Best simultaneous diophantine approximations of some cubic algebraic
number.

Nicolas Chevallier

Abstract. Let o be a real algebraic number of degree 3 over Q whose
conjugates are not real. There exists an unit ¢ of the ring of integer of K = Q(«) for
which it is possible to describe the set of all best approximation vectors of § = (¢, ¢?).

1. Introduction

In his grst paper ([9]) on best simultaneous Diophantine approximations J.C. Lagarias
gives an interesting result which, he said, is in essence a corollary of W.W. Adams’s results
(11] and [2)):
Let [1,a1,a2] be a Q basis to a non-totally real cubic geld. Then the best simultaneous
approximations of « = (&g, az) (see degnition below) with respect to a given norm N are
a subset of

{¢d) :m>0,1<j<p}

where the gsatisfy a third-order linear recurrence (with constant coe(Ecients).
dm+3 + 02qm+42 + @1Gm+1 £ gm =0

for a gnite set of initial conditions q((f), qgj), qéj ) for 1< j < p. The fundamental ¢ of
K = Q(a,,a2) satisges

53—a2§2—a1§:i:1=0
Now consider the particular case X = ({,(?) € R? where ( is the unique real root of
¢34+ (24 (—1=0. The vector X can be seen as a two dimensional golden number. N.
Chekhova, P. Hubert and A. Messaoudi were able to precise Lagarias’s result :
([6]) There exists a Euclidean norm on R? such that all best Diophantine approximations
of X are given by the *Tribonacci’ sequence (¢,,)nen degned by

@=1¢=2 ¢=4 @3 = 2+ qnt1 + qn.

The aim of this work is to precise Lagarias’s result in the same way as N. Chekhova, P.
Hubert and A. Messaoudi did.

Degnition. ([9],[6]) Let N be a norm on R? and 0 € R?.

1) A strictly positive integer ¢ is a best approximation (denominator) of 6 if

Vk e {1,..q— 1}, }Ijréi%N(qH —P)< gg;zN(kg -Q)

2) An element g — P of ZO+ Z* is a best approximation vector of 6 if ¢ is a best
approximation of € and if

N(gb - P) = énei;gN(w - Q)

We will call M(6) the set of all best approximation vectors of 6.

Let § € R?\Q? and A = #Z+Z? Endow A with its natural Z-basis 6, e; = (1,0),
e2 = (0,1). For matrix B € M3(Z) and X = 200 + z1e1 + 2262 € A, the action BX =Y
of B on X is naturally degned : the coordinates vector of Y is the matrix product of B
by the coordinates vector of X.

We shall prove the following results.
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Proposition 1.  Let ay, az € N*. Suppose P(z) = 2® + a2z? + a;z — 1 has a unique real
root ¢. Call § = (¢,¢?) and B the matrix

[45] —Qa9 -1
B= -1 0 0
0 1 0

There exists a norm N on R? and a gnite number of best approximation vectors X; =
g0 — P;,i=1,...,m such that

MON{B"X;:neNandi=1,..,m}
is a gnite set.

Proposition 2.  Suppose a is a real algebraic number of degree 3 over Q whose conjugates
are not real. There exist a unit ¢ of the ring of integer of K = Q(«a), two positive integers
a1 and ay and Euclidean norm on R? such that the set of best approximation vectors of
0 =(¢,¢%), is
M (0) ={B"0 :n e N}

where

ai —as -1

B=| -1 0 0
0 1 0

The proof of proposition 1 is quite diceerent from Chechkova, Hubert and Messaoudi’s
one, it is based on two simple facts :
Let a;, ay € N*. Suppose P(z) = 22 + asz? + a;x — 1 has a unique real root ¢ and call
0= (Ca Cz)
1) following G. Rauzy ([13]) we construct a norm N on R? and a contracting similarity
F on R? which is one to one on A = Z8 + Z2,
2) since ay,as > 0 the map F preserves the positive cone AT = N — N2,
We deduce from these observations that F' send best approximations of § on best ap-
proximations of 6 (see lemma 2) and proposition 1 follow easily. Our method cannot be
extended to higher dimension, because for F' to be a similarity, it is necessary that P has
one dominant root all other roots being of the same modulus, and H. Minkowski proved
that this can only occur for polynomial of degree 2 or 3 ([11]).
The sequence of best approximation vectors of # € R2 may be seen as a two dimensional
continued fraction ’algorithm’. In this case proposition 1 means that the ’development’ of
(¢,¢?) becomes periodic when ( is the unique real root of the polynomial 2°+as2?+a;2—1
with a1, as € N. This may be compared to the following results about Jacobi-Perron’s
algorithm :
(O. Perron [12] ) Let ¢ be the root of P € Z[X], degP = 3. If the development of
(¢,¢?) by Jacobi-Perron’s algorithm becomes periodic and if this development gives good
approximations i.e.

C
max(/gn¢ ~ Proal, |4nC* = P2nl) < 75
dn

where (p1,n,P2,n,qn)nen are given by Jacobi-Perron’s algorithm, then the conjugates of ¢
are complex (see [4] p.7).
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(P. Bachman [1]) Let ¢ = d3 where d is a cube-free integer greater than 1. If the de-
velopment by Jacobi- Perron’s algorithm of (¢,¢?) turns out to be periodic it gives good
approximations.

(E. Dubois- R. Paysant [8]) If K is a cubic extension of Q then there exist (1, 32 linearly
independent with 1 such that the development of (8;,2) by Jacobi-Perron’s algorithm is
periodic.

O. Perron (see [12] theorem VII or Brentjes [5] theorem 3.4.) also give some numbers with
a purely periodic development of length 1.

We should also note that A.J. Brentjes gives a two-dimensional continued fraction algo-
rithm which gnds all best approximations of a certain kind and he uses it to ¢nd the
coordinates of the fundamental unit in a basis of the ring of integers of a non-totally
real cubic geld.(see Brentjes’s book on multi-dimensional continued fraction algorithms
[5] section 5F).

Finally, we shall give a proof of Chechkova, Hubert and Messaoudi’s result using propo-
sition 1 together with the set of best approximations corresponding to the equation
G+202+(¢=1.

2. The Rauzy norm
Fixe a;, az € N* and suppose that the polynomial P(z) = —z% + a12% + azz + 1 has a
unique real root. Endow R® with it standard basis e, e2,e3. Let M be the matrix

a; a» 1
M=(1 0 0
0 1 0

The characteristic polynomial of M is —z® + a1 2% + azx + 1, the unique positive eigenvalue
of Mis A = % and © = (¢, ¢?,¢?) is the eigenvector associated with . Let [ be the linear
form on R® with coe(Ecients ay, as, 1 ; we have [(©) = I(e3) = 1. Put A(X) = X —1(X)0O.
Ao M map ker! in itself and RO C A o M. The eigenvalues of the restriction of Ao M to

kerl, are A\; and Ay = A1, the two other eigenvalues of M. In fact, if Z is an eigenvector
of M associated to A; then A(Z) € kerl and

AoMoA(Z)=AMZ —1U(Z)AO) = \MA(Z).

Call p the projection R?* onto R?. p is one to one from ker/ onto R?, call 4 its inverse map
and consider the linear map

F:XeR 5 poAoMoi(X) e R.

The linear maps F' and A o M are conjugate, therefore the eigenvalues of F' are A; and
Az.

Lemme 1. F is one to one from A = Z6 + Z? on itself.

Proof.
Since () = © — e3 we have

F(0) =poA(XAO —e1) =p(l(e1)© —e1) = a10 — ey € A.
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Similarly i(ex) = ex, — l(ex)es, k = 1,2, then X} = M oi(e;,) € Z* and
F(ek) =p(Xk — l(Xk)(")) = p(Xk) - l(Xk)ﬁ € A.

F map A in itself, there remains to see that F' is one to one. Call B the matrix of F' in
the basis (6, e1,e2). We have

X1 = M(er—l(e1)es) = ajer + ez —l(er)er = ey,
X, = M(62 — 1(62)63) = age1 + €3 — l(€2)€1 = é3
then
ai —a9 -1
B = -1 0 0
0 1 0
and
detB=-1.1

Call At = {¢ — P:qe Net P e N°}. Since a; and ay are positive we have :
Corollary 3. F(AT) CA™T.

Since A = \; there exists a euclidean norm N on R? such that F is a similar map for

this norm. The ratio of F'is r = |\| = \/LX = /¢ < 1. Now let us determine the matrix

M of the bilinear form (z,y) associated with N, it is necessary for proposition 2 but not
for proposition 1. M is unique up to a multiplicative constant. The ratio of F' is 1/C then

(F(e1),F(e2)) = (ler,ea),
(F(e2), F(ea)) = C(fea,ea),

computing F'(e1) and F(e2) we gnd that (er,e1), (e1,e2) and (es, e3) satisfy

, F
,F

{ ax((er, e1) + (—2 + 2a2¢%)(eq, €2) + (= + a2(®){e2,€2) = 0
Cler,er) +2¢C%(e1,e2) + (¢3 — 1){e2,e2) = 0.

Since 1 = a1¢ + a2 + 3, we gnd
(e1,e1) = 2(a1 + CQ)a (e1,e2) = a2 — ¢, (e2,e2) =2.

3. Best Diophantine approximations
We suppose R? is endowed with the norm N degned in the previous section.
Notations : 1) pg = d(0,{(21,22) € R? : sup(|@1], |z2|) > 1}).
2) For x € R we denote the nearest integer from z by I(z) (it is well-degned for all
irrational number z).
We will often use the simple fact :
Let X = (z1,22) € R* and P = (p1,p2) € Z2% If N(X — P) < }po then p1 = I(z1),
pa = I(z2) and P is the nearest point of Z?2 from X (for the norm N).
We will say that two best approximation vectors ¢16 — P, and ¢260 — P, are consecutive if
¢q1 and ¢2 are consecutive best approximations.
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Lemma 4. 1) If gf — P is a best approximation vector such that N(¢f — P) < % po then
¢'0 — P' = F(gf — P) is a best approximation vector of 6.

2) Let ¢; and g2 be two consecutive best approximations of § and ¢;0 — P; and ¢26 — P be
two corresponding best approximation vectors. If N(g:0 — P») < 1po and if F(q:0 — Py)
is a best approximation vector then F(q,0 — P;) and F(g26 — P») are consecutive best
approximation vectors.

Proof.
1) Let Y = k' — R' € A\{(0,0)} be such that N(Y) < N(¢'68 — P'). We have to prove
that ‘kl‘ > ¢' or that k'6 — R' = ¢'0 — P'. By lemma 1, we have Y = F(X) with
X = k0 — R e A. Since F is a similar map, we have N(X) < N(gf — P) and by degnition
of best approximations |k| > ¢. If k < 0 we can replace Y by —Y so we can suppose that
k > g. Since N(X) < N(¢f — P) < 3p0, R = (I(k(), I(k¢?)) and P = (I(g¢), I(q¢?)).
The nearest integer function z — I(x) is increasing so I(k¢) > I(q¢) and I(k¢?) > I(q(?).
This shows that (k6 — R) — (q0 — P) € AT and by corollary 4 F(k# — R)— F(qg0 — P) € A™.
Therefore ' > ¢'. If k' = ¢/, we have R' = (I(k'¢), I(¥'¢?)) = (I(¢'¢), I(¢'¢?)) = P'.
2) Put F(q;0 — P;) = ki — R;, i = 1,2. Suppose k0 — R is a best approximation vector
with k1 < k < ko. We want to prove that k6 — R = ka6 — Ry. Put F~1(kf — R) = qf — P.
On the one hand, since F' is similar we have N(¢f — P) < N(q10 — P1), then ¢ > ¢;.
Furthermore ¢; and ¢, are consecutive best approximations, then ¢ > g».
On the other hand, k10 — Ry = F(q:0 — Py) is a best approximation with N(k;6 — R;) =
N(F(q10 — Pl) < N(q10 — Pl), then k; > ¢» and N(k10 — Pl) < N(q2(9 — Pz) < %po.
Therefore N (k26 — R») and N(k6 — R) < 1po. It follows that

R = (I(kQ), I(k¢?)), R = (I(k20),I(k2(?)).

We have I(k() < I(k2(C) for k¥ < ks. Using the matrix B we see that R = (g,.) and
Ry = (g2,.)- This shows ¢ < ¢2 and ¢ = g2, which implies ¢g§ — P = ¢260 — P> and
kK —R=k:0—R,. R

The increasing sequence of all best approximations of 8 will be denoted by (gn)nen
(g0 =1).

Proposition 5. If ¢80 — Ppy, -y @no+m8 — Pro+m are (consecutive) best approximation
vectors such that F(¢n0 — Pry) = gno+mt — Pnotm and N(gng+18 — Prgt1) < 1po, then
fOI‘ all J Z 0, qn0+]'k0 — Pno+jk = FJ (q”0+k9 — Pn0+k)-

Proof. Put V,, = ¢,0 — P,. The previous lemma shows that F(V,,4k), k =
0,...m, are consecutive best approximation vectors. By induction on j > 0, we see
that F7(Vag4r) = Vngtjm+k, K = 0,..m are consecutive best approximation vectors
and F(Vno+jm) = Vno+(j+1)m- u

Proof of proposition 1. Since lim, o minpcz2 N(g,0 — P) = 0, there exists an
integer ng such that for each n > ng, N(g.0 — P,) < 1po. By lemma 2. 1), F(gn,0 — Py,)
is a best approximation vector and proposition 1 follows of proposition 5. ll

4. Proof of proposition 2
Lemma 6. Let P € Q an irreducible polynomial of degree 3 with a unique real root «
and K = Q(a). There exist ingnitely many A € K such that
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i) A €)1, +o0[
ii) A is a root of
Q(z) =2° —a12® —agx — 1

iii) a1, a2 € N and
3a; > a3.

Proof. Since P has a unique real root, Dirichlet’s theorem shows that the group of
unit of the integral ring of K contains an abelian free sub-group G of rank 1. Let £ # 1
be in G. We can suppose £ > 1. The conjugates of £ are note real because those of «
are not. Call v and ¥ these conjugates. We have {7y =1 and |y| < 1 for £ is a unit and
& > 1. We will show that A = £™ satisfy i) ii) and iii) for ingnitely many m € N.

The minimal polynomial of X is Q(z) = 23 — a;22 — ayz — 1 with

a = a(m) = M4+4m+F™
az = az(m) = =[O +7")+ |[y*"]

Since & > 1 > |v|, a1 is positive for m large and as will be positive if the argument of
is well chosen. Call § the argument of v and p = \/LE its modulus.

First case & ¢ Q.
There exist ingnitely many m € N such that mf € [%’T, 4?”] mod 27. Call I the set of such
m. Form e I

2
al(m) = gm + é_—ﬂ cosmb
2
m 1 m 2 1
az(m) = —2£2 cosmf — E_m > —2¢% cos ?W _ §_m
then
lim ay (m) = lim az (m) = 4-00.
m—oo, mel m—oo, mel
Moreover,
m 47 1
< —2€z -
az(m) < —2£2 cos 5 " m
then
a (m) 1 1

lim inf —.
m=oo0, mel a3(m) ~ 4cos> %’T 3

Therefore the conditions i) ii) iii) are satisged for m large in I.
Second case & = EeQ

Since v ¢ R, ¢ > 2. First note that ¢ # 4 for, if ¢ = 4, we have

0 = Re(¥®*—ary? —ay—1) = ap® -1
0 = Im(v*—a1y’—axy—1) = =p(p* —a2)

then a; = as = p =1 and v = +i. This is impossible because the degree of the minimal
polynomial of v is 3. So ¢ € {3} U {5,6,...}. If ¢ = 3,5 or 6, it is easy to see that there
exist ingnitely many m € N such that mf € [4& — 2Z, 15—”] mod 27 and it is obvious if
q > 7. Now, we can conclude as in the previous case for 3 — 27” >Z. 1l

From now on, ai,as > 1 are two integers such that P(z) = —1 + a1z + a22? + 2° has
a unique real root (. We use the notations of sections 2 and 3, the norm N is degned in
section 2 and pg is degned at the beginning of section 3.
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Lemma 7.

4a; — a3 + 2a,¢ + 3¢2
2(a1 + ¢?)

P >
Proof. By degnition

pa > min(min N?(e; + zes), min N?(ey + wep)).
TER z€R

We have
N2(e; + wey) = (eq,e1) + 2x(ey, e2) + 2% (€2, €2)
then (en,e2)?  Alar +¢) — (a3 = 0
a9 _ _(er,e2)”  4(a1+¢7) — (a2 — ¢
rmnellgN (e1 + zea) = {e1,e1) eres) 2
similarly

2 4ay + ) — (az — ¢)?
. N2 _ B <€1,€2> _ 1 2
min N(e2 +zer) = (e3,e2) = "0 2(ar + (2) ’
and since a; > 1,
da; — a3 + 2ax( + 3¢2
2(a1 +¢?)

Py > .

Lemma 8. Suppose ajand as satisfy condition iii) of lemma 6. If a; is large, then
N(6) < 2po and 6 is a best approximation vector of 6 .

2 2
Proof. Put ¢(ai,as) = %. We have

lim C(al,az) =0

a1—00
then .
Jm a1, a2) > o
3a12a§
and . )
N?(6) = N*(F(ez) = 2 < ;d(a1,a2) < 743

for a; large. Now if P € Z?\{0}, then N(§ — P) > N(P) — N(6

N
vV
N[ =

po- A
Lemma 9. If ¢ € {0,...,a; — 1} then N(¢f — e1) > N(6).
Proof.

N?(gf —e1) > N*(0) (¢° — 1)(0,0) —2q(8,e1) + (e1,e1) > 0

(¢® — 1)(F(e2), F(e2)) — 2q[2(a1 + ¢*)¢ + (a2 — ¢)¢?] + 2(a1 + ¢*) > 0
2(¢°> = 1)¢ —2q(a1{ + 1) + 2(a1 + ¢*) > 0

a1 —q+ (@ —1-a1q)¢+¢2>0

(a1 —@)(ar¢+a2®* + )+ (* —1—a1q)¢+ ¢ >0

@ +al—2ag—1+a(a1 —q)(+ (a1 —¢q)¢*>0M

S A R
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Lemma 10. Suppose ajand a» satisfy condition iii) of lemma 6. If a4 is large then 6 and
a10 — e are the grst two best approximation vectors.

Proof. Since a10 — e; = F(), the only thing to prove is

inf inf N(q0 — P) > N(9).
12y 72V @ = D) > NO)

If N(g0 — P) < %po, then by degnition of po

lg¢ —p| <

N = N =

la¢? —pa| <

where P = (py,p2). Furthermore, if ¢ < a1 and if a; is large, then ¢¢ <1 and ¢¢* < ;.
Therefore ,

Pgﬂ(ﬁ —P) = inf(N(¢0),N(g0 — e1))
> inf(gN(0), N (g0 —e1)) > N(0)

forge{2,..,a;—1}.1

End of proof of proposition 2. By lemma 6 there exists a unit A € Q(a) which
satisges conditions i), ii) and iii) with a; large. ( = % is also unit. By lemma 8, § = (¢, (?)
is a best approximation vector and by lemma 10, F(6) = a10 — e; is the next best
approximation vectors. Since N(a16 — e;) < N(#) < ipo, by proposition 5 we have

M) = {F"(8) :n e N}. W

5. The equations 1 = 2® + asz? + 2
The polynomial P(z) = z® + asz? + = — 1 has only one real root if az = 1 or 2.

5.1. ap=1. Call ( the positive root of 1 = z* + 22 + z and 6 = ((,(?). N. Chekhova,
P. Hubert, A. Messaoudi have proved that M(0) = {F™(0 —e1) : n € N}. If we want to
recover this result with proposition 5, we just have to show :

i) @ — e1 is a best approximation vector,

ii) F(6 — e1) is the next best approximation vector,

iii) N(F(6 —e1)) < 2po.

First note that F(§ —e;) =20 —e; — ey and N(F(0 —e1)) = (N(6 —e1) < N(6 —e,), so
if i) is true then 2 is the next best approximation and if iii) is also true, then 260 —e; — ey
is a best approximation vector. Let us now prove iii) and afterward i) :

3+2¢+ 3¢ 9

N(F(O - e) = N2(F(e) = 26° < o < 1

for
3+2¢+3¢

X< e
& 3+20+3¢C2-16C31+¢) >0
& 3CH+CH+G)F20+3C2 1631+ >0
& 546¢—13¢2—-16¢* >0
& 11-8(+5¢2-16¢3>0
& 3416¢-52>0
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and the last inequality is obvious. Since { > 3,2¢® < 1p3 = N?(6—e1) = 2¢* < 39§ < p3.
Then the point P = (p;,ps) € Z2 which is the nearest from 6, is (0,0), e1, e or e; + es.
We have

N2(8 —e;) = (N?(6) < N?(0)

and

N*(6—ez) = N*(6) —2(0,e2) +2 = 2( = 2¢(1 = () —4¢*+2 =2(1-(*) > 2¢° = N(6—e1),

N2(0—61 —e) = N2(0—€1) —2(0 —e1,e2) +2 = 2(2 —-2¢(1-¢) —4C2+2(61,€2> +2
20 -2C(1-¢) -4 +2(1 - ) +2=4—-4¢ > 2¢%,

so P must be e; and this completes the proof of i).

5.2. ap =2. Call ¢ the positive root of 1 = 2® + 22*> + z and 6 = ((,(?). The set of
all best approximations is given by two initial points

M(@8) = {B"X;:n€N, i=1,2}

where X1 = 6 and Xy = 26 — e;. To prove this result, by proposition 5, we have to check
the following properties :

i) @ — ey is the best approximation vector,

ii) 20 — e is the next best approximation vector,

iii) F(O—el) = 30—61, F(20—el) =40 — 261 — €2,

iv) N(30 —e1) < 3po.

This requires some tedious calculations very similar to the case a; = 1.
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