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Abstract

The three distance Theorem states that given a real number θ and an integer n, the
fractional parts of θ, 2θ, ..., nθ divide the unit interval [0, 1] into n + 1 intervals having three
different lengths at most. Several two-dimensional extensions using triangulations instead of
intervals already exist. We give a result improving these extensions. This result should be
close to optimality.

1 Introduction

Let θ be in R and let q be in N. The points 0, {θ}, {2θ}, ..., {qθ} divide the interval [0, 1] into
q + 1 intervals having at most three lengths ({x} denotes the fractional part of the real number
x). This property is known as the three distance Theorem and was first proven by V. T. Sòs in
1957. Since then many extensions have been proven. The first extension is due to K. R. Chung
and R. L. Graham [4]; they have shown that if θ1, ..., θd are d real numbers, then the points {kiθi},
for 1 ≤ i ≤ d and 0 ≤ ki ≤ qi, cut the interval [0, 1] into intervals having at most 3d lengths.
There is another kind of extension of the three distance Theorem: given θ in the two-dimensional
torus T2 = R2/Z2 and q in N, is it possible to describe the relative positions of the elements of
{0, θ, ..., qθ}? Recently, S. Vijay [8] has found a nice property about the mutual distances between
the elements of {0, θ, ..., qθ} (see also [3]). The distances are used to define natural neighboors of
a point in {0, θ, ..., qθ} but a triangulation can be used as well and in the present work, we will
use triangulations. We consider triangulations whose set of vertices is {0, θ, ..., qθ} and we wonder
whether there exists such a triangulation with at most C different triangles up to translation? It is
understood that the constant C must be independent of θ and q. This problem has already been
solved in [2]. Nevertheless, the constant C which can be computed with the method of proof of this
article is very large and very far from being optimal. Here we use a different approach which leads
to the far better value C = 10. Moreover extensions in dimension greater than 3 seem possible
with this approach while the method of [2] can hardly be used in dimension 3.

We state our result in R2 instead of T2 with a Z2-invariant triangulation:

Theorem 1 Let θ = (θ1, θ2) ∈ R2. Suppose that 1, θ1, θ2 are linearly independent over the rational
numbers. Then, for all integer q, there exists a triangulation Tq of R2 whose set of vertices is
{0, θ, ..., qθ}+ Z2 such that:
i. Tq is invariant under Z2-translations,
ii. Tq has at most 10 different triangles up to translation,
iii. the maximum of diameters of triangles of Tq goes to zero when q tends to infinity.

From a dynamical systems point of view, ii is better formulated with Rokhlin towers. Going
down to T2 :
it is possible to tile the torus with ten triangles and their translates by θ.
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What about the shape of the triangles? The only general information we can give is the last
point of the Theorem. For particular θ and/or particular q it is possible to give more informations
(see [3]).

Our main tool is due to J. Kwapisz [6]. In fact, Kwapisz studied diffeomorphisms of the two
dimensional torus with a single rotation number, a particular case of which are translations. In
this latter case, Kwapisz’s result implies that for infinitely many q, the constant C = 6 works
(actually, Kwapisz used 3 parallelograms instead of 6 triangles). It has also been proved in [2]
that this value C = 6 works for infinitely many q (not for the same set of q). The advantage of
Kwapisz’s approach is that it is far easier to fill the gap between the integers q for which C = 6
works.

Except for the condition about diameters, it is straightforward to extend our result in higher
dimension because it is almost entirely contained in Kwapisz’s result. The complete extension
would require a new inequality about a well chosen multidimensional continued fraction algorithm
(see lemma 7 below).

In section 2 we state the part of Kwapisz’result we need and prove it in the appendix. The
third section is devoted to results about multidimensional continued fraction algorithms and finally
Theorem 1 is proved in section 4.

2 Kwapisz’s result for translation

We identify Rd+1 with Rd ×R.

Definition 1 Let θ ∈ Rd\{0}. We say that a (d + 1) × (d + 1) matrix M =
(

P1 ... Pd+1

qd ... qd+1

)

is a Farey matrix for θ if
- the half line generated by (θ, 1) is in the positive quadrant span by the columns of M , i.e. (θ, 1) ∈
MRd+1

+ ,
- M ∈ SL(d + 1,Z),
- q1, ..., qd+1 ≥ 0.

Definition 2 The last coordinate of a vector in Zd+1 is called the denominator of this vector and
the coefficients of the last row of a matrix in SL(d + 1,Z) are called the denominators of this
matrix.

Notations 1. Let M =
(

P1 ... Pd+1

qd ... qd+1

)
∈ SL(d + 1,Z). The integer

∑d+1
i=1 qi is denoted

by qM and the point
∑d+1

i=1 Pi ∈ Zd by PM .
2. Let θ ∈ Rd

+. We denote by pθ : Rd+1 → Rd the projection defined by pθ(P, q) = P − qθ.
3. Let M = (f1, ..., fd+1) ∈ SL(d + 1,Z). For i ∈ {1, ..., d + 1}, we denote by Fi(M) the set

Fi(M) = {
∑

j 6=i

xjfj : xj ∈ [0, 1]}.

These are the bottom faces of the parallelepiped span by the vectors f1, ..., fd+1.

Next Theorem is a particular case of the aforementioned result of Kwapisz. The first (and the
simplest) part of the proof of Kwapisz corresponds to this Theorem. We shall give a complete and
elementary proof of this Theorem in the appendix; following Kwapisz, we will use stepped planes
associated with Farey matrices.

Theorem 2 Let θ ∈ Rd\{0} and M =
(

P1 ... Pd+1

qd ... qd+1

)
be a Farey matrix for θ. Then the

parallelepipeds

P + kθ + pθ(−Fi(M)), P ∈ Zd, k = 0, ..., qi − 1, i = 1, ..., d + 1,

form a tiling of Rd. Moreover the intersection of each of these parallelepipeds with the set {P +kθ :
P ∈ Z2, 0 ≤ k < qM} is exactly its set of vertices.
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One can decompose each d-dimensional parallelepiped pθ(−Fi(M)) into d! d-dimensional tetra-
hedrons. This leads to

Corollary 3 There exists a d-dimensional triangulation of Rd whose set of vertices is Zd +
{0, θ, ..., (qM − 1)θ} with at most (d + 1)! tetrahedrons up to translation.

We shall need the two following simple results.

Lemma 4 Let θ ∈ Rd\{0} and M = (f1, ..., fd+1) be a Farey matrix for θ with (θ, 1) =
∑d+1

i=1 xifi.
Denote by i0 an index such that xi0 = max{xi : i = 1, ..., d + 1}. Then

pθ(f1 + ... + fd+1) =
∑

i6=i0

(1− xi

xi0

)pθ(fi).

Consequently,
PM − qMθ ∈ pθ(Fi0(M)).

Proof. Since

f1 + ... + fd+1 =
d+1∑

i=1

xi

xi0

fi +
d+1∑

i=1

(1− xi

xi0

)fi

=
1

xi0

(θ, 1) +
∑

i 6=i0

(1− xi

xi0

)fi,

pθ(f1 + ... + fd+1) =
∑

i 6=i0

(1− xi

xi0

)pθ(fi). ¤

Corollary 5 For all integer k such that qM ≤ k < qM +qi0 , kθ−PM is in (k−qM )θ+pθ(−Fi0(M)).

Proof. kθ − PM = (k − qM )θ + (qMθ − PM ) ∈ (k − qM )θ + pθ(−Fi0(M)). ¤

3 Continued fraction expansions

Let M = (f1, ..., fd+1) ∈ SL(d + 1,Z). Denote by CM the positive quadrant defined by f1, ..., fd+1

CM = {
d+1∑

i=1

xifi : x1, ..., xd+1 ≥ 0}.

Definition 6 (Brentjes, [1]) Given a line l = RX of Rd+1, a continued fraction expansions of l
is a sequence

Mn = (fn,1, ..., fn,d+1)

of matrices in SL(d + 1,Z) such that for all n, X ∈ CMn and there exist two integers (depending
on n) i0 6= i1 in {1, ..., d + 1} and a positive integer an such that for i 6= i1, fn+1,i = fn,i and

fn+1,i1 = fn,i1 + anfn,i0 .

Most of the time, continued fraction expansions deal with a line l span by a non zero vector
X = (θ, 1) in Rd ×R.

3.1 Brun’s algorithm

Brun’s algorithm associates with each matrix M ∈ SL(d + 1,Z) and each line RX where X =∑d+1
i=1 xifi is a non-zero element of CM a new matrix M ′ = B(M, X) in SL(d + 1,Z):

Let i0 be the index such that xi0 = max{xi : i = 1, ..., d + 1} and let i1 be the index such that
xi1 = max{xi : i 6= i0}. The matrix M ′ = (f ′1, ..., f

′
d+1) is defined by

- f ′i = fi for i 6= i1,
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- f ′i1 = fi1 + fi0 .
If x1, ..., xd+1 are linearly independent over Q the indices i0 and i1 are unique.

Starting with an initial matrix M0, Brun’s algorithm gives rise to the sequence of matrices
(Mn)n defined by Mn+1 = M ′

n. In the following we will use Brun’s algorithm combined with
another continued fraction expansion. The only important things about Brun’s algorithm are the
relations between X, M and M ′ = B(M,X).

First, by definition,

X =
d+1∑

i=1

xifi = xi0fi0 + xi1fi1 +
∑

i 6=i0,i1

xifi

= (xi0 − xi1)fi0 + xi1(fi1 + fi0) +
∑

i6=i0,i1

xifi

=
d+1∑

i=1

x′if
′
i

where x′i = xi for i 6= i0 and x′i0 = xi0 − xi1 . Next:

Lemma 7 Suppose d = 2. Endow R3 with the Euclidean distance. Then

max
i=1,2,3

d(f ′i ,RX) ≤ max
i=1,2,3

d(fi,RX).

Proof. This lemma is stated without proof in the book of Brentjes [1]. For convenience of the
reader, we give its proof. Consider the plane H containing the points fi, i = 1, 2, 3. Denote by r
the maximum of the distances d(fi,RX), i = 1, 2, 3, and denote by C the cylinder

C = {p ∈ R3 : d(p,RX) = r}

Observe that RX is the axis of C. We have to show that fi0 + fi1 is inside the cylinder C where
xi0 = max{xi : i = 1, 2, 3} and xi1 = max{xi : i 6= i0}. We look at the picture in plane H. The
curve E = H ∩ C is an ellipse whose interior contains the three points A0 = fi0 , A1 = fi1 and
A2 the remaining point among f1, f2 and f3. Denote by O the center of the ellipse E and by G
the center of gravity of the triangle conv(A0, A1, A2). Let A3 be symmetric to A2 with respect
to O. Denote by O′ and G′ the points such that

−−→
OO′ =

−−→
OA0 +

−−→
OA1 and

−−→
GG′ =

−−→
GA0 +

−−→
GA1.

The definitions of i0 and i1 imply that O is in the triangle conv(G,A0, A1). On the one hand, this
implies that A2 and O are not on the same side of each of the lines A0G and A1G. Therefore, the
triangle conv(A0, A1, A3) contains G′. On the other hand, this implies that O′ is in the triangle
conv(G′, A0, A1). It follows that O′ is in the triangle conv(A0, A1, A3). Since the points A0, A1,
and A3 are inside the ellipse E , O′ is also in E . At last,

fi0 + fi1 = (O +
−−→
OA0) + (O +

−−→
OA1)

= 2O +
−−→
OO′

is in the cylinder C. ¤

3.2 Strong convergence

Definition 8 Let X = (θ, 1) ∈ Rd ×R. A sequence of matrices Mn = (fn,1, ..., fn,d+1) ∈ SL(d +
1,Z) strongly converges to the line RX if

lim
n→0

d
max
i=1

d(fn,i,RX) = 0.

Since the projection pθ maps the subspace orthogonal to X isomorphically on Rd, the strong
convergence is equivalent to

lim
n→0

d
max
i=1

|qn,iθ − Pn,i| = 0
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where Mn =
(

Pn,1 ... Pn,d+1

qn,1 ... qn,d+1

)
. Indeed, there is a positive constant c = c(θ) such that

1
c
d(fn,i,RX) ≤ |qn,iθ − Pn,i| ≤ cd(fn,i,RX).

Most of the time, it is difficult to know whether a given multidimensional continued fraction
expansion is strongly convergent or not. For instance, there exists θ = (θ1, θ2) such 1, θ1, θ2 are
independent over Q and such that the Brun’s expansion of θ does not strongly converges ([1] p.
44-49). In any dimension ≥ 2, the same kind of examples for Jacobi-Perron’s algorithm go back to
Perron (see [1] p. 33-34, [7] p. 120). Nevertheless,

Theorem 3 (Ferguson and Forcade) Let θ = (θ1, ..., θd) ∈ Rd such that 1, θ1, ..., θd are linearly
independent over the rational numbers and let M0 be a Farey matrix for θ. Then there exists a
strongly convergent continued fraction expansion of the line R(θ, 1) starting with the matrix M0.

In fact Ferguson and Forcade have given an algorithm which, either stops in finitely many steps
and find a linear relation between 1, θ1, ..., θd with rational coefficients, or is strongly convergent
(see [1], p. 123-127).

4 Proof of Theorem 1

Let θ = (θ1, θ2) ∈ R2 and suppose that 1, θ1, θ2 are linearly independent over the rational numbers.
We can assume that θ1 and θ2 are in ]0, 1[. By Theorem 3, there exists a sequence of matrices Mk =(

Pk,1 Pk,2 Pk,3

qk,1 qk,2 qk,3

)
, k ∈ N, of matrices in SL(3,Z) such that limk→0 maxi=1,2,3 |qk,iθ − Pk,i| =

0. We choose the first matrix M0 = Id, hence all the denominators qk,i are non negative.
Consider the parallelograms

Pk,i = −pθ(Fi(Mk)).

By Kwapisz’s theorem, the parallelograms

Pk,i + qθ + P, q = 0, ..., qk,i − 1, i = 1, 2, 3, P ∈ Z2

form a tiling of R2. Each parallelogram Pk,i can be decomposed into two triangles, this leads to
Z2-invariant triangulations of R2 with at most 6 different triangles up to translation. Moreover,
the vertices of this triangulation are the points qθ + P with 0 ≤ q < qk,1 + qk,2 + qk,3 = qMk

.
Therefore the Theorem is proved for all the integers of the form n = qMk

− 1.
Suppose now that n is in the interval [qMk

, qMk+1 [. Denote by f1, f2 and f3 the columns of Mk.
We have (θ, 1) =

∑d+1
i=1 xifi. Let i0 the index such that xi0 = max{xi : i = 1, 2, 3}. By lemma

4, the parallelogram Pk,i0 contains the point A = qMk
θ − PMk

. Moreover, A cannot be on the
boundary of Pk,i0 for it would implies that 1, θ1 and θ2 are dependent over the rational numbers.
Therefore, each parallelogram Pk,i0 + qθ contains the point A + qθ in its interior for all q.

First suppose that n is in the interval {qMk
, ..., qMk

+ qk,i0 − 1} and set N = n − qMk
. For

q = 0, ..., N and P ∈ Z2, we decompose the parallelograms Pk,i0 + P + qθ into the 4 triangles
defined by the 4 sides of the parallelogram and the point A + qθ + P . This leads to a Z2-invariant
triangulation of the plane whose set of vertices is Z2 + {0, θ, ..., nθ} and whose triangles are:
- two triangles for each parallelogram Pk,i + qθ + P where i 6= i0, q ∈ {0, ..., qk,i − 1} and P ∈ Z2,
- four triangles for each parallelogram Pk,i0 + qθ + P where q ∈ {0, ..., N} and P ∈ Z2,
- two triangles for each parallelogram Pk,i0 + qθ + P where q ∈ {N + 1, ..., qk,i0 − 1}.
Up to translation, there are 10 different triangles at most.

When n = qMk
+qk,i0 , we use Brun’s algorithm to find the new Farey matrix M ′ = B(Mk, (θ, 1)).

By definition of Brun’s algorithm, qM ′ = qMk
+qk,i0 , thus, as before, we are able to find the desired

triangulation for all the integers n ∈ {qM ′ , qM ′ +q′i0−1} where q′i0 is the denominator of the vector
f ′i0 associated with M ′ by Brun’s algorithm. We can continue this process until n = qMk+1 and then
restart with Mk+1 instead of Mk. This shows that for all integers n ≥ 0, there is a Z2-invariant
triangulation with at most 10 different triangles up to translation.
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It remains to see that the diameters of the triangles go to zero when n goes to infinity. By
lemma 7, we know that for all n ∈ {qMk

, ..., qMk+1 −1}, the diameters of the triangles are less than

2c max
i=1,2,3

d(fk,i,R(θ, 1)).

Now, by our choice the of the sequence (Mk)k of Farey matrices, limk→∞maxi |qk,iθ − Pk,i| = 0,
hence

lim
k→∞

max
i=1,2,3

d(fk,i,R(θ, 1)) = 0. ¤

5 Appendix : proof of theorem 2 and stepped Stepped hy-
perplane

In this section M =
(

P1 ... Pd+1

q1 ... qd+1

)
= (f1, ..., fd+1) is a matrix in SL(d + 1,Z) with non

negative denominators q1, ..., qd+1.
Notations.

1. Let X be in Rd+1 and not in Rd × {0}. We denote by pX : Rd+1 → Rd+1 the projection on
Rd × {0} along the line RX.
2. We denote by Π− and Π+ the half spaces defined by

Π− = {(x, y) ∈ Rd ×R : y ≤ 0},
Π+ = {(x, y) ∈ Rd ×R : y ≥ 0},

and by Q the hypercube
Q = [0, 1]d+1.

3. Three subsets of Rd+1 are associated with a matrix M . The first two are the “half-spaces”

H− = H−(M) = ∪(X + MQ)

where the union is taken over all the lattice point X ∈ Zd+1 such that the parallelepiped X +MQ
is included in Π− and

H+ = H+(M) = ∪(X + MQ)

where the union is taken over all the lattice point X ∈ Zd+1 such that the parallelepiped X +MQ
is not included in Π− (this means that X +

∑d+1
i=1 fi is in the interior of Π+). The third subsets is

the boundary ∂H− of H−, it is call the stepped hyperplane associated with M . Let us quote a few
facts.
- H− ∪H+ = Rd+1.
- Since detM = 1, the interiors of two parallelepipeds X + MQ and Y + MQ with X 6= Y
both in Zd+1, are disjoint. It follows that the interiors of the parallelepipeds defining H− do not
intersect the interiors of the parallelepiped defining H+, hence (H−)o ∩ (H+)o = ∅. Therefore,
H− ∩H+ = ∂H− = ∂H+.

We outline the proof of Theorem 2:
Step 1. A point Y = (y1, ..., yd+1) ∈ Zd+1 is in ∂H− if and only if −qM < yd+1 ≤ 0.
Step 2. For each X in the interior of CM = MRd+1

+ , pX is an homeomorphism of ∂H− onto
Rd × {0}.
Step 3. Denote by Fi the set of faces Y −Fi(M), Y ∈ Zd+1, such that Y −Fi(M) ⊂ ∂H−. A face
F = Y − Fi(M) ∈ Fi if and only if Y ∈ Zd+1 and the vertices Y and Y −∑

j 6=i fj of F are both
in ∂H−.
Step 4. A face Y − Fi(M) with Y = (y1, ..., yd+1) ∈ Zd+1 is in Fi if and only if qi < yd+1 ≤ 0.
Step 5. ∂H− = ∪d+1

i=1 ∪F∈Fi F .
Step 6. Finally,

∂H− = ∪d+1
i=1 ∪qi−1

q=0 ∪P∈Zd+1 [(P,−q)− Fi(M)],

Rd × {0} = ∪d+1
i=1 ∪qi−1

q=0 ∪P∈Zd+1 [P + qθ − pθ(Fi(M))].
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Although, these steps are geometrically clear, we prove them.

Step 1.
Let Y = (y1, ..., yd+1) be in Zd+1. On the one hand, H− is included in Rd × R−, hence

Y ∈ ∂H− implies yd+1 ≤ 0. On the other hand H+ is included in Rd × [1 − qM , +∞[, hence
Y ∈ ∂H− implies yd+1 > −qM .
Suppose now that −∑d+1

i=1 qi < yd+1 ≤ 0. The parallelepiped Y −∑d+1
i=1 fi + MQ is included in

Π−, hence Y is in H−; the parallelepiped Y + MQ is not included in Π−, hence Y is in H+. It
follows that Y ∈ H+ ∩H− = ∂H−.

Step 2.

Lemma 9 1. If Y is in H+ then Y + CM is included in H+.
2. If Y is in H− then Y − CM is included in H−.

Proof. The proofs of 1 and 2 are very similar and we will only prove 1. It is enough to prove
that Y + Co

M ⊂ H+. Let X be a non zero vector of Rd+1 lying in the interior of CM . We have to
prove that for all positive t, Y + tX is in H+. Since the set of non negative real numbers t such
that Y + tX is in H+ is closed, it is enough to prove that for all such t, there exists ε > 0 such
that for all s ∈ [0, ε], Y + (t + s)X is in H+ .

Let t be a non negative real number such that Y + tX ∈ H+. By definition of H+, there exists
a lattice point A such that Y + tX ∈ A + MQ and A +

∑d+1
i=1 fi /∈ Π−. By definition of MQ,

Y + tX = A +
d+1∑

i=1

tifi

where ti ∈ [0, 1], i = 1, ..., d + 1. Let J the set of indices i with ti = 1. Clearly, the point Y + tX is
in the parallelepiped P = A +

∑
i∈J fi + MQ and there exists ε > 0 such that Y + (t + s)X ∈ P

for all s ∈ [0, ε]. Now, P contains the point A +
∑d+1

i=1 fi which is not in Π−, hence A + (t + s)X
is in H+ for all s ∈ [0, ε]. ¤

As a immediate consequence, we have:

Corollary 10 If X is an interior point of CM then pX is a homeomorphism from ∂H to Rd×{0}.
Proof. By the previous lemma, a line parallel to X cut ∂H− in exactly one point, therefore

pX is a bijection between ∂H− and Rd. Since pX is continuous, and since ∂H− is closed and is
inside the strip Rd × [−∑d+1

i=1 qi, 0], it must be an homeomorphism. ¤
Step 3.
The only thing to prove is that if the vertices Y ∈ Zd+1 and Z = Y − ∑

j 6=i fj of the face
F = Y − Fi(M) are both in ∂H− then F ⊂ ∂H−. Since H− ⊂ Π−, Y ∈ Π−. It follows that
Y −MQ ⊂ Π−. By assumption, Z is in ∂H− = ∂H+, therefore at least one of the parallelepipeds
adjacent to Z must intersect the interior of the half space Π+. Now the parallelepipeds adjacent
to Z are of the shape Z + MQ − ∑

i∈I fi with I ⊂ {1, ..., d + 1}, hence Z + MQ intersects the
interior of Π+and therefore Z + MQ ⊂ H+. Moreover, if X = Y −∑

j 6=i xjfj ∈ Y − Fi(M) then

X = Y −
∑

j 6=i

fj +
∑

j 6=i

(1− xj)fj

= Z +
∑

j 6=i

(1− xj)fj ∈ Z + MQ.

Thus Y − Fi(M) is the common face of the cubes Y − MQ and Z + MQ which shows that
Y − Fi(M) ⊂ H− ∩H+ = ∂H−.

Step 4.
Let Y = (y1, ..., yd+1) ∈ Zd+1 and F = Y − Fi(M). By step 3, F is in Fi if and only if

Y and Y − ∑
j 6=i fj are in ∂H−. By the first step, this is equivalent to −qM < yd+1 ≤ 0 and

−qM < yd+1 −
∑

j 6=i qj ≤ 0. Hence, F ∈ Fi if and only if

0 ≥ yd+1 > −qM +
∑

j 6=i

qj = −qi.
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Step 5.
Choose X in the interior of CM . Clearly

∪d+1
i=1 ∪F∈Fi

F ⊂ ∂H− ⊂ ∪d
i=1 ∪Y ∈Zd+1 (Y − Fi(M)).

Let E = EY,i be the relative boundary of a face Y − Fi(M) (that is the boundary relatively to
the hyperplane containing the face Y − Fi(M)). The projection pX(E) is of dimension ≤ d − 1,
hence pX(E) is a subset of Rd with empty interior in Rd. By step 2, pX : ∂H− → Rd is an
homeomorphism, therefore the union of all EY,i ∩ ∂H−, Y ∈ Zd+1, i = 1, ..., d + 1, is a subset of
∂H− with empty interior. Moreover, ∪d+1

i=1 ∪F∈Fi
F is a closed subset of ∂H−. Thus, the only

thing to prove is that, if the relative interior of a face Y − Fi(M) meets ∂H− then this face is
entirely included in ∂H−. Denote by Q−Y the parallelepiped Y −MQ and by Q+

Y the parallelepiped
Q−Y + fi. Let Z be in ∂H− ∩ relint(Y − Fi(M)). Then, for t > 0 small enough, Z − tX is the
interior of Q−Y and Z + tX is in the interior of Q+

Y . Moreover by lemma 9, Z − tX is in H− and
Z + tX is in H+. It follows that Q+

Y ⊂ H+ and Q−Y ⊂ H−. Therefore Fi(M) ⊂ ∂H−.
Step 6 and end of proof of Theorem 2.
By steps 4 and 5,

∂H− = ∪d+1
i=1 ∪qi−1

q=0 ∪P∈Zd [(P,−q)− Fi(M)].

Hence, applying the projection pθ,

Rd = ∪d+1
i=1 ∪qi−1

q=0 ∪P∈Zd [P + qθ − pθ(Fi(M))].

Since the relative interiors of the faces

(P,−q)− Fi(M), P ∈ Zd, q = 0, ..., qi − 1, i = 1, ..., d + 1,

are disjoint and since by step 2, pθ : ∂H− → Rd is an homeomorphism, the the parallelepipeds

P + qθ + pθ(−Fi(M)), P ∈ Zd, q = 0, ..., qi − 1, i = 1, ..., d + 1,

form a tiling of Rd.
It remains to determine the vertices of this tiling. Let G = A + kθ + pθ(−Fi(M)) be such

a parallelepiped and let VG be its set of vertices. Since 0 ≤ k < qi, by step 4, we know that
F = (A,−k) − Fi(M) ∈ Fi. Hence the set VF of vertices of F is included in ∂H− ∩ Zd+1.
Therefore

VG = pθ(VF ) ⊂ pθ(∂H− ∩ Zd+1),

and by step 1,
VG ⊂ {P + qθ : P ∈ Zd, 0 ≤ q < qM}.

Moreover, since det M = 1, F ∩ Zd+1 = VF . Hence,

G ∩ {P + qθ : P ∈ Z2, 0 ≤ k < qM} = pθ(F ∩ ∂H− ∩ Zd+1)
⊂ pθ(VF ) = VG.

Finally a point P + qθ with P ∈ Z2 and 0 ≤ q < qM , belongs to at least one parallelepiped
A + kθ + pθ(−Fi(M)) and therefore must be one of its vertices. ¤
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