SEMINAIRE Mulhousien de MATHEMATIQUES

résumé/abstract


 

 Vladimir Sokolov (Landau Inst. for Theo. Phys., RAS)

LINEAR DEFORMATIONS OF THE MATRIX PRODUCT

AND AFFINE DYNKIN DIAGRAMS

We develop a theory of linear deformations of the standard matrix multiplication. It turns out that such deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures. We describe an important class of M-structures related to the affine Dynkin diagrams of A, D, E-type. Our approach yields new examples of integrable matrix ODEs.

 


Retour page: Séminaire Mulhousien de Mathématiques


Dernières modifications / Last modifications : 04 Octobre 2007