SEMINAIRE Mulhousien de MATHEMATIQUES
résumé/abstract
Vladimir Sokolov (Landau
Inst. for Theo. Phys., RAS)
LINEAR DEFORMATIONS OF THE MATRIX PRODUCT
AND AFFINE DYNKIN DIAGRAMS
We develop a theory
of linear deformations of the standard matrix multiplication. It turns out that
such deformations are in one-to-one correspondence with representations of
certain algebraic structures, which we call M-structures. We describe an
important class of M-structures related to the affine Dynkin
diagrams of A, D, E-type. Our approach yields new
examples of integrable matrix ODEs.
Retour page: Séminaire Mulhousien de Mathématiques
Dernières modifications / Last modifications : 04 Octobre 2007