ON DEFORMATIONS OF THE FILIFORM LIE SUPERALGEBRA

ABSTRACT

Many work was done for filiform Lie algebras defined by M. Vergne [8]. An in-
teresting fact is that this algebras are obtained by deformations of the filiform Lie
algebra L,, ,,,. This was used for classifications in [4]. Like filiform Lie algebras,
filiform Lie superalgebras are obtained by nilpotent deformations of the Lie super-
algebra L, ,,. In this paper, we recall this fact and we study even cocycles of the
superalgebra L, ,, which give this nilpotent deformations. A family of independent
bilinear maps will help us to describe this cocycles. At the end an evaluation of
the dimension of the space Z3(Ly m, Ln,m) is established. The description of this
cocycles can help us to get some classifications which was done in [2, 3].

1. DEFORMATION OF LIE SUPERALGEBRAS

1.1. Nilpotent Lie superalgebras.

Definition 1.1. A Zs-graded vector space G = Gy @ G1 over an algebraic closed
field is a Lie superalgebra if there exists a bilinear product [,] over G such that

[Ga»98] C GatB mod 2,
(90> 98] = (=1)*[95, 9]
for all g, € G, and g € G and satisfying Jacobi identity:
(=1)"*[4,[B,C]] + (-1)*7[B,[C, A]] + (-1)°"[C,[A, B]] = 0
forall A€ G,, BeGgand C €4,.

For such a Lie superalgebra we define the lower central series
) =6,
{0”%9) = [6,CH(9)].
Definition 1.2. A Lie superalgebra G is nilpotent if there exist an integer n such

that C™(G) = {0}.

We define for a Lie superalgebra G = Gy @ G; two sequences :
C°(Go) = Go, C**(Go) = [Go, C*(Go)]
and
C°(G1) =G, C™(G1) = [Go, C*(G1)]

Theorem 1.1. Let G = Gy ® G; be a Lie superalgebras. Then G is nilpotent if and
only if there ezist (p,q) € N? such that C?(Gy) = {0} and C1(G;) = {0}.
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2 M. GILG

Proof. If the Lie superalgebra G = Gy @ G; is nilpotent the existence of (p,q) such
that C?(Go) = {0} and C'?(G;) = {0} is obvious.

For the converse, assume that there exist (p,q) such that C?(Gy) = {0} and
C1(G1) = {0}, then every operator ad(X) with X € Go is nilpotent. Let Y € Gy, as

ad(Y)oad(Y) = %ad([Y, Y]

[Y,Y] is an element of Gy, then ad([Y,Y]) is nilpotent. This implies that ad(Y")
is nilpotent for every Y € G;. By Engel’s theorem for Lie superalgebras [6], this
implies that G is nilpotent Lie superalgebra. O

Definition 1.3. Let G be a nilpotent Lie superalgebra, the super-nilindex of G
is the pair (p,q) such that : C?(Go) = {0}, CP~1(Go) # {0} and CY(G1) = {0},
C771(Gy) # {0}. It is and invariant up to isomorphism.

1.2. Cohomology. We recall some definition from [1].

By definition, the superspace of g-dimensional cocycles of the Lie superalgebra
G = Go @ Gy with coefficient in the G-module A = Ay @ A; is given by

qo q
@ Hom(/\go ®V91,A

qo+q1=q

This space is graded by C?(G; A) = CJ(G; A) & Cd(G; A) with

90 71
CY(G; A) = @ Hom(/\go®\/g1,Ar)

qo+91=¢q
q1+r=p mod 2

The differential
d: CUG;A) — CT(G; A)

defined by
dc(Uty. . Ugg,V1yeneyVyqy)
— s+i—1 ~ ~
= E (-1 C([Usy Ut]s Uty e oy Tsynevy GtynneyUgysVlyernsUqy)
1<s<t<qo
q0 Q1
—+ E E Uty e ey G5y v Uggs [Usy Vi)s U1y« oy Bgy oo, Ugy)
s=1t=1
+ E [V, V], Ut e ooy Uggs U1y e vy Py vy gy 0gy)
1<s<t<q1
+ E (U, e ey sy -UggsV1ye - Vgy)

1)”0_12113 (U1, - Ugy, V1y- ey Psy ooty Vgy)

where ¢ € C(G; A), u1,...,uq € Go and v1,...,v, € Gi and satisfies

dod=0
d(C3(G; 4)) C CFH(G; A).
forgq=0,1,2... and p=0,1.
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Let be d; : C}(G; A) — Ci+1(G; A) with p = 0 or p = 1 the restriction of d to the
space Cg(g; A). This operator permit to define the spaces :

) Zi(G; A

Hi(g, 4) = 294

Bj(G; A)

where p = 0 or p = 1. Therefore we have :
.« Z1(G,A) = Z§(G, A) @ Z{(G, A).

e Bi(G,A) = H}(G,A) ® Bi(G, A).
o Hi(G,A) = H{(G, A) @ H] (G, A).

1.3. Algebraic variety of nilpotent Lie superalgebras. We recall some facts
from [5].

Let L3 , be the set of Lie superalgebras law over C* = CrH oCl. Let (X1, Xo,... Xpt1,Y1,Ys,. ..

be a graded base of it. For u € L}, we set :

( p+1
u(Xi, X;) ZC{ijk 1<i<j<p
{ WX, Yy) ZD 1<i<p+1,1<j<gq

p+1
Yi, Yj) E: i Xk 1<i<i<q

\
with C¥, = —Cf; and Ef, = Ef,.

The elements {CF i Dk, i z’f ; Vi, are called structure constants of the Lie superal-
gebra with respect to basis (Xi,...,Xpt1,Y1,...,Yy). The Jacobi identities show

. . . N .
that £, is an algebraic sub-variety of C% with
p
N=(p+1)*(5) +2(p+1)¢*

Let V =V, @ V1 be a Zs-graded vector space of dimension n with dimVy =p+1
and dim V; = q. Let G(V') be the group of linear map of the type g = go + g1 where
go € GL(Vp) and g1 € GL(V}). This group is isomorphic to GL(Vp) x GL(V4).

The algebraic group G(V) acts on the variety £ in the following way :

(9-0)(2,9) = garp((95 " (a),95" (b)) Va € Va, Vbe V3,
with g € G(V) and ¢ € L],

1.4. Deformations of Lie superalgebras. Let G be a Lie superalgebra over a
field k, V' be the underlying vector space and v the law of G. Let k [[t]] be the power
series ring in one variable ¢. Let V [[¢]] be the k[[t]]-module V [[t]] = V Q4 k[[t]]-
One can obtain an extension of V' with a structure of vector space by extending
the coefficient domain from & to k ((¢)), the quotient power series field of k [[t]].Any
bilinear map f : V xV — V (in particular the multiplication in G) can be extended
to a bilinear map from V [[t]] x V [[t]] to V [[t]].

Notation. Let Ag,q be the set of bilinear forms
o: k" x k" = k"

)
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satisfying :

¢(U’i7vj) = (_l)d(vi).d(vj) ¢(Ujavi)'

where k™ = Vi @ V3 is a Zs-graded vector space , dimVy =p+ 1, dimV; = ¢q and
v; € Vd(v,—): v; € Vd(v,-)-

{¢(VzaV]) C Vitj mod 2,

Definition 1.4. Let vy be the law of the Lie superalgebra G. A deformation of vg
is a one parameter family v, in k[[t] @ V.

I/t:I/0+t.V1 +t2.1/2+...

where v; € Af,,q for i > 1, 1, satisfy the Jacobi formal identities :
(1) v (A, (B, C)) + (=1)*Pu(B, v4(C, A)) + (—1)7"4(C, (A, B)) =0,
Forall A€ G,, BeGgand C €G,.

The coefficient of t* of the formal Jacobi identity is

Z(—l)ry'alli(A, I/k,i(B,C)) + (—l)a'BVi(B,Vk,i(C, A)) + (—1)B"YV,'(C, I/k,i(A, B)) =0
k=0,1,2,...

for all A € G,, B € Gg and C € G,. This last relations are called the deformation
equations.

For k = 0 we get the Jacobi identity of the Lie superalgebra vy. For k = 1 the
condition on the coefficient ¢ implies the next proposition :

Proposition 1.1. Let vy be a Lie superalgebra and vy of it :

vy =19+t +t2.1/2+...

then vy is an even 2-cocycle of the Lie superalgebra vo (v1 € ZE(vo,10)).

1.5. Deformation in N?:%. Let G = Go © G be a nilpotent Lie superalgebra of
NP4 with multiplication v and v; be a deformation of it.
We write vg = po + po + bo where :

to € hom(Go A Go, Go)

po € hom(Go ® G1,G1)

bo € hom(G: V G1,Go)

For v; to be a deformation in ;7 , we must have :

™) { vi(z1, (21, - - -, v (@p,20) ...)) =0
vi(z1, (21, .-, U (2g,y) ...)) =0
for all z; in Gy and y in G;. Proposition 1.1 implies that v; € ZZ(vg, 1) Let be
vy =1 + p1 + by with :
Y1 € hom(Go A Go, Go)
p1 € hom(Go ® G1,G1)
by € hom(G:1 V G1,Go)
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2. FILIFORM LIE SUPERALGEBRAS

Definition 2.1. Let G = Gy & G be a nilpotent Lie superalgebra with dim Gy =
n+1 and dim G; = m. G is called filiform if it’s super-nilindex is (n,m).

We will note F,,, the set of filiform Lie superalgebras.
Remark. We can write the set of filiform Lie superalgebras as the complement of
the closed set for the Zariski topology of the nilpotent superalgebras with super-

nilindex (k,p) such that k < n —1 and p < m — 1. Hence the set of filiform Lie
superalgebras is an open set of the variety of nilpotent Lie superalgebras.

As for the filiform Lie algebras [8], there exists an adapted base of a filiform Lie
superalgebra :

Theorem 2.1. Let G = Gy @® G be a filiform Lie superalgebra with dim Gy =n + 1
and dim Gy = m. Then there exists a base {Xo, X1,... Xn,Y1,Y2,... Y} of G with
X; € Go and Y; € Gy such that :

[XO;Xz'] = X,’+1 1 S 7 S n — ]_, [Xonn] — 07
[X0,Vi]=Yiy1 1<i<m—1, [Xo,Vn]=0.

The proof is the same as for Lie algebras [8]( see also [3]).

Example Define the superalgebra Ly m = LY , & L}, . by

[Xo0, Xi] = X4p1 1<i<n—1,

[Xo0,Yi]=Yin 1<i<m-—1
where the other brackets vanished, dim L?l,m =n+1, dim L}l,m =m and
{Xo0,X1,...Xn, Y1,..., Y} is an adapted base. The law of Ly, is written by

I = po+ po where pg is the law of the Lie algebras L%,m and pg is the representation
associated to the LY , -module L},

Proposition 2.1. Fvery filiform Lie superalgebra G = Gy ® G, such that dim Gy =
n+1 and dim G; = m can be written :

[o,0] = pio + po +

with ® satisfying :

® € Z3(Ln,my Lnm)

®(Xo,Z2)=0 VZeg

Q(S?,S?) C Sz+]+1 ifi+ji<n

®(X;, Xp_i) = (=1)'a X,, where a =0 if n is even
8(s?,51) C S,

where pio + po is the law of Ly, and S°, S? the filtrations associated to the grad-
uwations of Go and Gy by the sequences given in 1.1.

Proof. Using the theorem 2.1, for every filiform lie superalgebra we have an adapted
base B {Xo, X1,...,Xn,Y1,Y2,...Y,} such that the product of G is given by :

[0, 0] = po +po + @
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where ®[X,Z] = 0 for every vector Z € G. This product satisfies the Jacobi
identity

(1) (ko +po) o @+ ®o (o + po) + @0 @ =0.

Let Z;, Z; be two vectors of the adapted base B of G. We have ®o®(X,, Z;, Z;) =0
because ®(Xy,e) = 0. The relation (1) becomes :

(0 + po) © @ + @ o (uo + po))(Xo, Zi, Z;) = 0
Also we have for every Z;, Z;, Z € B\ {Xo} :
((o + po) © @ + @ o (1o + po))(Zi, Zj, Zx) = 0.
As the superalgebra is nilpotent, Xo ¢ Im® shows :
((o + po) © @ + @ o (110 + po)) (U, V, W) = 0.

for all U, V,W € G, where o is the graded Nijenhuis-Richardson bracket. This
implies that ® € ZZ(Ly,m, Ln,m)- The filtrations :

{ [51075’;)] C S?—i—j
0 gl 1
[Si,S;]1 C Siy;
associated to the graduations C*(Go) and C*(Gi) shows that &(S7,S}) C S}, ;.
From [8], we also have

®(S7,8)) C Sy ifi+j<nm
®(X;, Xn—i) = (—1)'a X,, where a = 0 if n is even

This lead us to the study of the 2-cocycles of L, .

Proposition 2.2. Let be ¥ € Z2(Ly, my Ly,m), such that po + po + U is a nilpotent
Lie superalgebra, then ¥ admits the following decomposition ¥ = 1) + p + b with

¢ € Hom(Go A Go,Go) N Z*(Ly, Ly,)
p € Hom(Go ® G1,G1) N Z*(Ln,m, Ln,m)
be Hom(g1 \% 91,90) n Z2(Ln,maLn,m)

Proof. Tt is clear that ¥ can be decomposed into a sum of three homogeneous maps

¥ € Hom(Go A Go, Go)
p € Hom(Go ® G1,G1)
be Hom(G1 V G1,Go)

As © € ZZ(Lp,m, Ln,m), we have :

( V(10 (9i595), 9k) — ¥ (1o (9i> 9r)> 95) + ¥ (o(g5, 9k), 9i) —
po(gi, (95, 9x)) + po(gs, ¥ (gi, 9r)) — 1o (g, (gi, 95)) =0,

p(ko(gi, 95); he) + p(9s, Po(gis he)) — p(gis po(gj, he)) —
< polgir p(g4, he)) + po(gj, p(gi, b)) — po(he, ¥(9i,95)) = 0,

b(po(gi, he), hr) + b(po(gi, hr), he) — po(gi, b(he, hy)) =0,

\ pO(b(hT‘) hs); ht) + pO(b(ht7 hs)) hr) + pO(b(ht; hT); hs) = 0



ON DEFORMATIONS OF THE FILIFORM LIE SUPERALGEBRA L, ., 7

where g; is an even element and h; an odd element of L, ,,. This prove that v is a
cocycle of the filiform Lie algebra L,. As po + po + ¥ is nilpotent, ¢)(X;, X;) has
no component on Xo. This implies that po(hs, ¢ (gi,95)) =0 and

( p(10(gi»95), ht) + (g5, po(gis bt)) — p(gi, po(gs, he)) —
po(gi, p(g5, he)) + po(g;, p(gi, b)) = 0

<
b(po(gis he), hy) + b(po(9ss hr), he) — po(9s, b(he, hy)) =0

\ Po (b(hra h/s); ht) + pO(b(hta hs)a h’l‘) + Po (b(h‘ta hr)a hs) =0
This prove that both maps p and b are cocycles. O

We are reduced to study each space associated to the decomposition of .

2.1. Cocycles of Hom(Go A Go, Go)-

Let ¢ be a 2-cocycle of Ly, ,, belonging to Hom(Gg A Go, Go). Then 1) is a 2-cocycle
of the Lie algebras L,. From [8], these cocycle are written as a linear sum of the
following cocycles :

Let (k,s) be a pair of integers such that 1 < k < n — 1, 2k < s < n. There exists

an unique cocycle of L,, satisfying :
T (XX X, ifi=k
koo (Xiy Xigr) = { 0 otherwise

and
Tps(Xo0,X;) =0 1<i<mn
is given for i < j by
Uy (X5, X;) = ()P0 (ad Xo) 261X, if k—i < j—k—1
Uy, +(X;, X;) = 0 otherwise

The cocycles 9; ; give the nilpotent deformations of the filiform Lie algebra L.

2.2. Cocycles of Hom(Go®G1,G1). These cocycles are described in the following
proposition :

Proposition 2.3. For 1 <k <n and 1 < s < m, there erists an unique cocycle

pr,s of Hom(Go ® G1,G1) N Z*(Ln,m, Ln,m) such that :
Y, ifi=k
Pr,s (X3, Y1) = {0 otherwise

and
prs(X0,Yy) =0 1<i<m
It satisfies :

Pk,s (Xja Yvr =

)_{OJﬁﬁCffnﬁuhﬁk#k—r+15j5k
0 otherwise

for 1 <r <m, where Cf__f are the binomial coefficients.
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Proof. Let py s be a cocycle such that :
<.y Y,yifi=k
prs (Xi Y1) = {0 otherwise

and
Prs(Xo0,Yi) =0 1<i<m
Pk,s must satisfy
pk,s([Xi7 Xj]: YT) + Pk,s(Xj; [XM }/;‘]) - ,Ok,s(Xi, [Xj7 Y;‘]) -
[Xi, pr,s (X5, Vo) + [ X5, pr,s (X3, Y7)] = 0
then by induction on r and j we prove that
—DEICE T Y ifk—r+1<j<k
pk,s(XjJYr) = ( ) . ! Froleaek =7 =
0 otherwise

for1<r<m. O

Proposition 2.4. Let {Xo,X1,...,Xn,Y1,Y2,...,Y,,} be an adapted base of Ly, .
The bilinear mapping g; ; with 1 < 14,7 <m defined by :

Qi,j(XO,n) = Y.-7'7
0i;(Xp, Yi) = 0i,(Xp, Vi) = 0:,(Yp,Yx) =0, p#0.

are cocycles.

The prove is obvious.

Theorem 2.2. The family of cocycles 0;; and pps with 1 < i < j < m and

1<k<mn,1<s<m form a basis of Z§(Ln,m,Ln,m) N Hom(Go ® G1,G1).

Proof. Let p be a cocycle of Z&(Ly m, Lum) N Hom(Go ® G1,G1), such that
p(Xo,Y;) =0 for 1 < j < m. We can prove by induction on j that if p(X;,Y1) =0
for 1 < j < nthen p=0.

We can assume that p(Xo,Y;) = 0, if not, we consider the cocycle p1 = p —
Zi’k a; 10,k Such that p1(Xo,Y;) = 0. It is easy to see that there exists a linear
combination of p; ; such that

P =p- E;"zl ri,;pi,; satisfies p'(X;, Y1) = 0. Using the previous paragraph, we
have that p’ = 0 we deduce that p = 27:1 Ti.;Pi,;, and if p(Xo,Y;) was not zero, p

will be
n m m m
p= Z Zti,j pij + Z Z Sk,rOk,r
i=1 j=1 k=1r=1
this prove that p;; and g, are generator. As they are linearly independent, we
have a base. O

2.3. Cocycles of Hom(Gy V G1,Go).

In this case, we will not give a basis for this cocycles, but we will give the dimension
of this space.

Let b be a cocycle in Hom(G1 V G1,Go) N Z?(Lp,m, Ln,m)- Then b has to verify the
two conditions :

(2) b(po(gi, he), hr) + b(po(gi, hr), he) — po(gi, b(he, hy)) =0
and
(3) po(b(hr, hs), ht) + po(b(he, hs), hr) + po(b(he, by ), hs) =0

where g; € Ly, ,, and hy, hy,hs € L}, ..
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Now we will focus or work on relation (2). Note that if g; is linearly independent
of X, then (2) is satisfied. We suppose that g; = Xo. Consider the adapted basis
{Xo0, X1, -, X0, Y1,..., Y} of Ly, , then (2) is written :

(4) po(Xo,b(Y, Yr)) = b(Yes1,Yy) + b(Yry1,Y2)

for1<r,t<m-1.

Lemma 2.1. Let b be a symmetric bilinear mapping satisfying (4), such that
B(Yi,Yi) =0 for 1 <i <my

then b is null.

Proof. Let us prove that b(Y;,Yiy) = 0 for every k. For k = 0 we have :
b(Y;,Y;) =0
Suppose that the relation is true up to k. For k£ + 1 we have :
po(Xo, b(Ys, Yigr)) = b(Yit1, Yiirr)+(k—1)) + 0(Yi, Yigkt1)
0=0+b(Y;,Yirrt1)-
then b(Y;,Yiyr) = 0 for all integer k and i. O

This lemma shows that a symmetric bilinear map b satisfying (4) can be defined only
by the value b(Y;,Y;) with 1 < ¢ < m. Relation (3) implies that po(Y:, b(Y;,Y7)) =
0, if b(Y3,Y;) = a; Xo + ..., we have that a;.p(Y;, Xo) = 0. This implies that
a; = 0,1 <4 < m. Suppose that a,, # 0, then the relation (3) implies that
po(Y1,b(Y,,Yn)) =0, then a,, Y2 = 0 and a,, = 0. This prove that b(Y;,Y;) does
not have a component on Xq for every i.

We define the vector space E of the symmetric bilinear maps satisfying the relation
(4) such that Vb € E,b(Yy,,Ym) € Vect(X,).

Proposition 2.5. The symmetric bilinear maps fps with1 <s<mnand1 <p<
m—1 defined for 1 <i<p<j<mby:

ot vy = 0

with convention C_{ = 1 and 0 otherwise; and

i i1
[Cf_; +C7 ] Xsopritj

Xsifi=j=m
0 otherwise

fm,n(YlJY}) = {
form a basis of E.

Proof. Let b € E be a symmetric bilinear map. It is easy to see that there exists
coefficient a, , € C such that

m n

bV, Vi) = D> aps fps(Vi,Yi) =0

p=1 s=1
for 1 <4 < m, where f, ; =0 for 1 <i <n—1. Using lemma 2.1 we deduce that
this equality vanishes for every pair (Y;,Y}). This proves that

m n

b= Zzap,s fp,s

p=1s=1

Using the fact that f, s(Y,,Y,) = X, and f, 5(Y;,Y:) = 0if i # p, the family {fp s}
is free. O
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Proposition 2.6. The space Z(Lnm, Ln,m) N Hom(G1 V G1,Go) is the subspace
of E defined by
feE,

(5) ¢ po(Xo, f(Yi, Ym)) = f(Yig1,Ym)
for1<i<m-1

Proof. A cocycle f satisfies the two relations (2) and (3). A consequence of this is
that f(Ym,Ym) = am,n Xn. We deduce that f € E. To satisfy relation (3), f has
to satisfy the relation

po(Xo, f(Yi, Ym)) = f(Yig1, Yim)
for1<i<m-1.

Such a map f does not have a component on Xj in its image, hence [Y;, b(Y;,Y:)] =
0 for 1 <4, j, k < m. This prove that relation (2) is satisfied and that every map f
satisfying (3) is a cocycle. O

Consequence :
dim Zg(Ln,m, Lym) NHom(Gi1 VG1,G0) <dimE=nm-—-n+1

The maps f, s are not always cocycles. Let b§,‘,’2 € E be

m—p
k
bg(a(,ls) =fps + Z Ap s fptk,s+2k

k=1
where of € C. Let Ap; be the set of sequences (a) = (o, ,,03 ,,...al"P) such
that b'%) is a cocycle. Then (ap 5,020 o5 .. a7 P) is a solution of equation (5).

Remark that for some pair (p, s), 4, s can be empty.

Lemma 2.2. The family of cocycles b(?’s) with (&) € Up sAp s spans
Hom(gl Vv gl; gO) N Z2 (Ln,m; Ln,m)

Proof. Using theorem 2.6 every cocycle of Hom(G1 V G1,Go) is given by :

f= Z Z Gp,s fp,s

P=po =50
with ap,,s, # 0.
We can write f like :
f =5y b, + R

where by, 5, (Y3,Y;) has a component on X _sp,+it; and R(Y;,Y;) does not have
any component on X, _2p4itj-
As f is a cocycle, we have :

[X07 fYs, Ym)] = f(Yit1,Ym)
@s0,po [X07 bsoJ)o (Yla Ym)] + [X(]: R(Yi> YJ)] = Qs,po bSo,Po (Y;-H: Ym) + R(Yi-i-la Ym)

Let us consider the component on Xy, _2p,ti+1+m, We have :
Qs0,po [X07 bso,po (Y3, Ym)] = sq,po bso,po (Yig1,Ym)
[X07 bso ,P0O (Y;a Ym)] = bSO,Po (Yi+17 Ym) because Qs0,po 7é 0

This proves that bs, p, is a cocycle, as f — asy,p, bso,po- Using the cocycle f —
Qso.po Dso,po> We prove by induction that f is given by a linear combination of the

cocycles by,



ON DEFORMATIONS OF THE FILIFORM LIE SUPERALGEBRA L, ., 11

O

The cocycles b(?‘s) are not linearly independent. Therefore, for a non empty set A, ,

we consider the smallest cocycle b9 _ in the sense that b9 . cannot be written
0
bs = b2 +a by

with bg’)‘j) non zero, a € C* and k > p.

Lemma 2.3. For any non empty set Ay, there exists an unique cocycle b) ..

Proof. Let be A, s # 0 and bécfs) be a non zero cocycle. If we can decompose b;s,?‘s), we

have the smallest cocycle, if not we choose the smallest integer ko, p < ko +p < m
such that )
— ko 3
bz(??s) - bz(fSO) + 71),05 bp+kko,s+2k0

If bﬁ,‘j‘s‘)) is indecomposable, we stop. If not, we have

bgi;)) = bl()?tsl) + rYk,lS b1(112k)1,5+2k1

with k1 > kg, this sequence is increasing and has an upper bound, therefore it exists
kr such that b,(,?‘s’ ) is indecomposable.

To proof the uniqueness, suppose that b,(f‘;) and b,(ff) are smallest. Then bllm—bg’s =
bis a cocycle. We have b\ = b + g bgzsr) with ko the smallest integer k such
that fi, is in b. As bgf;) is the smallest, we must have a by, , = 0 and then

b%) = p{*) This proves the uniqueness. O
Theorem 2.3. The cocycles’ family b9 , with (p,s) such that Ap ; # 0 is a basis of
Hom(G1 V G1,G0) N Z*(Lymy L)

Proof. Let (p, s) be such that A, ; # 0. The cocycles b9 , span Hom(G1 V G1,Go) N
Z2(Ln,m, L) because every cocycle by, s can be written as a linear sum of bg+k’s+2k,
k>0.

Let be a,, ;s € C such that :

m n

aps by . =0
ZZ P, 273

p=1 s=1
Note that :
Oifi<p
by (Y3 Yi) = ¢ Ko i i=p
of X, ifi=p+k
We have for Y; :

m n

n
ZZGP’S bg,s(YhYl) = Zal,s X5
s=1

p=1 s=1
then a;,s = 0 for 1 < s < n. By induction on p = 1,2,...m, every coefficient
vanishes, and the bg,s are linearly independent.

O

The theorem shows that the determination of a basis of
Hom(gl V gl, gg) nZz? (Ln,m; me)
is reduced to the case 4, ; # 0.
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Proposition 2.7. The only pairs (p, s) such that fp s is a cocycle, that is (0,0,...) €
Ay s, are
e if m is odd : f’“T‘l,n and fps with2p = m—k, n—k—-1<s < n for
1<k<m-—2 andk odd.
o ifmiseven: fpswith2p=m—-k,n—k—-1<s<n for0<k<m-2and
k even.

Proof. Let f, s be a cocycle from the proposition. If f, s € Z*(Ly,m, Ln,m) then
[XO; fp,s(Y;': Ym)] = fp,s()/;'+1a Ym)

Let (p, s) be such that 2p =m —k and 1 < s < n — k — 2, we will proof that f, s is
not a cocycle. We have

(-1

fps(Y1,Ym) = T(Cfnilp +CP 2 ) Xotkt
—1)p—2 _ B
oW Vi) = SO0 400 ) Xk

If f, s is a cocycle, we have

Ccr +en2 ) =—(Ch2+Cn2 )
This implies
crl+ch? =
ch+Ch2 =0
Thus Cﬁz__lp =0, and 2p > m+1. We have f, ;(Y1,Y,) =0 and fp s(Yop—m,¥Ym) =
(=1)™"! X, # 0. This proofs that f, s cannot be a cocycle.

O

Proposition 2.8. Let q be such that 1 < q < min{m — 1,n — 2}. If p satisfies
24m+qg-—n<2p<m-—q+1 then Ay, ,, with s =n—m —q— 1+ 2p, is not
empty.

Proof. Let g be such that 1 < ¢ <min{m —1,n—2},s=n—m —q—1+ 2p and
psuchthat 2+ m+q¢—n<2p<m-—q+1.

Let’s proof that there exists (o ,,...,0% ) € Ay, such that

q
bp,s = fp,s + Z al;,s fp+ka5+2k
k=1

is a cocycle.
We have b, 4(Y1,Y,,) € CX,,_,, then for b, s to be a cocycle, it must satisfy ¢
equations given by (5). Suppose 1 <14 < g, if

-1 p+k—i
fp+k,s+2k(Y;';Ym) = %
is vanishing then Cﬁltkpiik + Cztkpii;fl =0asn—q+1i—1<mn. This is possible
onlyifp+k—i—1<m—-p—k—1. As2+m+q—n < 2p < m—q+]1, there exists
a value of p and k such that C;Jr_kp__’k + Cf,’;"_kp__lk__ll # 0. This proofs that in the
¢ linear equations given by (5), every coefficient a ,...,a8 , appear. This proof
that this system admits a solution. O

p+k—i p+k—i—1
(Cm—p—k + Cm—p—k—l)Xn—qui—l

Corollary 2.1. Suppose that m > n, m = 2t. Then if
o n=4s : dim ZZ(Ly,m, Lnm) NHom(G1 V G1,Go) > t.n—2s + s
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e n=4s+1 : dim ZZ(Ln,m, Ln,m) N Hom(G1 V G1,Go) > t.n — 25>
e n=4s+2 : dim Z(Ln,m,Lnm) N Hom(G1 V G1,G0) > t.n —2s* — s
e n=4s+3 : dim ZZ(Ln,m,Lnm) N Hom(G1 V G1,G0) > t.n —2s* — s

Form >n, m =2t+1 then if

n =4s : dim ZZ(Ly,m, Lnm) N Hom(G1 V G1,Go) > (t+1).n — 25 — s
n=4s+1 : dim Z¢(Ln,m, Ln,m) N Hom(G1 V G1,Go) > t.n — 25> + 25+ 1

n =4s+2 : dim ZZ(Ln,m, Ln,m) NHom(G1 VGi1,Go) > (t+1).n—2s% —4s5—1
n=4s+3 : dim ZZ(Lp,m, Ln,m) N Hom(G1 V G1,Go) > t.n —2s* +2

Proof. Using propositions 2.7 and 2.8, we can compute a lower bound of the number
of non empty sets A, s. For each of this sets, there exists a unique cocycle bg,s (see
lemma 2.3) which is a vector of the base of

Hom(G1 V G1,G0) N Z*(Ly,ms, Lnm)
this is established in the theorem 2.3. O
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