DEGENERATION OF HOPF ALGEBRAS AND IRREDUCIBLE
COMPONENTS

ABDENACER MAKHLOUF

The aim of this work is to discuss the concept of degeneration in the case of
bialgebra and Hopf algebras. This paper is organized as follow, grst I present the
basic concepts and I give a necessary and su(Ecient condition such that a degener-
ation with an ingnitesimal family of endomorphisms of a given bialgebra or a Hopf
algebra exists. The second part of this work concerns the geometric description of
the algebraic variety of n-dimensional Hopf algebras with n< 13. I show that they
are unions of open orbits.

1. Structure of algebraic varieties

1.1. Preliminaries. Throughout this paper K will be an algebraically closed geld
of characteristic 0 and V be an n-dimensional vector space over the geld K. Let
H = (V,u,n,A,e,5) be a gnite dimensionnal Hopf algebra. Recall that the triple
(V, u,m) degnes an algebra structure where p: V®V — V and n: K — V are
linear maps satisfying :

(1) (Associativity) p(p®idy) = p(idy @ p)
(2) (Unitality) p(n®idy)=u(idy ® n) =idy

then e; =5 (1) € V becomes the unit for the multiplication u. The triple (V, A, ¢)
degnes a structure of coalgebra where A : V - V@V and € : V — k are linear
maps satisfying :

(3) (Coassociativity) (A®idy)A = (idy ® A)A
(4) (Counitality) (E ® Zdv) A= (’LdV &® E) A= idV

To get the structure of bialgebra the maps A and £ must be algebra morphisms
which may be expressed by

Aer) =e1 Qe

A(u(z ®y)) = X)) MM @yM) @ uz® o y®)
(5) where A (z) = 37, M) ®

e(er) =1

e(uzoy) =¢e(x)e(y)

A Dbialgebra becomes a Hopf algebra if there is an endomorphism S, called an-
tipode, satisfying :
(6) poSQ®IdoA=pold®SoA=noce
1
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1.2. The algebraic variety Bialg,. Setting a basis —e1, ...,e,} of V where e; =

n(1) (gxed), we identify the multiplication x4 and the comultiplication A with
their n? structure constants Cf; and DI* € K, where p(eie;) = Sr_, Chex
and A (e;) = X0, >py D¥*e; ® e;. The counity ¢ is identiged to its n struc-

ture constants &;, where £ (e;) = &;. The collection (ij, ng,fi 2, 5,k=1,--- ,n)
represents a bialgebra if the underlying multiplication, comultiplication and counit
satisfy the conditions (1) (2) (3) (4) (5). These conditions translate respectively to

the following polynomial equations :

(7) Z_ln=1 Clljclsk - Czslc_;k =0
CY, = CJ, = 4;; the Kronecker symbol

2

i,5,k,s € {1,..,n}

S0, DEDY — DAD —0
(8) Zlnzl D:lgl = Elnzl Di'l.gl =1 i;jakas € {17 "an}
Y Dla=3L, Dia=0i#]

Eln:l Cll] - Zzt,p,qzl D:t‘quCTl?pCtsq =0
9) Di'=1, DY =0 (i,j) #(1,1) i,j,k,s € {1,..,n}

L=1, YL CL& =&

The polynomial relations (7) (8) (9) endow the set of the n-dimensional bial-
gebras, denoted by Bialg,,, with a structure of an algebraic variety imbedded in
K27+ which we do consider here together with its natural structure of an algebraic
variety over K.

As a subset of K 2"3+", Bialg,, is provided with the Zariski topology.

1.3. The scheme structure of Bialg,. The scheme structure of Bialg, is de-
gned by the following. Let K [z1,-- - ,zn] be the polynomial ring, where N = 2n®+
n, and Let  be the ideal of K [z1,- - - , 2] generated by the polynomials of the rela-

tions (7) (8) (9) where (ij,ka,fi 2,5, k=1,--- ,n) = (xr cr=1,---,2n +n).
Let R be the quotient ring K [z1,--- ,zn] /2. To this ring is associated as a jgeo-
metrical object, the set of its prime ideals denoted by spec (R). This set is provided
with the spectral topology in which the sets U (E) = {p € spec(R) : p D E} are all
the closed subsets of spec (R). On this topological space we construct a sheaf degned
by the regular functions on spec (R). The scheme of the n-dimensional bialgebras

is given by spec (R) and its sheaf.

1.4. The Hopf algebras set, Hopf,. The elements of Bialg, with antipodes
degne the set of Hopf algebras, denoted by Hopf,. If the antipode S = (S;;) , with
respect to the basis —ey, ..., e, } of V, then the condition (6) translates to

" Di*s..cl =3 Diks.,.Cl = ¢
(10){ L=t Di SriCrk = 2grs Di Sy =& i€{1,.,n},t€{2,.,n}

n kg ot _ N\ Jk t
Ej,k,r:l ‘Di Smcrk = Ej,k,r:l Dz' STijr =0

The set Hopf, is a Zariski open subset of Bialg,. It carries also a structure of
scheme.
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1.5. The GLn (K) action and coaction, orbits. In the following I will degne
GL, (K) action and coaction for Hopf algebras. Naturally, we have a similar deg-
nition for bialgebras.

Geometrically, a point (C{?,D?k,& ci g k=1, ,n) of K2n°+n gatisfying (7)
(8) (9) (10) where the matrix (S;;) degnes the antipode, represents an n-dimensional
Hopf algebra H, along with a particular choice of basis. A change of basis in H
may give rise to a diceerent point of Hopf,. Let H = (V,u,n,A,e,S) be a Hopf
algebra, The jstructure transportj action is degned on H by the following action
of GL, (K)

GL, (K) x Hopf, — Hopfn

where VX,Y € V

(f-w) (X,Y)=f 1 u(f(X),f(Y))
(f-A)X)=f1ef (A (X))
(f-8) (X) =¢(f (X))

The orbit of a Hopf algebra H isgivenby ¢ (H) ={H' = f-H, fe€GL,(K)}.
The orbits are in 1-1-correspondence with the isomorphism classes of n-dimensional
Hopf algebras.

The stabilizer subgroup of H (stab(H) = {f € GL, (K): H= f-H}) is exactly
Aut (H), the automorphism group of H.
The orbit ¥ (H) is identiged with GL,, (K) /Aut (H). Then

dim 9 (H) = n® — dim Aut (H)

The orbit ¢ (H) is provided with the structure of a diceerentiable manifold. In
fact, ¢ (H) is the image through the action of the Lie group GL,, (K) of the point
H, considered as a point of Hom (V  V,V) x Hom (V,V @ V).

The Zariski open orbits have a special interest in the geometric study of Hopf,.
It corresponds to a so called rigid Hopf algebras. The orbit’s closure of a rigid Hopf
algebra determines an irreducible component of Hopf,,.

2. Degenerations

This concept grst appeared in the physics literature. The question was to show in
which sense a group can be a limiting case of other groups. The degenerations, called
also contactions or specialisations, was introduced for Lie groups by Segal, Inonu
and Wigner (1953) [8]. They showed that the Galilei group of classical mechanics
is a limiting case of the Lorentz group corresponding to relativistic mechanics.
Later, Saletan (1960) [15] generalized the notion and stated a general condition to
the existence of degeneration (contraction) of Lie algebras. This notion, useful for
geometric study of a variety, was used by several peoples in the studies of associative
algebras varieties or Lie algebras varieties (Gabriel, Gerstenhaber, Goze, Happel,
Mazzola, Makhlouf, Schaps...). It was also used by Celegheni, Giachetti, Sorace
and Tarlini [2] to degne Heisenberg and Euclidean quantum groups.

Degnition. A degeneration of a Hopf algebra H = (V, u,A,n,e,S) over K is
the limit of a sequence f; - H when t — 0 and where f; is a family of linear maps
on V over K.



Hy = }gr(l) fi-H
where the multiplication and the comultiplication o and Ag of Hy satisfy

po = limy_yo fi - =limy_o f; "o po fi ® fy
Ao =limy o fy - A=limyo f; "® f; "o Ao f

1. A degeneration of Hopf algebra is a Hopf algebra. In fact, the multiplication
w = fiopo fi ® fy and the comultiplication Ay = f; ' ® f; ! o Ao f; satisfy
the conditions of Hopf algebra, then when t tends to 0 the conditions remain
satisged.

2. Equivalent degnition : Hy is a degeneration of H if Hy € § (H) (the Zariski
closure of the orbit of H). Geometrically, this means that Hy and H belong
to the same irreducible component.

3. Conversely, every Hopf algebra in @ (H) is a degeneration of H.

4. The images of the multiplication and the comultiplication of f; - H are in gen-
eral in the Laurent power series ring V [[t,t ]| or V [[t,t ]| Q@ V [[t. ¢ 1]] -
But when the degeneration exists, they are in power series ring V [[t]] or
VItV [[t]

5. The same degnitions and remarks hold for bialgebras.

3. Degenerations with fy =v+1t-w

Let f; = v + tw be a family of endomorphisms where v is a singular linear map
and w is a regular linear map. The aim of this section is to ¢gnd a necessary and
su(Ecient conditions on v and w such that a degeneration of a given Hopf algebra
H=(V,u,A,n,e,S) exists.

We can set w = id because f; = v+tw = (vow ! + t) ow which is isomorphic to
vow ™! +¢. Then with no loss of generality we can consider the family f; = ¢ +t-id
from V into V where ¢ is a singular map. The vector space V can be decomposed by
¢ under the form Vg @& Vy where Vi and Vi are p-invariant degned in a canonical
way such that ¢ is surjective on Vg and nilpotent on V. Let g be the smallest
integer such that ¢? (V) = 0. The inverse of f; exists on Vg and is equal to

p ! (tcp’l + id)fl. But on Vy, since ¢? = 0, it is given by

#:1.#:1%(_2)":1. (_f)"
p+t-id bt opft+id ¢ =\t t t

It follows that
f1 = { e l(tp P +id) ~ on Vg
t = —1 '
P i (=9)" onVw
3.1. Degeneration of an algebra. Let f; = ¢ 4+t -id be a family of linear maps
on V, where ¢ is a singular map. The action of f; on u is degned by f; - u =
flopo fi ® fi then

fion@oy) =fi tou(fi(z)® fi ()
=t (nle@@e®)+tule@) y)+uzoe®)+t2u(zey))

Since every element v of V' decomposes in v = vg + vy, we set
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A:u(m@y):AR+AN,
B=pu(p(r)®y)+p(r®¢(y)) = Br+ By
C=pupx)®@e(y) =Cr+Cn
Then
1
fi-p(z@y)=¢~t (tp™' +id) " (P Ap+tBr +Cr) + < Z( —) (?An +tBy + Cy)
1=0

If ¢ goes to 0, then ¢! (tp~! + z'd)_1 (t?Ar + tBgr + Cr) goes to ¢~ (Cg).
The limit of the second term is :

limy o § - 31 2 (-2)" (2An +tBn + Cw)

= hmt_m( g+ (-1 ﬂ”—) (AN +tBn + Cn)
= limy_0 tAn — ¢ (An) + (’d g4 (- ‘f:__f) ©* (An) +
By~ (= g+ = () ) p B+
(4-g+5 - (08 )on
= lim_,0 tAN + BN e (AN) +
(% — GG - (-1 %_1) (¥* (An) — ¢ (Bw) + C)

This limit exists if and only if
> (AN) — ¢ (BN)+Cn =0

which is equivalent to

1) ¢’ (uEey)y) —¢ k@ @) @yy) —euE®e)y) +ulp (@) @e[y)y =0
And the limit is By — ¢ (AnN) .
Proposition 3.1. The degeneration of the algebra p exists if and only if the con-
dition
(11) @’opunv—pounvop®id—gpounoid®@p+punop®p =0
where pn (z,y) = (p(x,y)) 5, holds. And it is degned by
fo=¢ " oprRoY® Y+ puno@ ®id+ pNoid® ¢ — popun

3.2. Degeneration of a coalgebra. Let f; = ¢ 4+t - id be a family of linear
maps on V, where ¢ is a singular map. The action of f; on A is degned by
ft . A = ft_l K ft_l o A o ft then

fo DM@ =f @ o A(fi(@) =t fi @ fT o A@) + fi ® f7 (A(p(2)))

Setting A (2) = 2 ® 2, A(p (2) = ¢ (2)V @ 0 (),
and for i =1,2 z(® = :US.? +a:§\’,), (@)D =p (= )(l) R (z )(l)
Then

foa@ =t (50 () 00 (@) @ (1 (50) + 1 (+R))) +
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+(7 (p@R) + 17 (¢ @W)) @ (A (¢ @R) + 17 (¢ @F))
Setting ¢ = ¢! (to ! + id)fl, then when t — 0, ) = ¢! and
fooa@ =t-v () ov () +v (¢ @) 2w (¢ @F) +
+Xi v (af) @ (-2) (3F) + (-2)" (oF) 2w (=7) +
HYS v (p@R) e (-9 (¢ @) + (-9) (¢ @F) 0¥ (¢ @) +
H Y Y (-9) (oV)e(-9) (29)+# 2 25 (-2) (¢ @F) e
(-9)' (¢ @)
Then
forA@ =vey(t-af) 2 + o @) ¢ @)F)

+30 _1t),- (¢®g0 ( a )®w( )) +cpi®¢( G ®w(2)))
- ¢ T A (¢®w( (m)()®w(w)(2))+<ﬂ‘®¢( @V @ @)+
Z Z] =0 (= t)z+a+1<P '@ ( §\17)®$§\2I)) Z ZJ =0 (= t)z+a+2‘P I @’ (‘P( )(1) w(w)f{))

By rewriting the sums one obtain
@ =vev(t-o oo +o @ @0@f) +

Y ®id (a:“) ® x(z)) +id® Y (xg\l,) ® :17(2)) +

S v @¢ (37 96 (oF)) —e @R 0 e @F) +

Ez 0 (= t)z+1<p ®¢( ( 1)) (2) _‘P(m)g\ll) ®90($)522)) +

z; 0 (- t)z+130 ®ld( (1)®$(2))

DHID Dy WW’ ® ¢* (90( W @@ -y ®<P($S\2r‘)))
This limit of f; - A (z) exists if and only if

2 © ¢ (o)) —e@h ® @} =0

12) ng%’)mﬁ)—w(x)ﬁv) De@R =0
a ®w§\2,) =0

N
P @R ®e@F —of v e (aF) =0

Proposition 3.2.  The degeneration of the coalgebra A exists if and only if the
condition (12) holds and it is degned for all z € V' by

r€eV

2@ =¢" (@) ©¢ (¢@F) +¢7 (27) ®2F + 2 @07 («F)
3.3. Degeneration of Hopf algebra. Let H = (V, u, 1, A, €,5) be a Hopf algebra
and f; = ¢ +t-id be a family of linear maps of V', where ¢ is a singular map. We
suppose also that ¢ decomposes the vector space V as V = Vg + V. Then the
degeneration Hy = lim;_,q f; - H exists if and only if the conditions (11) (12) holds
and the multiplication and the comultiplication degned by

po(z,y) =9 (u(p @) @eW)g) +rle(@) @Yy +rEe@)y —¢uEoy)y)
Bo@) =9t (p@F) 09t (¢@F) +¢71 (+7)) 827 +aF € ot (a?)
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satisfy the compatibility condition
(1o ® po)(id @ T ® id) (Ag ® Ag) = Aopo where 7 is the twist map

4. Connection between deformation and degeneration

The notion of deformation is in some sense the dual notion of the degeneration.

Let H = (V, o, Ao, M0,€0,S0) be a Hopf algebra over a geld K. Let K [[t]]
be the power series ring in one variable ¢. Let V [[t]] be the extension of V' by
extending the coe(Ecient domain from K to K [[t]]. Then V [[t]] is a K [[¢]]-module
and V[[t]] =V @k K [[t]].

A deformation of H is a one parameter family Hy = (V [[t]], e, D¢, 0, ¢, St)-
Since the unit, counit and the antipode are perserved by deformation [6], It follows
that a deformation of H = (V, ug, Ag,no,€0,S0) can be considered as a pair of
deformations (p;, A¢) which together give on V [[t]] the structure of bialgebra over
k[[2]]-

By k [[t]]-linearity the morphisms u;, A; are determined by their restrictions to
Vev:

L VeV o V]
5 2@y = m(@Q®y) =Yoo itm (2 Q)

Vo V[eV[t]= (Ve V)t
T A (z) =30 Ay (2) T

m=0

om with g, € Hom (V@ V,V)

Ay : with A,, € Hom (V,V @ V)

and they satisfy

e L is associative
e A; is coassociative
o (@ u)(id®T®id) (A ® Ay) = Ay where 7 is the twist map

Remark 4.1.  Since the neighbourhood of a Hopf algebra is formed by Hopf algebras
in Bialg, then the set Hopf, is open for the metric topology in Bialg,.

Proposition 4.1.  Every degeneration corresponds to a deformation.
In fact, let Hy = limy_o f; - H be a degeneration of H then H; = f; - H is a
deformation of Hy.

Remark 4.2. The converse is in general false. For example, in the family of
algebras A; = K (z,y)/ < z2,y*,yz — try > where K (z,y) stand for the free
algebra with unit. Two algebras A; and Ay are not isomorphic if ¢ -s # 1. Thus A;
is a deformation of Ay but the family A; is not isomrphic to a given algebra.

Remark 4.3. The concepts of degeneration and deformation are useful in the geo-
metric study of the irreducible component of Hopf,. Two Hopf algebras are in the
same irreducible component if one is a degeneration of the other or they belong
to a parameter family of Hopf algebras. This means that a deformation of one is
isomorphic the second.

5. Hopf algebras classifications,rigidity, irreducible components

5.1. Classigcation. The general classigcation, up to isomorphism, of Hopf alge-
bras is not known. However, the complete classigcation is known for dimension n,
n < 13, see [21] [18] [12] [3]and [19]. There is also some results in the semisimple
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case, see [14]. I recall here the classigcation of n-dimensional Hopf algebras with
n<13:

Notation

Let Z,, denotes the cyclic group, D,, the dihedral group, S,, the symmetric group,
H, the quaternion group and Al the alternate group. Let K G be the Hopf algebra
of the group G and (KG)" its dual. Let T,2 be the Taft algebra, it is degned by

K {z,y)
(z", y* — 1, zy — qyz)
Where ¢ is the primitive root of unity of order n.
The coalgebra algebra structure and the antipode are detemined by
Alg)=9g®yg, Alx)=2z8g9+1®z,
e(x) =0, e(g) =1
S(z) = —zg~', S(9)=g7"
Theorem 5.1. If H is Hopf algebra of dimension n < 13, then H is isomorphic
with one and only one of the following Hopf algebra
e ne€{2,3,,7,11,13}

since the dimension is prime there is only the group algebra K Z,,.

en=4

there is 3 isomorphic classes, the semisimple Hopf algebras K Z4 and K (Z> x Z3),
and the Taft-Sweedler algebras T;.

en==06
KZG, KS3 and (KSg)*
en=28

The semisimple Hopf algebras are : K(Zs X Zs X Zs), K(Za x Z4), K Zg,
KDy, (KD4)*, KHy, (KH4)* and As. Where Ag denotes the unique (n = 8)
semisimple Hopf algebra that is not a group algebra, it is degned by

K(z,y,2) ,
<$2—1, y2 -1, zQ—%(1+$+y—$y), TY — YT, 2T — Y2, zy—a:z)7

the coalgebra structure A, € and the antipode S are detemined by
Alz)=z®z, Aly)=yRy, AR)=1(1091+1R@z+y®1-y®2z)(2® 2),
e(z) =e(y) =e(z) =1
S()==z, Sy) =y, S(z)=2z2.
The nonsemisimple Hopf algebras are :
In the following the subscript denote the set of grouplike elements
1.

K (z,y,9)

(9> = 1,2%,y%, gz + 29,y9 + 9y, Ty + yz)

The coalgebra structure and the antipode are detemined by
Alg)=9g®g, Alx)=2zR9+1®z, AlyY)=y®g9+1®uy,
e(x) =e(y) =0, e(g)=1
S(z) = —gz, Sy)=-gy, S(g) =9

Ac, =
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r K <$79>
“ 7 (gt - 1,22, gz + xg)
The coalgebra structure and the antipode are detemined by
Alg) =9g®g, Alx)=2Rg9+1®uz,
e(x) =0, e(g)=1.
S(z) = —=zg°>, S(g)=g°.

"o K <$ag>
@ (gt - 1,22 — g% + 1,97 + zg)
The coalgebra structure and the antipode are detemined by
Alg)=g®g, Alx)=zRg+1®uz,
e(z) =0, e(g)=1.
S(z) = —zg®, S(9) =g¢°.

©1 ({g* = 1,2%, g7 — qug)
Where g is the primitive root of unity of order 4.
The coalgebra structure and the antipode are detemined by
Alg)=g®yg, Al@)=2®g¢’+1®7,
e(z) =0, e(g9)=1.
S(z) = —=zg®, S(g9) = g¢°.
5. (4%)"
6.

K (g, h,z)
92> —1,h? — 1,22, gz + xg, hx + zh, gh — hg)
The coalgebra structure and the antipode are detemined by
Alg)=9g®g, AM)=h®h, Alx)=2zg9+1Qzx,
e(x) =0, e(g)=¢e(h) =1
S(g) =9, S(h)=h, S(x)=-zg.
en=29
KZy, K(Z35 x Z3) and the Taft algebra Ty.
e n=10
KZIO; KD5 and (KD5)* -
e n=12
The semisimple Hopf algebras are : K Z12, K(Zg x Zs), K(Z4 x Z3), K Dg,
(KDg)", Aly, (Alg)*, Ay and A_. Where Ay and A denote the semisimples Hopf

algebras that are not a group algebra. They are self dual and may be degned as
the K S3—rings generated by v with relations :

ACQ X Clo = <

v’ =v, av=va (a€ KS3)

the coalgebra structure A, £ and the antipode S of A, (resp. A_) are detemined
by

Alo)=ov®@c+o(l —v)®0?,

AlT)=1®T (resp. A(T) =10 @7+ 7(1 —v) ® 7(2v — 1))



Degnition 5.1.
is isomorphic to H.

Remark 5.1.
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Aw)=v@v+(1—-0v)®(1—-)
glo)y=¢e(r)=¢e(v) =1

S(o)=0(1 —v)+c%v, S(r)=T71 (resp. S(7) =T1(2v —1)),

The nonsemisimple Hopf algebras are :
1.
K (z,g)

Aq =
07 (g — 1,22, gz + zg)

The coalgebra structure and the antipode are detemined by
Alg) =g®g, Alx)=zQ1l+g®u,
e(r) =0, e(g)=1.
S(g)=97", S(z)=—ag.

K (z,9)
(9°—1,2° + ¢* — 1,9z + zg)
The coalgebra structure and the antipode are detemined by
Alg)=9g®g, Alx)=z1+g®uz,
e(x) =0, e(g)=1.
Slg)=9g7", S()=-ag.

Ay =

K (z,9)

By =
° <gﬁ —1,m2,gm+$g)

The coalgebra structure and the antipode are detemined by
Alg)=g®yg, Al@)=201+g®2,
e(z) =0, e(g)=1.
S(g)=g7", S(z)=-zg.

K (z,9)
(95 — 1,22, gz — qzg)
Where q is the primitive root of unity of order 6.
The coalgebra structure and the antipode are detemined by
Alg)=g®yg, Al@)=201+¢*®ux,
e(z) =0, e(g)=1.
S(g)=g" S(z)=—uzg.

B, =

5.2. Rigid Hopf algebras and irreducible components.

opened;.

o If the second cohomological group of H vanishes then H is rigid.
e Every group algebra is rigid because it is semisimple and its second cohomo-

logical groups vanishes, see [6][17]

e The Zariski open orbits have a special interest in the geometric study of
Hopf,, Their closure determines an irreducible component.
e Two non isomorphic rigid Hopf algebras cannot belong to the same irreducible

component

S(w) =wv.

A Hopf algebra H is rigid if and only if every deformation of H

e The degnition may be rephrased by jThe orbit of H is Zariski
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e Stefan has proved that the irreducible component containig a given semisimple
Hopf algebra is n?-dimensional[17].

e There is a gnite number of open orbits because the algebraic variety Hopfy,
decomposes in a gnite number of irreducible components.

e Many but not all components of Hopf, are orbits closures of rigid Hopf alge-
bras, for example there are ingnitely many isomorphisms classes for dim H =
p* (p odd and prime)[1].

Theorem 5.2. Every Hopf algebras of dimension n < 13 is rigid.

Proof. For n € {2,3,5,7,11,13}, The Hopf algebras are all group algebra then rigid.

For n = 4, The group algebra KZ, and K (Zs X Z3) are rigid and the Taft-
Sweedler Hopf algebra cannot be deformed in a commutative algebra, then the
Taft-Sweedler Hopf algebra is also rigid. In fact, as algebra, the group algebras
belong to the irreducible component of commutative algebras and the Taft Sweedler
algebra belongs to the irreducible component of continuous series ([3])

For n = 6, all algebras are semi-simple, then rigid.

For n = 8, the group algebras are rigid and the pointed nonsemisimple Hopf
algebras cannot be deformed because there is no family degning a deformation of
the given Hopf algebra.

For n = 9, the group algebra are rigid and the Taft algebra cannot be deformed
in a commutative algebra, then it is also rigid.

For n = 10, all the algebras are semisimple, then rigid.

For n = 12, the group algebras are rigid and the pointed non semisimple Hopf
algebras cannot be deformed.

Remark 5.2. It is interesting to see whether for the nonsemisimple rigid Hopf
algebras the second cohomological group vanishes.

|
Corollary 5.3. The algebraic varieties Hopf, n < 13 are unions of open orbits.

Corollary 5.4. The following table gives the number of irreducible components of
Hopf, for n <13

dimension number of irreducibe components of Hopf,
n €{2,3,5,7,11,13} 1
n=4 3
n==~6 3
n=3y8 14
n=9 3
n =10 3
n=12 14
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