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1 Introduction

Given a irrational number θ there exists a unique sequence a0 ∈ Z, a1 > 0, a2 > 0, ... of integers
such that the sequence of irreducible fractions

p0

q0
= a0,

p1

q1
= a0 +

1
a1

,
p2

q2
= a0 +

1
a1 + 1

a2

, ...

converges to θ. This sequence of fractions, called the continued fraction expansion of θ, enjoys
many remarkable properties, this is the reason why, since Jacobi’s first extension, many tries have
been made to define multidimensional generalizations. Most of these generalizations start with one
of the three following properties of the continued fraction expansion.

1. The sequence (an)n≥0 can be easily computed from the iterates of the Gauss map T :]0, 1[→ [0, 1],
x → { 1

x}.

2. For all n ∈ N, det
(

pn pn+1

qn qn+1

)
= ±1 (unimodularity property).

3. The set of denominators qn, n ≥ 0, is the set of integers q ≥ 1 such that, ∀1 ≤ k < q,
d(kx,Z) > d(qx,Z) (best approximation property).

Property 1 leads to classical multidimensional continued fraction expansions such as Jacobi-
Perron’s expansion, Brun’s expansion, Selmer’s expansions....

Poincaré ([Poi]) introduced a geometric viewpoint which enlights the unimodularity property.
Many works use this geometric viewpoint and Brentjes defined a multidimensional continued frac-
tion expansion of an element θ in Rd as a sequence of Zd+1-basis whose positive cone contains the
half-line R+(θ, 1). One basis is deduced from the previous one adding to one of the basis vectors
a integer multiple of another basis vector (see [Bren]).

Fewer works start with property 3 which leads to best simultaneous Diophantine approxima-
tions. Lagarias was the first to study best Diophantine approximations for their own sake. The goal
of our paper is to give an overview of the works on best simultaneous Diophantine approximations
with a special emphasis on Lagarias multidimensional continued fraction expansion.

The first two kinds of generalization are closely related. On the one hand, the classical continued
fraction expansion admit geometric definitions. On the other hand, the generalized Gauss maps
are piecewise unimodular Möbius transforms and hence, their iterates define sequences of basis
of Zd+1. However, best simultaneous Diophantine approximations cannot be easily related to
unimodularity.

In the first part of the paper, after the definition of best Diophantine approximations , we
give results explaining the incompatibility with unimodularity. Next, we give some properties
of best simultaneous Diophantine approximations that are partial generalization of well known
properties of the one-dimensional continued fraction expansion. Then, we describe connections
between the best simultaneous approximations of an element θ in Rd and the geometric properties
of the sequence nθ mod 1. The last part of the paper is devoted to Lagarias’ multidimensional
expansion. We adopt a more general presentation than Lagarias original one’s.

While, in the first parts, we choose to include a very few proofs, the last part is nearly self
contained, all important results leading to Lagarias’ expansion are proved.
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At last, we must say that there is almost nothing in this paper about best Diophantine approx-
imations to a linear form or to a set of linear forms.

2 Best Diophantine approximations

2.1 Definitions

Let N be a norm on Rd and denote d(., .) the distance associated with N .

Définition 1 Let θ ∈ Rd.
1. A positive integer qis a best simultaneous Diophantine approximation denominator of θ (asso-
ciated with the norm N) if

∀k ∈ {1, ..., q − 1}, d(qθ,Zd) < d(kθ,Zd).

2. An element (P, q) in Zd × Z is a best Diophantine approximation vector of θ if q is a best
simultaneous Diophantine approximation denominator of θ and if

N(qθ − P ) = d(qθ,Zd).

For short, we will always write best Diophantine approximation instead of best simultaneous
Diophantine approximation denominator.

If θ /∈ Qd, the set of best Diophantine approximations of θ is infinite. Ordering this set, we
get a sequence q0 = q0(θ) = 1 < q1 = q0(θ) < ... < qn = qn(θ) < .... When d = 1, by the best
approximation property, the best Diophantine approximations q0, q1, ..., qn, ... are the denominators
of the ordinary continued fraction expansion of θ. The only slight difference is that in the ordinary
continued fraction expansion it can happen that q0 = q1 = 1. In this case, the indices are shifted
by one.

The first drawback is that the sequence (qn)n≥0 depends on the norm as soon as the dimension
is not 1 (see section 2.4 for an inequality between best Diophantine approximations associated with
two different norms).

Notation Denote by rn = rn(θ) the distance from qnθ to Zd, and by Pn the point in Zd such
d(qnθ, Pn) = rn(θ). With these notations, (Pn, qn) is a best Diophantine approximation vector.
The remainder vector qnθ − Pn is denoted by εn.

To our knowledge, C.A. Rogers in 1951 [Rog] was the first to define best Diophantine approxi-
mations associated with the sup norm; he noticed that two consecutive remainder vectors cannot
lie in the same quadrant. This initial work on remainder vectors has been continued by V. T. Sós
and G. Szekeres [SóSz], and by Moshchevitin [Mosh2].

In “Introduction to Diophantine Approximation” [Cas], Cassels defines the continued fraction
expansion of a real number starting with the best approximation property. Then, he derived the
unimodularity and constructed the Gauss map using only the best approximation property. As we
will see in next section, this program cannot be realized in dimension ≥ 2.

The study of best Diophantine approximations actually began in 1979 with the works of J. C.
Lagarias [Lag1,2,3,4,5]. He defined best Diophantine approximations for any norm and studied the
unimodularity property, the growth rate of the denominators and their computational complexity.
Beside these works he also defined best Diophantine approximations to a set of linear forms. Later
in 1994, he proposed a geodesic multidimensional continued fraction expansion.

Negative results about unimodularity are due both to Lagarias and N. Moshchevitin [Mosh3,4]
who disproved a conjecture of Lagarias (see also the survey [Mosh1]).

Many authors use implicitly best Diophantine approximations especially through the follow-
ing lemma which shows that best Diophantine approximations are indeed good approximations.
They are at least of the quality of approximations given by Dirichlet’s pigeonhole principle. The
inequality of the lemma may be seen as an alternative to Dirichlet’s theorem.

Lemma 2 There exists a constant CN depending only on N such that for all θ ∈ Rd, and for all
n ∈ N,

qn+1r
d
n ≤ CN .
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Proof. We begin with the sup norm N = N∞. In the d-dimensional torus Td = Rd/Zd, the
open balls B∞(kθ, rn

2 ), k = 0, ..., qn+1 − 1 are disjoint, therefore, the sum of their volumes is less
than 1. Furthermore rn ≤ 1

2 , hence the volume of each of these balls is rd
n and qn+1r

d
n ≤ 1.

If N is not the sup norm, there exists a constant C such that N ≤ CN∞. Therefore,
B∞(kθ, rn

2C ) ⊂ BN (kθ, rn

2 ). By definition of best Diophantine approximations, d(0, θ + Zd) ≥
d(0, qnθ + Zd), hence the set θ + Zd does not meet neither the open ball BN (0, rn) nor the open
ball B∞(0, rn

C ). Therefore rn

C ≤ 1
2 . As before, 1 ≥ qn+1V (B∞(0, rn

2C )) = qn+1
rd

n

Cd . QED
Remark For all integer n sufficiently large, i.e. such that rn < d(0,Zd\{0}), using Minkowski’s

convex body theorem, the constant CN can be chosen depending only on the volume of the unit
ball associated with the norm N .

2.2 Unimodularity

Fix a norm N on Rd. For θ = (θ1, ..., θd) ∈ Rd and n ∈ N, set

Dn =




pn,1 · · · pn+d,1

...
...

...
pn,d · · · pn+d,d

qn · · · qn+d




where the columns of Dn are d + 1 best consecutive approximation vectors of θ. We would like to
know whether det Dn = ±1.

In the 2-dimensional case, if dimQ[1, θ1, θ2] = 3, there always exist infinitely many integers
n such that rank Dn = 3. Indeed, suppose det Dn = 0 for all n large enough. Since two best
approximation vectors are never colinear, the subspace spanned by two consecutive best approx-
imation vectors is independent on n for n large. The vector (θ, 1) is in this subspace F for
(θ, 1) = limn→∞ 1

qn
(pn,1, pn,2, qn). Since F contains two linearly independent integer vectors,

dimQ[1, θ1, θ2] = 2.
The key argument of the previous way of reasoning is that two best approximation vectors

are not colinear. In the 3-dimensional case this argument is not strong enough to prove that if
detDn = 0 for all n large enough, then the space spanned by three consecutive best approximation
vectors is independent on n. There is no way to circumvent this problem as shown by the following
two results.

Theorem 1 ([Lag 4]). For any norm, there exists θ = (θ1, ..., θd) ∈ Rd such that dimQ[1, θ1, ..., θd] =
d + 1 and for all integer N there exists k such that

detDk = det Dk+1 = ... = det Dk+N = 0.

Theorem 2 ([Mosh3,4]). Assume N is the sup norm and d ≥ 3. There exists an uncountable
family of θ = (θ1, ..., θd) in Rd such that dimQ[1, θ1, ..., θd] = d + 1 and

rank(Dn) ≤ 3

for all n large enough.

Moshchevitin’s theorem disprove the following conjecture due to Lagarias.
For all θ ∈ Rd\Qd the two properties are equivalent :
- dimQ[1, θ1, ..., θd] ≤ r,
- there exits an integer k0 = k0(θ, N) such that for all k ≥ k0, rank(Dk) ≤ r.
Lagarias proved that these two properties are equivalent for r = 2.

These two negative results show that best simultaneous Diophantine approximations do not
define an unimodular multidimensional continued fraction expansion. It is necessary to add inter-
mediate approximations or to delete some of them.

After these bad news, we continue with positive results.
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2.3 Periodic expansions

Let p ≥ 1 be an integer. The positive solution of the equation x2 + px − 1 = 0 is in the interval
[0, 1[ and it is readily seen that

x =
1

p + x
=

1
p + 1

p+x

...

Hence, x = [0, p, ..., p, ...] and the sequence (qn)n≥0 of denominators of the continued fraction
expansion of x is such that

q0 = 1, q1 = p, qn+1 = pqn + qn−1

for all n ≥ 1. An analogous result holds for best Diophantine approximations in the two-
dimensional case.

Theorem 3 ([HM]). Let P (x) = x3 + bx2 + ax− 1 be an integer polynomial. Suppose that P has
a unique real root β and that (a ≥ 0 and 0 ≤ b ≤ a + 1) or (b = −1 and a ≥ 2). Then there exists
Euclidean norm on R2 (Rauzy’s norm) such that the sequence of best Diophantine approximations
de θ = (β, β2) satisfies

q0 = 1, q1 = a, q2 = a2 + 1, qn+3 = aqn+2 + bqn+1 + qn.

Lagrange’s theorem about ultimately periodic expansions can also be partially extended to best
Diophantine approximations in R2.

Theorem 4 ([Lag 5]). Let 1, θ1, θ2 be a Q-basis of non totally real cubic field K = Q(θ1, θ2) and
‖.‖ a given a norm on R2. Let P (x) = x3 − a2x

2 − a1x ± 1 be the minimal polynomial of the
fundamental unit of K. Then the best approximation vectors to θ = (θ1, θ2) with respect to ‖.‖ are
a subset of u

(j)
m ∈ Z3, m ∈ N, 1 ≤ j ≤ p where the u

(j)
m satisfy the third-order vector linear relation

u
(j)
m+3 + a2u

(j)
m+2 + a1u

(j)
m+1 ± u(j)

m = 0

for a finite set of initial conditions u
(j)
0 , u

(j)
1 , u

(j)
2 , 1 ≤ j ≤ p.

For particular θ, it is possible to prove a more precise result.

Theorem 5 ([Chev2]). Let P (x) = x3 + bx2 +ax− 1 be a integer polynomial. Suppose that P has
an unique real root β and that a, b ≥ 0. Then there exists an Euclidean norm on R2 and a finite
number of best approximation vectors of θ = (β, β2), Xi = (Pi, qi), i = 1, ...,m, such that the set








0 0 1
1 0 0
a 1 b




n (
Pi

qi

)
: n ∈ N, i = 1, ..., m





is included in the set of best approximations of θ and is equal to this set up to a finite number of
elements.

2.4 Growth rate of best Diophantine approximations

2.4.1 Lower bound.

Let θ ∈ Rd\Qd. In the one-dimensional case, it is well known that qn+1 = an+1qn + qn−1, hence
qn+1 ≥ qn + qn−1 ≥ 2qn−1. It follows that best Diophantine approximations grow at least at
the rate of a geometric progression. It is easy to prove that geometric growth rate occurs in all
dimensions.

For the sup norm, Lagarias has proved that qn+2d ≥ qn+1 + qn. The weaker inequality qn+2d ≥
2qn is easy. One of the 2d “quadrants” of Rd contains at least two of the remainder vectors qn+kθ−
Pn+k, k = 0, ..., 2d. The distance between these two vectors qn+k1θ−Pn+k1 and qn+k2θ−Pn+k2 , is
at most rn, therefore, by definition of the best Diophantine approximations, qn+k2 − qn+k1 ≥ qn.
¤

The following inequality and its nice proof are due to Lagarias.
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Theorem 6 ([Lag3]). For any norm on Rd, for all θ ∈ Rd\Qd, and for all n ∈ N,

qn+2d+1 ≥ 2qn+1 + qn.

Proof. Assume on the contrary that qn+2d+1 < 2qn+1 + qn. Among the integers 0, 1, ..., 2d+1,
there are at least two of them, i < j, such that

(Pn+i, qn+i) = (Pn+j , qn+j) mod 2.

The vector (P, q) = 1
2 (Pn+j − Pn+i, qn+j − qn+i) has integer coordinates and

0 < q ≤ 1
2
(qn+2d+1 − qn) < qn+1.

But,

N(P − qθ) ≤ 1
2
(N(Pn+j − qn+jθ) + N(Pn+i − qn+iθ))

≤ 1
2
(rn+1 + rn) < rn

which contradicts the definition of qn+1. QED
There are similar results about rn whose proofs are easy:

Proposition 3 ([Chev5], [Lag1]). For the sup norm, for all θ ∈ Rd\Qd, and for all n ∈ N,

rn+3d ≤ 1
3
rn.

2. For any norm on Rd, for all θ ∈ Rd\Qd, and for all n ∈ N,

rn+3d ≤ 1
2
rn.

This proposition allows to compare the growth rate of the sequences of best Diophantine ap-
proximations associated with two norms.

Corollary 4 ([Chev5]). Suppose that Rd is endowed with two norms N and N ′. Denote by
(qn)n≥0 and (q′n)n≥0 the best Diophantine approximations associated with the norms N and N ′.
There exists a constant k depending only on the norms N and N ′ such that for all θ ∈ Rd\Qd,
and for all n ∈ N, there exists m ∈ N such that

qn ≤ q′m ≤ qn+k.

2.4.2 Upper bound.

In the following, “almost all” always refers to the Lebesgue measure on Rd.
In the one dimensional case, the following theorem due to Levy shows that almost surely, best

Diophantine approximations grow at most at the rate of a geometric progression (independently
from Levy, Khinchin proved an inequality strong enough to ensure the same geometric growth
rate).

Theorem 7 For almost all θ in R, limn→∞ 1
n ln qn = π2

12 ln 2 .

Theorem 8 ([Chev3,4]). There exists a constant CN depending only on the norm N such that,
for almost all θ ∈ Rd,

lim sup
n→∞

1
n

ln qn ≤ CN .
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Actually, this result has been proved for the sup norm or the Euclidean norm, but by corollary
2.11, given two norms N1 and N2, there exists a constant C = C(N1, N2) such that the number of
best Diophantine approximations associated with N1 between two consecutive best Diophantine
approximations associated with N2, is at most C. Hence the geometric growth rates for the norm
N1 and N2 are equivalent.

In [Chev3] the above Theorem is derived from an asymptotic estimate by W. M. Schmidt [Schm]
of the number of solutions of some Diophantine inequalities (actually, a less general result due to
Susz is enough). In [Chev1] the result is proved for best Diophantine approximations to a set
of linear forms. The proof follows a different way because it seems that there is no appropriate
generalization of Schmidt’s result to simultaneous approximations to a set of linear forms. As in
many works, the proof rests on some ergodic theory and a diagonal action on the homogeneous
space SL(n,R)/SL(n,Z) (n = d+the number of linear forms). Up to a renormalization this
diagonal action is the same as the diagonal action used by Lagarias to define his multidimensional
expansion (see below).

2.5 Extension of Borel-Bernstein Theorem

Theorem 9 Borel-Bernstein. Let (αn) be a sequence of positive integers.
1. If

∑
n≥1

1
αn

< +∞, then for almost all real number θ = [a0, a1, ..., an, ...], there are finitely
many integers n such that an ≥ αn.
2. If

∑
n≥1

1
αn

= +∞, then for almost all real number θ = [a0, a1, ..., an, ...], there are infinitely
many integers n such that an ≥ αn.

In order to generalize this Theorem to all dimensions, we need to define the partial quotients
associated with the best Diophantine approximations. In the one dimensional case, it is well known
that the partial quotients a0, ..., an, ... of a real number can be recovered from the denominators
or from the remaindors:

an =
[

qn(x)
qn−1(x)

]
=

[
rn−2(x)
rn−1(x)

]

([x] denote the integer part of the real number x). It suggests two definitions of the partial quotients
of θ in Rd,

an(θ) =
[

qn(θ)
qn−1(θ)

]
or bn(θ) =

[
rn−2(θ)
rn−1(θ)

]d

(the integer part is not really important). Therefore, we have two natural definitions of partial
quotients. The only simple relation (known) between an and bn is:

qn+1

qn
≥

[
rn−1

rn

]

for the sup norm. However, the coefficients bn seem to have a stronger geometrical meaning than
the coefficients an: each bn is the quotient of the volume of two balls in the torus Td. Furthermore,
Borel-Bernstein theorem can be stated in all dimensions with bn.

Theorem 10 ([Chev3]). Let (αn) be a nondecreasing sequence of positive real numbers.
1. If

∑
n≥1

1
αn

< +∞, then for almost all θ in Rd, there are finitely many integers n such that(
rn−1(θ)
rn(θ)

)d

≥ αn.

2. If
∑

n≥1
1

αn
= +∞, then for almost all θ in Rd, there are infinitely many integers n such that(

rn−1(θ)
rn(θ)

)d

≥ αn.

Note that in the previous Theorem we assume that the sequence (αn) is nondecreasing while
this assumption is not necessary in Borel-Bernstein’s Theorem.
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2.6 Badly approximable vectors and singular vectors

Recall that θ in Rd is badly approximable if

lim inf
q→∞

q
1
d d(qθ,Zd) > 0,

and that θ is singular (Khinchine) if

lim
N→∞

N1/d min{d(kθ,Zd) : k = 1, ..., N} = 0.

These two concepts are easy to translate in terms of best Diophantine approximations :
- θ is badly approximable if and only if lim infn→∞ qnrd

n > 0.
- θ is singular if and only if limn→∞ qn+1r

d
n = 0.

Indeed, if θ is badly approximable, then for all integers n, rn ≥ cq
−1/d
n , hence qnrd

n ≥ cd.
Conversely, if lim infn→∞ qnrd

n > 0, there exists a positive real number a such that for all integers
n, qnrd

n ≥ a. Therefore for all qn ≤ q < qn+1, we have d(qθ,Zd) ≥ rn ≥ ( a
qn

)1/d ≥ (a
q )1/d.

In the same way, if θ is singular then for N = qn+1 − 1,

N1/d min{d(kθ,Zd) : k = 1, ..., N} = (qn+1 − 1)1/drn,

hence, qn+1r
d
n goes to 0. Conversely, if limn→∞ qn+1r

d
n = 0 then qn ≤ N < qn+1,

N1/d min{d(kθ,Zd) : k = 1, ..., N} ≤ q
1/d
n+1rn

which goes to 0.
Remark If θ is badly approximable, then the sequences of partial quotients (an) and (bn) are

bounded. The converse doesn’t hold. To see it, it suffices to take θ with rationally dependent
coordinates.

One of the main difference between the one-dimensional case and the higher dimensions is that
singular systems do not exist in one dimension, whereas Khinchin proved the existence of singular
θ = (θ1, ..., θd) in Rd with dimQ[1, θ1, ..., θd] = d + 1, as soon as the dimension is at least two.
This phenomena implies that an inequality of the form qn+1r

d
n ≥ c > 0 can hold for all θ with

dimQ[1, θ1, ..., θd] = d + 1, only if d = 1. In fact, most θ in Rd, d ≥ 2, are both “regular” and
“singular”:

Theorem 11 1. ([Chev3]) (N =norm sup) if d ≥ 2, then for almost all θ in Rd,

lim inf
n→∞

qn+1r
d
n = 0.

2. There exists a constant c = c(d) > 0 such that for almost all θ in Rd,

lim sup
n→∞

qn+1r
d
n ≥ c.

One can wonder whether there are other ways to extend the one-dimensional inequality qn+1rn ≥
1
2 to higher dimensions. Y. Cheung found such an extension (see next subsection) however the
geometrical meaning of this extension is not as clear as a lower bound on qn+1r

d
n. In the two

dimensional case, a positive lower bound on

qn+1rnrn−1 ≥ c

would have a quite clear geometrical meaning. In [Chev4] it is proved that for the sup norm and
for all θ = (θ1, θ2) in R2 such that dimQ[1, θ1, θ2] = 3,

qn+1rnrn−1 ≥ 1
100

for infinitely many integers n. But the set of θ in R2 such that

lim inf
n→∞

qn+1rnrn−1 = 0

contains a countable intersection of dense open subsets in R2. In the three dimensional case the
situation is even worse, for there exists θ = (θ1, θ2, θ3) in Rd with dimQ[1, θ1, θ2, θ3] = 4 such that

lim
n→∞

qn+1rnrn−1rn−2 = 0

(see [Chev3]).
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3 Distribution of the sequence nθ mod 1

3.1 Lattice and subgroup associated to a best Diophantine approxima-
tion

Let N be a norm on Rd and let θ be in Rd. In this subsection, we give a few easy properties that
give some geometric informations about the set

En = {0, θ, ..., (qn − 1)θ}+ Zd.

Let (Pn, qn) be the best approximation vector associated with qn and let εn = qnθ − Pn be the
remainder vector. The rational approximation associated with qn is

θn =
1
qn

Pn = θ − εn

qn
.

In the torus Td = Rd/Zd, we have qnθn = 0, hence the subgroup 〈θn〉 generated by θn is finite.
The lifting of this subgroup in Rd is the lattice

Λn = Zθn+Zd = {0, θn, ..., (qn − 1)θn}+ Zd.

Since qn is a best Diophantine approximation of θ, θn is a good approximation of θ! Hence the
lattice Λn is close to the set En, and the study of the geometrical properties of Λn should enlight
those of En. It is worth noting that in the one-dimensional case, the situation is crystal clear :
there is only one subgroup in T1 with a given cardinality or equivalently, only one lattice in R
with a given determinant. In higher dimensions, the geometry of a lattice is no longer determined
by its determinant, the successive minima are needed to know quantitative informations about
the geometry of a lattice. The existence of singular θ in dimension ≥ 2 is strongly related to this
observation.

The following properties give the connections between Λn and En, they are easy to prove (see
below) and are often used inside proofs.

(P1). In the torus Td, the set {0, θ, ..., (qn− 1)θ} and the subgroup 〈θn〉 generated by θn are close
:

∀k ∈ {0, ..., qn − 1}, dTd(kθ, kθn) ≤ rn(θ)

(hence, the Hausdorff distance {0, θ, ..., (qn − 1)θ} between 〈θn〉 is smaller than rn).
Notation Let E be a subset of a metric space. Denote r(E) = inf{d(x, y) : x 6= y ∈ E}.
In Td, we have rn−1(θ) = r({0, θ, ..., (qn − 1)θ}).
(P2). The minimal distance between two points of the subgroup 〈θn〉 is of the same order of size
than the distances between two points of the set En :

1
2
rn−1(θ) ≤ r(Λn) = r(〈θn〉) = λ1(Λn) ≤ 2rn−1(θ)

(λ1(Λn) is the first minimum of Λn).

(P3). ∀k ∈ {1, ..., qn − 1}, kθn 6= 0, hence the cardinality of the subgroup 〈θn〉 is qn.

(P4). detΛn = 1
qn

.

(P5). Yitwah Cheung [Cheu]. Let ∆n = (δn,1, ..., δn,d) be the vector of Rd whose coordinates

are the determinants δn,i = det
(

pn−1,i pn,i

qn−1 qn

)
i = 1, ..., d. Then

1
2
N(∆n) ≤ qnrn−1 ≤ 2N(∆n).

Proof. 1. In the torus Td, for k ≤ qn,

dTd(kθn, kθ) = dRd(k(θ +
εn

qn
), kθ + Zd) ≤ k

qn
N(εn) ≤ N(εn) = rn.
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2. Let k ∈ {1, ..., qn − 1} such that dTd(kθn, 0) = r(〈θn〉). Since in the torus qnθn = 0, dTd((qn −
k)θn, 0) = dTd(kθn, 0) = r(〈θn〉). Hence we can assume that k ≤ qn

2 , therefore

dTd(kθn, 0) = r(〈θn〉) = dTd(k(θ − εn

qn
), 0) = dRd(k(θ − εn

qn
),Zd)

≥ dRd(kθ,Zd)− dRd(kθ, kθ − k
εn

qn
)

≥ rn−1 − k

qn
N(εn) ≥ rn−1 − rn

2
≥ rn−1

2
.

We also have r(〈θn〉) ≤ dTd(qn−1θn, 0) ≤ N(qn−1θn−Pn−1) ≤ N(qn−1(θn−θ))+N(qn−1θ−Pn−1) ≤
rn + rn−1 ≤ 2rn−1.
3. If k ∈ {1, ..., qn − 1}, by the previous computation we have dTd(kθn, 0) ≥ rn−1

2 > 0, therefore,
kθn 6= 0.
4. det Λn = 1

qn
for cardΛn/Zd = card〈θn〉 = qn.

5. We have
r(〈θn〉) ≤ N(qn−1θn − Pn−1) = N(qn−1

Pn

qn
− Pn−1) =

1
qn

N(∆n)

hence by P2, qnrn−1 ≤ 2N(∆n).
Moreover

N(∆n) = N(qnPn−1 − qn−1Pn)
= qnqn−1N(θn−1 − θn)
≤ qnqn−1(N(θn−1 − θ) + N(θn − θ))

= qnqn−1(
rn−1

qn−1
+

rn

qn
) ≤ 2qnrn−1.

QED
Remark Property P5 extends the one dimensional inequality qnrn−1 ≥ 1

2 , since in that case,
∆n = ±1. Actually, Cheung gives the slightly better lower bound (qn + qn−1)rn−1 ≥ ∆n which is
easily deduced from the above proof.

3.2 Dual Lattice

All the result of this subsection can be found in [Chev5]. We assume that Rd is endowed with
Euclidean norm ‖.‖.

In the previous subsection we have seen that the lattices Λn associated with the sequence of
best approximations (qn) of an element θ in Rd are well suited to study the sets

En = {0, θ, ..., (qn − 1)θ}+ Zd.

If want to study the transition between the sets En and En+1, i.e the sets

{0, θ, ..., qθ}+ Zd

with qn ≤ q < qn+1, the dual lattice

Λ∗n = {x ∈ Rd : ∀y ∈ Λn, x.y ∈ Z}

(the dot denote the scalar product) provides some important geometric informations. Let x∗n be
the shortest vector of Λn. The net of hyperplans Hn = {x ∈ Rd : x.xn ∈ Z} is the best possible
net of hyperplans that contains Λn. By the property P1 above, the set En is close to the net of
hyperplans Hn. Note that the distance dn between two consecutive hyperplan of Hn is 1

‖x∗n‖ and
by Minkowski’s theorem on minima of a lattice,

‖x∗n‖d ≤ λ1(Λ∗n)...λ1(Λ∗n)d ¿ detΛ∗n =
1
qn

,

9



hence
‖x∗n‖ ¿ q1/d

n , dn À 1

q
1/d
n

.

The property P1 shows that the closeness of En to Hn compared to dn is bounded above by
q
1/d
n rn(θ) (up to a multiplicative constant).

The vector x∗n allows to regroup best approximations : either x∗n ∈ Λ∗n+1, or x∗n /∈ Λ∗n+1. In the
two cases described below, we assume that qnrd

n(θ) is small.
Case 1: x∗n ∈ Λ∗n+1. En+1 is still close to Hn, hence all the points qθ, q < qn+1 are close to

Hn. More precisely, for all q < qn+1,

d(qθ.x∗n,Z) ¿ q1/d
n rn+1.

Case 2: x∗n /∈ Λ∗n+1. At the time q = qn−1 the trajectory {0, θ, ..., qθ}+ Zd is close to Hn. It
can be proved that when q increases from qn to qn+1, the points qθ + Zd fill the gap between the
hyperplans of Hn. This gap between the hyperplans is filled in a very simple way : the trajectory
move away from En by small jump. Indeed, for all a < qn, and k = 0, ..., [ qn+1

qn
],

(kqn + a)θ = aθ + kqn(θ − θn)

≡ aθ + kεn mod Zd

where εn = qnθ − Pn and ‖εn‖ = rn(θ).

We have seen in the subsection about singular systems that the one-dimensional inequality
qn+1rn ≥ 1

2 is difficult to extend to higher dimension. But using the shortest vector x∗n enable to
prove a partial extension of this inequality.

Theorem 12 There exists a positive constant c(d) such that for all θ ∈ Rd such that dimQ[1, θ1, ..., θd] =
d + 1, then either qnrd

n(θ) ≥ c(d) or qn+1d(x∗n.θ,Z) ≥ c(d) for infinitely many n.

4 Lattices in Rd+1 associated with θ in Rd

Endow Rd with a norm Nd and Rd+1 with a norm Nd+1. For each θ in Rd, we consider the family
of lattices (Λs(θ))s>0 defined by

Λs(θ) = Ms(θ)Zd+1

where

Ms(θ) =




1 0 · · · 0 −θ1

0 1 · · · 0 −θ2

...
...

. . .
...

...
...

... 1 −θd

0 · · · · · · 0 s



∈ GL(d + 1,R)

Since for P ∈ Zd and q ∈ Z, Ms(θ)
(

P
q

)
=

(
P − qθ

sq

)
, a short vector of Λs(θ) with q 6= 0

provides a good rational approximation of θ.
Remark. Generally a renormalized version of Ms(θ) is considered : gtM1(θ) where gt is the

diagonal matrix

gt =




et 0 · · · 0 0
0 et · · · 0 0
...

...
. . .

...
...

...
... et 0

0 · · · · · · 0 e−dt




and s = e−(d+1)t. The advantage of this renormalized version is that the lattices gtM1(θ)Zd are
unimodular, and the space of unimodular lattices SL(d+1,R)/SL(d+1,Z) has finite Haar measure
which allows to use tools from ergodic theory. In what follows, we shall keep the non normalized
version because computations are slightly simpler. Furthermore, the map s > 0 → Ms(θ)t Ms(θ),
can be interpreted as a geodesic in the space of positive definite quadratic forms (see [Lag1]).
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4.1 Euclidean norm

Next lemma connects best approximation to the lattices Λs, and was first stated in [Lag 1].

Lemma 5 (Lagarias) Assume that Nd+1 = ‖.‖Rd+1 and Nd = ‖.‖Rd are the usual Euclidean
norms. If vs = (Ps−qsθ, sqs) is a shortest vector of Λs and if qs > 0, then qs is a best Diophantine
approximation of θ.

Proof. If q is an integer between 1 and qs − 1 then for all K ∈ Zd,

‖(Kθ − q, sq)‖2Rd+1 ≥ ‖vs‖2Rd+1

hence
‖K − qθ‖2Rd + q2s2 ≥ ‖Ps − qsθ‖2Rd + q2

ss2

and therefore
‖K − qθ‖2Rd > ‖Ps − qsθ‖2Rd .

QED
With the hypothesis of the previous lemma, it is easy to prove that if s > t > 0 then qs ≤ qt.

This lemma is the main observation leading to a weak form of Lagarias multidimensional expansion
:
For each s > 0, compute the shortest vector (Ps, qs) of Λs(θ). The set of these qs is a subsequence
of the sequence of all best Diophantine approximations of θ.
These best Diophantine approximations are called Hermite best Diophantine approximations
([Lag1]). We denote by (hm)m≥0 the increasing sequence of Hermite best Diophantine approx-
imations and by Hm the corresponding best Diophantine approximation vector. The subsequence
(hm)m≥0 is generally a strict subsequence of the sequence of all best Diophantine approximations
(qn)n≥0 even for d = 1 (Humbert). However, the following properties proved in [Chev1] show
that the sequence of Hermite best Diophantine approximations is not a too sparse subsequence of
(qn)n≥0.

1. There exists a constant m0 depending only on the dimension d such that for all θ in Rd

and all integers m, the cardinality of the set of n with

hm < qn < hm+1

is at most m0.
2. There exists a constant C depending only on the dimension d such that for θ in Rd and all

integers m,
hm+1d(hmθ,Zd)d ≤ C.

3. There exists a positive constant c depending only on the dimension d such that for θ in
Rd and all best Diophantine approximation qn of θ, there exists an Hermite best Diophantine
approximation hm such that

c d(hmθ,Zd) ≤ d(qnθ,Zd) ≤ d(hmθ,Zd).

These three properties can be deduced from a lemma due to Cheung (see next subsection)
together with inequalities that connect best Diophantine approximations associated with two dif-
ferent norms.

If d = 1, Hermite proved that for all integers n

rank (Hn,Hn+1) = 2

(two best approximation vectors are never colinear!).
If d = 2, it can happen that

rank(Hn, Hn+1,Hn+2) < 3

([Lag1]). Hence, the unimodulary property does not hold for the sequence (Hn)n≥0.

11



4.2 Cheung’s norms.

Let N be a norm on Rd. Y. Cheung ([Cheu]) considers the norm N ′ on Rd+1 defined by

N ′(X, x) = max(N(X), |x|).
These norms appear to be better suited than Euclidean norms to link shortest vectors of Λs(θ)
to best Diophantine approximations. The aim of Y. Cheung was to prove that the Hausdorff
dimension of the set of singular couples (θ1, θ2) in R2 is 4

3 . Best Diophantine approximations are
one of important the ingredients of his proof. The following result is essentially contained in [Cheu]
and its proof is easy.

Lemma 6 Assume that Rd is endowed with a norm N and Rd+1 with the norm N ′. Set δN =
min{N(X) : X ∈ Zd\{0}}. Let V = (P, q) be in Zd+1 with q > 0.
1. If V is a best Diophantine approximation vector of θ such that N(P − qθ) ≤ δN then Ms0(θ)V
is a shortest vector of Λs0(θ) where s0 = N(P−qθ)

q .
2. Conversely, if there exists s > 0 such that Ms(θ)V is a shortest vector of Λs(θ) then there exists
a best Diophantine approximation vector V ′ = (P ′, q′) of θ such that N(P − qθ) = N(P ′ − q′θ).
Moreover if N is the sup norm and if dimQ[1, θ1, ..., θd] = d + 1, then V is a best Diophantine
approximation vector of θ.

The lemma shows that for θ such that dimQ[1, θ1, ..., θd] = d + 1, the set of best Diophantine
approximation vectors of θ with respect to the sup norm and the set the shortest vectors of the
lattices Λs(θ), s > 0, are equal.

4.3 Computation of best Diophantine approximations with the lattice
Λs(θ).

Lagarias studied ([Lag2]) the complexity of the computation of best Diophantine approximations.
Here we only explain one method to compute them.

By Lagarias lemma, a shortest vector of Λs(θ) gives rise to a best Diophantine approximation
of θ. The LLL algorithm is likely to be the most efficient way to compute such a vector (see e.g.
[G,L,S] for LLL algorithm). Assume that Rd is endowed with the Euclidean norm ‖.‖. Use the
LLL with the lattice Λs(θ) as input, the output is a “reduced” basis (e1, ..., ed) of Λs(θ) whose first
vector is almost a shortest vector of Λs(θ) :

‖e1‖ ≤ 2(d−1)/2λ1

where λ1 is the first minimum of Λs(θ). It seems that, in practice, the length of the vector e1 is
often very close to λ1 which means we have a very good Diophantine approximation of θ. In order
to get a shortest vector of Λs(θ) it is possible to use the following result due to Babai ([Ba]):
for all k ∈ {1, ..., d}, the sinus of the angle between ek and the sub-space generated by the other
vectors of the basis, is ≥ (

√
3/2)d.

It follows that, if the absolute value of one of the coordinates of a vector X in Λs(θ) is > ( 2√
3
)d,

then its norm is > λ1. Therefore, the shortest vector of Λs(θ) is among the vectors X =
∑d

i=1 xiei

with |xi| ≤ ( 2√
3
)d, i = 1, ..., d. Hence, (2 × 2√

3
)d2

computations are enough to find the shortest
vector.

5 Multidimensional expansions and lattice reduction

5.1 General definition

Interpreting the lattices in Rn as points in GL(n,R)/GL(n,Z), a reduction theory for lattices is
given by a subset Bn in GL(n,R) which contains a fundamental domain for the right action of
GL(n,Z); that is, for all matrix M in GL(n,R) there exists P in GL(n,Z) such that MP ∈ Bn.
A matrix in Bn is to be seen as a good basis of the underlying lattice, hence matrices in Bn must
enjoy some geometrical properties depending on the aim of the reduction theory, e.g. the vectors
of the basis must be as short as possible. To such a set of reduced matrices one can associated a
multidimentional expansion :

12



Définition 7 Suppose that n = d+1. Let Bn be a subset of GL(n,R) which contains a fondamental
domain for the right action of SL(n,Z). Let θ ∈ Rd. A Bn-expansion of θ is a map Q = Qθ : s ∈
]0,+∞[→ Q(s) ∈ Bn such that Ms(θ)Q(s) ∈ Bn for all s ∈]0, +∞[.

An expansion is associated with any classical sets of reduced basis, e.g. Minkowski reduced
basis, Korkine-Zolotarev reduced basis, Lovasz reduced basis, Siegel domains,....
The definition of the matrices Ms(θ) shows that the elements of the last row of the matrices Q(s)
are the denominators of the expansion.

The desired properties of such an expansion are:
E1. Unicity or finitness : for each s > 0, there is only one possible choice for Q(s) or finitely many
possible choices.
E2. Convexity : for a given matrix P in Bn, the set of s such that P = Q(s) is as simple as
possible, e.g. one interval.
E3. Convergents may be associated with the expansion.

E4. s → Q(s) provides a strongly convergent expansion of θ : denoting
(

Pi(s)
qi(s)

)
the columns of

Q(s),

lim
s→0

d+1
max
i=1

‖qi(s)θ − Pi(s)‖ = 0

for θ = (θ1, ..., θd) such that dimQ[1, θ1, ..., θd] = d + 1.
E4bis. The first column of Q(s) is a best approximation vector of θ.
E5. Positivity: if s > s′ the positive cone defined by the columns of Q(s) constains the positive
cone defined by Q(s′).

We will see that Lagarias expansion conciliates all these properties except the last one, while
it is known that classical multidimensional continued fraction expansions such as Jacobi-Perron
algorithm, Brun algorithm,... are not strongly convergent but are positive (E5).

5.2 Lexicographically reduced basis

Lagarias expansion is defined with a set reduced matrices slightly smaller that the set Mn of
Minskowski reduced basis. The reduced basis are called lexicographically reduced basis. In fact
lexicographically reduced basis correspond to Hermite reduced quadratic forms (see [Tam1]).

Rn is endowed with the Euclidean norm ‖.‖.
Définition 8 A basis (e1, ..., en) of Rn is lexicographically reduced if the vector of norms

(‖e1‖ , ..., ‖en‖)
is minimal for the lexicographical order among all vectors of norms associated with the basis of
Λ = Ze1 ⊕ ...⊕ Zen.

It is not difficult to show by induction that each lattice Λ admits a lexicographically reduced
basis. Hence the set Ln of lexicographically reduced basis contains a fundamental domain.

The aim of this definition is to get basis with vectors as short as possible. Since a shortest
vector of a lattice may be extended into a basis, the first vector of a lexicographically reduced basis
is a shortest vector of Λ.

Recall that a basis e1, ..., en of a lattice Λ in Rn is Minkowski reduced if for i = 1, ..., n, ei is a
vector of minimal length among the vector x in Λ such that

(e1, ..., ei−1, x)

may be extended into a basis of Λ. Clearly, lexicographically reduced basis are Minkowski reduced.
The above definition is not the one given by Lagarias who considers the minimum for the lexico-
graphical order only among Minkowski’s reduced basis. The next lemma is easy and connects the
above definition with Lagarias definition.

Lemma 9 For each basis (f1, ..., fn) of the lattice Λ, there exists a Minkowski reduced basis
(e1, ..., en) of Λ such that

(‖e1‖ , ..., ‖en‖) ¹ (‖f1‖ , ..., ‖fn‖)
for the lexicographical order.
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The inclusionsM◦
n ⊂ Ln ⊂Mn holds in all dimensions and it is known that Ln = Mn for n ≤ 6

and that Ln 6= Mn for n > 6 (see [Tam]). A quite simple example due to H.W. Lenstra shows that
there exists Minkowski reduced basis that are not lexicographically reduced in dimension d = 13
(see [Lag1]).

5.3 Definition of Lagarias expansion

Définition 10 Suppose that n = d + 1 and that Rd and Rd+1 are endowed with the Euclidean
norms ‖.‖Rd and ‖.‖Rd+1 . Let θ be in Rd. The Lagarias expansion of θ is the expansion s → Qθ(s)
associated with the set Ln of lexicographically reduced basis.

By definition, for all s > 0, the colums of Ms(θ)Qθ(s) form a lexicographically reduced basis
of Rd+1, hence the first column of Ms(θ)Qθ(s) is a shortest vector of the lattice Λs(θ) and by
Lagarias lemma this first column of θ is a best approximation vector of θ.
Lagarias give a more precise definition based on main Theorem below.

5.4 Convexity properties of Lagarias expansion

To see that E2 holds for Lagarias expansion, it is necessary to move Ln in the space S+
n of

symmetric positive definite matrices with the map

ϕ : GL(n,R) → S+
n

: M → M t M

Next theorem is proved in [Lag 1], and is a folklore result.

Theorem 13 Qn = ϕ(Ln) is a convex set.

Remark. It is clear that if q is in Qn then for all λ > 0, λq is in Qn, hence Qn is a convex
cone. Thanks to the fact that the set of Minskowski reduced quadratic forms can be defined by
finitely many linear inequalities (see [Waer]), we see that the convex cone Qn has finitely many
faces. When n ≤ 6, Tammela [Tam1] gives all the inequalities defining the faces of Qn.

Notation Let θ be in Rd. For each Q in GL(d + 1,Z), denote by I(Q) the set of real numbers
s > 0 such that

Ms(θ)Q ∈ Ld+1.

Next Theorem is proved in [Lag1]. We give its proof which is simple.

Theorem 14 1. For all matrix Q in GL(d + 1,Z), I(Q) is an interval.
2. Let Q and Q′ be in GL(d + 1,Z).
a. Then either I(Q) = I(Q′) or I(Q) ∩ I(Q′) contains at most one element.
b. If I(Q)∩ I(Q′) contains at least 2 elements, then Q and Q′ have the same last row up to signs.

Proof. 1. For s > 0, denote by Bs the diagonal matrix (1, ..., 1, s). For all θ in Rd and all
s > 0, we have Ms(θ) = BsM1(θ) ∈ GL(d + 1,R). Now, s ∈ I(Q) means that the quadratic form

ϕ(Ms(θ)Q) = QtM t
1(θ)Bs2M1(θ)Q

is in Qd+1. Since ϕ(Ms(θ)Q) is an affine function of s2, and since Qd+1 is convex, the set of
positive real numbers s2 such that ϕ(Ms(θ)Q) ∈ Qd+1 is an interval. Hence I(Q) is an interval.

2. Let Q,Q′ ∈ GL(d + 1,Z) such that I(Q) ∩ I(Q′) contains at least two elements s1 6= s2.
Denote by (Pi, qi) the i-th column of Q and by (P ′i , q

′
i) the i-th column of Q′. By definition of

lexicographically reduced basis, the length of these two columns are equal, hence for s ∈ {s1, s2},

‖Pi − qiθ‖2Rd + s2q2
i = ‖P ′i − q′iθ‖2Rd + s2q′2i .

Therefore |qi| = |q′i| and ‖Pi − qiθ‖2Rd = ‖P ′i − q′iθ‖2Rd . It follows that I(Q) = I(Q′). QED
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5.5 Finitness property of expansions

Following Lagarias we will show that the finitness and the convergence of an expansion depend
only on the following property of the reduction set :

Définition 11 Let R be a subset of GL(n,R). R is Minkowski-regular if there exists a constant
C such that for any basis (e1, ..., en) in R, and for i = 1, ..., n

‖ei‖ ≤ Cλi(Λ)

where Λ is the lattice spanned by e1, ..., en.

Mn, Ln, Lovazs reduced matrices, Siegle domain... are Minkowski-regular. A proof that Mn

is Minkowski regular can be found in [Waer].

Theorem 15 Let R be a Minkowski-regular subset of GL(n,R). Let θ be in Rd. For all b > a > 0,
there exist finitely many matrices Q in GL(n,Z) such that the basis Ms(θ)Q is in R for at least
one s ∈ [a, b].

Proof. Consider a matrix Q in GL(n,Z) such that Ms(θ)Q is in R for some s ∈ [a, b]. Let
e1, ..., ed+1 be the columns of Ms(θ)Q. Since R is regular, for i = 1, ..., d + 1,

‖ei‖ ≤ 2Cλi(Λs(θ)) ≤ Cλd+1(Λs(θ))

where λi(Λs(θ)) is the i-th minimum of Λs(θ). Now for all t ≤ b, λd+1(Λs(θ)) ≤ max(1, b).
Hence, with ei = (Vi, vi), ‖Ms(θ)ei‖2Rd+1 = ‖V − vθ‖2Rd + s2v2 ≤ C2 max2(1, b). Since s ≥ a,
|v| ≤ C max(1, b)/a and V is in the union of balls ∪|v|≤max(1,b)C/aB(vθ, max(1, b)C). Therefore
the number of matrices Q such that Ms(θ)Q is in R for at least one s ∈ [a, b], is finite. QED

Theorem 16 Let θ be in Rd. For all s0 > 0, there exist finitely many matrices Q in GL(n,Z)
such that the basis Ms(θ)Q is lexicographically reduced for at least one s ≥ s0.

Proof. By the previous Theorem it is enough to consider the case s > s0 = 1. For every
non zero V in Zd+1, we have ‖Ms(θ)V ‖Rd+1 ≥ 1 and if the last coordinate of V is not zero then
‖Ms(θ)V ‖Rd+1 > 1. Therefore all the lexicographically reduced basis are of the form:
- the first d vectors are ±Ms(θ)ei = ±ei where i ≤ d and ei is the i-th vector of the canonical basis
of Rd+1

- the last vector is Ms(θ)V where V = ±(p1, ..., pn, 1) and pi is such that |pi − θi| is minimal.
Hence, the number of such basis is finite. QED

5.6 Main theorem for Lagarias expansion

From the previous Theorems, it follows immediately :

Theorem 17 (Main theorem) If θ /∈ Qd, there exists an infinite sequence ∞ = s−1 > s0 >
s1 > ... > sn > ... going to 0 and a sequence of matrices Q0, ..., Qn, ... ∈ GL(d + 1,Z) such that
]sn, sn−1[= I(Qn)o.

The sequence of matrices (Qn)n≥0 is not uniquely defined but by Theorem 14, the last row
is unique up to signs. The sequence of matrices (Qn)n≥0 is the Lagarias expansion of θ. The
partial quotient associated with the sequence (Qn)n≥0 are defined by Q−1

n−1Qn. Since Md+1Qn−1∩
Md+1Qn 6= ∅, there are only finitely many possible partial quotients. Hence it is an additive
expansion (see [Waer]). To obtain a multiplicative expansion it suffices to keep only the matrices
Qn at the times n where the first column of Qn changes.
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5.7 Convergence

Lagarias expansion is strongly convergent. Lagarias proof allows to show the more general result :

Theorem 18 Let R be a Minkowski-regular subset of SL(d + 1,R) containing a fundamental
domain. Let θ be in Rd be such that dimQ[1, θ1, ..., θd] = d + 1 and let s → Q(s) a R-expansion
associated with θ in Rd. If dimQ[1, θ1, ..., θd] ≥ r, then the first r columns of the matrix Qθ(s)
strongly convergent to θ:

lim
s→0

r
max
i=1

‖qi(s)θ − Pi(s)‖ = 0.

Proof. Denote by
(

Ps,i

qs,i

)
the i-th column of the matrix Qθ(s). The i-th column of

Ms(θ)Qθ(s) is
(

Ps,i − qs,iθ
sqs,i

)
. By hypothesis,

∥∥∥∥
(

Pn,i − qn,iθ
sqn,i

)∥∥∥∥
Rd+1

≤ Cλs,i(θ)

where λs,i(θ) is the i-th minimum of the lattice Λs(θ) = Ms(θ)Zd+1. Thus, it is enough to prove
that

lim
s→0

λs,r(θ) = 0.

We will use the dual lattice Λ∗s(θ) = {Y ∈ Rd+1 : ∀X ∈ Λs(θ), X.Y ∈ Z}. The following lemma is
standard (see, e.g. [Schm]).

Lemma 12 Let Λ be a lattice in Rn and Λ∗ its dual lattice. Then

1 ≤ λiλ
∗
n+1−i ≤ (n + 1)!.

Hence, it is enough to prove that the minimum λ∗s,d+2−r of Λ∗s(θ) goes to infinity when s goes
to zero. Suppose on the contrary that there exists a sequence (sn)n going to 0 such that for all n,
λ∗sn,d+2−r ≤ K. The lattice Λ∗s(θ) is spanned by the rows of the matrix

M−1
s =




1 0 · · · 0 θ1s
−1

0 1 · · · 0 θ2s
−1

...
...

. . .
...

...
...

... 1 θds
−1

0 · · · · · · 0 s−1




,

hence for all n, there exists (An,i, bn,i) ∈ Zd+1, i = 1, ..., d + 2− r, linearly independent such that
the vector

vn,i = (An,i, bn,i)M−1
sn

= (An,i,
1
sn

(bn,i + An,i.θ))

has a norm ≤ K. If sn ≤ 1, then
‖An,i‖Rd ≤ K

and
|bn,i| ≤ C + |An,i.θ| ≤ K ′

where K ′ does not depend on n. Extracting a subsequence, we can assume An,i = Ai and bn,i = bi

for all n with (Ai, bi), i = 1, ..., d + 2− r, linearly independent. Therefore,

|bi + Ai.θ| ≤ Ksn.

Now, sn → 0 hence bi+Ai.θ = 0, i = 1, ..., d+2−r which contradicts the assumption dimQ[1, θ1, ..., θd] ≥
r. QED
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[Só, Sz]: V. T. Sòs and G. Szekeres, Rational approximation vectors, Acta Arith., 49 (1988),
255-261.

[Schm] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, 785. Springer,
Berlin, 1980. x+299 pp.

[Tam 1]: P. P. Tammela, Reduction theory for positive definite quadratic forms, Journal of
Mathematical Sciences, Springer New-York, volume 11 no 2 février 1979, 197-277.

[Tam 2]: P. P. Tammela, The domain of Hermite-Minkowski reduction positive quadratic forms
of six variables, Zap. Nauchn. Sem. Leningr. Otd. Mat., Vol. 33, Leningrad, (1973), 72-89.

17



[Waer] : van der Waerden, B. L., Die Reduktionstheorie der positiven quadratischen Formen.
(German) Acta Math. 96 (1956), 265–309.

Nicolas Chevallier
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