Best simultaneous diophantine approximations of some cubic algebraic number.

Nicolas Chevallier

Abstract. Let α be a real algebraic number of degree 3 over \mathbb{Q} whose conjugates are not real. There exists an unit ζ of the ring of integer of $K = \mathbb{Q}(\alpha)$ for which it is possible to describe the set of all best approximation vectors of $\theta = (\zeta, \zeta^2)$.

1. Introduction

In his ørst paper ([9]) on best simultaneous Diophantine approximations J.C. Lagarias gives an interesting result which, he said, is in essence a corollary of W.W. Adams's results ([1] and [2]):

Let $[1, \alpha_1, \alpha_2]$ be a \mathbb{Q} basis to a non-totally real cubic øeld. Then the best simultaneous approximations of $\alpha = (\alpha_1, \alpha_2)$ (see definition below) with respect to a given norm N are a subset of

$$\{q_m^{(j)}: m > 0, \ 1 < j < p\}$$

where the $q_m^{(j)}$ satisfy a third-order linear recurrence (with constant coe \times cients).

$$q_{m+3} + a_2 q_{m+2} + a_1 q_{m+1} \pm q_m = 0$$

for a ønite set of initial conditions $q_0^{(j)}$, $q_1^{(j)}$, $q_2^{(j)}$, for $1 \leq j \leq p$. The fundamental ξ of $K = \mathbb{Q}(\alpha_1, \alpha_2)$ satisøes

$$\xi^3 - a_2 \xi^2 - a_1 \xi \pm 1 = 0$$

Now consider the particular case $X=(\zeta,\zeta^2)\in\mathbb{R}^2$ where ζ is the unique real root of $\zeta^3+\zeta^2+\zeta-1=0$. The vector X can be seen as a two dimensional golden number. N. Chekhova, P. Hubert and A. Messaoudi were able to precise Lagarias's result:

([6]) There exists a Euclidean norm on \mathbb{R}^2 such that all best Diophantine approximations of X are given by the 'Tribonacci' sequence $(q_n)_{n\in\mathbb{N}}$ defend by

$$q_0 = 1$$
, $q_2 = 2$, $q_3 = 4$, $q_{n+3} = q_{n+2} + q_{n+1} + q_n$.

The aim of this work is to precise Lagarias's result in the same way as N. Chekhova, P. Hubert and A. Messaoudi did.

Deginition. ([9],[6]) Let N be a norm on \mathbb{R}^2 and $\theta \in \mathbb{R}^2$.

1) A strictly positive integer q is a best approximation (denominator) of θ if

$$\forall k \in \{1,...q-1\}, \ \min_{P \in \mathbb{Z}^2} N(q\theta-P) < \min_{Q \in \mathbb{Z}^2} N(k\theta-Q)$$

2) An element $q\theta - P$ of $\mathbb{Z}\theta + \mathbb{Z}^2$ is a best approximation vector of θ if q is a best approximation of θ and if

$$N(q\theta - P) = \min_{Q \in \mathbb{Z}^2} N(q\theta - Q)$$

We will call $\mathcal{M}(\theta)$ the set of all best approximation vectors of θ .

Let $\theta \in \mathbb{R}^2 \setminus \mathbb{Q}^2$ and $\Lambda = \theta \mathbb{Z} + \mathbb{Z}^2$. Endow Λ with its natural \mathbb{Z} -basis θ , $e_1 = (1,0)$, $e_2 = (0,1)$. For matrix $B \in M_3(\mathbb{Z})$ and $X = x_0\theta + x_1e_1 + x_2e_2 \in \Lambda$, the action BX = Y of B on X is naturally defined: the coordinates vector of Y is the matrix product of B by the coordinates vector of X.

We shall prove the following results.

Proposition 1. Let $a_1, a_2 \in \mathbb{N}^*$. Suppose $P(x) = x^3 + a_2x^2 + a_1x - 1$ has a unique real root ζ . Call $\theta = (\zeta, \zeta^2)$ and B the matrix

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

There exists a norm N on \mathbb{R}^2 and a ønite number of best approximation vectors $X_i = q_i \theta - P_i$, i = 1, ..., m such that

$$\mathcal{M}(\theta) \setminus \{B^n X_i : n \in \mathbb{N} \text{ and } i = 1, ..., m\}$$

is a ønite set.

Proposition 2. Suppose α is a real algebraic number of degree 3 over \mathbb{Q} whose conjugates are not real. There exist a unit ζ of the ring of integer of $K = \mathbb{Q}(\alpha)$, two positive integers a_1 and a_2 and Euclidean norm on \mathbb{R}^2 such that the set of best approximation vectors of $\theta = (\zeta, \zeta^2)$, is

$$\mathcal{M}\left(\theta\right) = \left\{B^{n}\theta : n \in \mathbb{N}\right\}$$

where

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

The proof of proposition 1 is quite diœerent from Chechkova, Hubert and Messaoudi's one, it is based on two simple facts:

Let $a_1, a_2 \in \mathbb{N}^*$. Suppose $P(x) = x^3 + a_2x^2 + a_1x - 1$ has a unique real root ζ and call $\theta = (\zeta, \zeta^2)$

1) following G. Rauzy ([13]) we construct a norm N on \mathbb{R}^2 and a contracting similarity F on \mathbb{R}^2 which is one to one on $\Lambda = \mathbb{Z}\theta + \mathbb{Z}^2$,

2) since $a_1, a_2 > 0$ the map F preserves the positive cone $\Lambda^+ = \mathbb{N}\theta - \mathbb{N}^2$.

We deduce from these observations that F send best approximations of θ on best approximations of θ (see lemma 2) and proposition 1 follow easily. Our method cannot be extended to higher dimension, because for F to be a similarity, it is necessary that P has one dominant root all other roots being of the same modulus, and H. Minkowski proved that this can only occur for polynomial of degree 2 or 3 ([11]).

The sequence of best approximation vectors of $\theta \in \mathbb{R}^2$ may be seen as a two dimensional continued fraction 'algorithm'. In this case proposition 1 means that the 'development' of (ζ, ζ^2) becomes periodic when ζ is the unique real root of the polynomial $x^3 + a_2 x^2 + a_1 x - 1$ with $a_1, a_2 \in \mathbb{N}$. This may be compared to the following results about Jacobi-Perron's algorithm:

(O. Perron [12]) Let ζ be the root of $P \in \mathbb{Z}[X]$, deg P = 3. If the development of (ζ, ζ^2) by Jacobi-Perron's algorithm becomes periodic and if this development gives good approximations i.e.

$$\max(|q_n\zeta - p_{1,n}|, |q_n\zeta^2 - p_{2,n}|) \le \frac{C}{q_n^{1/2}}$$

where $(p_{1,n}, p_{2,n}, q_n)_{n \in \mathbb{N}}$ are given by Jacobi-Perron's algorithm, then the conjugates of ζ are complex (see [4] p.7).

(P. Bachman [1]) Let $\zeta = d^{\frac{1}{3}}$ where d is a cube-free integer greater than 1. If the development by Jacobi-Perron's algorithm of (ζ, ζ^2) turns out to be periodic it gives good

approximations.

(E. Dubois- R. Paysant [8]) If K is a cubic extension of \mathbb{Q} then there exist β_1, β_2 linearly independent with 1 such that the development of (β_1, β_2) by Jacobi-Perron's algorithm is periodic.

O. Perron (see [12] theorem VII or Brentjes [5] theorem 3.4.) also give some numbers with a purely periodic development of length 1.

We should also note that A.J. Brentjes gives a two-dimensional continued fraction algorithm which ønds all best approximations of a certain kind and he uses it to ønd the coordinates of the fundamental unit in a basis of the ring of integers of a non-totally real cubic øeld. (see Brentjes's book on multi-dimensional continued fraction algorithms [5] section 5F).

Finally, we shall give a proof of Chechkova, Hubert and Messaoudi's result using proposition 1 together with the set of best approximations corresponding to the equation $\zeta^3 + 2\zeta^2 + \zeta = 1$.

2. The Rauzy norm

Fixe $a_1, a_2 \in \mathbb{N}^*$ and suppose that the polynomial $P(x) = -x^3 + a_1x^2 + a_2x + 1$ has a unique real root. Endow \mathbb{R}^3 with it standard basis e_1, e_2, e_3 . Let M be the matrix

$$M = \left(\begin{array}{ccc} a_1 & a_2 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right).$$

The characteristic polynomial of M is $-x^3 + a_1x^2 + a_2x + 1$, the unique positive eigenvalue of M is $\lambda = \frac{1}{\zeta}$ and $\Theta = (\zeta, \zeta^2, \zeta^3)$ is the eigenvector associated with λ . Let l be the linear form on \mathbb{R}^3 with coefficients $a_1, a_2, 1$; we have $l(\Theta) = l(e_3) = 1$. Put $\Delta(X) = X - l(X)\Theta$. $\Delta \circ M$ map ker l in itself and $\mathbb{R}\Theta \subseteq \Delta \circ M$. The eigenvalues of the restriction of $\Delta \circ M$ to ker l, are λ_1 and $\lambda_2 = \overline{\lambda_1}$, the two other eigenvalues of M. In fact, if Z is an eigenvector of M associated to λ_1 then $\Delta(Z) \in \ker l$ and

$$\Delta \circ M \circ \Delta(Z) = \Delta(\lambda_1 Z - l(Z)\lambda\Theta) = \lambda_1 \Delta(Z).$$

Call p the projection \mathbb{R}^3 onto \mathbb{R}^2 . p is one to one from ker l onto \mathbb{R}^2 , call i its inverse map and consider the linear map

$$F: X \in \mathbb{R}^2 \to p \circ \Delta \circ M \circ i(X) \in \mathbb{R}^2$$
.

The linear maps F and $\Delta \circ M$ are conjugate, therefore the eigenvalues of F are λ_1 and λ_2 .

Lemme 1. F is one to one from $\Lambda = \mathbb{Z}\theta + \mathbb{Z}^2$ on itself.

Proof.

Since $i(\theta) = \Theta - e_3$ we have

$$F(\theta) = p \circ \Delta(\lambda \Theta - e_1) = p(l(e_1)\Theta - e_1) = a_1\theta - e_1 \in \Lambda.$$

$$F(e_k) = p(X_k - l(X_k)\Theta) = p(X_k) - l(X_k)\theta \in \Lambda.$$

F map Λ in itself, there remains to see that F is one to one. Call B the matrix of F in the basis (θ, e_1, e_2) . We have

$$X_1 = M(e_1 - l(e_1)e_3) = a_1e_1 + e_2 - l(e_1)e_1 = e_2,$$

 $X_2 = M(e_2 - l(e_2)e_3) = a_2e_1 + e_3 - l(e_2)e_1 = e_3$

then

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1\\ -1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right)$$

and

$$\det B = -1$$
.

Call $\Lambda^+ = \{q\theta - P : q \in \mathbb{N} \ et \ P \in \mathbb{N}^2\}$. Since a_1 and a_2 are positive we have :

Corollary 3. $F(\Lambda^+) \subseteq \Lambda^+$.

Since $\lambda_2=\overline{\lambda_1}$ there exists a euclidean norm N on \mathbb{R}^2 such that F is a similar map for this norm. The ratio of F is $r=|\lambda_1|=\frac{1}{\sqrt{\lambda}}=\sqrt{\zeta}<1$. Now let us determine the matrix M of the bilinear form $\langle x,y\rangle$ associated with N, it is necessary for proposition 2 but not for proposition 1. M is unique up to a multiplicative constant. The ratio of F is $\sqrt{\zeta}$ then

$$\langle F(e_1), F(e_2) \rangle = \zeta \langle e_1, e_2 \rangle,$$

 $\langle F(e_2), F(e_2) \rangle = \zeta \langle e_2, e_2 \rangle,$

computing $F(e_1)$ and $F(e_2)$ we ond that $\langle e_1, e_1 \rangle$, $\langle e_1, e_2 \rangle$ and $\langle e_2, e_2 \rangle$ satisfy

$$\begin{cases} a_2 \zeta \langle e_1, e_1 \rangle + (-2 + 2a_2 \zeta^2) \langle e_1, e_2 \rangle + (-\zeta + a_2 \zeta^3) \langle e_2, e_2 \rangle = 0 \\ \zeta \langle e_1, e_1 \rangle + 2 \zeta^2 \langle e_1, e_2 \rangle + (\zeta^3 - 1) \langle e_2, e_2 \rangle = 0. \end{cases}$$

Since $1 = a_1 \zeta + a_2 \zeta^2 + \zeta^3$, we ønd

$$\langle e_1, e_1 \rangle = 2(a_1 + \zeta^2), \ \langle e_1, e_2 \rangle = a_2 - \zeta, \ \langle e_2, e_2 \rangle = 2.$$

3. Best Diophantine approximations

We suppose \mathbb{R}^2 is endowed with the norm N degened in the previous section.

Notations: 1) $\rho_0 = d(0,\{(x_1,x_2) \in \mathbb{R}^2 : \sup(|x_1|,|x_2|) \ge 1\}).$

2) For $x \in \mathbb{R}$ we denote the nearest integer from x by I(x) (it is well-defined for all irrational number x).

We will often use the simple fact:

Let $X=(x_1,x_2)\in\mathbb{R}^2$ and $P=(p_1,p_2)\in\mathbb{Z}^2$. If $N(X-P)<\frac{1}{2}\rho_0$ then $p_1=I(x_1),$ $p_2=I(x_2)$ and P is the nearest point of \mathbb{Z}^2 from X (for the norm N).

We will say that two best approximation vectors $q_1\theta - P_1$ and $q_2\theta - P_2$ are consecutive if q_1 and q_2 are consecutive best approximations.

Lemma 4. 1) If $q\theta - P$ is a best approximation vector such that $N(q\theta - P) < \frac{1}{2}\rho_0$ then $q'\theta - P' = F(q\theta - P)$ is a best approximation vector of θ .

2) Let q_1 and q_2 be two consecutive best approximations of θ and $q_1\theta-P_1$ and $q_2\theta-P_2$ be two corresponding best approximation vectors. If $N(q_2\theta - P_2) < \frac{1}{2}\rho_0$ and if $F(q_1\theta - P_1)$ is a best approximation vector then $F(q_1\theta - P_1)$ and $F(q_2\theta - P_2)$ are consecutive best approximation vectors.

Proof.

1) Let $Y = k'\theta - R' \in \Lambda \setminus \{(0,0)\}$ be such that $N(Y) \leq N(q'\theta - P')$. We have to prove that |k'| > q' or that $k'\theta - R' = q'\theta - P'$. By lemma 1, we have Y = F(X) with $X = k\theta - R \in \Lambda$. Since F is a similar map, we have $N(X) \leq N(q\theta - P)$ and by deginition of best approximations |k| > q. If k < 0 we can replace Y by -Y so we can suppose that $k \geq q$. Since $N(X) \leq N(q\theta - P) < \frac{1}{2}\rho_0$, $R = (I(k\zeta), I(k\zeta^2))$ and $P = (I(q\zeta), I(q\zeta^2))$. The nearest integer function $x \to I(x)$ is increasing so $I(k\zeta) \ge I(q\zeta)$ and $I(k\zeta^2) \ge I(q\zeta^2)$. This shows that $(k\theta - R) - (q\theta - P) \in \Lambda^+$ and by corollary $4F(k\theta - R) - F(q\theta - P) \in \Lambda^+$. Therefore $k' \geq q'$. If k' = q', we have $R' = (I(k'\zeta), I(k'\zeta^2)) = (I(q'\zeta), I(q'\zeta^2)) = P'$. 2) Put $F(q_i\theta - P_i) = k_i\theta - R_i$, i = 1, 2. Suppose $k\theta - R$ is a best approximation vector with $k_1 < k \le k_2$. We want to prove that $k\theta - R = k_2\theta - R_2$. Put $F^{-1}(k\theta - R) = q\theta - P$. On the one hand, since F is similar we have $N(q\theta - P) < N(q_1\theta - P_1)$, then $q > q_1$. Furthermore q_1 and q_2 are consecutive best approximations, then $q \geq q_2$. On the other hand, $k_1\theta - R_1 = F(q_1\theta - P_1)$ is a best approximation with $N(k_1\theta - R_1) =$ $N(F(q_1\theta - P_1) < N(q_1\theta - P_1), \text{ then } k_1 \ge q_2 \text{ and } N(k_1\theta - P_1) \le N(q_2\theta - P_2) < \frac{1}{2}\rho_0.$ Therefore $N(k_2\theta - R_2)$ and $N(k\theta - R) < \frac{1}{2}\rho_0$. It follows that

$$R = (I(k\zeta), I(k\zeta^2)), R_2 = (I(k_2\zeta), I(k_2\zeta^2)).$$

We have $I(k\zeta) \leq I(k_2\zeta)$ for $k \leq k_2$. Using the matrix B we see that R = (q, .) and $R_2=(q_2,.)$. This shows $q\leq q_2$ and $q=q_2$, which implies $q\theta-P=q_2\theta-P_2$ and $k\theta - R = k_2\theta - R_2$.

The increasing sequence of all best approximations of θ will be denoted by $(q_n)_{n\in\mathbb{N}}$ $(q_0 = 1).$

Proposition 5. If $q_{n_0}\theta - P_{n_0}, ..., q_{n_0+m}\theta - P_{n_0+m}$ are (consecutive) best approximation vectors such that $F(q_{n_0}\theta - P_{n_0}) = q_{n_0+m}\theta - P_{n_0+m}$ and $N(q_{n_0+1}\theta - P_{n_0+1}) < \frac{1}{2}\rho_0$, then for all $j \ge 0$, $q_{n_0+jk}\theta - P_{n_0+jk} = F^j(q_{n_0+k}\theta - P_{n_0+k})$.

Put $V_n = q_n \theta - P_n$. The previous lemma shows that $F(V_{n_0+k}), k =$ 0, ...m, are consecutive best approximation vectors. By induction on $j \geq 0$, we see that $F^{j}(V_{n_0+k}) = V_{n_0+jm+k}, k = 0,...m$ are consecutive best approximation vectors and $F(V_{n_0+jm}) = V_{n_0+(j+1)m}$.

Proof of proposition 1. Since $\lim_{n\to\infty} \min_{P\in\mathbb{Z}^2} N(q_n\theta - P) = 0$, there exists an integer n_0 such that for each $n \geq n_0$, $N(q_n\theta - P_n) < \frac{1}{2}\rho_0$. By lemma 2. 1), $F(q_{n_0}\theta - P_{n_0})$ is a best approximation vector and proposition 1 follows of proposition 5.

4. Proof of proposition 2

Lemma 6. Let $P \in \mathbb{Q}$ an irreducible polynomial of degree 3 with a unique real root α and $K = \mathbb{Q}(\alpha)$. There exist inonitely many $\lambda \in K$ such that

ii) λ is a root of

$$Q(x) = x^3 - a_1 x^2 - a_2 x - 1$$

iii) $a_1, a_2 \in \mathbb{N}$ and

$$3a_1 \geq a_2^2$$
.

Since P has a unique real root, Dirichlet's theorem shows that the group of unit of the integral ring of K contains an abelian free sub-group G of rank 1. Let $\xi \neq 1$ be in G. We can suppose $\xi > 1$. The conjugates of ξ are note real because those of α are not. Call γ and $\overline{\gamma}$ these conjugates. We have $\xi\gamma\overline{\gamma}=1$ and $|\gamma|<1$ for ξ is a unit and $\xi > 1$. We will show that $\lambda = \xi^m$ satisfy i) ii) and iii) for injentely many $m \in \mathbb{N}$.

The minimal polynomial of λ is $Q(x) = x^3 - a_1x^2 - a_2x - 1$ with

$$a_1 = a_1(m) = \xi^m + \gamma^m + \overline{\gamma}^m$$

 $a_2 = a_2(m) = -[\xi^m(\gamma^m + \overline{\gamma}^m) + |\gamma|^{2m}]$

Since $\xi > 1 > |\gamma|$, a_1 is positive for m large and a_2 will be positive if the argument of γ is well chosen. Call θ the argument of γ and $\rho = \frac{1}{\sqrt{\xi}}$ its modulus.

First case $\frac{\theta}{2\pi} \notin \mathbb{Q}$. There exist inonitely many $m \in \mathbb{N}$ such that $m\theta \in [\frac{2\pi}{3}, \frac{4\pi}{5}] \mod 2\pi$. Call I the set of such $m. \text{ For } m \in I$

$$a_1(m) = \xi^m + \frac{2}{\xi^{\frac{m}{2}}} \cos m\theta$$

$$a_2(m) = -2\xi^{\frac{m}{2}} \cos m\theta - \frac{1}{\xi^m} \ge -2\xi^{\frac{m}{2}} \cos \frac{2\pi}{3} - \frac{1}{\xi^m}$$

then

$$\lim_{m \to \infty, m \in I} a_1(m) = \lim_{m \to \infty, m \in I} a_2(m) = +\infty.$$

Moreover,

$$a_2(m) \le -2\xi^{\frac{m}{2}}\cos\frac{4\pi}{5} - \frac{1}{\xi^m}$$

then

$$\liminf_{m \to \infty, \ m \in I} \frac{a_1(m)}{a_2^2(m)} \geq \frac{1}{4\cos^2\frac{2\pi}{5}} > \frac{1}{3}.$$

Therefore the conditions i) ii) iii) are satis \emptyset ed for m large in I.

Second case $\frac{\theta}{2\pi} = \frac{p}{q} \in \mathbb{Q}$.

Since $\gamma \notin \mathbb{R}$, q > 2. First note that $q \neq 4$ for, if q = 4, we have

$$\begin{array}{rcl} 0 & = & \operatorname{Re}(\gamma^3 - a_1 \gamma^2 - a_2 \gamma - 1) & = & a_1 \rho^2 - 1 \\ 0 & = & \operatorname{Im}(\gamma^3 - a_1 \gamma^2 - a_2 \gamma - 1) & = & \pm \rho(\rho^2 - a_2) \end{array}$$

then $a_1 = a_2 = \rho = 1$ and $\gamma = \pm i$. This is impossible because the degree of the minimal polynomial of γ is 3. So $q \in \{3\} \cup \{5,6,\ldots\}$. If q = 3,5 or 6, it is easy to see that there exist infinitely many $m \in \mathbb{N}$ such that $m\theta \in \left[\frac{4\pi}{5} - \frac{2\pi}{7}, \frac{4\pi}{5}\right] \mod 2\pi$ and it is obvious if $q \geq 7$. Now, we can conclude as in the previous case for $\frac{4\pi}{5} - \frac{2\pi}{7} > \frac{\pi}{2}$.

From now on, $a_1, a_2 \ge 1$ are two integers such that $P(x) = -1 + a_1x + a_2x^2 + x^3$ has a unique real root ζ . We use the notations of sections 2 and 3, the norm N is defend in section 2 and ρ_0 is defined at the beginning of section 3.

Lemma 7.

$$\rho_0^2 \ge \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}$$

Proof. By degnition

$$\rho_0^2 \ge \min(\min_{x \in \mathbb{R}} N^2(e_1 + xe_2), \min_{x \in \mathbb{R}} N^2(e_2 + xe_1)).$$

We have

$$N^{2}(e_{1} + xe_{2}) = \langle e_{1}, e_{1} \rangle + 2x \langle e_{1}, e_{2} \rangle + x^{2} \langle e_{2}, e_{2} \rangle$$

then

$$\min_{x \in \mathbb{R}} N^2(e_1 + xe_2) = \langle e_1, e_1 \rangle - \frac{\langle e_1, e_2 \rangle^2}{\langle e_2, e_2 \rangle} = \frac{4(a_1 + \zeta^2) - (a_2 - \zeta)^2}{2}$$

similarly

$$\min_{x \in \mathbb{R}} N^2(e_2 + xe_1) = \langle e_2, e_2 \rangle - \frac{\langle e_1, e_2 \rangle^2}{\langle e_1, e_1 \rangle} = \frac{4(a_1 + \zeta^2) - (a_2 - \zeta)^2}{2(a_1 + \zeta^2)},$$

and since $a_1 \geq 1$,

$$\rho_0^2 \ge \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}. \blacksquare$$

Lemma 8. Suppose a_1 and a_2 satisfy condition iii) of lemma 6. If a_1 is large, then $N(\theta) \leq \frac{1}{2}\rho_0$ and θ is a best approximation vector of θ .

Proof. Put
$$\phi(a_1, a_2) = \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}$$
. We have

$$\lim_{a_1 \to \infty} \zeta(a_1, a_2) = 0$$

then

$$\lim_{\substack{a_1 \to \infty \\ 3a_1 > a_2^2}} \phi(a_1, a_2) \ge \frac{1}{2}$$

and

$$N^2(\theta) = N^2(F(e_2)) = 2\zeta < \frac{1}{4}\phi(a_1, a_2) \le \frac{1}{4}\rho_0^2$$

for a_1 large. Now if $P \in \mathbb{Z}^2 \setminus \{0\}$, then $N(\theta - P) \geq N(P) - N(\theta) \geq \frac{1}{2}\rho_0$.

Lemma 9. If $q \in \{0, ..., a_1 - 1\}$ then $N(q\theta - e_1) > N(\theta)$.

Proof.

$$\begin{split} N^2(q\theta - e_1) > N^2(\theta) & \Leftrightarrow \quad (q^2 - 1)\langle \theta, \theta \rangle - 2q\langle \theta, e_1 \rangle + \langle e_1, e_1 \rangle > 0 \\ & \Leftrightarrow \quad (q^2 - 1)\langle F(e_2), F(e_2) \rangle - 2q[2(a_1 + \zeta^2)\zeta + (a_2 - \zeta)\zeta^2] + 2(a_1 + \zeta^2) > 0 \\ & \Leftrightarrow \quad 2(q^2 - 1)\zeta - 2q(a_1\zeta + 1) + 2(a_1 + \zeta^2) > 0 \\ & \Leftrightarrow \quad a_1 - q + (q^2 - 1 - a_1q)\zeta + \zeta^2 > 0 \\ & \Leftrightarrow \quad (a_1 - q)(a_1\zeta + a_2\zeta^2 + \zeta^3) + (q^2 - 1 - a_1q)\zeta + \zeta^2 > 0 \\ & \Leftrightarrow \quad q^2 + a_1^2 - 2a_1q - 1 + a_2(a_1 - q)\zeta + (a_1 - q)\zeta^2 > 0 \end{split}$$

Lemma 10. Suppose a_1 and a_2 satisfy condition iii) of lemma 6. If a_1 is large then θ and $a_1\theta - e_1$ are the ørst two best approximation vectors.

Proof. Since $a_1\theta - e_1 = F(\theta)$, the only thing to prove is

$$\inf_{q \in \{2, \dots, a_1 - 1\}} \inf_{P \in \mathbb{Z}^2} N(q\theta - P) > N(\theta).$$

If $N(q\theta - P) \leq \frac{1}{2}\rho_0$, then by definition of ρ_0

$$|q\zeta - p_1| \le \frac{1}{2}$$
$$|q\zeta^2 - p_2| \le \frac{1}{2}$$

where $P=(p_1,p_2)$. Furthermore, if $q< a_1$ and if a_1 is large, then $q\zeta \leq 1$ and $q\zeta^2 \leq \frac{1}{2}$. Therefore,

$$\inf_{P \in \mathbb{Z}^2} N(q\theta - P) = \inf(N(q\theta), N(q\theta - e_1))$$

$$\geq \inf(qN(\theta), N(q\theta - e_1)) > N(\theta)$$

for $q \in \{2, ..., a_1 - 1\}$.

End of proof of proposition 2. By lemma 6 there exists a unit $\lambda \in \mathbb{Q}(\alpha)$ which satisøes conditions i), ii) and iii) with a_1 large. $\zeta = \frac{1}{\lambda}$ is also unit. By lemma 8, $\theta = (\zeta, \zeta^2)$ is a best approximation vector and by lemma 10, $F(\theta) = a_1\theta - e_1$ is the next best approximation vectors. Since $N(a_1\theta - e_1) < N(\theta) < \frac{1}{2}\rho_0$, by proposition 5 we have $\mathcal{M}(\theta) = \{F^n(\theta) : n \in \mathbb{N}\}.$

5. The equations $1 = x^3 + a_2x^2 + x$

The polynomial $P(x) = x^3 + a_2x^2 + x - 1$ has only one real root if $a_2 = 1$ or 2.

- 5.1. $a_2 = 1$. Call ζ the positive root of $1 = x^3 + x^2 + x$ and $\theta = (\zeta, \zeta^2)$. N. Chekhova, P. Hubert, A. Messaoudi have proved that $\mathcal{M}(\theta) = \{F^n(\theta - e_1) : n \in \mathbb{N}\}$. If we want to recover this result with proposition 5, we just have to show:
- i) θe_1 is a best approximation vector,
- ii) $F(\theta e_1)$ is the next best approximation vector,
- iii) $N(F(\theta e_1)) < \frac{1}{2}\rho_0$.

First note that $F(\theta - e_1) = 2\theta - e_1 - e_2$ and $N(F(\theta - e_1)) = \zeta N(\theta - e_1) < N(\theta - e_1)$, so if i) is true then 2 is the next best approximation and if iii) is also true, then $2\theta - e_1 - e_2$ is a best approximation vector. Let us now prove iii) and afterward i):

$$N^2(F(\theta - e_1)) = N^2(F^3(e_2)) = 2\zeta^3 < \frac{3 + 2\zeta + 3\zeta^2}{8(1 + \zeta^2)} \le \frac{1}{4}\rho_0^2$$

for

$$2\zeta^{3} < \frac{3+2\zeta+3\zeta^{2}}{8(1+\zeta^{2})}$$

$$\Leftrightarrow 3+2\zeta+3\zeta^{2}-16\zeta^{3}(1+\zeta^{2})>0$$

$$\Leftrightarrow 3(\zeta+\zeta^{2}+\zeta^{3})+2\zeta+3\zeta^{2}-16\zeta^{3}(1+\zeta^{2})>0$$

$$\Leftrightarrow 5+6\zeta-13\zeta^{2}-16\zeta^{4}>0$$

$$\Leftrightarrow 11-8\zeta+5\zeta^{2}-16\zeta^{3}>0$$

$$\Leftrightarrow 3+16\zeta-5\zeta^{2}>0$$

$$N^2(\theta - e_1) = \zeta N^2(\theta) < N^2(\theta)$$

and

$$N^{2}(\theta - e_{2}) = N^{2}(\theta) - 2\langle \theta, e_{2} \rangle + 2 = 2\zeta - 2\zeta(1 - \zeta) - 4\zeta^{2} + 2 = 2(1 - \zeta^{2}) > 2\zeta^{2} = N(\theta - e_{1}),$$

$$N^{2}(\theta - e_{1} - e_{2}) = N^{2}(\theta - e_{1}) - 2\langle \theta - e_{1}, e_{2} \rangle + 2 = 2\zeta^{2} - 2\zeta(1 - \zeta) - 4\zeta^{2} + 2\langle e_{1}, e_{2} \rangle + 2$$
$$= 2\zeta^{2} - 2\zeta(1 - \zeta) - 4\zeta^{2} + 2(1 - \zeta) + 2 = 4 - 4\zeta > 2\zeta^{2},$$

so P must be e_1 and this completes the proof of i).

5.2. $a_2 = 2$. Call ζ the positive root of $1 = x^3 + 2x^2 + x$ and $\theta = (\zeta, \zeta^2)$. The set of all best approximations is given by two initial points

$$\mathcal{M}(\theta) = \{B^n X_i : n \in \mathbb{N}, \ i = 1, 2\}$$

where $X_1 = \theta$ and $X_2 = 2\theta - e_1$. To prove this result, by proposition 5, we have to check the following properties:

- i) θe_1 is the best approximation vector,
- ii) $2\theta e_1$ is the next best approximation vector,
- iii) $F(\theta e_1) = 3\theta e_1$, $F(2\theta e_1) = 4\theta 2e_1 e_2$,
- iv) $N(3\theta e_1) < \frac{1}{2}\rho_0$.

This requires some tedious calculations very similar to the case $a_2 = 1$.

REFERENCES

- 1. W.W. Adams, Simultaneous Diophantine Approximations and Cubic Irrational, Paciøc J. Math. 30 (1969), 1-14.
- 2. W.W. Adams, Simultaneous Diophantine Approximations to Basis of Real Cubic Field, J. of Number Theory 1 (1971), 179-194.
- 3. P. Bachmann, Zur Theory von Jacobi's Kettenbruch-Algorithmen, J. Reine Angew. Math. 75 (1873), 25-34.
- 4. L. Bernstein, The Jacobi-Perron Algorithm Its Theory and Applications, Lectures Notes in Math. 207, Springer-Verlag.
- 5. A.J. Brentjes, Multi-dimensional Continued Fraction Algorithms, Mathematics Center Tracts, No. 155, Amsterdam (1982).
- 6. N. Chekhova, P. Hubert, A. Messaoudi, Proprit combinatoires, ergodiques et arithmtiques de la substitution de Tribonacci, preprint 1998.
- 7. N. Chevallier, Meilleures approximations d'un lment du tore \mathbb{T}^2 et gomtrie de cet lment, Acta Arithmetica 78 (1996), 19-35.
- 8. E. Dubois, R. Paysant-le-Roux R., Algorithme de Jacobi-Perron dans les extensions cubiques, C.R.A.S. sr. A 280 (1975) p. 183-186.
- 9. J.C. Lagarias, Some New Results in Simultaneous Diophantine Approximation, Proc. of Queen's Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen's Papers in Pure and Applied Math. No. 54 (1980), 453-574.

- 10. J.C. Lagarias, Best Simultaneous Diophantine approximations I. Growth rates of best approximations denominators, Trans. Amer. Math. Soc., Volume 72, number 2 (1982), 545-554.
- 11. H. Minkowski, Uber periodish Approximationen Algebraisher Zalhen, Acta Math. 26 (1902), 333-351.
- 12. O. Perron, Grundlagen fr eine Theorie des Jacobischen Kettenalgorithmus, Math. Ann. 64 (1907),1-76.
- 13. G. Rauzy, Nombre algbrique et substitution, Bull. Soc. math. France, Volume 110 (1982), p.147-178.