THEORETICAL AND NUMERICAL ANALYSIS OF A MINIMAL
RESIDUAL SOLVER FOR 2D BOLTZMANN TRANSPORT
EQUATION.

S. AKESBI AND E. MAITRE*

Abstract. Relying on the splitting of the collision operator introduced by [6] [1], we prove
theoretical convergence for an infinite dimensional adaptation of the minimal residual algorithm for
Boltzmann transport equation in dimension two. Then we compare this solver with known ones from
a numerical point of view.

1. Introduction and notations. The behavior of neutrons in a two dimen-
sional domain D, in interaction with them, is described by a function f(z,) which
represents, up to some factor, the flux of neutron density at the position x with velocity
Q2 € B(0,1). A function o(z) accounts for neutron-domain interaction, whereas a
kernel k(z,Q, Q') describes collisions between neutrons. At last, a neutron source is
represented by a non-negative function S(z, ). We refer to [10] and [19] for a more
precise introduction.

The function f verifies an integro-differential equation. Our aim is to prove the
convergence of a minimal residual method to solve this equation. Then we compare
numerically our algorithm with some iterative methods developed in the last few years
by S. Akesbi and M. Nicolet [5]. Note that the convergence of this algorithm could
be accelerated by an adapted DSA [12].

1.1. Mathematical setting. Let D bet a bounded open set of R? with lipschitz
boundary 8D, and Q = D x B where B = B(0,1) = {Q € R?, [|Q|> <1}. The
outer normal n(x) to 9D exists almost everywhere, and we define

I~ :={(z,Q) € 0D x B, Q-n(z)<0}.

We consider the following problem : given a source term S, find f : @ — R solution
of the transport equation

P (D@0 =Kf@0)+5@9) ne
flz, Q) =0 onT-,

where T is the transport operator, T'f(z,Q) = Q -V, f(z,Q) + o(z) f(z,Q) whose
domain is

D(T)={fel*Q) : Q- V.f€L*Q), f=00onT"},

and K an integral operator of positive kernel k :
Kf(z,Q) = / k(z,Q,Q") f(z,Q")dQ".
B

We make the following
Assumptions :
(A1) o0 € L*(D), oo >0, o(z) > 09 a.e. on D.
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(A2) k(z,Q,Q) = k(z,Q',Q) and k is positive.
(A3) Je € [0,1), Vi€ {1,2,3,4}, / k(z,Q,Q)dQ < ‘%"' ae. on (Q, where
B;
B; is the i-th quarter of the disk B, see figure 1.

Ny,
(A9) k(z,2,9) = C(2) Y ar(@)ar(€Y).
=1

REMARK 1.
1. One can replace assumption (A1) by this less restrictive assumption :
(A1°) (f,9) = [po(x)f(x)g(x)dx is a scalar product on L?(D).
This allows o to vanish on sets of null measure in D. In this case one has to work in
Lebesgue space with weight o.

2. Assumption (A4) is not used for theoretical proof of convergence. However, it
is necessary to assume this form for k for the numerical splitting method to work (see
numerical results). In this case the symmetry assumption of (A2) is automatically
verified.

3. We can also replace (A3) by (A3)’: Ic €[0,1), Kk(z,Q,Q') < go¢

4. These assumptions (including (A4)) are satisfied for usual kerngls of neu-
tronic as the constant and Thomson kernels.

5. Assumptions (A1)-(A3) ensure the existence and uniqueness of the solution
of (P) inD(T). Indeed, they are stronger than those of [10], for example the symmetry
property of k with assumption (A3) give assumptions 2.67 p. 1105, which with (A1)
imply assumption 2.40 p. 1092. From theorem 2 p. 1087 we know that Af := Q-V, f is
a m-accretive operator with domain D(T'), and the previous assumptions give existence
and uniqueness of a solution of (P) in D(T) (theorem / p. 1105).

6. Note that all obtained results are valid for non zero incoming fluz in (P).
Note also that from the m-accretivity of A and assumption (A1), T~ exists.

1.2. Classical and splitting methods. The standard method to solve (P),
called the source iteration method, is based on a decoupling between the differential
and integral parts, through the following iterative scheme : given f° € D(T), solve

Tt =Kf"+S inQ,
(Fe) { "t e D(T).

Close to the critical case (¢ = 1), this algorithm becomes extremely slow. Several
acceleration methods of the convergence of (Ps) have been introduced and studied.
In particular the Diffusion Synthetic Acceleration (DSA) method [12][8] and multigrid
algorithms [14][18].

The main difficulties encountered while studying these methods lead the authors
either to consider the discretized equation in the angular variable [11][15], or the
continuous equation with a truncated expansion of k with respect to this angular
variable [18][11].

To our knowledge, the only theoretical proof for the acceleration of the conver-
gence in the continuous case (in space an angular variables) has been obtained for
reflexive boundary conditions by [12].

The idea of [2] and [3] is to introduce and study better algorithms than (P),
adapted from the methods of Jacobi, Gauss-Seidel and SOR, in the infinite dimen-
sional case. These algorithms can be accelerated by an adapted DSA method. This
approach has been studied in dimension one and two by [6], and successfully compared
to standard DSA method.
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Our aim is to propose a new algorithm, replacing Jacobi, Gauss-Seidel or SOR
algorithms, based on an adaptation of the minimal residual method in infinite di-

mensional case. As others algorithms, it relies on the following natural splitting of
k.

Let K;j,14,j € {1,...,4} be the integral operator whose kernel is

kij(xaﬂaﬂl) = k‘(x,Q7Q') X lQi(maQ) X ]‘Qj (:E:QI)J

with @Q; = D x B;, B; being the i-th quarter of the unit disk (see figure 1) and
10, (z, Q) the indicator function of Q;.

Ay
BZ Bl
.
B, B,
F1c. 1. Decomposition of B
4
Since we have K;i;(f) = K;;(f.1g;)1q;, operator K splits into K = Z K;;.
ij=1

Note that Kj; is an operator acting from L?(Q), using only the values of f on Q;, such
that K;; f has its support in @;. The solution of (P) is given by f = fi+ fo+ fs + fa
with fl; f2, f3, f4 € D(T) solution of

T-Ki —Ki —Ki3 K14 f1 S1
—K1 T -—-Kx»p —Ko —Kz4 fa| _ |52 (1)
-K3 —K3s T —-Ksz3 —Kzy f3 S3
-Kun —Kyo —Ky3 T —Ky fa S

where S; = S x 1g,. Then we have f; = f x 1, for i € {1,...,4}. The SOR method
introduced by [6] gives excellent results, but needs the computation of its optimal
parameter, which in turn can be very slow in the critical case. For these reasons we
looked for a method that gives good rate of convergence, but do not need any extra
parameter calculation.

2. Minimal residual algorithm. This method was introduced by O. Axelsson
[13], in the finite dimensional case, and proved to converge provided the matrix of the
linear system has a definite positive symmetric part.

Using the operator splitting devised by S. Akesbi and M. Nicolet, the transport equa-
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tion is equivalent to the following system

I-60n —b2 —013 —014 fi
—031 I —0 —03 —034 fa
—031 —O32 I —033 —03 f3
—041 —042 —043 I — 044 fa

St
S
:9‘3’ )
S

where we applied on components the operator T~!, and set 6;; = T ' K;;, SN’, =T-15;.
The matrix of operators of our system will be preconditioned by the inverse of diagonal

i.e.
(I — 011)_1 0 0 0
0 (I - 022)71 0 0
0 0 (I - 033)71 0 ’
0 0 0 (I — 044)71

leading to the following matrix of operators

I —(I - 011)_1012 _(I - 011)_1613
A= —(I - 922)_1021 I -(I- 022)_1623
—(I —033)71051 —(I—053)"05 I

—(I —044) "051 —(I — 044) 012 —(I — 044) 643

—(I—6011)"'014

—(I = 022) 71024

—(I = 633) 034
I

In order to perform a minimal residual method, we have to make clear which opera-
tions between matrix and vectors, appearing in the method, can be calculated from

a numerical point of view.

We are willing to solve AF = B, where F =t (fy, f2, f3, f1) € D(T)*. We denote by

(,) the scalar product in (L*(Q))*, Le. (F,G) = (f1,91) + (f2,92) + (f3,93) + (f1,94)
where () is the standard L?(Q)) scalar product. Similarly, [|||, will represent the norm

in (L2(Q))* associated to this scalar product.

The minimal residual method, minimizing £(F') = ||B — AF ||§, takes the following

form :

Let fo S D(T), FO = (folQi)’i=1,---,47 R'=B - AFO, PY = RO,

While ||RF|, > do

begin
. (RN
(QF, Q%)
Fi*l = FF 4 ok P
Rk+1 — Rk _ Oéka
ﬂk-i-l — _ <ARk+17 Qk>
(QF, Q%)
Pk+1 — Rk+1 4 I@k+1pk
Qk+1 — ARk+1 +,8k+1Qk
end

QO = AP

In the previous algorithm, we have to make clear how we compute the product A

times a vector, since A contains some inverse operator.
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So let g € D(T), G = (91¢;)i=1,..,2 and see how to compute Z = (21, 22, #3,24)
verifying

Z=AG
Componentwise, this equality means for ¢ =1, ... ,4,
zi=gi— Y _(I—0i)""0ig;.
J#i

Applying T(I — 0;;) = T — K;; to the first equation we get

(T Ku 9i — ZKz]g] (2)
J#L

These integro-differential equations can be calculated numerically [1] thanks to the
splitting and the special form of the kernel assumed in (A4). More explicitly, the
equation R = B — AF° corresponds to solve the system

J#i

whereas Q° = AP stands for

(T K’ll (pz z ZKz]pJ; Z:]., ,4.
J#i

At last, the product AR¥+1 =: D*+1 which of course is calculated only one time per
iteration, is associated to the following equations :

(T Kzz)( m di'H_l) = ZKUT;E—H, i=1,...,4.
J#i

REMARK 2. FEquations (2) correspond to one step of a Jacobi iteration. One
could also thing of a Gauss-Seidel iteration, which would be in that case

(T Kzz 9i — ZKz]gJ ZKsz]

Jj>i j<i

Of course one may also perform a symmetric Gauss-Seidel iteration; in what fol-
lows we study the convergence of this iterative method with a Jacobi type iteration.
We present numerical results for Jacobi, Gauss-Seidel and symmetric Gauss-Seidel
iterations.

2.1. Rate of residual decreasing. Applying elementary analysis of [13], we
have the following estimate on the residual (cf [4] for the proof) :

PROPOSITION 1. Let F* be constructed by the preceding algorithm starting from
F°. Then for k>0,

3)

£ < () (1_ (Rk, ARY) <Rk7ARk>>

(Rk, R*) (AR, ARF)
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2.2. Theoretical convergence. Let us prove first that our operator .4 has
somehow definite positive symmetric part, so that for some A > 0,
(R*, AR
(RF, RF)

PROPOSITION 2. Under assumption (A1)-(A3) the operator A has a definite
positive symmetric part and verifies

> A

(AF,F) > T2 C|IFI3,  VF € D) (4)
4

Proof. We have

(AF,F) = Z”FHZ ZZ i (I — 0i) 10@JF)

i=1 ];éz
> Z”FHZ WZZIIFIIzIIF 2
i=1 j#i

if ||(I —04) 16;j|]2 <. The corresponding symmetric bilinear form on R* is definite
positive when v < %, since its eigenvalues are 1 — 3y and 1 + v. It remains to control
the norms of 8;; and 6;;. To this end, let us state the following

LemMMA 3. Under assumptions (AI) (A3), 10i;1l2 < &, for (i,7) € {1,...,4}%
Postponing the demonstration of this lemma, we compute

(T —65)""0s5ll2 = sup [|(I —6:)~"0i; fll
[[£ll2=1
= sup 0% 16 f
17l2=1 (Z ) !
<Z||9ii||§> 11655 |2
k=0

1105112
= 1 [|0ill2

IN

Thus from lemma

o

(T — 6:)~"051l2 < ﬁ =
-1

Therefore taking v = ;% < % as ¢ < 1, the smallest eigenvalue of the bilinear form
on R* is

l1-c¢

1-—

1-3v=

hln

The result follows. O
Proof. [ of lemma 1.] Recall that A = Q -V, is m-accretive on D(T'). It induces
a m-accretive operator A; on LQ(Qi) whose domain is

D(A) ={f € L*(Qi) : Q-Vof € L*(Q:), f=00nT;}
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where I'; =T~ N (8D x B;). Let g € D(A;) solution of Tg = K;; f with f € L?(Q;).
Then
(Tg,9) = (Aig,9) + (09,9) = (09,9)-
Thus
But thanks to Cauchy-Schwarz inequality,

(Kijfag):/D/B_XBlk(xaﬂ,Q')f(m,Q’)g(a:,Q)dQ’dem

1
2

S/D(/BiXBjk(m,Q,Q’)f(a:,ﬂ’)%ﬂ’dﬂ)%(/BiXBjk(a:,Q,Q’)g(x,Q)MQ’dQ) dz
- /D (/B Fz, )2 [/B k(x,Q,Q’)dﬂ] dQ’) :
x</ g(m,Q)2[ k(x,Q,Q')dQ'] dQ>%dm.
Bi B;

Observe that assumption (A2) on k imply that condition (A3) reads

k(z,Q,0d0 < 22 and k(z,Q, Qdo < 2o
B, 4 B, 4

Finally,

ooC
oollgl3 < (09,9) < (Kiif,9) < NIl llgllz,

the last two norms being taken on @); and @); respectively. This gives the announced
bound. d

Now we turn to the second expression appearing in (3), to prove that for some
v > 0 we have

(RF, AR¥)

—_— > .

(AR*, ARF) =
In fact we can give an explicit value for v :

PROPOSITION 4. Under assumptions (A1)-(A3), the matriz (of operators) A
verifies

4—¢c
22+¢)

Proof. Denoting by Ji; = (I —6;;)76;;, we have

(AF,F) > (AF, AF), VF € D(T)*. (5)

2
4

(AF,AF) =Y _||F; = > Ji; F;
i—1 i )
=S IEI+ D, (JiFy, JuFe) =2 (JiFj, F)
i=1 | kA i




8 S. AKESBI AND E. MAITRE

and

4
(AF,F) =Y |IIFill; = Y _(Ji; Fj, Fy)

i=1 JF#i

so that for » > £ (we hope we would find such a v),

4
(AF,F) —v(AF,AF) =Y |(1=-v)|FEl5—v Y (Ji;Fs, JnFy)
i=1 j#i, ki

+ (2v 1)) (Ji; Fj, F)

J#i
4 e \2
2
>3 |a-wlFl-v(5) X IRl A,
i=1 VESN T
—(v =1 Z 1E3ll, 11511
J#z
since we showed in the proof of previous proposition that ||J;;]|2 < . Once again,

we consider the associated symmetric bilinear form on R*, which after gathermg terms

:él<1—u—3u(4ic>2) X?

i _<(2,,_1)4—+2u( ))ZXX

Jj#i

It is clear that for this bilinear form is positive if and only if
¢\’ c ¢ \?
— —_ > —_ N
1-v 3V<4—c> > 3(2v 1)4—c+6y<4—c)

(4-0)
YS et

which gives

We easily verify that this value is always greater that one half (see figure 2). O
We can now state the convergence result.
THEOREM 5. Under assumptions (A1)-(A3), the minimal residual method con-
verges, i.e. F* converges toward the unique solution of (1), and the residual decreases
at least at the following rate :

1—c¢c
1+¢

E(FF1) < E(FH) (1 ) for k> 0. (6)
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Proof. Plugging estimations (4) and (5) into (3), we get (6). As ¢ < 1, this means
that £(F*t1) converges toward 0 when k goes to infinity. Using (4) we have

[P = A7 BE < (=0 (AP - BLFH - A )

so that ||F*¥+1 — A71B||; <

(4—c)
(-
d

1 C)E(Fk“)% which means F*¥+! — F where AF = B.

REMARK 3. Our estimate of the convergence rate (6) is not optimal. Indeed, the
forthcoming numerical tests will show that our algorithm works for values of ¢ greater
than one (see figures 7 and 8).

REMARK 4. We see from (6) that convergence is ensured if ¢ < 1. In the trivial
case when ¢ = 0, we find that our method converges in one iteration, since £(F') = 0.
We could expect this since in this case, there is no coupling between components (A
is the identity). We draw on figure 2 the behavior of the three constants appearing in

(4)(5) and (6).

1 T T T T Az i

4—ct

V= 3012

08 | 1— v
0.6 - -
0.4 -
0.2 - -

0 ] ] ] ]

0 0.2 0.4 0.6 0.8 1

F1G. 2. Constants appearing in (4)(5) and (6)

3. Discretization. Let D = (0,a) x (0,b). We consider the following triangula-
tion of D :

D = (@i, wira] X [yj,y541]) = J D
1) ij

and a triangulation of the disk B : B = |J, Ty . Every iteration of our algorithm
relies on the resolution of the following problem :

(T-Ku)fi =9,
fi € D(T)
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where g has is support included in @, and I € {1,2, 3,4}. Without loss of generality
we can consider the case | = 1. For a kernel k respecting assumption (A4), our
problem becomes :

d d Al
Ma—J;I + naiyl +ofi=Clx,y) > alp,n) /B ar(W'sn') fu(@,y, 1 ' )dp'dn’ + g
=1 1

We call Py, (k,l) the set of functions fy(z,y, 1,n) defined on @ such that their restric-
tion to D; ; x T}, is a polynomial of degree less or equal to k£ with respect to the spatial
coordinates z,y and of degree less or equal to [ with respect to the angular variables
u,n. We introduce the discrete space Vj, as the space of functions fr, € Py(1,0)
vanishing on I'", such that

Yi+1 Tit1
T — In(z,y, u,n)dydpdn and y — / Jn(@,y, p,n)drdudn
Y T Ti T

are continuous functions. We set

1
miig = ———— z,y, u,n)dzdydud
ik = 5 X|Tk|/D,-,,-><Tk In(@,y, p,n)dedydudn

1 Tit1
| P ; dxdud
1,7,k h:c x |Tk:| ~/z, /Tk fh(mayjaﬂan) Tapan

1 Yi+1
| 7/ fu(@isy, u,m)dydudn
i,k hy X |Tk| v T g

where h, = z;41 —x; and hy = y;j41 —y;. We denote by 7 the projector from D(T')
on P;(0,0) :

1
Trh(f)lDi,j xTyx — m /D,-,ijk f(x,y,,u, n)dmdydﬂdn

Taking into account assumption (A4), we define the discrete operator Ay on D(T) by

An() = mhl gt + '5) + mu(o)ma()
Ny,
=€) Y mulan) (| mulon) ) () )
=1 1

and we consider the associated problem :

Find f, € V}j such that
P
(“{Mﬁw=m@)

Observe that for each f;, € V}, the imposed continuity conditions lead to :

1 1
Migk = 58 + Tiin) = 5T T Tig)- (7)
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The discrete problem (P},) can be written as follows :

2 2
( };l:l/k + ]'zhc + Uz,]) mZ’L 5-7 Z Oél kq) 'U/k Fy] k + f?k Fw’]ak + gi’j7k7 (8)
z Y

for all 4, j and k such that T} € By, where

1

T— o(x,y)dzdy,
|Dijl Jp,

Pk = pdpdn,  np = ndpdn,  0i; =

1 1
|Tk| J, |Tk| Jo,

1 1
i = T Clz,y)dzdy, ik = 75—
v |Di,j| D;,; " |Di,j| x |Tk| D, xT

9(x, y, p, n)dzdydpdn
are known quantities, and @éyj = Z oy, kM j g is unknown.

k' /Ty €B1
The incoming fluxes are given on Q; by T} . gk =TLior =0. We now explain how to
compute I'Y,; ,, and 7, | from I, and 'Y, .

2 2 -
Multiplying (8) by (# + # + am> op ), and summing on k, we obtain for each
"€ {1,2,..., Ny} a linear equation between the unknown quantities ® z j» which leads

to a small linear system Ny X Ny . Once this system has been solved, the <I>z~,j are
used in (8) to compute m;,jx which in turn are plugged into (7) to get I'f ;,, , and
Tk

For the presented numerical results, we consider D = (0,1) x (0,1) and h, =
hy = 15. Bach quarter of the unit disk is subdivided into 25 mesh elements. We take
a constant kernel k(£2, Q') = 2. The exact solution of our test problem is given by

zy on Q1
(1—2)y on Q2
:U’ b ) =
T@w M =40 - )1~ y) on Qs
z(1 —y) on Q4
[Pt — FE
For every iterative methods tested there, iterations are stopped when W
1

is less than a prescribed € > 0.

4. Numerical results and discussion. We compare our methods with Gauss-
Seidel method and SOR, which has been proved to be a very efficient method. We
have to keep in mind that SOR needs the computation of a relaxation parameter
which is very time consuming : in one dimension a formula exists for this relaxation
parameter, which needs the computation of the spectral radius of Jacobi iterations.
In dimension two there is no known formula for this parameter, thus it should be
determined by dichotomy. We did not include computation time for this parameter
in SOR in all forthcoming tests.

There is two sets of tests : one at fixed o, another for fixed ¢. For each case,
we first compare all the methods, and then we remove Gauss-Seidel to compare the
methods for critical values : ¢ near one and large . As shown in figure 3, our method
with symmetric Gauss-Seidel solver seems very close to SOR, without computation of
any optimal parameter. For values of ¢ close to 1, the situation is even better since
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T T
Gauss-Seidel —+—
S.O.R. %
Minimal Residual Jacobi ---*---/ |
Minimal Residual Gauss-Seidel &
Minimal Residual Symetric Gauss-Seidel --=

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
Cc

Fic. 3. Comparison of cpu time at fized o = 50.

T T T T T T T T
S.O.R, ——
Minimal Residual Jacobi ---x---
Minimal Residual Gauss-Seidel ------
Minimal Residual Symetric Gauss-Seidel &

0
0.9999 0.99991 0.99992 0.99993 0.99994 0.99995 0.99996 0.99997 0.99998 0.99999 1
Cc

Fi1c. 4. Comparison of cpu time at fired o = 50 near ¢ = 1.
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35 T T T

Galuss—SeideI —

-

Minimal Residual Jacobi --->---
Minimal Residual Gauss-Seidel &
Minimal Residual Symetric Gauss-Seidel —-m--

Time (s)

"""" Kooy Sk
[N ERESLN |
e g W !
o a8 = 23] h
X-mmmmmm == X mmmmm e
0 I | . |
’ 2 0 60 80 100

sigma

F1G. 5. Comparison of cpu time at fized ¢ = 0.98.

SOR converges in more and more iterations near ¢ = 1, whereas we can compute the
solution for ¢ = 1 with our method, as seen on figure 4.

Turning now to the o dependence, you could see on figure 5 that our schemes are
comparable to SOR (again in which we did not count the time spent to compute the
relaxation parameter) for small values of o. A test for really large values of o reveals
that our scheme converges more and more rapidly as o increase, whereas SOR keeps
a constant number of iterations (see figure 6 in decimal log scale).

As our algorithm seemed to converge even for ¢ > 1, we plotted in figures 7 and 8
some tests for ¢ from 1 to 4. This last value is a critical value for which our numerical
method may fail to work (the leading coefficient in (8) may vanish). Note that our
algorithm is still more efficient for great values of o.

5. Conclusions. We showed through the previous numerical tests that our
methods are as efficient as SOR for non-critical cases (¢ close to 1 or large o), and
converge even faster for critical cases. Moreover, their implementation is as easy as
standard algorithm (P;). They are naturally devised for parallelization. A work is in
progress for the acceleration of this algorithm by an adapted DSA method [6], and
its comparison with standard DSA.

We noticed during our numerical tests a faster rate of convergence of our algo-
rithms than theoretically estimated by (6). Maybe this estimation could be improved.

[
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I I S.b.R. —

Minimal Residual Jacobi ---x---
Minimal Residual Gauss-Seidel ------
Minimal Residual Symetric Gauss-Seidel &

O
g -
i: O
= S -
Koo Ko T
\\\X\\
0 1 1 1 1 1 1
0 1 2 3 4 5 6 7
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F1G. 6. Comparison of cpu time at fized ¢ = 0.98, for large o.
3 T T T — T - LB T
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25
2 -
O
[} L
£ 15
=
l -
05 |
O 1 1 1 1 1 1
0.5 1 15 2 2.5 3 35 4

C
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