S. Suppose
there exists a non negative function f : Ld+c → R≥0 that is continuous, uniformly continuous
in the H≤-direction, integrable and such that |ϕ| ≤ f on S. Then,∫

S

fdµS < +∞

and for almost all θ in Md,c(R),

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) =
1

µS(S)

∫
S

ϕdµS.

2. The same result holds for S ′ instead of S

We can formulate Theorem 24 for a general surface S. The assumptions about S are:

• S is a co�dimension one submanifold transverse to the �ow,

• the number of visiting times in a time interval of length 1 is bounded above by a universal
constant A (Lemma 18),

• Lemma 25 below holds for S.

The other assumptions and the conclusion are the same as in Theorem 24.

For a compact subset K of the submanifold S and δ > 0, let denote

U(K, δ) = {gthΛ : t ∈ [0, 1], h ∈ BH≤(Id+c, δ), Λ ∈ S \K}.

Lemma 25. For all ε > 0, there exists a compact subset K in S and δ > 0 such that
µ(U(K, δ)) ≤ ε.

This Lemma also holds for S ′ and is proven below only for S. This is the key Lemma
because it explains that the part of S near its �boundary� is not relevant.

Next Proposition is an important step toward Theorem 24. An example shows that with-
out some assumptions about the boundary of S such as Lemma 25, neither Theorem 24 nor
Proposition 26 hold.

Proposition 26. Let ϕ : S → R be a bounded continuous function. Then for almost all θ in
Md,c(R),

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) =
1

µS(S)

∫
S

ϕdµS.

25



8.1.1 Auxiliary Lemmas

We will need three Lemmas the proofs of which are omitted. The �rst one only use that S and
S ′ are transverse to the �ow together with the inverse mapping Theorem.

Lemma 27. For all compact subset K in S (or in S ′), there exist α and η > 0 such that
- the map (t,Λ)→ gtΛ is one to one on [−α, α]×K,
- for all h ∈ B(Id+c, η) and all Λ in K, there exists an unique t = t(h,Λ) ∈ [−α, α] such that
g−thΛ ∈ S.
- the maps σ : (h,Λ) → t = t(h,Λ) and π : (h,Λ) → g−thΛ are continuous on B(Id+c, η) ×K
and the values of τ are in [−α/4, α/4].

The second Lemma is a purely theoretical measure result.

Lemma 28. Let X and Y be locally compact second countable metric spaces. Let µX and µY
be two measures on X and Y �nite on compact subsets. Suppose ψ : X → Y is a continuous
map such that every y in Y has at most N preimages and such that for all x in X there exists
a compact neighborhood ωx of x with the following property:
- ψ is one to one on ωx,
- the image by ψ of the measure 1ωxµX is the measure 1ψ(ωx)µY .
Then for all nonnegative measurable function f : Y → R,∫

X

f ◦ ψ dµX ≤ N

∫
Y

f dµY .

The last Lemma is an easy consequence of the previous Lemma and of the de�nition of the
induced measure µS.

Lemma 29. Let U be an open subset in Ld+c such that for all Λ in U , gtΛ ∈ U for all t in a
time interval IΛ of length 1 containing 0. Then

µS(U ∩ S) ≤ 4Aµ(U)

where A is the maximum number of entrance times in S of a �ow trajectory during a time
interval of length 1 (see Lemma 18).

Remark 5. The constant 4A is certainly not the best one.

Remark 6. The assumption U Borel subset should be su�cient.

8.1.2 An example

We want to construct a co-dimension one submanifold V in Ld+c transverse to the �ow gt
together with a bounded continuous function ϕ : V → R such that for a set of positive measure
of θ ∈ Md,c(R), the sequence 1

n

∑n−1
k=0 ϕ ◦ Rk

V (Λθ) does not converge to 1
µV (V )

∫
V
ϕdµV where

RV is the �rst return map in V and µV is the invariant measure induced by the �ow. The idea
is the following. Take V an open set in S. Then µV is the restriction of µS to V . Suppose that
the open set V can be chosen in order that for all θ ∈Md,c(R), and all k ≥ 1,

Rk
V (Λθ) = Rk

S(Λθ)(= Rk(Λθ)).
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Then if ϕ : S → R is a non negative continuous function not identically zero with support
included in V , the sequences

1

n

n−1∑
k=0

ϕ ◦Rk
V (Λθ),

1

n

n−1∑
k=0

ϕ ◦Rk
S(Λθ)

converge to the same limit which cannot be equal to both 1
µS(S)

∫
S
ϕdµS and 1

µV (V )

∫
V
ϕdµV =

1
µS(V )

∫
S
ϕdµS provided that µS(V ) < µS(S). So we are reduced to constructing V .

Observe that Theorem 24 implies that for such a V , ϕ = 1V is not almost everywhere
continuous on S which means that the boundary of V in S has positive measure. Moreover, it
shows that the assumption about the continuity of the function ϕ in Theorem 24, cannot be
dropped.

8.1.3 Construction of V

Consider the set T of lattices Λθ such that the coe�cients of θ are all in [0, 1]. It is a compact
subset in Ld+c containing all the lattices Λθ. DenoteWε the open ball B(Id+c, ε) in SL(d+c,R).
We consider the open sets

Un(ε) =
⋃

t∈[n,n+1]

gt(WεT)

and for a sequence (εn)n∈N of positive real numbers, we consider the open set

U = U((εn)n∈N) =
⋃
n∈N

Un(εn).

Take V = S ∩ U . For all t ≥ and all θ, gtΛθ = gtId+cΛθ is in U , hence for all k ∈ N, we have

Rk
S(Λθ) = Rk

V (Λθ).

So we are reduce to show that when the sequence (εn)n is small enough,

µS(V ) < µS(S).

By de�nition of Un(ε), if Λ = gtgΛθ with t ∈ [n, n+ 1], g ∈ Wε and Λθ ∈ T, then

gsgtgΛθ ∈ Un(ε)

for all s in the interval [n − t, n + 1 − t]. So U satis�es the assumption of the Lemma 29 and
therefore

µS(U ∩ S) ≤ 4A
∑
n∈N

µ(Un(εn)).

Using that gtgΛ = gn(gt−ngg−(t−n))gt−nΛ, we see that

Un(ε) = {gtΛ : t ∈ [n, n+ 1], Λ ∈ WεT}
⊂ gnWε′{gsΛ : s ∈ [0, 1], Λ ∈ T}
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where ε′ is such that gsWεg−s ⊂ Wε′ for all s in [0, 1]. Furthermore, the compact set {gsΛ :
s ∈ [0, 1], Λ ∈ T} has zero measure because it has dimension cd + 1 which is < (c + d)2 − 1.
Therefore

lim
ε′→0

µ(Wε′{gsΛ : s ∈ [0, 1], Λ ∈ T}) = 0,

which implies
lim
ε→0

µ(Un(ε)) = 0.

So there exists a sequence (εn)n∈N such that∑
n∈N

µ(Un(εn)) <
1

4A
µ(S)

and for such a sequence, the sets U = ∪n∈NUn(εn) and V = U ∩ S are the ones we are looking
for which ends the construction of a counter-example to Theorem 24 without assumption about
the boundary of S.

8.2 Proof of Proposition 26

Let ϕ : S → R be a continuous bounded function.
Let ε be a positive real number, let K and δ be associated with ε by Lemma 25, and α and

η associated with K by Lemma 27.
Preliminary observations. Let (an)n∈N be a decreasing sequence of reals numbers in ]0, η[

tending to zero and set Lan = B(Id+c, an) ×K. Since the intersection of all the compact sets
Lan , n ∈ N, is L0 = {Id+c} ×K and since the map ψ(g,Λ) = ϕ(π(g,Λ))− ϕ(Λ) is continuous,
we have

∩n≥0ψ(Lan) = ψ(∩n≥0Lan) = ψ(L0) = {0}.
Therefore, for n large enough ψ(Lan) ⊂] − ε, ε[ which implies there exists β > 0 such that for
all Λ ∈ K and all g ∈ B(Id+c, β),

|ϕ(π(g,Λ))− ϕ(Λ)| ≤ ε. (6)

Finally, let γ > 0 be such that for all s ≥ 0 and all h ∈ BH≤(Id+c, γ)B−1
H≤(Id+c, γ),

d(gshg−s, Id+c) ≤ min(δ, β, η).

For T ≥ 0, Λ a lattice, and E a subset of S, denote

I(T,Λ, E) = {t ∈ [0, T ] : gtΛ ∈ E}.

For almost all θ ∈Md,c(R), we can �x hθ ∈ BH≤(Id+c, γ) such that the conclusion of Birkho�
Theorem holds for the �ot gt or the �rst return map in S and the lattice hθΛθ. Observe that
hθ = hθ,ε depends on ε. It is understood that we shall use Birkho� Theorem in countably many
situations. We �x a sequence εn going to zero and for each ε = εn and we use three times
Birkho� Theorem and the ergodicity of the �ow: for almost all θ,

lim
T→∞

1

T

∫ T

0

1U(K,δ)(gthθΛθ)dt =
1

µ(Ld+c)
µ(U(K, δ)) ≤ ε, (7)
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lim
T→∞

1

T
card I(T, hθΛθ, S) =

1

µS(S)

∫
S

τSdµS =
µ(Ld+c)

µS(S)
, (8)

where τS is the �rst return time in S, and

lim
T→∞

1

card I(T, hθΛθ, S)

∑
t∈I(T,hθΛθ,S)

ϕ(gthθΛθ) =
1

µS(S)
µS(ϕ). (9)

Let T be positive and let s1 < ... < sm be the elements of I(T,Λθ, S \K), we have

gthθΛθ = gt−si(gsihθg−si)gsiΛθ ∈ U(K, δ)

for all t ∈ [si, si + 1] and we can extract a subsequence sn1 , ..., snp de�ned by n1 = 1 and
ni+1 = min{j : sj ≥ sni + 1}. Now by Lemma 18, there is an absolute constant A such that
there are at most A elements of I(T,Λθ, S \K) (⊂ I(T,Λθ, S)) in an interval of length 1, hence
Ap ≥ m. Therefore, by (7)

m

A
≤ p ≤

∫ T+1

0

1U(K,δ)(gthθΛθ)dt ≤ 2(T + 1)ε

and hence
card I(T,Λθ, S \K) ≤ 3ATε (10)

for T large enough: T ≥ T (Λθ, ε). We will also need to bound above the number of elements
of I(T, hθΛθ, S \K) and making use of (7), the same way of reasoning leads to the same result

I(T, hθΛθ, S \K) ≤ 3ATε (11)

for T ≥ T (Λθ, ε).
Heart of the proof. We want to compare

Σ1 =
1

card I(T,Λθ, S)

∑
t∈I(T,Λθ,S)

ϕ(gtΛθ)

with

Σ2 =
1

card I(T, hθΛθ, S)

∑
t∈I(T,hθΛθ,S)

ϕ(gthθΛθ)

because by (9), this latter sum tends to 1
µS(S)

∫
S
ϕdµS when T goes to in�nity. We split∑

t∈I(T,Λθ,S) in two sums
∑

t∈I(T,Λθ,K) and
∑

t∈I(T,Λθ,S\K). Observe that for t ∈ I(T,Λθ, K),

gthθΛθ = (gthθg−t)gtΛθ is of the form gΛ with g ∈ B(Id+c, η) and Λ ∈ K, this allows
to use Lemma 27. We use the notation of Lemma 27 and for t in I(T,Λθ, K), we denote
t′ = σ(gthθg−t, gtΛθ). By (6), we have∣∣∣∣∣∣

∑
t∈I(T,Λθ,K)

ϕ(gtΛθ)−
∑

t∈I(T,Λθ,K)

ϕ(π(gthθg−t, gtΛθ))

∣∣∣∣∣∣ ≤ ε card I(T,Λθ, K).

Now,
π(gthθg−t, gtΛθ) = g−t′gthθg−tgtΛθ = gt−t′hθΛθ
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hence ∣∣∣∣∣∣
∑

t∈I(T,Λθ,K)

ϕ(gtΛθ)−
∑

t∈I(T,Λθ,K)

ϕ(gt−t′hθΛθ)

∣∣∣∣∣∣ ≤ ε card I(T,Λθ, K).

Observe that the map t ∈ I(T,Λθ, K) → t − t′ is one to one because t′ ∈ [−α
4
, α

4
] and the gap

between two visiting times of K is ≥ α. Observe also that t− t′ ∈ I(T, hθΛθ, S) except possibly
for the �rst and the last element of t ∈ I(T, hθΛθ, S). On the one hand, it follows that∣∣∣∣∣∣

∑
t∈I(T,Λθ,S)

ϕ(gtΛθ)−
∑

t∈I(T,hθΛθ,S)

ϕ(gthθΛθ)

∣∣∣∣∣∣
≤ ε card I(T,Λθ, K)

+ ‖ϕ‖∞ (card I(T,Λθ, K \ S) + card I(T, hθΛθ, S)− card I(T,Λθ, K) + 2).

On the other hand, it follows that

card I(T, hθΛθ, S) ≥ card I(T,Λθ, K)− 2

and the same way of reasoning leads to

card I(T,Λθ, S) ≥ card I(T, hθΛθ, K)− 2.

Making use of (10) and (11), we obtain

−2 ≤ card I(T, hθΛθ, S)− card I(T,Λθ, K) =

card I(T, hθΛθ, S)− card I(T, hθΛθ, K)

+ card I(T, hθΛθ, K)− card I(T,Λθ, S)

+ card I(T,Λθ, S)− card I(T,Λθ, K)

≤ 3ATε+ 2 + 3ATε = 6ATε+ 2,

hence (using (10) once again)∣∣∣∣∣∣
∑

t∈I(T,Λθ,S)

ϕ(gtΛθ)−
∑

t∈I(T,hθΛθ,S)

ϕ(gthθΛθ)

∣∣∣∣∣∣ ≤ ε card I(T,Λθ, K) + (9AεT + 2) ‖ϕ‖∞

for T ≥ T (Λθ, ε). We obtain

|card I(T, hθΛθ, S)− card I(T,Λθ, S)| ≤ |card I(T, hθΛθ, S)− card I(T,Λθ, K)|
+ |card I(T,Λθ, S \K)|
≤ 9ATε+ 2

as well. Relation (8) implies that card I(T, hθΛθ, S) ≥ aT for T ≥ T (Λθ, ε) where a = 1
2
µ(L)
µS(S)

.
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All together, for T ≥ T (Λθ, ε), we obtain

|Σ2 − Σ1| ≤
∣∣∣∣Σ2 −

card I(T,Λθ, S)

card I(T, hθΛθ, S)
Σ1

∣∣∣∣+

∣∣∣∣card I(T,Λθ, S)− card I(T, hθΛθ, S)

card I(T, hθΛθ, S)

∣∣∣∣ |Σ1|

≤ 1

card I(T, hθΛθ, S)

∣∣∣∣∣∣
∑

t∈I(T,hθΛθ,S)

ϕ(gthθΛθ)−
∑

t∈I(T,Λθ,S)

ϕ(gtΛθ)

∣∣∣∣∣∣
+

∣∣∣∣card I(T,Λθ, S)− card I(T, hθΛθ, S)

card I(T, hθΛθ, S)

∣∣∣∣ ‖ϕ‖∞
≤ ε card I(T,Λθ, K) + (9ATε+ 2) ‖ϕ‖∞

card I(T, hθΛθ, S)
+

(9ATε+ 2) ‖ϕ‖∞
card I(T, hθΛθ, S)

≤ ε(1 +
18AT ‖ϕ‖∞

aT
) +

4‖ϕ‖∞
aT

which is � ε when T is large enough.

8.3 Proof of Theorem 24

Step 1. Let us show that the restriction of f to S is integrable with respect to µS.
We use Lemma 28 with X =]0, 1[×S, Y = Ld+c, the map ψ :]0, 1[×S → L de�ned by

ψ(t,Λ) = gtΛ, the measures µX = dt ⊗ µS and µY = µ, and the function f . By de�nition of
the induced measure, we know that the image of the restriction of dt⊗µS to any small enough
open subset ω is the restriction to ψ(ω) of the invariant measure µ on Ld+c. Now, by Lemma
7 each element of Ld+c has at most A+ 1 ψ-preimages, therefore by Lemma 28∫ 1

0

∫
S

f(gtΛ)dµSdt ≤ (A+ 1)

∫
Ld+c

fdµ.

Since f is uniformly continuous in the H≤ direction, there exists ∆ > 0 such that for all Λ, and
all t ∈ [0,∆], f(gtΛ) ≥ f(Λ)− 1. Therefore∫ ∆

0

∫
S

(f(Λ)− 1)dµSdt ≤ (A+ 1)

∫
Ld+c

fdµ,

which implies
∫
S
f(Λ)dµS ≤ µS(S) + A+1

∆

∫
Ld+c

fdµ < +∞.

Step 2: It is enough to prove the Theorem for continuous functions ϕ.
Indeed, since ϕ is continuous almost everywhere and since |ϕ| ≤ f with f continuous and

in L1(µS), for all positive integer p, there exist two continuous functions ϕ−p and ϕ+
p such that

−f ≤ ϕ−p ≤ ϕ ≤ ϕ+
p ≤ f

and ∫
S

ϕdµS −
1

p
≤
∫
S

ϕ−p dµS ≤
∫
S

ϕ+
p dµS ≤

∫
S

ϕdµS +
1

p
.
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Therefore, if the convergence holds for almost every θ for all the functions ϕ−p and ϕ+
p , we have∫

S

ϕ−p dµS = lim
n→∞

1

n

n−1∑
k=0

ϕ−p ◦Rk(Λθ) ≤ lim inf
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk(Λθ)

≤ lim sup
p→∞

1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) ≤ lim
n→∞

1

n

n−1∑
k=0

ϕ−p ◦Rk(Λθ) =

∫
S

ϕ+
p dµS

which implies that for almost all θ,

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) =

∫
S

ϕdµS.

So, we are reduce to prove the Theorem for ϕ continuous.
Step 3.

Writing ϕ = ϕ+ − ϕ−, we can suppose ϕ ≥ 0. Using Proposition 26 with the minimum of
ϕ and of a constant M , we obtain for almost all θ,

lim
n→∞

inf
1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) ≥ lim
n→∞

1

n

n−1∑
k=0

min(ϕ,M) ◦Rk(Λθ) =
1

µS(S)

∫
S

min(ϕ,M)dµS,

hence, letting M going to in�nity, we obtain

lim
n→∞

inf
1

n

n−1∑
k=0

ϕ ◦Rk(Λθ) ≥
1

µS(S)

∫
S

ϕdµS.

So we have to bound above the sums
∑n−1

k=0 ϕ ◦Rk(Λθ).
Since f is in L1 there exists ε′ > 0 such that for any measurable subset B in Ld+c, we have

µ(B) ≤ ε′ ⇒
∫
B

fdµ ≤ ε.

This allows to strengthen Lemma 25:

Lemma 30. For all ε > 0, there exists a compact subset K in S and δ > 0 such that
1

µ(Ld+c)

∫
U(K,δ)

fdµ and 1
µ(Ld+c)

µ(U(K, δ)) are ≤ ε.

We keep all the choices and the notations of the proof of Proposition 26, and we use Birkho�
Theorem with one more function:

lim
T→∞

1

T

∫ T

0

f(gthθΛθ)1U(K,δ)(gthθΛθ)dt =
1

µ(Ld+c)

∫
U(K,δ)

fdµ ≤ ε (12)

so that (7), (8), (9) and (12) hold for almost all θ.
Since the function f is uniformly continuous in the H≤-direction, there exists κ > 0 such

that f(hΛ) ≥ f(Λ)− 1
2
for all Λ and all h ∈ BH≤(Id+c, κ). By choosing γ small enough we can

suppose that (gshg−s) ∈ BH≤(Id+c, κ) for all s ≥ 0 and all h ∈ BH≤(Id+c, γ). Furthermore, there
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exists a positive constant ∆ = ∆(κ) such that gt ∈ BH≥0
(Id+c, κ) for all t ∈ [0,∆]. Therefore

for all lattices Λ, all non negative real number s, all h ∈ BH≤(Id+c, γ) and all t ∈ [0,∆], we
have

f(gt(gshg−s)gsΛ) ≥ f((gshg−s)gsΛ)− 1

2
≥ f(gsΛ)− 1

and hence
f(gt+shΛ) = f(gt(gshg−s)gsΛ) ≥ f(gsΛ)− 1. (13)

As in the proof of Proposition 26, let s1 < ... < sm be the elements of I(T,Λθ, S \K). On
the one hand gthθΛθ ∈ U(K, δ) for all t ∈ [si, si + 1], and on the other hand, for almost all θ,
(10) and (11) hold for T ≥ T (Λθ, ε). We can suppose ∆ < 1 and since there are at most A
elements of I(T,Λθ, S \K) (⊂ I(T,Λθ, S)) in an interval of length 1, by (13) we obtain∑

s∈I(T,Λθ,S\K)

ϕ(gsΛθ) ≤
∑

s∈I(T,Λθ,S\K)

f(gsΛθ)

≤
m∑
i=1

1

∆

∫ si+∆

si

(1 + 1U(K,,δ)(gthθΛθ)f(gthθΛθ))dt

≤ m+
A

∆

∫ T+1

0

1U(K,δ)(gthθΛθ)f(gthθΛθ)dt

and with (10) and (12), this gives∑
s∈I(T,Λθ,S\K)

f(gsΛθ) ≤ 3ATε+
A

∆
3Tε ≤ 6

A

∆
Tε

for all T ≥ T (Λθ, ε).
We want to bound above

Σ1(T ) =
1

card I(T,Λθ, S)

∑
t∈I(T,Λθ,S)

ϕ(gtΛθ)

with

Σ2(T ) =
1

card I(T, hθΛθ, S)

∑
t∈I(T,hθΛθ,S)

ϕ(gthθΛθ)

because this last sum tends to 1
µS(S)

∫
S
ϕdµS when T goes to in�nity. We split

∑
t∈I(T,Λθ,S) in

two sums
∑

t∈I(T,Λθ,K) and
∑

t∈I(T,Λθ,S\K). As in the previous proof for T large enough, we have

|I(T, hθΛθ, S)− I(T,Λθ, S)| ≤ 9ATε+ 2,

I(T, hθΛθ, S) ≥ aT,

and ∣∣∣∣∣∣
∑

t∈I(T,Λθ,K)

ϕ(gtΛθ)−
∑

t∈I(T,Λθ,K)

ϕ(gt−t′hθΛθ)

∣∣∣∣∣∣ ≤ ε card I(T,Λθ, K)
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where t′ = τ(gthθg−t, gtΛθ) is de�ned in Lemma 27. Taking into account of the �rst element
tmin and of the last element in I(T,Λδ, K), the latter inequality implies that∑

t∈I(T,Λθ,K)

ϕ(gtΛθ) ≤ ϕ(gtminΛθ) +
∑

t∈I(T,Λθ,K)\{tmin}

ϕ(gt−t′hθΛθ) + ε card I(T,Λθ, K)

≤ ϕ(RΛθ) +
∑

t∈I(T+1,hθΛθ,S)

ϕ(gthθΛθ) + ε card I(T,Λθ, K).

All together, we obtain (recall that ϕ ≥ 0)

Σ1(T ) ≤ 1

T
ϕ(RΛθ) +

card I(T + 1, hθΛθ, S)

card I(T,Λθ, S)
Σ2(T + 1) + ε+

1

card I(T,Λθ, S)

∑
s∈I(T,Λθ,S\K)

f(gsΛθ)

≤ 1

T
ϕ(RΛθ) +

(
1 +

∣∣∣∣card I(T + 1, hθΛθ, S)− card I(T,Λθ, S)

card I(T,Λθ, S)

∣∣∣∣)Σ2(T + 1) + ε

+
1

card I(T,Λθ, S)
6
A

∆
Tε

≤ Σ2(T + 1) +
1

T
ϕ(RΛθ) +

9ATε+ 2 + A

aT − 9ATε− 2
Σ2(T + 1) +

(
1 +

6A

(aT − 9ATε− 2)∆

)
ε

and we are done. �

8.4 Proofs of Lemma 25

We need an auxiliary Lemma.

Lemma 31. Let E(λ, η) be the set of lattices Λ in Ld,c such that there exist two nonzero vectors

X 6= ±X ′ of Λ in the open ball BRd+c(0, λ) with 1
1+η

<
|X|±
|X′|±

< 1 + η or a nonzero vector X in

the open ball BRd+c(0, λ) with |X|± < η. For all λ > 0, we have limη→0 µ(E(λ, η)) = 0.

Proof. Since limρ→0 µ({λ1(Λ) ≤ ρ}) = 0, it is enough to show that for all ρ > 0, µ(E(λ, η) ∩
{λ1(Λ) ≥ ρ}) → 0 when η goes to 0. Choose a Siegel reduction domain S ⊂ SL(d + 1,R).
There is a constant c = c(S) > 0 such that for all matrices M in S and all vectors Y in Rd+c,
we have

‖MY ‖Rd+c ≥ cλ1(Λ) ‖Y ‖Rd+c .
where Λ = MZd+c (this inequality holds for all norms with a constant c depending only on
the norm, just use the norm equivalence). It follows that we can �nd a �nite subset Fρ of
Zd+c such that for all matrices M in S with λ1(MZd+c) ≥ ρ, the only Y in Zd+c such that
‖MY ‖Rd+c ≤ λ, are in Fρ. Therefore, if a matrix M in S is such that Λ = MZd+c belongs to
E(λ, η) ∩ {λ1(Λ) ≥ ρ} then there exist a nonzero Y in Fρ or two nonzero vectors Y 6= ±Y ′ in
Fρ with

|MY |± ≤ η

or
1

1 + η
<
|MY |±
|MY ′|±

< 1 + η.
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For a �xed Y or a �xed pair Y 6= ±Y ′ of nonzero vectors in Fρ, the measure of the set of M in
S for which the above inequality holds, goes to 0 as η goes to 0. Since Fρ is �nite and since a
Siegel domain contains a fundamental domain we are done.

Proof of Lemma 25 . Consider the set V (λ, η, ρ) = E(λ, η) ∪ {λ1(Λ) < ρ}.
Step 1: The complementary V C of V (λ, η, ρ) is a closed subset of Ld,c.

Let (Λn)n∈N be a sequence of points of V C which converge to Γ in Ld,c. First, since λ1 is
continuous, λ1(Γ) = limλ1(Λn) ≥ ρ. There is a sequence of matrices (Mn)n∈N such that
Λn = MnZd+c for all n ∈ N and such that (Mn)n∈N converges to M with Γ = MZd+c. We have
to show that Γ is not in E(λ, η). Let X = MY and X ′ = MY ′ be two nonzero vectors in Γ with
X 6= ±X ′ and ‖X‖Rd+c , ‖X ′‖Rd+c < λ. When n is large enough, Xn = MnY and X ′n = MnY

′

are in the open ball B(0, λ) and since Λn = MnZd+c is not in E(λ, η) we have both

|MnY |± ≥ η

and
|MnY |±
|MnY ′|±

/∈]
1

1 + η
, 1 + η[

and passing through the limit we obtain

|X|±
|X ′|±

=
|MY |±
|MY ′|±

/∈]
1

1 + η
, 1 + η[

and
|X|± ≥ η.

Therefore Γ is not in E(λ, η).
Step 2: F = S \ V (λ, η, ρ) is a compact subset of S when λ ≥ 2 max{λ1(Λ) : Λ ∈ Ld,c}.

Thanks to Malher compactness Theorem it is enough to prove that F is a closed subset of Ld,c.
Let (Λn)n∈N be a sequence of points of F which converges to Γ in Ld,c. We want to prove that
Γ is in F . By the �rst step it is enough to prove that Γ is in S. Choose a Siegel domain S.
There is a sequence of matrices Mn ∈ S such that Λn = MnZd+c for all n ∈ N and such that
(Mn)n∈N converges to M ∈ S. For each n, there are two vectors Y1,n and Y2,n in Zd+c such that
X1,n = MnY1,n and X2,n = MnY2,n are the two vectors associated with Λn by the de�nition
of S. Since the matrices Mn are all in the Siegel domain S and that ‖MnYi,n‖Rd+c = λ1(Λn),
i = 1, 2, the sequences (Yi,n)n∈N, i = 1, 2, are bounded sequence in Zd+c. Therefore extracting
subsequences, we can suppose that the two sequences (Yi,n)n∈N are constant: Yi,n = Yi for all n,
i = 1, 2. It follows that ‖MYi‖Rd+c = limn→∞ ‖MnYi‖Rd+c = limn→∞ λ1(Λn) = λ1(Γ). Moreover

|MY1|+ = lim
n→∞

|MnY1|+ = lim
n→∞

λ1(Λn) = λ1(Γ)

and
|MY2|− = lim

n→∞
|MnY2|− = lim

n→∞
λ1(Λn) = λ1(Γ).

Suppose now that λ ≥ 2 max{λ1(Λ) : Λ ∈ Ld,c}, then making use of the �rst step we conclude
that Γ is in S.
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Step 3. For a neighborhood W of Id+c in SL(d+ c,R), set

UW = {gthΛ : t ∈ [0, 1], h ∈ W, Λ ∈ V (λ, η, ρ)}.

Let us show that we can choose W in order that UW ⊂ V (2ed+cλ, 5ed+cη, 2ed+cρ). It will �nish
the proof of Lemma 25. Indeed, we �rst �x λ ≥ 2 max{λ1(Λ) : Λ ∈ Ld,c}, next we take η
and ρ such that µ(E(2ed+cλ, 5ed+cη)) ≤ ε

2
and µ({λ1 < 2ed+cρ}) ≤ ε

2
, then we take W such

that UW ⊂ V (2ed+cλ, 5ed+cη, 2ed+cρ) and δ such that B(Id+c, δ) ⊂ W . Now by the second step
K = S \ V (λ, η, ρ) is compact and since U(K, δ) ⊂ UW ⊂ V (2ed+cλ, 5ed+cη, 2ed+cρ), we have
µ(U(K, δ)) ≤ ε.

Let Λ be in V (λ, η, ρ), h in W and t ∈ [0, 1]. We explain how to successively reduce W in
order to obtain the above inclusion.

Case 1. Suppose λ1(Λ) < ρ. We can choose W small enough in order that ‖hX‖Rd+c ≤
2 ‖X‖Rd+c for all h in W and all X in Rd+c. This implies that λ1(gthΛ) ≤ 2ed+cλ1(Λ) < 2ed+cρ,
hence gthΛ ∈ V (2ed+cλ, 5ed+cη, 2ed+cρ).

Case 2. Suppose there exist a nonzero vector X in Λ ∩ B(0, λ) with |X|− < η (the case
|X|+ < η is easier). Call p± the projections on the subspaces E± and ‖u‖ the norm of the linear
operator u associated with the norm ‖.‖Rd+c . The vector gthX is in the open ball B(0, 2λed+c)
and we have

p−gthX = gtp−hp−X + gtp−hp+X,

hence
|gthX|− < ed+c ‖p−h‖ η + ed+c ‖p−hp+‖λ.

We can choose W in order that ‖p−hp+‖ < η
λ
and ‖p−h‖ ≤ 1. Then we have |gthX|− < 3ed+cη

which implies that gthΛ ∈ V (2ed+cλ, 5ed+cη, 2ed+cρ).
Case 3. Suppose there exists two distinct nonzero vectors X and X ′ in Λ ∩ B(0, λ) such

that

|X|− , |X
′|− ≥ η and

1

1 + η
<
|X|−
|X ′|−

< 1 + η.

The case with |.|+ is similar.
As above,

|hX|− < ‖p−h‖ |X|− + ‖p−hp+‖λ

≤ (‖p−h‖+ ‖p−hp+‖
λ

η
) |X|− .

We can choose W in order that ‖p−h‖+ ‖p−hp+‖ λη ≤ 1+ η. We also have

|hX ′|− ≥ ‖p−hp−X
′‖ − ‖p−hp+‖ ‖X ′‖ .

We can choose W in order that ‖p−hp+‖ λη ≤ η and ‖p− − p−hp−‖ ≤ η. With this choice, we
have

|hX ′|− ≥ |X
′|− − η |X

′|− − η |X
′|− .

It follows that

|gthX|−
|gthX ′|−

=
|hX|−
|hX ′|−

≤
|X|−
|X ′|−

× 1 + η

1− 2η
≤ (1 + η)2

1− 2η
≤ 1 + 5η
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when η is small enough. Inverting the role of X and X ′ we get the inequality
|hX′|−
|hX|−

≤ 1 + 5η

and we are done.

8.5 Proofs of Theorems 1 and 2.1.

We begin by the proof of Theorem 1 which is more di�cult. We want to prove that for almost
all θ in Md,c(R),

lim
n→∞

1

n
ln qn(θ) = Ld,c =

1

µS(S)

∫
S

ρ(Λ) dµS(Λ)

and that

lim
n→∞

−1

n
ln rn(θ) =

c

d
Ld,c.

By Khintchin-Groshev Theorem, the convergence almost everywhere of 1
n

ln qn(θ) to Ld,c =
1

µS(S)

∫
S
ρ(Λ) dµS(Λ), implies the convergence almost everywhere of −1

n
ln rn(θ) to c

d
Ld,c. There-

fore the proof of Theorem 1 reduces in the �rst almost everywhere limit.
As soon as Theorem 1 is proven, the formula in the introduction

Ld,c =
d

µS(S)

∫
S

τ dµS =
d× µ(Ld+c)

µS(S)

is a consequence of Proposition 21 and Lemma 17. Indeed, by Proposition 21 and by Lemma
17, c

d
Ld,c = L∗d,c = 1

µS(S)

∫
S
ρ∗(Λ) dµS(Λ) and τ(Λ) = 1

d+c
(ρ(R(Λ)) + ρ∗(Λ)) for Λ in S \ N ,

hence

Ld,c =
d

d+ c
× 1

µS(S)

∫
S

(ρ(R(Λ)) + ρ∗(Λ))dµS(Λ)

=
d

µS(S)

∫
S

τ(Λ)dµS(Λ)

=
d µ(Ld+c)

µS(S)
.

Let us now prove the �rst almost everywhere limit. We need two Lemmas. The �rst one is
clear.

Lemma 32. For all compact set K in Rd+c and all ε > 0 there exists α > 0 such that for all
g ∈ B(Id+c, α) and all x ∈ K, d(gx, x) ≤ ε.

Lemma 33. Let Λ be in S ′ \ N . Then return map R = RS is de�ned on neighborhood of Λ
and is continuous at Λ.

Proof. Consider the minimal vectors X0 = X0(Λ) and X1 = X1(Λ). By de�nition of S ′ the
only nonzero vector B(0, λ1(Λ)) = C(X0) are ±X0. Therefore there exists ε > 0 such that all
X in Λ \ {0,±X0} are at a distance ≥ ε from C(X0). Since Λ is not in N , ±X0 and ±X1 are
the only nonzero vector of Λ in the cylinder C(X0, X1). Therefore reducing ε if necessary, all
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X in Λ \ {0,±X0,±X1} are at a distance ≥ ε from C(X0, X1). By the above Lemma we can
choose δ > 0 such that ∀g ∈ B(Id+c, δ), ∀X ∈ C(X0, X1) +B(0, 1),

max(d(g−1X,X), d(gX,X)) ≤ ε/3.

It follows that for all g ∈ B(Id+c, δ), ±gX0 are the only nonzero vector of gΛ in C(gX0) and
that ±gX0 and ±gX1 are the only nonzero vectors of Λ in C(gX0, gX1). It follows that if the
lattice Γ = gΛ is in the set of lattices B(Id+c, δ)Λ ∩ S ′ then X0(Γ) = gX0 and X1(Γ) = gX1.
By de�nition of S the return times are from Λ and Γ are well de�ned we have

τ(Λ) =
1

d+ 1
ln
|X1|−
|X0|+

,

τ(Γ) =
1

d+ 1
ln
|gX1|−
|gX0|+

,

hence R(Λ) is de�ned and

|τ(Λ)− τ(Γ)| = 1

d+ 1

∣∣∣∣ln |X1|−
|X0|+

|gX0|+
|gX1|−

∣∣∣∣
≤ 1

d+ 1
(

∣∣∣∣ln |X1|−
|gX1|−

∣∣∣∣+

∣∣∣∣ln |gX0|+
|X0|+

∣∣∣∣).
which goes to zero δ goes to zero.

End of proof of Theorem 1. We use Theorem 24 with S ′ and the function ϕ : S ′ → R≥0 de�ned

by ϕ(Λ) = ρ ◦ R(Λ) = ln q1(Λ)
q0(Λ)

when R(Λ) is de�ned and by ϕ(Λ) = 0 otherwise. Since ρ is

continuous on S and R is continuous on S ′ \ N , ϕ is almost everywhere continuous on S ′. We
need to �nd a uniformly continuous function f : L → R such that |ϕ| ≤ f . Observe that ϕ is
nonnegative. By Minkowski convex body Theorem, for all lattice Λ ∈ L.

q1(Λ)cr0(Λ)d ≤ C = Cd,c

where Cd,c depends only on c and d. It follows that for all Λ in S ′ we have

ϕ(Λ) = ln
q1(Λ)

q0(Λ)

= ln
q1(Λ)r0(Λ)d/c

q0(Λ)r0(Λ)d/c

≤ lnCd/c − ln q0(Λ)r0(Λ)d/c.

For Λ is in S ′ we have q0(Λ) = r0(Λ) = λ1(Λ). Therefore

ϕ(Λ) ≤ lnCd/c − d+ c

c
lnλ1(Λ).

It is well known that the function lnλ1 is uniformly continuous and integrable on Lc+d, conse-
quently we can use Theorem 24 with S ′ and ϕ. It follows that for almost all θ in Md,c(R) we
have

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk
S′(Λθ) =

1

µS′(S ′)

∫
S′
ϕ dµS′
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where RS′ is the �rst return map on S ′. Now by Lemmas 5 and 15, for almost all θ, there is an
integer k0 such that

ϕ ◦Rk
S′(Λθ) = ln

qk+k0+1(θ)

qk+k0(θ)

for all large enough k, where k0 depend only on θ. It follows that for almost all θ

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦Rk
S′(Λθ) = lim

n→∞

1

n

n−1∑
k=0

ln
qk+k0+1(θ)

qk+k0(θ)
= lim

n→∞

1

n
ln qn(θ)

So that the only thing left is the equality∫
S

ρ dµS =

∫
S′
ϕ dµS′ .

Now, the image of µS′ by R is µS, hence∫
S′
ϕ dµS′ =

∫
S′
ρ ◦R dµS′

=

∫
S

ρ dµS.

Proof of Theorem 2.1. Consider the map F : S → R de�ned by

F (Λ) = qc1(Λ)rd0(Λ) = |vS1 (Λ)|c−|vS0 (Λ)|d+
and call ν = νd,c the image of the measure 1

µS(S)
µS by F . Let ϕ : R → R be a continuous and

bounded function. We want to prove that

lim
n→∞

1

n

n−1∑
k=0

ϕ(βk(θ)) =

∫
R
ϕ(x) dν(x)

for almost all θ ∈ Md,c(R).
Now by Lemmas 5 and 15, for almost all θ,

F (Rk(Λθ)) = qck+k0+1(θ)rdk+k0
(θ) = βk+k0(θ)

for all k large enough. Now the function ϕ ◦ F is bounded and continuous, thus by Theorem
24 (or Proposition 26) we have for almost all θ,

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ F (Rk(Λθ)) =
1

µS(S)

∫
S

ϕ ◦ F (Λ) dµS(Λ)

=

∫
R
ϕ(x) dν(x)

which implies that

lim
n→∞

1

n

n−1∑
k=0

ϕ(βk(θ)) = lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ F (Rk(Λθ)) =

∫
R
ϕ(x) dν(x)

and �nishes the proof of Theorem 2.1. The proof of Theorem 2.2. is postponed at the end of
section 9.
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9 On lim inf qcn+kr
d
n

For each θ in Md,c(R), we consider the sequence of best approximation denominators (Qn(θ))n∈N,
their norms qn = ‖Qn(θ)‖Rc , and the sequence (rn)n≥0 de�ned by

rn = dRd(θQn,Zd).

For a nonnegative integer k, call Badk the subset of Md,c(R) de�ned by

Badk(d, c) = Badk = {θ ∈ Md,c(R) \Md,c(Q) : inf
n∈N

qcn+kr
d
n > 0}

(if rn = 0 for some integer n, θ is not in Badk). The sequence of sets (Badk)k≥0 is clearly
nondecreasing and the set Bad0 is the usual set of badly approximable matrices. When d =
c = 1, the classical inequality qn+1rn ≥ 1

2
shows that Bad1 = R \ Q while in [9] it has been

shown that for c = 1 and d ≥ 2, Bad1 is negligible. Our �rst goal is to show that Bad1 \Bad0

is nonempty for c = 1 and d = 2. Next we will prove that the set

B(d, c) = B = ∪k≥0Badk

is negligible and does not depend on the choice of the norm.

Proposition 34. If c = 1 and d = 2 then Bad1 \Bad0 contains uncountably many elements.

Remark 7. The set Zθ + Z2 is everywhere dense in R2 for all in θ ∈ Bad1. Indeed it is known
that the �rst minimum of the lattice

Λn = Z2 + Z
pn
qn

is � rn−1 where pn is an integer vector such that rn = d(qnθ,Z2). This implies that the second
minimum of this lattice is λ2(Λn) � 1

qnrn−1
. Now a lower bound qnr

2
n−1 ≥ α > 0 implies that

1
qnrn−1

≤ rn−1

α
which goes to zero when n→∞. The convergence to zero of λ2(Λn) implies that

Zθ + Z2 is everywhere dense in R2 (see [11] or [8]).

Proof. We assume that R2 is equipped with the standard Euclidean norm. Set θ0 = (0, 0) and
θ1 = (1

5
, 1

5
). We construct inductively a sequence (θn)n≥0 of rational vectors in R2. For each

n in N, let Λn = Z2 + θnZ be the lattice associated with θn. Observe that the least common
denominator Qn of the coordinates of the rational vector θn is the inverse of the volume of the
lattice Λn, det Λn = 1

Qn
(even for n = 0). For 1 ≤ i ≤ n, set

Mi,n = min{d(qθn,Z2)− d(Qi−1θn,Z2) : Qi−1 < q < Qi},
mi,n = d(Qi−1θn,Z2)− d(Qiθn,Z2)

The sequence (θn)n≥0 is constructed such that the following properties hold for all n ≥ 1:

1. Q0 = 1 < Q1 = 5 < Q2 < · · · < Qn are the best approximations (denominators) of θn,

2. Qn > 2nQn−1 and given θ0, θ1, . . . , θn−1, there are at least two possible choices of θn
leading to two di�erent values of Qn (to ensure that we construct an uncountable set),

40



3. for all 1 ≤ i ≤ n − 1, Mi,n > 0 (we need to avoid the situation where d(qθn,Z2) =
d(Qi−1θn,Z2) for some q between Qi−1 and Qi),

4. ‖θn − θn−1‖ ≤ 1
8Qn−1

min{Mi,j : 1 ≤ i < j ≤ n− 1},

5. ‖θn − θn−1‖ ≤ 1
8Qn−1

min{mi,j : 1 ≤ i ≤ j ≤ n− 1},

6. εn−1 = Qn−1(θn− θn−1) is a shortest vector of Λn, i.e. λ1(Λn) = ‖εn−1‖, and (−1)n−1εn−1

has positive coordinates,

7. 2λ1(Λn) ≤ λ2(Λn) ≤ 30λ1(Λn).

Observe that, with our choices of θ0 and θ1 all these conditions holds for n = 1 (the condi-
tions 3 and 4 are empty for n = 1).

First, let us show that the above conditions imply that the sequence (θn)n∈N converges to
θ in Bad1 \Bad0. By 2 and 4, the sequence ‖θn−1 − θn‖ converges to 0 at least at a geometric
rate, hence the sequence (θn)n≥1 converge to θ ∈ R2. Furthermore, by 4, for all n ≥ 2,

‖θ − θn‖ ≤
∑
p≥n+1

‖θp − θp−1‖

≤
∑
p≥n+1

1

8Qp−1

min{Mi,j : 1 ≤ i < j ≤ p− 1}

≤ 1

4Qn

min{Mi,n : 1 ≤ i < n}.

Using 5 instead of 4, we obtain

‖θ − θn‖ ≤
1

4Qn

min{mi,n : 1 ≤ i ≤ n}

as well. It follows that for all 1 ≤ i ≤ n− 1 and all Qi−1 < q < Qi, we have

d(qθ,Z2) ≥ d(qθn,Z2)− q ‖θ − θn‖
≥ d(Qi−1θn,Z2) +Mi,n − q ‖θ − θn‖
≥ d(Qi−1θ,Z2)−Qi−1 ‖θ − θn‖+Mi,n − q ‖θ − θn‖
≥ d(Qi−1θ,Z2) +Mi,n − 2Qi ‖θ − θn‖ .

Since ‖θ − θn‖ ≤ 1
4Qn

Mi,n, d(qθ,Z2) > d(Qi−1θ,Z2). For all 1 ≤ i ≤ n− 1, we also have

d(Qiθ,Z2) ≤ d(Qiθn,Z2) +Qi ‖θ − θn‖

≤ d(Qi−1θn,Z2)−mi,n +
Qi

4Qn

mi,n

≤ d(Qi−1θ,Z2) +Qi−1 ‖θ − θn‖ −mi,n +
Qi

4Qn

mi,n

≤ d(Qi−1θ,Z2) +
Qi−1

4Qn

mi,n −mi,n +
Qi

4Qn

mi,n

< d(Qi−1θ,Z2).
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It follows that Q0, Q1, ..., Qn−1 are the �rst n best approximations of θ. Therefore (Qn)n≥0 is
the sequence of best approximations of θ. The standard inequality (see for instance [11])

λ1(Λn) � d(Qn−1θ,Z2)

together with 7 imply that θ ∈ Bad0 \Bad1.

Let n be integer ≥ 1. Let us explain the construction θn+1 given that θ0, ..., θn are already
constructed. First choose a primitive point αn = knθn + (an, bn) of Λn with 0 ≤ kn < Qn and
(an, bn) ∈ Z2, in either R2

>0 when n is even or in R2
<0 when n is odd. Just take αn a point

of Λn in a square [x, x + 1[×]0, 1] with minimal ordinate when n is even and a point of Λn in
a square [x, x + 1[×[−1, 0[ with maximal ordinate when n is odd. Observe that ‖αn‖ can be
made arbitrarily large by choosing|x| large enough.

Call Ln = ‖αn‖ the length of the segment [0, αn]. The (Euclidean) distance between two
consecutive lines of the set Hn = Λn + Rαn is

dn =
det Λn

Ln
=

1

QnLn
.

We can choose αn such that
L2
n ≥ n det Λn,

hence Ln
dn

= L2
n

det Λn
≥ n. There are at least two integers pn ≥ 2 such that

10
Ln
dn
≤ pn ≤ 20

Ln
dn
.

Suppose pn is one of these and set

εn =
1

pn − kn
Qn

αn,

θn+1 = θn +
εn
Qn

,

and
Qn+1 = Qnpn − kn.

Since by 1, Q0 = 1 < Q1 = 5 < ... < Qj are the best approximations of θj, j = 1, ..., n, the real
number min{mi,j : 1 ≤ i ≤ j ≤ n} is strictly positive. Moreover,

‖εn‖ ≤
Ln

pn − 1
≤ Ln

pn
2

≤ 2
Ln

10Ln
dn

≤ dn
5

and αn can be chosen in order that dn is arbitrarily small, hence we can choose αn such that
‖εn‖ < ‖εn−1‖ and

‖θn+1 − θn‖ =
1

Qn

‖εn‖ ≤
1

8Qn

min{mi,j : 1 ≤ i ≤ j ≤ n}
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which is condition 5. Next by 3, min{Mi,j : 1 ≤ i < j ≤ n} is strictly positive. As above, it
follows that αn can be chosen such that

‖θn+1 − θn‖ =
1

Qn

‖εn‖ ≤
1

8Qn

min{Mi,j : 1 ≤ i < j ≤ n}

which is condition 4. Clearly Qn+1 ≥ Qn(pn − 1) ≥ 2nQn. Notice that the lattice Λn+1 =
Zθn+1 + Z2 is included in Hn. Next observe that

Qn+1θn+1 = (Qnpn − kn)(θn +
εn
Qn

)

= (Qnpn − kn)(θn +
αn

Qn(pn − kn
Qn

)
)

= Qnpnθn − knθn + αn

= pnQnθn + (an, bn) ∈ Z2.

It follows that Qn+1 det Λn+1 = l ∈ N. On the other hand, consider the one dimensional lattice
Λn+1 ∩ Rαn. Because Qnθn ∈ Z2 and Qnθn+1 = Qnθn + εn, it contains εn and is spanned
by a vector vn = εn

m
where m is an integer. Next observe that θn ∈ Λn+1 + Rαn, hence

Λn+1 + Rαn = Hn. It follows that

l

Qn+1

= det Λn+1 = ‖vn‖ dn

=
‖εn‖
m

dn =
QnLn
mQn+1

dn

=
1

mQn+1

,

which implies m = l = 1. Therefore det Λn+1 = 1
Qn+1

and

Λn+1 = {0, ..., Qn − 1}θn+1 + Zεn + Z2.

Since ‖εn‖ ≤ dn
5
, and Λn+1 ⊂ Hn, εn is the shortest vector of Λn+1. The choice of the signs for

αn now implies that condition 6 holds. Next

λ1(Λn+1) = ‖εn‖ ,
5 ‖εn‖ ≤ dn ≤ λ2(Λn+1) ≤ dn + ‖εn‖ .

Since

‖εn‖ ≥
Ln
pn
≥ Ln

20Ln
dn

=
dn
20
,

we obtain
5λ1(Λn+1) ≤ λ2(Λn+1) ≤ 21 ‖εn‖ ≤ 30λ1(Λn+1)

which contains condition 7. Let us show that Q0, ..., Qn−1 are the �rst best approximations of
θn+1.
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For all 1 ≤ i ≤ n− 1 and all Qi−1 < q < Qi, we have

d(qθn+1,Z2) ≥ d(qθn,Z2)− q ‖θn+1 − θn‖
≥ d(Qi−1θn,Z2) +Mi,n − q ‖θn+1 − θn‖
≥ d(Qi−1θn+1,Z2)−Qi−1 ‖θn+1 − θn‖+Mi,n − q ‖θn+1 − θn‖
≥ d(Qi−1θn+1,Z2) +Mi,n − 2Qi ‖θn+1 − θn‖ .

Since ‖θn+1 − θn‖ ≤ 1
8Qn

Mi,n, d(qθn+1,Z2) > d(Qi−1θn+1,Z2) and hence Mi,n+1 > 0. We also
have

d(Qiθn+1,Z2) ≤ d(Qiθn,Z2) +Qi ‖θn+1 − θn‖

≤ d(Qi−1θn,Z2)−mi,n +
Qi

8Qn

mi,n

≤ d(Qi−1θn+1,Z2) +Qi−1 ‖θn+1 − θn‖ −mi,n +
Qi

8Qn

mi,n

≤ d(Qi−1θn+1,Z2) +
Qi−1

8Qn

mi,n −mi,n +
Qi

8Qn

mi,n

< d(Qi−1θn+1,Z2).

It follows that Q0, Q1, ..., Qn−1 are the �rst n best approximations of θn+1. The proof will be
done once we will have explained that Qn and Qn+1 are the only best approximations that
follow Qn−1 and that Mn,n+1 > 0. These are the places where the sign condition 6 plays a role.
First observe that εn and −εn are the only two shortest vectors of Λn+1 and that

εn = Qnθn+1 −Qnθn

and

−εn = (Qn+1 −Qn)θn+1 −Qn+1θn+1 +Qnθn

= (Qn+1 −Qn)θn+1 + a vector in Z2.

Together with the inequality Qn+1 −Qn > Qn this implies that Qn is a best approximation of
θn+1 and that there is no best approximation of θn+1 between Qn and Qn+1. Next, denoting by
≡ the equivalence modZ2, we have

Qn−1θn+1 = Qn−1(θn +
εn
Qn

) = Qn−1(θn−1 +
εn−1

Qn−1

+
εn
Qn

)

≡ εn−1 +
Qn−1

Qn

εn

and

(Qn −Qn−1)θn+1 = (Qn −Qn−1)(θn +
εn
Qn

)

≡ −Qn−1θn + (1− Qn−1

Qn

)εn

= −Qn−1(θn−1 +
εn−1

Qn−1

) + (1− Qn−1

Qn

)εn

≡ −εn−1 + (1− Qn−1

Qn

)εn,
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by the choice of the signs we obtain that

d(Qn−1θn+1,Z2) < d((Qn −Qn−1)θn+1,Z2).

If q is an integer 6= Qn −Qn−1 lying in ]Qn−1, Qn[, then qθn cannot be ≡ ±εn−1 which are the
shortest vectors of Λn. Hence

d(qθn,Z2) ≥ min(2 ‖εn−1‖ , λ2(Λn)) = 2 ‖εn−1‖ .

It follows that

d(qθn+1,Z2) ≥ d(qθn,Z2)− q ‖θn+1 − θn‖

≥ 2 ‖εn−1‖ −
q

Qn

‖εn‖

≥ 2 ‖εn−1‖ − ‖εn‖ > ‖εn−1‖

>= ‖εn−1 +
Qn−1

Qn

εn‖ = d(Qn−1θn+1,Z2)

which implies both that Qn−1 and Qn are consecutive best approximations of θn+1 and that
Mn,n+1 > 0.

It is not clear whether the set Bad1 depends on the norm. However, using an easy result
about the relations between best approximation vectors associated with two norms, we can
prove:

Proposition 35. The set B(d, c) does not depend on the norms.

Proof. We give the proof only in the case c = 1. When c > 1 one has to extend �rst, the
following result about best approximations:

Consider two norms N and N ′ on Rd. For θ ∈ Rd, call (qn)n∈N the sequence of best
approximation denominators associated with the norm N and (q′n)n∈N the sequence associated
with the norm N ′. Then (see [11] ) there exists an integer k depending only on the norms N and
N ′ such that each interval ]qn, qn+k], contains a best approximation denominator q′m associated
with the norm N ′.

It is enough to prove that Rd \Badkp ⊂ Rd \Bad′p for all p. Let θ be in Rd and n ≥ k be an
integer. By the above result, their exists at least one best approximation denominator in each
interval ]qn+(j−1)k, qn+jk], j = 0, ..., p. Let q′nj be the largest best approximation denominator
in each of these intervals ]qn+(j−1)k, qn+jk]. For each j we have

r′nj ≤ Crn+jk

where C is the constant involved in the norm equivalence. Making use of the above inequality
with j = 0, we obtain q′n0+pr

′d
n0
≤ Cdq′n0+pr

d
n. Next q

′
n0+p ≤ qn+kp, hence,

q′n0+pr
′d
n0
≤ Cdqn+kpr

d
n.

It follows that lim infn→∞ qn+kpr
d
n = 0 implies lim infn→∞ q

′
n+pr

′d
n = 0.

Theorem 36. The set B(d, c) = ∪k≥0Badk has zero measure.
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By the above Proposition B(d, c) doesn't depend on the norms and we can suppose that Rd

and Rc are equipped with the standard Euclidean norms. Let us show that for each k, Badk
has zero measure. We need two lemmas.

Lemma 37. 1. Let a < b be two integers, let Λ = MZd+c be a lattice in S and let (Yn)n=a,...,b

be a sequence of vectors in Zd+c. Suppose that for n = a, ..., b,

• Xn(Λ) = MYn,

• the only nonzero points of Λ in the cylinder C(Xn(Λ), Xn+1(Λ)) are ±Xn(Λ) and ±Xn+1(Λ).

Then there exists a open neighborhood W of M such that for all lattices Λ′ = M ′Zd+c ∈ Ld+c

with M ′ in W , the vectors Zn = M ′Yn are consecutive minimal vectors of Λ′ and

|Zn|+ ∈ [
1

2
rn(Λ), 2rn(Λ)],

|Zn|− ∈ [
1

2
qn(Λ), 2qn(Λ)]

for n = a, ..., b.
2. Suppose furthermore that a < 0, b > 1 and Λ ∈ S. Then for all lattices Λ′ = M ′Zd+c ∈ S
with M ′ in W , we have Xn(Λ′) = M ′Yn for n = a, ..., b..

Proof. 1. Consider a ball BRd+c(0, R) that contains all the points MYn, n = a, ..., b. There is a
neighborhood ω of the identity matrix Id+c such that for all A in ω and all X in Rd+c,

1

2
‖X‖Rd+c ≤ ‖AX‖Rd+c ≤ 2 ‖X‖Rd+c ,

so that

X /∈ BRd+c(0, 8R)⇒ AX /∈ BRd+c(0, 4R)

X ∈ BRd+c(0, R)⇒ AX ∈ BRd+c(0, 2R).

Two vectors Zn = AMYn and Zn+1 = AMYn+1 are consecutive minimal vectors of AΛ as soon
as

|Zn+1|− > |Zn|− , |Zn+1|+ < |Zn|+
and the cylinder C(Zn, Zn+1) contains no other nonzero vector of AΛ than ±Zn and ±Zn+1.
Since, |Xn+1|− > |Xn|− , |Xn+1|+ < |Xn|+, by reducing ω, we can assume |Zn+1|− > |Zn|−
and |Zn+1|+ < |Zn|+, n = a, . . . , b. Since C(Zn, Zn+1) = C(AXn, AXn+1) ⊂ BRd+c(0, 2R),
the image by A of a vector of Λ that is not in the ball BRd+c(0, 8R), cannot enter in the
cylinder C(AXn, AXn+1). Therefore, there are only �nitely many X in Λ such that AX is in
C(AXn, AXn+1). Since by assumption all these vectors X, except ±Xn and ±Xn+1, are at
a positive distance from C(Xn, Xn+1), we obtain that Zn and Zn+1 are consecutive minimal
vectors by reducing once again ω. It follows that Za, ..., Zb are consecutive minimal vectors of
the lattice AΛ. A new reduction of ω ensures that the two inequalities of the Lemma hold.

2. We want to see that there is no shift on the indices. By the numbering convention (see
section ??),

|X0(Λ)|+ = |X1(Λ)|− , |X−1(Λ)|+ > |X0(Λ)|− , |X1(Λ)|+ < |X2(Λ)|− .
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By a further reduction of ω, we can assume that the two inequalities hold for the vectors
Z−1 = AMY−1, Z0 = AMY0, Z1 = AMY1 and Z2 = AMY2. Therefore if AMZd+c is in S we
must have

X0(AΛ) = AMY0 and X1(AΛ) = AMY1

which implies that Xn(AΛ) = Zn for n = a, ...., b.

Lemma 38. Assume that d+ c ≥ 3. Let Γ be a two dimensional lattice in L2 \ N2 which is in
S2 and let k be a non negative integer. Then for all positive real number δ, there exists ε < 2δ
and a lattice Λε in S \ N such that

rn(Λε) ≤ εrn(Γ)

qn(Λε) ≤ εqn(Γ)

for n = 0, ..., k.

Proof. Let Γ = AZ2 be a lattice in S2 \ N2 where

A =

(
a11 a12

a21 a22

)
.

Consider the matrix Mδ ∈ SL(d+ c,R) de�ned by

Mδ =



δa11 0 0 . . . 0 δa12

0 δ−
2

d+c−2 0 . . . . . . 0

0 0 δ−
2

d+c−2 0 . . . 0
...

...
. . . . . . . . .

...

0 0 . . . 0 δ−
2

d+c−2 0
δa21 0 . . . . . . 0 δa22


.

Let (Un = (un,1, un,2))n∈Z be the sequence of vectors in Z2 such that (Xn(Γ) = AUn)n∈Z is
the sequence of minimal vectors of Γ. For each n ∈ Z, let Yn be the element of Zd+c de�ned by
y1 = un,1, y2 = ... = yd+c−1 = 0 and yd+c = un,2. If δ > 0 is small enough, then for all Z ∈ Zd+c

not in the Re1 + Red+c-plane, we have

‖MδZ‖Rd+c = max(|MδZ|+ , |MδZ|−) ≥ δ−
2

d+c−2 ≥ max(2δr−1(Γ), 2δqk+1(Γ)).

It follows that none of these vectors MδZ are in one of the cylinders C(MδYn,MδYn+1), n =
−1, ..., k. Therefore the vectors Xn = MδYn, n = −1, ..., k + 1 are all consecutive minimal
vectors of Λδ = MδZd+1 and Λδ is in S. With our numbering convention we have Xn(Λδ) = Xn

for all n = −1, ..., k + 1. Now we �x δ small enough. By the previous Lemma applied to Λδ,
there is sequence of matrices (Mp)p in S \ N which converges to Mδ such for all p,

Xn(MpZd+1) = MpYn

n = 0, ..., k. When p goes to in�nity,

rn(MpZd+1) = |MpZn|+ → |MδZn|+ = δrn(Γ),

qn(MpZd+1) = |MpZn|− → |MδZn|− = δqn(Γ)

for n = 0, ..., k. So we can take Λε = MpZd+1 for some p large enough.
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End of proof of Theorem 36. Let k and η > 0 be �xed. We want to prove that the set of θ in
Md,c(R) such that

lim inf
n→∞

qcn+k(θ)r
d
n(θ) ≤ η

has full measure. By Lemma 5, it is enough to show that

lim inf
n→∞

qcn+k(Λθ)r
d
n(Λθ) ≤ η

for almost all θ. Fix a two-dimensional lattice Γ in S2 \N2 and let δ be a positive real number

with δ ≤ 1
4
( η
qck(Γ)rd0(Γ)

)
1
d+c . By Lemma 38, there exist ε ≤ 2δ and a lattice Λε in S \N such that

rn(Λε) ≤ εrn(Γ)

qn(Λε) ≤ εqn(Γ)

for n = 0, ..., k. Hence,

qck(Λε)r
d
0(Λε) ≤

η

2d+c
.

By Lemma 37, there exists an open neighborhood W of Λε such that for all Λ in W and some
integer m(Λ), we have both

rm(Λ)(Λ) ≤ 2εr0(Γ)

and
qcm(Λ)+k(Λ)rdm(Λ)(Λ) ≤ η.

Let us show that if for a given lattice Λ, there exists a sequence (tn)n∈N going to in�nity
such that gtnΛ ∈ W for all n ∈ N, then

lim inf
n→∞

qcn+k(Λ)rdn(Λ) ≤ η.

Indeed, if gtnΛ ∈ W , then for some integer m(Λ, tn) we have

(e−dtnqm(Λ,tn)+k(Λ))c(ectnrm(Λ,tn)(Λ))d ≤ η.

So, the only thing to see is that m(Λ, tn) → ∞ when n → ∞. Now edtnrm(Λ,tn)(Λ) ≤ 2εr0(Γ),
hence rm(Λ,tn)(Λ) goes to zero when m goes to in�nity which implies that m(Λ, tn) goes to
in�nity.

Making use of Birkho� Theorem with the �ow gt, the proof would be already �nished if our
goal were lim infn→∞ q

c
n+k(Λ)rdn(Λ) ≤ η for almost all lattices. However we want an �almost all"

with respect of the Lebesgue measure of Md,c(R).
Let U be a relatively compact nonempty open set in Ld+c such that U ⊂ W . One can �nd

a neighborhood V of Id+c in H≤ such that for all θ ∈ Md,c(R), all t ≥ 0 and all h ∈ V , we have

gthΛθ = (gthg−t)gtΛθ ∈ U =⇒ gtΛθ ∈ W.

Call V the set of θ such that gtΛθ /∈ W for all t large enough. By the choices of U and V , for
all h ∈ V and all θ ∈ V , gthΛθ /∈ U for all t large enough. If the Lebesgue measure of V were
nonzero then the set of lattices of the form gshΛθ with s ∈ [0, 1], h ∈ V and θ ∈ V , would have
a nonzero measure. Now, by Birkho� Theorem, for almost all lattices Λ, there exist a sequence
tn →∞ such that gtnΛ ∈ U for all n, therefore V has zero measure.
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Proof of Theorem 2. 2. By the proof of the �rst part of Theorem 2, we know that the measure
νd,c is the image of the measure 1

µS(S)
µS by the map F : S → R de�ned by

F (Λ) = qc1(Λ)rd0(Λ) = |vS1 (Λ)|c−|vS0 (Λ)|d+.

We want to prove that the support of the measure νd,c contains zero, i.e., that νd,c([0, η]) > 0
for all η > 0. By Birkho� Theorem and by de�nition of νd,c, it is enough to prove that

lim
n→∞

1

n

n−1∑
i=0

1[0,η](F (Ri(Λ))) > 0

for almost all Λ ∈ S. By Lemmas 37 and 38, there exists a non empty open set W in S such
that ∣∣vS1 (Λ)

∣∣c
−

∣∣vS0 (Λ)
∣∣d
+
≤ η

for all Λ ∈ W . Hence 1W ≤ 1[0,η] ◦ F . By Birkho� Theorem, for almost all Λ in S

lim
n→∞

1

n

n∑
i=1

1W ◦Ri(Λ) =
1

µS(S)

∫
S

1W dµS = a > 0.

therefore,

lim
n→∞

1

n

n−1∑
i=0

1[0,η](F (Ri(Λ))) ≥ a > 0.

10 Miscellaneous Questions

1. In Theorems 1 and 2, we assume that Rd and Rc are equipped with the standard Euclidean
norms. Do these Theorems hold when Rd and Rc are equipped with any norms?
If Theorem 1 holds for any norms, does the Levy's constant depend on the norms?

2. Is the measure νd,c in Theorem 2, absolutely continuous with respect to Lebesgue measure?
Is the support of νd,c an interval?

3. Suppose c = 1. Consider a �ow (gt)t∈R de�ned by the matrices

gt = Diag(ea1t, . . . , eadt, e−dt) ∈ SL(d+ 1,R)

where the ais are positive real numbers with sum d. Best approximation vectors of θ ∈ Rd

with respect to the �ow (gt)t∈R can be de�ned as follow. A nonzero vector X in Zd+1 is
a best approximation vector of θ if there exists t ≥ 0 such that the interior of the ball
B(gtMθX) ⊂ Rd × R contains no nonzero vector of the lattice gtMθZd+1 (equivalently
‖gtMθX‖Rd+1 = λ1(gtMθZd+1)). Arranging the set of best approximation vector according
to their heights, we obtain a sequence (Xn(θ))n∈N of best approximation vectors associated
with θ. Does Theorem 1 hold for these new sequences of best approximation vectors?
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4. For a �xed k ≥ 1, does the set

Badk(d, c) = Badk = {θ ∈ Md,c(R) \Md,c(Q) : inf
n∈N

qcn+kr
d
n > 0}

depends on the norms used to de�ne best approximations vectors?
Observe that by Proposition 35, the union ∪k≥1Badk does not depend on the choice of
the norms.
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