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Summary During the last years, various algorithms solving the transport equation in
slab geometry have been proposed in the litterature [2][3][4][6][7]. Most of them use a con-
vergence acceleration based on a Picard type algorithm called the source iteration method
[4][7]- New non accelerated algorithms have been recently introduced [1][2]. We develop
here a non accelerated method based on two points : a splitting of the collision operator
and an infinite dimensional adaptation of the minimal residual method. We first prove the
theoretical convergence of the method in the frame of non-reflecting boundary conditions.
Then we compare numerically this method with existing non accelerated schemes. It gives
good results which could even be further improved by adding a DSA kind acceleration.

1 Introduction and notations

We consider a one dimensional domain (0, L). The evolution neutrons interacting with
each other is described by a function f(z,u). f(x, 1) represents the angular neutrons flux
at the x position and traveling in the cosine p € (—1,1) direction. The cross section
o(z) accounts for neutrons-domain interaction, whereas a kernel k(z, u, ') describes the
collisions between neutrons. The function S(z, ;) represents a neutrons source. We refer
to [5] for a more precise introduction.

The function f verifies a linear integro-differential equation. To solve this equation we
first prove in this paper the convergence of an infinite dimensional version of minimal
residual method. Numerical comparison with non accelerated algorithms developed in
[1][2] is given at the end of this work.

1.1 Mathematical setting

Let consider L > 0 and 2 = (0, L) x (—1,1). We consider the following problem : given a
source term S € L? (£2), find f : 2 — R solution of the transport equation,

Tf(z,p) = Kf(z,p) + S(z,p) in L2,

(P) J(O,p) =0 for p € I :=(0,1),
f(LaH) =0 fOI‘MEIQ = (_110)5

0
where Tf (a, 1) = 95 (2, 1) + o(z) { (x, ) with

D(T) = {f e L*(0) : u%(w,u) € L*(2), £(0,p) = f(L,—p) =0 for p > 0},
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and K an integral operator of positive kernel k :

1
Kf(2,1) = / e ) (@,

We make the following assumptions (where Lﬁ_ denotes the positive cone of L') :

(A1) o € L1 (0,L).
(A2) (1) = k(p, p') € LA ((—1,1)?).
(A3) k is symmetric and even. If o is a constant (see remark 1), we assume :

1
1 1 B
Je < 1, (/ / k(u,u')2dudu') < oc,
—1J-1
else we assume :

1
2
Se<1, ( [ aituy [ / k(u,u')Qdu'] du) < 2 for (i) € {1,2)?, where
I;

I;

2 @ 2
a1(p) = — sup / ¢ Tl Jer o dyd a(p) = — Sup / e Tl 2 cW g,
] o €[0,L] 1] wre 0

(A4 Z G,l

Remark 1 1. Note that the (A3) assumption may allow o to vanish in (0, L).
2. All forthcoming results remain valid if & depends on z in the following way :
k(z,u,n') = C(x)k(u,p') with a positive measurable and bounded function C. The

expression m would then appear in the right hand side of (A3).

1
3. In case of o constant on [0, L], a;(1r) = —. This justifies the two proposed forms of
o

(A3). All proofs are made in the general case.

4. The (A4) assumption is not necessary for a theoretical proof of the convergence. How-
ever, for a numerical point, the splitting of the collision operator could be exploited
only if we assume this expressed form of the kernel k.

5. These assumptions (including (A4)) are satisfied for usual neutronic kernels as the
constant and Thomson kernels for instance.

1.2 Classical and splitting methods

The standard method for solving (P), and called the source iteration method, is based on
a decoupling between the differential and integral parts, through the following iterative
scheme : given f0 € D(T), solve

T+ —Kf+ S in 2,
) {f"“ e D(T).

In the critical case (¢ = 1), this algorithm becomes extremely slow. Diffusion synthetic
methods developed in [7][6] and [4] give excellent results. However the are not easy to
implement when the kernel strongly depends on u. Moreover, theoretical results for DSA
are achieved on discretized schemes in pu, for reflecting boundary conditions or infinite
domain (using Fourier transform).

In contrast, our convergence result is independent of the discretization chosen for
the transport equation. It is also proved to be convergent for non-reflecting boundary
conditions.
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Our method is based on a new algorithm converging faster than (P;), on which an
adapted DSA acceleration by sub-domain could be applicated ([3]). Let us describe the
natural splitting of K which leads to this scheme. Let k;j, i, € {1,2} be the positive
kernel defined by

Kij(a, i, 1) = K, ') X 1o (, 1) X 1o (2, '),

with 1 = (0,L) x (0,1), £22 = (0,L) x (—1,0), and 1, the indicator function of £2;. We
introduce the associated integral operator K; ; :

1

K (1) = [ gl i) o)

-1

Since we have K;;(f) = K;j(f-10;)1q;, the operator K splits into K = K11+ K12+ Ko1 +
K. Note that K;; is an operator acting from L?(£2), using only the values of f on 12;,
such that K;;f has its support in (2;.

The solution of (P) is given by f = f1 + fo with f1, fo € D(T') solution of

T—-Ki —Ki fi) _ (St (1)

—Ko1 T—Ksy) \f2 S2)
It is easy to prove that f; = flp,, ¢ = 1,2. Various methods as Jacobi, Gauss-Seidel and
SOR, applied to this matrix of operators, were studied in [3]. The SOR method gives
excellent results, but it needs the computation of its optimal parameter, which in turn

can be very slow in the critical case. For these reasons we seeked a method that gives
good rate of convergence, but do not need any extra parameter calculation.

Remark 2 Once discretized in u, the Jacobi method we mentioned corresponds to the so
called modified source iteration method MSI [6].

2 Minimal residual algorithm

In the following part, we aim at solving the transport equation (P) by a minimal residual
method. This method was introduced by O. Axelsson [8], in the finite dimensional case,
and proved to converge provided the matrix of the linear system has a definite positive
symmetric part.

Using the operator splitting devised by S. Akesbi and M. Nicolet, the transport equation
is equivalent to the following system

I—611 —b12 i\ _ g 2)

—by1 I—05) \ fo Sy )’
where we applied on both components the operator 7!, and set 0;; = T_lKij, §Z =
T—1S;. Our system matrix of operators will be preconditioned by the inverse of its diagonal

ie. ((I — 4(9)11)—1 v 222)_1) ,

leading to the following system

I —(I—611)716 fi) _ (T —61)71S,
(—(1—022)_1921 In 12) (f;) a ((I— 9;;)_1§i> . @

We denote by A the operator matrix of this system, and

_(f (T -61)7LS
F_<f;)ED(T)xD(T) B_< 11_A1)
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Let us introduce the minimal residual method to solve AF = B. We denote by (,) the
scalar product in L?(£2) x L?(£2), i.e. (F,G) = (f1,91) + (f2, g2) where (,) is the standard
L? scalar product. Similarly, ||||, will represent the norm in L?(£2) x L?({2) associated to
this scalar product.

The minimal residual method minimizes £(F) = ||B — AF||3 by the following algorithm :
Let £ € D(T), FO ='(f%1p,, f1p,) € D(T)xD(T), R° = B—AF°, P° = R0, Q0 = AP,

(& _ (B*QY)

& QR o)

Fk+1 — pk + oF Pk
RE+1 = Rk _ aka

<ARk+1,Qk)
(@*,Q*)

Pk+1 — Rk+1 + ,Bk+1Pk

ka—I—l = ARFH! +,3k+1Qk

Compute for £ =0,1,... until HR’CH2 < e, <

I@k—f—l —

where € > ( is prescribed.

In the previous algorithm, we have to explicit how we compute the product A times a
vector, since A contains some inverse operator.
Let g € D(T'), gi = glg,, then (g1,92) € D(T) x D(T). We will describe how to compute

()= Caomn, 07 ()

Componentwise, this equality means

21 =g1 — (I —011) 01290,
7o =go — (I — 02) 02101
Applying T'(I — 611) = T — Kj; to the first equation and T(I — 03) = T — Koy to the
second one, we get
(T — K11)(g91 — 21) = K1292,
(T — K23)(g2 — 22) = K211
The splitting of K allows us to solve these equations numerically and directly (see S.Akesbi
and M. Nicolet [3]). We can note from the K;; and T definitions, that these solutions
are verifying z; = 0 on {25 and 29 = 0 on (2. With the same formalism, the equation
RY = B — AF?° corresponds to
(T — Kn)(r} + 1) = 51 + Ko f3,
(T — Ka)(r§ + f3) = So + Kn f7,

whereas Q° = AP stands for

(T — K11) (P} — ¢¥) = K12p),
(T — Ka22) (9 — ¢3) = Koip!.

At last, the product ARF*t! =: D**1 which of course is calculated only once per iteration,
is associated to the following equations :

(T — Ku1)(rf T — dft) = Kyor§

(T — K22)(7J2c+1 — d§+1) = Kgl’r‘{c—i—l.
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2.1 Rate of residual decreasing

We apply the elementary analysis of [8], and we get the following estimate on the residual :

Proposition 1 Let F¥ be constructed by the preceding algorithm, starting from F°. Then
for k>0,

(4)

) R¥, AR*) (RF, AR*
5(Fk+ ) < 5(Fk) (1 o <<Rk’Rk>> <.<AR’“,.AR’Z)) )

Proof Observe first that £(F%) = ”ROHE and
2 2 2
E(FF1) = E(F* + ok PF) = | RF — ofaPH| = ||RY - o" Q|| = |[RF+| .

Thus

£(FHH) — HRkHz Lot HQkHz ~ 20" (RE,QH) = (%) - %,

owing to the definition of a*. Therefore

_ (RF,QF)"
E(FFY) = £(FF) (1 ~ RN QRO |

On the first hand, using the o definition we have
<Qk+1,Rk+1> _ <ARk+1,Rk+1> + gt <Qk,Rk+1> _ <_ARk+1’Rk+1>_
On the other hand,
<Qk+1’Qk+1> _ <ARk+1’Qk+1> + gt <Qk,Qk—|—1> _ <ARk+1’Qk+1>’
using the §*+! definition. It follows that
<Qk+1’Qk+1> _ <ARk+1’ARk+1> + gt <ARk+1’Qk>
_ <AR’“+1,AR’“+1> _(BF1)2 <Qk’Qk>2
< <.ARk+1,.ARk+1>.

The announced inequality is achieved.

2.2 Theoretical convergence

First of all, let us prove that our operator A has a definite positive symetric part, so that
for some A > 0,
RE, ARF
w > .
(RF,RF) =
Proposition 2 Under assumption (A1)-(A8) the operator A has a definite positive sym-

metric part and verifies

(AF,F)> = |F|3,  VF e D(T) x D(T). (5)

2
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Proof We have
(AF,F) = || Fy|[5 + [|Fa[l3 = (F1, (I = 611) 012F3) — (I — b) ‘021 F1, Fy).
By definition,

(I —611) " 012ll2 = sup [[(I —611) " Or2f|2

[1fll2=1
o
( 0?1) 912f
k=0

< (Z ||911||’§> 1612112
k=0

1012]l2
T 1[0l

= sup
lI71]2=1

2

We still need to control the norms of 611 and 615. So, let us state the following
Lemma 1 Under assumptions (A1)-(A3), ||6;5ll2 < &, for (i,5) € {1,2}2.

Postponing the proof of this lemma, we get

I(I = 611) 12|z < 1 ? c = 2ic- (6)
Thus
(AF,F) > | BB + IR — 5|y o] Pl
= (1= =) (IR 3 + I B213) + = CIFL I3 + 1P 3 — 2] ] Fl)
> (1= =) (IR I3 + |1 ]3).

2—-c
This is the expression (5).

Proof ( of lemma 1.) Since 61 is an operator from domain 1 into itself, we can consider
that the function f vanishes identically on (25. By definition, 61 f is the solution g of

1
M%(Iaﬂ) + O'(.’L')g(.’E,H) = (Kllf)(x,ﬂ) — / k(ﬂa,ul)f(lv,,u')d,u’
0

with boundary condition g(0, ) = 0. We multiply this equation by g to obtain :

2 1
b (o) + 0()g? (@) = (o) [ s i) (@)

If ¥ is a primitive of o,

o [ 2w 2 25 !
5 ¢ o) = 25 atw) [ hin 1Sty
€L H 0

Integrating from 0 to z and using g(0, ) = 0 gives

9 2 _23(x) T 23 ' 1 ' ! ' I
g(x,u)=;6 Z /06 vg(a', 1) /Ok(u,u)f(x,u)du dz

z x 1
= %/0' 6_% ! a(y)dyg(x/’u) |:/0‘ k(uaul)f(xl,ul)dul] d],‘l_
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We integrate on z from 0 to L and on y from 0 to 1 to get the L? norm of g,

||g||2—// / 3 oWy ) [/ (o 1), u)du]dwdwdu

Using Fubini’s theorem,

1 L L, . 1
IIQII%Z/ / g/{ e Jor W g1 1) [/0 k(u,u’)f(:v',u')du'] dzdz'dp
1
/ / |:/ /U(y)dyd$:| 9(z /’H) |:/0 k(ﬂaﬂl)f(xlaﬂl)dﬂl] dx'du
L
S/O al(u)/o k(u,u)/ |f (=, ) g(z', p)|dz' dp’ dps

S(/lal(u)Q/o Fe(p, Qdu’du) [// (/ ,u’)g(x',u)ldw'>2dudu’r
<51 (L rad) ([ o ]
< §||f||2||g||2,

using the (A3) assumption. This gives the bound on ||0;1||2. For 8;2, the proof is identical
except that we are dealing with functions f defined on {25 and vanishing on (2, whereas
g is computed on (2;. All integrals on u' are now from —1 to 0, and we end up with

ol < (/o1 al(M)Q/_ )y du) [/ / (/ wg(a, M)Idw)Qdud/l,r

which has the same bound.
For 659, we consider the solution g on {25 of

Jg 0
gy (T 1) +og(e,p) = Ko f = /1 k(p, 1) f (@, ")t

with boundary condition g(L, ) = 0. We multiplying this equation by ¢ and we use for
X a primitive of —¢ vanishing in z = L,

o [ RICH 2 23(z) 0

—o—le g (:v,u)] = —e I g(w,u)/ k(p, ') f (1)’

oz |l -1

We integrating from z to L, and we get since g(L,u) = 0,

thus using Fubini theorem

lglls = e ”(y)dydw (z', 1) ku p) f (@', p')dy! | de'dp
Iul

so that ao appears in place of a1. The ending of the proof is straightforward.

Now we turn to the second expression appearing in (4), to prove that for some v > 0 we
have

(R¥, ARF)

— >y

(ARk, ARF) —

We can give an explicit value for v :
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Proposition 3 Under assumptions (A1)-(A3), the matriz of operators A verifies

1-¢
(AF,F) > ——2_ (AF,AF),  VF € D(T) x D(T). (7)
1+ (5)
Proof Let J; = (I — 922)_1921 and Jo = (I - 911)_1012, we write :
(AF,AF) = |F1|5 + |1 2|5 + L FLll5 + |2 a3 — 2(J2 Fo, Fi) — 2(J1Fy, Fy)
and
(AF,F) = ||Fy|3 + | F2ll5 — (JoFa, Fy) — (JLFL, Fy).
Let v > 0 and consider
(AF,F) — v (AF, AF) = (1 = v)(|| 1|13 + || F213) — v(| L F1]3 + [|J2F2]13)
+ (21/ - 1) [(JQFQ,Fl) + (JlFl,FQ)]

2
c 2c
> (1 . ¥ (—2 : ) )(IIEII% HIBIR) - @v - D)= R BI R,

—C

using (6). Thus

(AF,F) — v (AF, AF) > (1—V—2u (2 ¢

—C

) — (20 - 1)2—;) (IFL )3 + I I1).

(M)

2 -~
We consider v such that 1 —v —2v (L) —(2v—-1)5% =0that isv = -

2—c c 1+(% 2"

~—

We can now state the convergence result.

Theorem 1 Under assumptions (A1)-(A83), the minimal residual method converges, i.e.
Fk converges toward the unique solution of (3), and the residual is decreasing at the
following rate :

1—

EFHY) <g(FF) [1- ——25 (8)
1+(5)

Proof We plug estimations (5) and (7) into (4), to get (8). As ¢ < 1, this means that

E(F*t1) converges toward 0 when k goes to infinity. We use (5) to get

|FF+L — A71B|2 < 2-c <.AF’“+1 _ B, Fk+_ A—IB>
2(1—¢)
so that 5
FE+l _ A-1B|1, < —© _g(Fktly;
44— AT By < g S E ()}

which means that F¥*! — F with AF = B.

Remark 3 When c is equal to zero, the algorithm converges in one step. This is the trivial
case A = Id.

3 Discretization and numerical results

We only present the resolution of the following problem :

(T — Ku)fi =g,
fre D(T),
where ¢ has its support included into (2, and [ € {1,2}. Indeed we showed that our

algorithm only requires the resolution of such equations. Without loss of generality we
can consider the case where [ = 1. The natural space associated to this problem is

v:{feL2<91), w2 o) € L2(@) ot £0.0 =0 \mew,l)}.
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3.1 Discretization

For integers M and N, we introduce the following mesh on (2; :

0 = Uwij with w;; = (i, Tip1) X (uj,ujﬂ) fori=0,...,N—1land j=0,...,M —1
2
. . 1
Wherexi:zxp,uj:jxT,p:NandT:M_
We define V}, as the space of continuous in z functions whose restriction to a given w;; is

affine in x and constant with respect to u. We introduce the following projection operator
defined for f € L2({21) by

1

wigl Jus,

Wh(f)|wij f(iE,/j,)d.’IJd/j,,

our approximated problem is given by

Find f;, € V}, such that
(Pr)
Anfr = m(fn)

where

Anf o) = m (WG 010) + mo (o)) o)~

Ny 1
m(C@) S mlerlu)) [ (el mf o,
I=1 0

Here we assumed the form (A4) for k, which is essential for this discrete equation to be
solved by an explicit scheme. We refer to [2] and [3] in which the scheme is developed and
studied.

3.2 Numerical results

We present our numerical results compared to standard, Gauss-Seidel and SOR methods
of [3]. We took particular data for which an exact solution f is known :

u? + opz — oc/4 if >0, T if >0,
S(z,p) =1, . fl@,p) = .
p*+opu(z—1)—oc/d4 if u <0, pwlx—1) if p<O0,

and we compared the speed of the various algorithms to reach the exact solution up to

1075, As the SOR gives far better result than standard or Gauss-Seidel methods, we first
compare the minimal residual method with these two, and then turn to the comparison
with SOR. For these two cases, we study the behavior with respect to ¢ and to ¢. On each
graph, we report the cpu time to compute the whole test (i.e. to obtain all points of the
curve).

One striking property of our scheme, as shown in figure 1, is that it does not blow up
in iterations near the critical case (¢ =~ 1). Due to this fact, its computation time is
far smaller than the two other schemes.This problem does not occur when o varies at
fixed ¢, as all schemes are stable. Nevertheless, our schemes gives better results (figure
2). Turning now to a more serious opponent, the SOR scheme (figure 3), we see that
this scheme is still blowing up near the critical case, whereas as already seen above, the
minimal residual algorithm remains stable (numerically we can even cross the value ¢ = 1),
with less computation time. Inspecting now the behavior with respect to o (figure 4), one
could think that minimal residual method is not so good for large . But a test for really
large values of o reveals that our scheme converges more and more rapidly as o increase,
whereas SOR keeps a constant number of iterations (see figure 5 in decimal log scale).
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2000

Gauss-ISeideI (51.27 s) e
Standard (198.7 s) —=%—
Mininimal Residual (3.5s) —e—
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Cc

Fig. 1. Comparison at fixed o = 50, with total computation times
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Mininimal Residual (3.91s) —o—

600

500

400
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300

200

100

0 10 20 30 40 50 60 70 80 90 100
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Fig. 2. Comparison at fixed ¢ = 0.98, with total computation times

4 Conclusion

It appears clearly from our numerical results that this new algorithm is very efficient
compared to existing schemes studied in [3]. Even if the theoretical limit value of ¢ for
convergence is 1, numerically our algorithm works even for values greater than one (as DSA
do). Moreover it is easy to implement in dimension one as well as in dimension two (work in
progress). Another important point is the existence of a theoretical proof of convergence,
independent of discretization, made in the general case for the kernel and with the o
parameter which can vanish on some points of the domain. We believe that this proof
can be adapted to dimension two, which was not the case for the proofs of convergence
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Minimal residual (3.5s) —e—
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Fig. 3. Comparison at fixed o = 50, with total computation times

45

'Minimal residual (3.91 s) —e—
SSOR (7.275) —=—

40 |

30 |
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20 |
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5 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
sigma

Fig. 4. Comparison at fixed ¢ = 0.98, with total computation times

of SOR algorithm or so called DSA algorithms (Diffusion Synthetic Acceleration). At last
let us mention that the structure of our scheme, constructed upon an operator splitting,
is naturally devised for parallelization. ||
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