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Abstract

Pseudo-monotonicity seems to be a good notion to deal with convergence in non-
linear terms of partial differential equations. J.-L. Lions [16] used two different defini-
tions of pseudo-monotonicity for elliptic and parabolic problems, and derived associated
existence results. Nonlinear elliptic-parabolic equations are intermediate equations for
which an intermediate pseudo-monotonicityis defined and an existence result is proved,
extending previous results of H. W. Alt and S. Luckhaus [1] and A. Bermtdez, A. Durany
and C. Saguez [5].

1 Introduction

Let A and B be two nonlinear operators over a function space V, with B possibly multi-
valued. We consider the following Cauchy problem : given 7' > 0, f and v°, find u such
that

%B(u) +A(u) > f onl0,7],

B(u)(0) > v°.

(EP)

The case where B is an unbounded linear operator was considered first by C. Bardos
and H. Brézis [4]. In the nonlinear case P.A. Raviart [20], O. Grange and F. Mignot [13], E.
DiBenedetto and R.E. Showalter [11] proved existence results assuming that .A and B are
at least monotone operators, and B is compact. HW. Alt and S. Luckhaus [1] investigated
the case of a non-compact operator B, assuming A is strongly monotone; their work was
extended more recently by J. Kac¢ur [14], J. Filo and J. Kac¢ur [12] or E. Zadrzyriska and W.M.
Zajaczkowski [25]. A. Bermtuidez, A. Durany and C. Saguez devoted their work to the case
where B is compact and strongly monotone and A is pseudo-monotone. We are interested
in the same case excepted that B is no longer assumed to be strongly monotone, thus the
equation may degenerate to an elliptic one. Note that in recent results Bénilan and Wittbold
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[6][7] adress this problem using nonlinear semi-group tools. We point out that in the appli-
cation that motivated our study of such equations (see below), the operator .4 depends on
time, which makes the semi-group method hard to apply.
Besides its own mathematical interest, this equation arises quite often in diffusion and free
boundary problems, as well as in hysteresis operators. In our case, such an equation arises
in a mold casting problem. Under physical assumption as the thinness of the mold, one
can [18][17] write Navier-Stokes equations as a pressure equation coupled with energy and
front propagation equations. It turns out that this pressure equation can be rewritten under
(EP) form, with explicit dependence of the elliptic part on u (thanks to a suitable change of
unknown) :
9p(u)
ot
The structure of our article is the following : in paragraphs 2 and 3 we define and study a
new class of operators (B-pseudo-monotone) for which we state in paragraph 3 an existence
result, under given assumptions on the data. We operate a time discretization of (EP) which
leads to a variational inequality solved thanks to a result of J.-L. Lions. We then derive a priori
estimates and prove a nonlinear compactness lemma to pass to the limit in nonlinear terms.
This compactness lemma is a nonlinear counterpart of known results of J. Simon (see remark
3). As an application, we give a set of growth and monotonicity conditions adapted from
the variational operators of Lions, which form a sub-class of B-pseudo-monotone operators,
in which falls our physical operator. Last paragraph consists in two technical lemma which
have been postponed during the existence proof for sake of readability.

—div(B(u)S(z,t,u)Vu) = f(z,t).

2 Definitions and notations

2.1 Functional spaces

Let V and W be two separable and reflexive Banach spaces, such that V' is dense and com-
pactly embedded in W. We denote this injection by i, and its dual operator by ¢*. Let us
introduce for 7" > 0

V=1LP0,T;V)and W = LP(0,T; W) where p €]1, +o0|.

We denote by <, > and (, ) the duality brackets of V' x V and V' x V respectively. ¢ stands
for the conjugate exponent of p.

2.2 Pseudo-monotonicity

In order to define a pseudo-monotonicity adapted to nonlinear elliptic-parabolic equations,
let us consider them as intermediate equations between elliptic and parabolic equations, and
try to understand how the notion of pseudo-monotonicity has been devised for these two
cases.

Let A be a bounded and coercive operator from V to V’, and consider the following
elliptic problem :

Given f € V', find u € V such that



A quite classical method to study this problem is to reduce it to a finite dimensional
problem using a Galerkin method, the main difficulty being to pass to the limit in non linear
terms :

Alun) = Alu) Q)
since we only have in general a weak converge of u,. The standard method uses a priori
estimates to get

lim sup(A(uy,), u, —u) < 0. (2)

n—0o

If the structure of A is such that this condition implies

lirri)inf(.%l(un), Uy, —v) > (A(u),u—v), Yo eV, 3)
then one easily shows that (1) is verified ([16], page 180). As a matter of fact, J.-L. Lions
proves existence of a solution to (E) when A is pseudo-monotone on V, that is when for each
sequence u, weakly convergent to v in V, (2) implies (3).

On the other side, for the following parabolic problem :
Let f € V' andug € V, find u € V such that

du
1 + A(u) = f, u(0) = ug, (P)

one usually gets the convergence of u;,. Following J.-L. Lions, (P) has a solution if A is

d
supposed to be pseudo-monotone on D(%), i.e. for each sequence u,, weakly convergent to
w in V such that u/, weakly converges to ' in V’, from (2) follows that (3) holds.

Consider a bounded nonlinear operator B from V to W’. We try to define a pseudo-mono-
tonicity for the following problem

Given f € V' and vy € W', find v € V such that

LBy + A = 1, Bu)(0) = vo. (EP)
Analogously one could be tempted to replace in the pseudo-monotonicity definition the
weak convergence of !, by those of (B(u,,))" in V'. However, when the passing to the limit
is performed in .A, convergence of u/, is indirectly used to prove the strong convergence of a
subsequence of u,, in W (thanks to an Aubin-type lemma [16], page 57). The only assumption
of weak convergence of (B(u,))’ in V' would not lead to a strong convergence of 5(u,,) in a
sufficiently regular functions space (for example W').
Thus we were naturally lead to introduce the following definition.

Definition 1 An operator A is B-pseudo-monotone if it is bounded and for any sequence u,,
weakly convergent to « in V, such that B(u,,) strongly converges to 5(«) in W', the condition

lim sup(A(uy), u, —u) <0

n—0oo
implies
liminf (A(uy), u, — v) > (A(u),u —v), Yve V.

n—0o

W



3 Properties of B-pseudo-monotone operators

We verify in this section that we actually defined an intermediate notion between pseudo-
monotonicity on V and those introduced by J.L. Lions for parabolic problems. Moreover, we
show an additivity property in this class.

Proposition 1
(i) A pseudo-monotone operator onV (a fortiori hemicontinuous monotone) is B-pseudo-
monotone onV, for any operator B.

(i) If B is compact from V to W' then B-pseudo-monotonicity coincides with pseudo-
monotonicity on V.

(iii) An operator B-pseudo-monotone, with B continuous from W to W' is pseudo-mono-
tone in the parabolic sense, i.e. on the space W(0,T) ={u € V:u € V'}.

(iv) For any B operator from V to W', the sum of two B-pseudo-monotone operators is
B-pseudo-monotone.

Proof. The first two points are easily deduced from definition. To show the third one, let us
take an operator A which is B-pseudo-monotone on V. Let us denote by (u,) C V asequence
converging weakly to « in W (0,T'), verifying

lim sup(A(uy,), u, —u) < 0.
n—0o
The compactness result of [21] (corollary 4, page 85) implies strong convergence of a subse-
quence (u,,) in W. The continuity assumption on B implies

B(u,,) — B(u) strongly in W'.
For this subsequence, we still have

lim Sup(‘A(u’m)v Um — U) S 07

m—00

thus from the definition of B-pseudo-monotonicity

liwrln_}élof(A(um), U, — ) > (A(u),u—v), Yve V.
But this properties holds for the whole sequence (u,,). Otherwise, one could extract a sub-
sequence from (u,) which would not verify this property, and the same procedure on this
subsequence would lead to a contradiction. Finally .A is pseudo-monotone on W (0, 7).

At last, let us consider two B-pseudo-monotone operators A, A;. Let A = A; + A, and
take a sequence u,,, weakly convergent to « in V, such that B(u,) strongly converges to B(u)
in W' and

limsup(A(uy,), u, —u) < 0.

n—0o
We claim that it implies
limsup(Ay (uy,), 4, —u) <0, and limsup(Az(u,),u, —u) <0. 4)



Otherwise, we can pick a subsequence still denoted by (), such that

nli_)r{)lo(Al(un), Uy, —u) =a >0,
and thus
limsup(Az(uy), u, — u) < —a.

n—oo

For this subsequence B(u,) still converges to B(u), and from the B-pseudo-monotonicity of
-/42/
lirri)inf(/lg(un),un —v) > (Ax(u),u—v), YveV.

In particular, for v = u we contradict @ > 0. Thus (4) holds, and as .A; and .A; are B-pseudo-
monotone,

“J&ioﬂf(“‘ll(“n)’ Uy, —v) > (A1(u),u—v), Yv e,

liminf (Ag(uy,), up —v) > (A2(u), u—v), Vv e V.

n—0oo

v

The proof is ended thanks to the sup-additivity of the inferior limit,

lim inf (A(uy), w, — ) > lim inf (A (uy,), w4, — @)

+ lirri)inf(/lg(un), uy, —u) > (Au),u —v), YveV.
|
Remark 1

We will prove in paragraph 4.7 that classical variational operators as introduced in [16], (pages 182-
187 et 321-325) are B-pseudo-monotone for an operator B strictly monotone.

4 Assumptions and results

We now turn to the study of the following nonlinear evolution equation :

d
%B(u) + A(u) 3 f,

B(u)(0) = v°.

Let us make more precise which are our operators and assumptions made on them.

We consider a convex lower semi-continuous and proper functional ® on W, such that :
¢ is finite and continuous on #(V'), with ®(0) = 0, (5)
AC >0, Yu eV, |0®oi(u)],, <CO+ |lul?™). (6)

”W‘

We then define B = d(®o:) = i*0d®o:, which is maximal monotone from V' to V'. Operator
B from V to V' is constructed as follows :

v € B(u) < v(t) € B(u(t)) a.e. on [0,T].



By this construction and thanks to (6), this operator is maximal monotone and bounded from
/

:/}v;onsz' consider a family {A(t,.),¢ € [0,T]} of operators from V to V' verifying the follow-
ing assumption

3C >0, Vv e V, ||A(t,v)],, < C(1+ Hva’/‘l) a.e.on [0, 7. (7)
Analogously we define A : V — V' by

Yu eV, A(u)(t) = A(t,u(t)) a.e. on [0, 7]
and assume :
lim inf M

l[ully—oo [Jull?

> 0. (8)

We can now state our main result :

Theorem 1
Let f € V', and v° € D((®0i)*). Under assumptions (5)-(8), provided A is pseudo-monotone
onV, or B-pseudo-monotone with 5 continuous from W to W’ for the strong topology, there

d,
existsuw € V and v € W' N L*(0,T; V') such that d_; e V'and:

dv

(£) v € B(u),

v(0) = v°.

This solution verifies v(t) € D((® 04)*) forallt € [0, T]. Moreover, if ® is continuous on W
thenv € L*(0,T; W').

Remark 2 do
> The initial condition on v has a meaning since v € W and 7 € V'iimply v € C(0,T;V")
([271, vol. IIA, page 446).

> The previous theorem gives as particular cases the elliptic and parabolic existence results of ].-L.
Lions : for ® = 0 we have D((® o1)*) = {0} and B-pseudo-monotonicity coincide with elliptic
1

pseudo-monotonicity. For ®(u) = §||ul|?, we have D((® o i)*) = W.

> If B is continuous from W in W' then B is also continuous from W to W'.

> Observe that v(t) remains for all time in the same set as the initial condition. That could be
used for the case where B depends on times explicitly.

> Our assumption on B is weaker than those of [5]. As a counterpart, the coerciveness assump-
tion on A is stronger, since for simplicity B does not play a role at this level. However, we could
think to weaken assumption (8) using the contribution of the functional ® or operator B.

To prove theorem 1, we operate a time discretization. Then we write the obtained sta-
tionary problem as a variational inequality and apply an existence result of [16]. We obtain a
priori estimates which permit us to pass to the limit in the case where A is pseudo-monotone
in the usual sense. We show a compactness lemma which allows the passing to the limit in
the case of a B-pseudo-monotone operator.



4.1 Time discretization of (E)

Let N be an integer intended for going to infinity, and a subdivision (¢;)o<;<n of [0, 7] whose
stepise = T'/N. As in [5], we consider the discretized problem :

Find (u?,...,ul) € VN*! such that
n+l _ .,n
Ve U L An(wt) =" forn=0,...,N -1,
£

(F) vttt e B(urtt) forn=0,...,N —1,

v9 = 0
where we set
1 tnt1 d
no= = t)di
o= [ e
A o VoV
1 tnt1
u— Alu = —/ A(t,u)dt.
e Jy,

A first lemma tells us about the behavior of f7*:

Lemma 1
Let X be a separable and reflexive Banach space, and f € L?(0,7;X). For eache > 0, f.
stands for the step function on [0, 7] such that

tn 1
fs(t):l/ Y rs)ds  fort € [t busal.
tn

e

Then
fe = [ strongly in LP(0,T; X).

Proof. We first show that
Ve >0, VfeLP(0,T;X), | fIl </,

and then that the lemma holds for continuous functions on [0, T']. The lemma follows by a
density argument. [

Let us study the properties of operator A7 :

Lemma 2
Under the assumptions of theorem 1 on A, A? verifies

() 3C>0,YveV, [AZv],, <C(1+|olEY),

(ii) Al is pseudo-monotone fromV toV’,

ATv,
(i) i inf {4z v, v)

lolly —oo lUll%

> 0.




(iv) There exist two constants «,y > 0 independent of s and ¢ and such that
S S
e (Aruft uzthy > ae > flultn -y, Vse{0,...,N -1}
n=0 n=0

Proof. To show (i) it suffices to integrate (7) on [¢,,, t541]-
In order to get (ii), take a sequence u,, converging weakly towards « and assume that

lim sup (A2, wp, — u) < 0.
m—r00

The function 4,, belonging to V and defined by

{um it € [tn,tnsil,

U () =
v elsewhere on [0, 77,
weakly converges to the function @ of V which is equal to « on [0, 7).
For this sequence, the inequality

lim sup (A2t U, — u) < 0
m—r00

means
lim sup (At , @y — @) < 0.

m—00

Case 1 If A is pseudo-monotone on V, then we get from the definition

lim inf (A, @ — 8) > (A, @ —0) V€ V. 9)

m—»00

Case 2 If A is only B-pseudo-monotone, the compact embedding of V in W allows us to ex-
tract from the sequence (u,,) a subsequence strongly convergent to « in W; this implies
the strong convergence of a subsequence i, ,,) towards @ in W. From the continuity
assumption on B we deduce the strong convergence of B (ﬂg(m)). Thus we still have (9)
for the subsequence o(m). By a standard argument the whole sequence verifies (9).

In particular, for any v € V and ¢ € V equal to v on [t,,t,41] and u elsewhere in [0, 7], we
get
liminf (AZ Uy, U, — v) > (AZu,u—v) Yo € V.

m—r 00
Thus (ii) is proved.
Property (iii) is obtained in a similar way, considering in (8) a function % belonging to V, with
value v € V on [t,, t,+1] and 0 elsewhere on [0, T7].
At last we prove (iv) using (7) and (8). Indeed, if 2a« > 0 denotes the inferior limit appearing
in (8), we have

(A(u), u)

dd > 0, Yu € V, lully >d = -
Il

Z O,

and (7) shows us that there exists y; > 0 such that

Vu eV, [|lully <d = |(A(u),u)] < 1.



Thus there exists 3 > 0 such that

Vu €V, (Aw),v) > allull} - 2.

In particular if u € V equals u2*! on Jt,,, t,41] forn = 0...s, withs € {0,..., N — 1}, we get
(iv).

u
Lemma 3

The discretized problem (F.) has a solution.

Proof. This discretized problem may also be written as
Find u?*! such that

1 1
JE = Azl + —of € <B(uf™).
€ €
From the definition of sub-differential, this last relation is equivalent to
n, nt+l n+1 1 . 1 - n+1l n 1 n n+1
<Aaua y U — Ug >—|—E(I)OZ(’U)—ECI)OZ(UE )Z fs —|—;’UE,U—’LLE YoeV.
We now use the following result on elliptic variational inequalities : (cf [16], page 251; see
also [8], page 138) :

Theorem 2
Let A be a pseudo-monotone operator from V to V', ¥ a proper lower semi-continuous
convex functional. Assume that

there exists vy such that ¥(vg) < oo and

(A(u),u — vo) + V(u)

[l

— 00 whenever llu|), — oo.

Then, for a given f in V', there exists u € V solution of
(Alu) — flo—u) + ¥(v) — VU(u) >0 Vv e V.
We can use this result for vy = 0, provided we show that

(Alu,u) 4+ 1@ o i(u)

lJully oo ||l

= +o0. (10)

In fact we can show more. Indeed under our assumptions, ® o is bounded from below since
Vu eV, Yug € B(0), ®oi(u) —Poi(0) > (vg,u).
Using the lemma 2 we thus get

o (Aluu) 4 1@ o i(u)
lim inf °

lJully —c0 [lully,

> 0,

from which (10) follows since p > 1. [ ]



4.2 A priori estimates

Consider for n € {0,..., N — 1} the equations of (F:)

+1
UZ:I B U? AP n+ly _ gn
c + =4 (us ) — Je

and take uZ*! as a test function. We get

1<’U?+1 _ ,U;’L n+1> + <An n+1 n—|—1> < n un+1>

c i € € 5 ? 5 g €
But u”*! € d(® 0 )* (v2*!) and the convexity of (® o 7)* gives
(o2t — ol ult) > (@ od)* (vt — (@ od)*(v]).

Summing fromn = 0tos € {0,..., N — 1}, we get
(®od)*(vSth) +€Z (AZu2HT 2ty <€Z Tty 4 (@ 0d)*(00). (11)

We point out that the assumption ®(0) = 0 implies the positiveness of (¢ o4)* on V’; using
lemma 2, (iv) we get

QSZHU”HHP < 52 2oult) + (@ 04)*(v0) + 7, Vs e{0,...,N —1}.

Let us first work on the right hand side, applying Holder inequality :

s
n n+1 n n+1
> (7wt e W2 2t
n=0
1 1
s q s P
n n+1
(Swen) (S
n=0 n=0
1 1
N-1 q s ?
n n+1
(-Xuen) ()
n=0 n=0

IN

IN

<
1
s P
< el (SZHUQ“|!€>
n=0
1
s P
< W (X menz)
n=0

the last inequality being obtained from the demonstration of lemma 1. Finally, we have

1

s s I3
as Y JuZTE < 1/l <8ZHU?“H€) +(@od) (W) +7, Vse{0,...,N-1}.
n=0 n=0

10



We deduce, arguing by contradiction, that

3C >0,V2 >0, Vs €{0,...,N =1}, =) [ulM|} <C.

n=0

This estimation allows us to show that

3C >0, Y2 >0, Vs € {0,...,N — 1}, gZHAn e, < Cl

Indeed, from the first assertion of lemma 2

€ZHA” a2

Ced (14 [luzttp )’
n=0

< Cey (T [lu*e)

n=0

< C.

IN

(We used the convexity inequality : Vr > 0, (14 7r)? < 29711+ r7)).
Thus, we can bound the second term in (11), using (12) and (13) :

e (Arult ) < é‘ZHA” [ [ | 9
n=0
< (ZHA” | ) (ZHU”“HP>
< C.

(12)

(13)

Plugging into (11) this last result and the bound already obtained on the right-hand side

term, we have
3C >0, Ve >0,V¥s€{0,...,N -1}, (®oi)*(vt) < C.

On another hand, we deduce from (6) and (12)
N-1
IC >0, >0, e [t <C.
n=0

At last, (13) and lemma 1 applied to (F.) give

q

<.

N—
3C > 0, Ve > 0, € Z
n_O ‘71

n+1 n
Ve — U,
£

11

(14)

(15)

(16)



4.3 Passing to the limit

We denote by u. the step function equal to u”*! on Jt,,, t,41] forn =0,..., N — 1, and u° for
t = 0. We define function v, in a similar way. We will also use the piecewise affine function
0. which coincides with v, on points of the subdivision.

From the previous estimates, we deduce that there exists a subsequence (still indiced by ¢
for sake of simplicity), such that

ue — u weakly in V, from (12), (17)

ve — v weakly in W', from (15). (18)

We claim that the sequence ¢, is convergent towards v. Indeed,

T
16 — vty = / 15:(8) — e (0)|[% dit

N-1 oo L

=Y [ e e |
n=0 7 tn w
N-1 tnt1 t—1 q

— +1 q n

= 3 |r _vguw,/ K
n=0 in

c N-1
= o e el
< C,

using (15). Thus o, is a bounded sequence of W' and up to extract another subsequence we
can assume that it converges weakly to some function of W’. But the same computations
with the V' norm lead to

N-1
152 = vellyy < Ce )y |Jortt = oy, < Ce.
n=0
from (16). Thus this limit has to be v :
0. — v weakly in W'. (19)

o~ . n+ 1 —_ n .
Now the time derivative of o on Jt,, t,41] is “*——= so that from (16) we can derive

OZ); — Z—: weakly in V', (20)
A(ue) = x weakly in V', from (7). (21)

We deduced weak convergences from our a priori estimates. We now mention a particular
case of a compactness lemma from [20]' which implies the strong convergence of a subse-
quence of (v,) :

!see also J.A. Dubinskii, Trans. AMS 1967, Weak convergence in nonlinear elliptic and parabolic equations.

12



Lemma 4
If the sequence (v])o<n<n Verifies (15) and (16), we can extract from (v.).o a subsequence
(ver)er>0 which strongly converges in V' when £’ goes to 0.

To simplify we will write

ve, U — v strongly in V'. (22)

Passing to the limit in the equation, we thus get in V'

dv

%‘FX:][- (23)

We now have to show that v € B(u), v(0) = v° and x = A(u).

4.4 End of the proof of theorem 1 in the pseudo-monotone case

e For the first statement, we write that for each couple(y, z) € V' x V such that y € B(z)
we have from the monotonicity of B :

(ve =y, ue — ) >0,
and from (17) and (22) we have, passing to the limit
(v—y,u—1x)>0.
As this procedure holds whatever couple (y, z) we pick, we conclude from the maxi-

mality of B that v € B(u).

e Turning to the initial condition, we observe that up to a redefinition of ¢, and v on a
set of null measure, we can assume they are absolutely continuous ([9], page 154).
On another hand (22) implies the existence of at least one ¢y €]0, T’ such that

- (tg) — v(to) strongly in V.
Lett € [0,77, the absolute continuity of o, allows us to write

. . " du. "dv -
0:(t) = ve(to) +/ gds v(to) + /to ads weakly in V',

to

using (20). Thus
vt € [0,T7, 0z () — v(t) weakly in V', (24)

By definition, @ (0) = v°, thus v(0) = v°.

13



In order to prove A(u) = yx, by a pseudo-monotonicity argument, we first have to
prove that (2) holds i.e.
limsup(A(u.), u. — u) < 0.

e—0

To this end, observe that (11) for s = N — 1 becomes by definition of A and f?
(@0 1) (0:(T)) + (A(us), u) < (f,ue) + (@ 08) (+2).
Using (21), we pass to the upper limit to get

limsup(A(ue), ue — u) < (f,u) + (®0d)*(v°) — liminf(® 0 4)*(vo(T)) — (x, u).

e—0 e—0

As we proved that v € B(u), taking « as a test function in (23) and thanks to a chain
rule lemma adapted from the idea of F. Mignot [13] in the case of a Banach space (see
[10] or [19][18] for a complete proof), we get

(x,u) = (/1) = (20)"(v(T)) + (@ 04)"(2").
Finally it remains to justify

lim inf (@ 0 )" (ve(T)) > (® 0 4)* (v(T)). (25)

e—0

As (® o ¢)* is convex and lower semi-continuous we only need for this to hold that
ve(T) — v(T) weakly in V', (26)

which comes from (24) since 0. and v, coincide fort = T.

If A is pseudo-monotone on V, (2) gives x = A(u), and the existence proof if finished.

Let us show now that for all time ¢, v(¢) remains in the domain of (® o ¢)*. For this, we
point out that by construction,

vt E]tnv tn-l-l]v UAE(t) € [v?, U;H—l]'

More explicitly,

R t—t, t—t,
a0 = (1- 20 ) e
so that the convexity of (® o 7)* implies

t—t,
&

@oiy @) < (1-2) @oir(e) +

from (14). Passing to the upper limit,

limsup(®o)"(0:(t)) < C,

e—0 o

and a fortiori

0< (®oi)*(v(t)) < liminf(®od)*(B(t) <C,  Viel[o,T].

e—0
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e Atlast let us show that v € L*°(0,7"; V'). From the definition of (® o ¢)* we have
Vu eV, (Poi)(ve(t)) > (ve(t), u) — Poi(u).

1 (¢
Pick 4 > 0and u = W, where J is the duality operator? from V to V. We get
Ve v
| 1 ()
Do) (ve(t)) > =||lve (V) ||y — Po (i
(@0 i) (w.(1) > 3]le.(0)] s
1 .
> gHUs(t)HV’ — sup Poi(u)
-1
llullv=3
loe()llys < 6@ 0 i) (v.(0) +6 sup Boi(u).
llullv=3%
Using (14), whose continuous counterpart is
1C > 0, Ve > 0, supess(® o 7)*(v:(t)) < C, (27)

t€[0,T7]
in conjunction with assumption (6), and the convexity of & we have

iC > 0, Ve > 0, supess ||v(t)]v < C.
t€[0,T7]
Moreover if we assume that ¢ is continuous on W, then as (® o 7)* and ¢* coincide
on W’ and v.(t) belongs to W' for almost every ¢, the previous argument could be
developed in the (W', W) duality and we get

iC > 0, Ve > 0, sup ess ||ve (¢) ||l < C. (28)
tel0,T]

4.5 Compactness result

If A is B-pseudo-monotone, it remains to prove the strong convergence of a subsequence of
ve in W', To this aim we state below a compactness result which could have its own interest
in the study of doubly nonlinear equations.

Theorem 3

LetV and W be two separable and reflexive Banach spaces such that V' is densely and com-
pactly embedded in W.

Let IX be a compact operator from V to W'. We define & : L?(0,1;V) — L?(0,17; W') by

S(uw)(t) = E(u(t))  ae. on]0, T,

and we assume that £ is bounded (on the bounded sets of L?(0,1; V)).

Consider a bounded family {u. }.~o in L?(0,7; V), and denote by {v.}.~o C L?(0,T; W') the
image family of {u. }.>o by €.

If moreover, {v. }.-o verifies

lim ||7hve — ve|lpa(o,r—n;wr) = 0 uniformly ine, (29)
h—0 ’ ’

then {v.}.> is relatively compact in L(0,T; W').

2We assume there that V and V' are strictly convex (for J to be mono-valued). If it was not the case we could
re-norm them : see [27] II/B, page 862.
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Remark 3
The case where & = 0 is straightforward. The case where & = Id is that of |. Simon [21], theorem 3,
page 80. Theorem 3 is thus a nonlinear intermediate result.

Remark 4

We will use this compactness result with E2 = B. In the case where ® has a strict convexity property,
one could use results from A. Visintin [23] and their generalization by E.]. Balder and M. Valadier
[2][3].

Proof.
Step 1:

In order to show the compactness of {v. }.~¢ in L?(0,7; W'), one only has to prove, thanks
to
to theorem 1 of J. Simon [21] that forall 0 < ¢; < 3 < T, / v, (t) dt is relatively compact in
t1

W' (since we already have (29)).
Let us introduce the sets

GY ={t€[0,T]: [Ju.(t)||v > M},
and a constant C' > 0 such that

Ve >0, ||luellLrorvy £ C

cP
Then meas(G%) < —. Set

Mr
My [ ue(t)ift ¢ GY
ue (1) = { 0 elsewhere.
By construction,
YM >0, Ve >0,V c[0,T], [uM()|v <M.

As E is compact from V to W/,

is relatively compact in W’ for all M > 0.

Step 2:

Let t1,t3 €]0,T[ with 0 < ¢; < t; < T. For an integer N, we denote by (va)OSiSN the
subdivision of step h = 21 of [ty t5].

Assume that for each 1 > 0, there exist two integers M; and N; such that:

VM > M;, VN > Ny, Ve > 0, 3s. €]0, A,
N

ts 15
[ o= [T b sy, O d
4 T

=1

<7n. (30)
w

From step 1,

i—115;

2 & M, N -1 M, N
/ E ve' (811 + se)xgen  onq(t) dE = E N (sil1+s2)
a1 =1 =1

16



is relatively compact in W’. Thus the uniform convergence in ¢ of (30) proves that

{ /t :2 ve(l) dt}6>0

is relatively compact in W/, and the proof of theorem ends up.

Step 3:

To prove (30), we argue by contradiction, assuming that such a family {s.} does not exist;

that means there exists n > 0, such that for all M; > 0 and N; > 0,

M > My, AN > Ny, Je > 0, Vs €]0, h[,

to
/ (Us(t) - Zviw(sfv—1 + 5)X]sN | 5N (t)) diff  >mn.
t o1 W
Then a fortiori
to
Vs E]Ov h[a / - Z’l)y(sf\il + S)X]sN_l,sN](t> dt > n,
t i=1 W
to —
and integrating with respect to s from 0 to h = —— we have
dM > My, AN > Ny, Je > 0,
- Zviw(squ +5)xpey om0 dids > 7.
=1 W

Let us show that this relation leads to a contradiction. Indeed,

Uiv[( sio1 + 8)xge | ()| dids

Si—1:5;
2:1

N
7

/ / [oa(®) = oM (s + ) e ds
- %Z/ / [o2(0) = 2(5) ], dt s

Wl
d

17
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and by Fubini’s theorem, setting o = s — ¢,

1o ot psiit
:EZ/N /N _ Hva(t)—vy(t—}—a)”W, dodt

:%/ e ||v5(t)—v£w(t+a)HW, dt do

maxs 1,st 1=

min tg,tg G’
< — / [|ve (2) —viw(t—l—a)”w, dtdo
max tl,tl a
min(t2,t2—0)
<L e = ek ol o
max tl,tl 0

min tg,tg 0'
/ / X (t+ ) [[o() ][y dt do

max tl,tl cr

1
g C
< QTP S[UEH (/ H’UE( ) —’Us(t—|—0')”%V, dt) —|—2 HUEHL‘? OT]rV’)
Let 1 > 0 be fixed.

Thanks to (29), there exists Ny > 0 such that for any N > N;, with the subdivision of step
h = 2351 we have :

T-o q n
Ve >0, sup (/ [Jve(t) — ve(t + a)[}y dt) < —.
1 \Jo

c€[—h,h 4T »

On another hand, £ has been assumed to be bounded on bounded sets, and ||uc ||r»(0,7;v)
being bounded by assumption, this is still true for ||v.|| L9(0,T;W); thus there exists M; > 0,
such that :

c n
VM > Ml, Ve > O, MHU‘JHL‘Z(O,T;W’) < Z

Gathering the last two inequalities, we derive a contradiction with (32), which ends the proof
of theorem 3. m

4.6 End of the proof of theorem 1

Let us recall that it remains to study the passing to the limit in nonlinear terms of A, using a
strong convergence of v. thanks to the previous compactness lemma. Let us start by proving
that the sequence v. defined in 4.3 verifies (29), postponing the proof of the following lemma.

Lemma 5
Assume B is continuous from W to W'. Then the conditions :

(i) u. — uwweaklyinV,
(ii)) 3C > 0, Ve > 0, Yh €]0,T7,

T—h 1
/ (ve(t + h) —ve(t),uc(t +h) — us(t)>W,7W dit < Chr,
0
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(iii) 3C > 0, Ve > 0, supess ||v.(¢)||w < C.
te[0,T]

imply (29).

We already have (i) from (17), and (iii) thanks to (28) (Remember that in the B-pseudo-
monotone case we assumed that B is continuous, and so is ®).
To establish (ii), we point out that we only have to consider the case where h = ke, k €
{1,..., N — 1}, since v, and u,. are step functions. Indeed, assume that this inequality holds
for ke. Leth €]ke, (k+ 1)e[, with k > 1, and hg = h — ke.

T-h
/0 (ve(t+h) —ve(t),uc(t + h) — u(t)) dt

N-k N—k—1
=(e~ho) ) <‘v?+k —or,ulth - u§> +ho Y. <vg+k+1 o, u L u?>
n=1 n=1
e — hg Rt [tn
S Z/ (ve(t + ke) — va (1), ue(t + ke) — ue(t)) dt
n=1 Jtn-1
o Nkl e,
+ ?0 / (ve(t + (k4 1)e) —we(t), uc(t + (K + 1)g) — uc(t)) di
n=1 Yin—1

We thus have

T—h
/0 (ot + B) — valt), ua(t + B) — ua(t)) dt

e — ho T—ke
_ h/o (e (4 k2) = va (1), ua(l + ke) — ua(t)) dt

hog T—(k+1)e
7/ (vt + (k+1)e) — ve(t), uelt + (k4 1)) — uc(t)) dt
<C [5 LT %((H 1)5)%]

(e — ho)ke + ho(k + 1)e
€

5 .
gc[ ] < Ch¥,

using the concavity of r — rv.
It remains to prove that 3C' > 0, Ve > 0, Vk € {1,... ,N — 1},

/ T_k?ve (£ + ke) = va(8), we(t + ke) — ua(t)) dt < C(ke)¥

which rewritten in discrete quantities means :

N—-k-1
1
e Y <v:+k+1 gL kL ug+1> < C(ke)?. (33)
n=0

In order to show (33) we write the approximated problem under variational form :
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Find (u2),=o,... v € VN*! such that

prtl _ N-1 N-1
€Z< n>+5Z<A§u?+1 W, :52 wy,) Vw = (w,) € VVHL,
n=0 n=

Letk € {0,...,N—1}and m € {0,...,N — k — 1} be fixed. We choose as a test function
the (N + 1)-uple w those components are u™t**! — ™+ foralln € {m+1,...,m+k} and
zero for other values of n. By construction,

N-1 vn—l—l —_ "
£ E < = - = 7wn> = <U;n+k+1 - U;nvu?-l—k-}—l - u?+1> .

n=0

We have to bound from above the sum on m of these quantities to get (33). Let us compute :

gz fn An n+1 n>

m+k
— n n n-I—l m+k+1 m+1
_ <z [ A

n=m+1

IN

m+k
( S 2y + 1ATu ”“Hv') [t — |y

n=m+1

IN

m+k zla N-1 % N-1 é
(e > 1?) (eZHf:HqV,) +(eZHA?u?“HqV,) [Ju HRHL — |y
n=0 n=0

n=m+1
1
< (ko) (1 llv +©) (Ilaz v + a2+ lv) - from (13),

1
< Clke) ([ + [luz v )

This leads for the quantity we are willing to estimate :

N-—k—-1
e 0 (v )

m=

o

N—k—-1
1
<Clheyre 30 (et =y + ez )

m=0

(N = k)e) el uclv

=

< C(ke)

=

< Cke)v (1)

’t?l’—‘

< Cke)r.
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Thus we have (ii), then (29) if we admit lemma 5. Applying theorem 3, we get the strong
convergence of a subsequence of v., and we conclude the proof of theorem 1 by the definition
of B-pseudo-monotonicity. We refer to annex for the demonstration of lemma 5 which is
purely technical.

4.7 Application: a class of B-pseudo-monotone operators

Let N, p, r be three integers with V > 0, p > r > 1. The conjugate exponents of p and r will
be denoted by ¢ and s respectively :

1 1 1 1

S+-=1, -—4+-=1

P q T S

Consider an open set Q of R, and Q = Qx]0,77.
We denote by I'y some part of 9, ¥; = I'y x]0, T'[, and by ¥, = (92 \ I'1)x]0, T'[.
Let V be the closed subspace of W' (€2), containing W, * (), and defined by

V={ueW"P(Q), ur, =0}.
We set
@(u):/ﬂg(x,u(m))dm

where ¢ is a measurable function on ©Q x R such that Vz € €, r — g(z,r) is proper lower
semi-continuous and convex on R. g is a normal convex integrand, in the sense of R.T.
Rockafellar (cf [26], proposition 1, page 221).

For any measurable function » on €2, z — g¢(z, u(z)) is measurable on €2 and ¢ is proper,
lower semi-continuous and convex on W.

Denoting by 3 : 2 x R — R the sub-differential of g(z,.) we have for u € W

0®(u)(z) = B(z,u(x)) a.e. on 2.

We moreover assume that z — §(z, z) is continuous and strictly increasing for almost every
z € ), and verifies the following growth assumption :

day,az >0 @ |B(z,2)| < ay |2[P~! 4+ ag, ¥z € R, a.e. on €. (34)

Then operator B associated to 3 verifies assumptions (5) and (6), and B is continuous from
LP(@Q) to LU(Q).

For the elliptic part, we introduce a family of real functions A;(z,¢,n,v,§),t € {0,... ,N}
defined on @ x R x R x R and verifying :

(A1) For almost all (z,t) € @Q, the function (7, v,&) — A;(z,t,n,v,£) is continuous on R X
R x R" and for all (5, v, £) the function (z,t) — A;(z,t,n,v,£) is measurable on Q.

(A2) For all (u,v, w) belonging to L™ (Q) x LY (Q) x (LP(Q))N,
(.f, t) - Al(xv L u(w, t)v‘v(wv t)v w(x, t))

belongs to L?(Q)) forz € {1,..., N} and to L*(Q)) for : = 0.
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The vector valued function A = (A;);<;<n Vverifies,

(A3) For fixed z,t a.e. in () and bounded |7|,

A(x7 t? n?ﬁ('r777)7€)‘€
|
eloon  [€]+ €7

= +o00.

(A4) Almost everywhere in () and for any 7,
(A($7t7nvﬁ($7n)7€) - A(957t7777/3(95777)75*))(5 - 5*) >0 lfg 7£ f*

The operator A : L?(0,T;V) + L?(0,T; V") is then defined for v € L?(0,T;V) by :

T
(A(u),v) = /0 /QA(:L‘,t,u(x,t),ﬁ(:L‘,u(:L‘,t)),Vu(:L‘,t)).Vv(x,t)dwdt

T
+ /0 /QAO(JU, tyu(z,t), Bz, u(z,t)), Vu(z,t))v(z, t) de dt,

forallv € LP(0,T;V).

Proposition 2
The operator A is B-pseudo-monotone on L?(0,1; V).

Proof. We adapt the proof of J.-L. Lions ([16], pages 182-185), considering a sequence u,, such
that

(i) u, — uwweaklyin L”(0,7;V).
(i) B(un) — B(u) strongly in L?(Q)).
(iii) limsup(A(un),u, —u) <O0.
n—00

Assumption (ii) implies up to a subsequence that
Bz, un(z,t)) = Bz, u(z,t)) a.e.onq). (35)
As 3 is strictly increasing and continuous we have,
up(z,t) = u(z,t) a.e.on Q). (36)
We deduce from this, (i) and r < p that
u, — u strongly in L"(Q). (37)
For sake of readability, we denote by A;(u, B(u), Vu) the function of L?(()) equal to
Ai(z,t,ul(z,t), B(u)(z,t), Vu(z,t)) almost everywhere on (),

and this value will be abbreviated by A;(z, ¢, u, B(u), Vu). The symbol (, ) still denotes du-
ality product between V' and V or between L?(Q)" and L?(Q)", and the dot (-) represents
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the scalar product of RV,
We have

(A(wn), un — u) = (A(un, B(uy), Vug), V(u, — w)) + (Ao(un, B(u,), Vu,), u, — )
= (A(un, B(un), Vuy,) — A(un, B(u,), Vu), V(u, — u)) (38)
+ (A(un, B(un), Vu), V(u, — u)) + (Ao (wn, B(un), V), uy, — u).

Step 1. Let us show that we can extract a subsequence such that
(A (un, B(uy), Vu,) — A(uy, B(u,), Vu), V(u, —u)) — 0. (39)

Assumptions (A1) and (A2) imply (M. Vainberg [22], theorem 19.1 page 154, and page 162)
that the application
(u,v,w) = A;(u,v, w)

is continuous and bounded (on bounded sets) from L7 (Q) x L(Q) x (L7(Q))" to LI(Q) for
i > 0and to L*(Q) fori = 03,
We deduce that A (u,, B(u,), Vu,) remains in a bounded set of (L7(Q))", and that

A(tn, B(u,), Vu) — A(u, B(u), Vu) strongly in (L7 (Q))N. (40)
This strong convergence and (i) imply
(A (up, B(uy), Vu), V(u, —u)) — 0. (41)

On another hand, we know that A, is bounded from L"(Q) x L9(Q) x (L7(Q))" to L*(Q),
which allows us to write

|(Ao(tn, B(un), Vun), uy — u)| < Clluy — ul|prgy — 0. (42)
Using (iii), (41) and (42) in (38) we get
lim sup (A (un, B(u,), Vi) — A(un, B(uy,), Vu), V(u, —u)) <0,

n—00

and thanks to (A4) we have (39).
Step 2. Let us show that this condition (39) implies

A(tn, B(un), Vi) = A(u, B(u), Vu) weakly in (L4(Q))", (43)
and
Ao(ttn, B(ty), Vu,) — Ag(u, B(u), Vu) weakly in L*(Q). (44)
Indeed, denoting by

F,(z,t) = (A(z,t,up, B(uy), Vu,) — Az, t, up, B(uy,), Vu)) - V(u, —u) >0,

we have / F,(z,t)dzdt — 0 from (39), thus there exists a subset Z C ) of null measure,
Q
such that up to a subsequence,
un(z,t) = u(z,t), B(uy)(z,t) — B(u)(z,t), F,(z,t) = 0, V(z,t) eQ\ Z.

3see also [15]
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Let (z,t) ¢ Z, and £*(z,t) a limit of Vu,(z,t). We surely have |{*(z,t)| < +o00. Otherwise
we would have from (A3)
Az, t, up, B(uy), Vuy,). Vu,(z,t)
[Vun (2, 1)| + [V (2, 1) [P~

— to0,
and then
1Bl — 400
which leads to a contradiction. To the limit we have from (A1),
(A(z,t,u,B(u),&") — Az, t,u,B(u), Vu)) - (£*(z,t) — Vu(z,t)) =0,
almost everywhere on (), which means from (A4) that £*(z,t) = Vu(z, t). We showed that
Vie {0,...,N}, Ai(z,t,up, B(uy), Vu,) = Az, t,u, B(u), Vu) a.e.onqQ.

As operators A; are bounded on L?(()) and L*(()) we obtain (43) and (44) (see for instance
[16], page 12).

Step 3. Let w = (1 — 0)u + 0v, 6 €]0, 1[, we have from (A4)
(A(un, B(uy), Vu,) — A(uy, B(uy,), Vw), V(u, —w)) >0 Vw.

Consequently,
O(A(un, B(un), V), V(u, —v)) > — (1 — 0)(A(un, B(un), Vug), V(u, — u)) (45)
+ (A (wn, B(uy,), Vw), V(u, — w)).
The first term of the right hand side of (45) tends toward 0 from (39) and (41). And
A(uy, B(uy,), Vw) = A(u, B(u), Vw) strongly in L?((Q)).
Thus
hﬁl}io%f(A(u”’ B(un), Vuy,), V(u, —v)) > %(A(u, B(u), Vw), V(u— w)) (46)
> (A(u, B(u), Vw), V(u— v)).
Let 6 go to 0, we have thanks to (A1),
linrr_l)ioréf(A(un, B(un), Vuy), V(u, —v)) > (A(u, B(u), Vu), V(u—v)). 47)

Now we write
(A(un), un, — v) = (A(un, B(uy), Vuy,), V(u, — v)) + (Ao(un, B(un), Vu,), u, —v).  (48)
Since
(Ao(wn, B(un), Vug), un — v) = (Ag(tn, B(un), V), uy, — u) + (Ao(tn, B(uy), Vuy,), w — v)
we have from (42) and (44)
(Ao(un, B(un), V), uy, —v) = (Ao(u, B(u), Vu),u — v),
so that using (47) in (48) we conclude
ligﬂigf(““(“n)’ Uy — v) > (A(u), u — v).

That ends our proof. u
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Remark 5
The crucial point is to derive (37) from (ii). To get a larger class of operators, one could study under
which conditions the convergence

B(u,) — B(u) strongly in LY(Q)
implies
uy, — u strongly in L?(Q)).

In this direction, |. Kacur uses a lemma ([14], proposition 3.35) which does not seem to generalize to
our case. The strict convexity conditions of A. Visintin could also be used [23][24].

For f € L9(Q), g € LY(X3),let F € L?(0,T; V') be defined by
(F,v) = / flz,t)v(z,t) de dt —I—/ g(o)v(o) do, Yv e LP(0,T;V).
Q b3
For uy € V, we obtain existence of a solution u verifying

%m) + A(u) = F, and B(u)(0) = B(u).

which is formally interpreted as

% — divA(z,t, u, B(u), V) + Ag(e, 1, u, B(u), Vi) = f,
u = 0on 217

A(z,t,u,f(u), Vu).n= g on Xy,

Bz, u(z,0)) = Bz, u(z)) on Q.

Let us mention that this result is in some sense better then those of [1] since our elliptic
operator depends explicitly of «, and is not strongly monotone.

5 Annex

The following proof is influenced by those of [1].

Proof of lemma 5. We write

T—h
[ e my—volae= [ loermy=veollfder [ flontes) o0y de
0 E!

[|v-
(EM)e
where

EM = {1.€10,7 = Bl [fue (0l + e (14 B[y (vt + B) = ve(0), (i 4 B) — ua(0)) > M),

hp

First we bound the integral on EM.
We have

S

3C > 0, Ve > 0, meas(EM) <
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Indeed,

meas(EM) :/ 1dt

EM

llus(O)]lv  [ue(t + R)|lv 1 i »
S/Ey Mt M +Mh%<”s(t+h) (), uc(t + h) — uc(t)) dt. (49)

We have to bound ||v. (¢t + ) — v.(t)||}y, which comes from estimation (iii).
Let n > 0. We can find My > 0 such that:

VM > My, Yh €]0, T, / lo-(t + h) — v (1) |3y, dt < .
EM
In order to obtain our estimate to bound the integral on (EX)¢, we use the following adapted
version of a lemma of [1] :

Lemma 6
Assume that B is continuous from W to W'. Let M > 0, and n > 0. There exists § > 0 such
that for all (uy,u3) € V XV,

(1) HUZHV S M,’L = 1,2,
(11) <B(U1) — B(’U,Q),’ul — UQ> S )

imply
[[1B(u1) = Bluz)llwr < -

We use this lemma whose proof is given below.
We have V¢ € (EM)e,

lue(@)llv < M, Juelt + By < M, et oult + h) = valt), ue(t + h) - w.(t)) < M7,

Thus there exists A} > 0, such that

Vho< M Ve >0, Vt € (EM)°,  |jo.(t+ h) — ve(8)]|% < %

Integrating on (EM)¢ we have

Vh < hM, Ve > 0, /(EM)C lJve(t + h) — v ()| < 7.

€

We deduce that there exists My > 0 such that for all M > M, and forall & < héw ,

T—h
/0 Jve(t 4+ ) — ve (1) |35 dt < 2.

This is exactly (29). n
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Proof of lemma 6. If the conclusion of this lemma was false, there would exist M > 0 and a
sequence {uj ,, g} such that

3|

(@) lwinllvy < M, (i) (Bluin) = B(ugn), w10 = ) <

and
|B(u1,n) — B(uz,n)|lwr > £ > 0.

As (u;,,) isbounded in V, and B continuous on W, we can assume that up to a subsequence
B(u;,) — v; strongly in W',
Passing to the limit we would have

|vg — vilwr > Kk > 0.
But passing to the limit in (ii) gives :
<U1 — U2, U1 — U2> =0,
and the convexity of @,
Qoi(ug) — Poi(ur) < (va,ug —uq) et ®oi(ug) — Poi(uy) > (v1,us — up).

Thus
do ’L(’U,Q) —do z(ul) = <’U1, Uy — U1> = <’U2, U — U1> .

Picking an arbitrary z € V, we would have

Poi(ug+z) —Poi(uy) =Poi(ug+2) — Poi(ur) — (vy,us — uy)
> (v1,uz + 2z — ur) — (vi, U2 — 1) (50)

= (v1,2) .

That would mean that v; = B(u3) = vy, which contradicts |v; — vy | > Kk > 0.
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