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Abstract
We consider a nonlinear counterpart of a compactness lemma of J. Simon [1], which arises naturally

in the study of doubly nonlinear equations of elliptic-parabolic type. Our work was motivated by previ-
ous results J. Simon [1], recently sharpened by H. Amann [2], in the linear setting, and by a nonlinear
compactness argument of H.W. Alt and S. Luckhaus [3].

MSC2000 : Primary 46B50, 47H30. Secondary 34G20, 35K65.

1 Introduction

Typical applications where the compactness argument stated below is useful are those in which the following
kind of doubly nonlinear equations arises

dB(u)
dt

+A(u) = f

where A is elliptic and B monotone (not strictly). It is the case, for example, in porous medium, semi-
conductor equations, ...

In our application, we considered the injection moulding of a thermoplastic, with a mold of small thickness
with respect to its other dimensions. By averaging Navier-Stokes equations across the thickness of the mold,
and under an assumption (of Hele-Shaw) stating that the velocity �eld is proportional to the pressure gradient,
the pressure equation can be written as a doubly nonlinear equation [6].

Note that in this context, the equation can degenerate to an elliptic one. In order to get existence of a
solution, one usually perform a time discretization, use some result on elliptic operator and pass to the limit
as the time step goes to zero. In nonlinear problems compactness in time and space is then required. The
compactness in space is easily obtained for u from a coerciveness assumption on the elliptic part A, but we
have no estimate on ∂u

∂t since B could degenerate. Theorem 1 uses the space compactness of u and some
time regularity on B(u) to derive a compactness for B(u), which in turn can be useful to pass to the limit in
nonlinear terms of A (provided A has a an appropriate structure, e.g. B−pseudomonotone [5]).

2 Main result

Let us consider two Banach spaces E1, E2. Let T > 0, p ∈ [1,+∞], and B a (nonlinear) compact operator
from E1 to E2, i.e. which maps bounded subsets of E1 to relatively compact subsets of E2.
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Theorem 1 : Let U be a bounded subset of L1(0, T ;E1) such that V = B(U) is a subset of Lp(0, T ;E2)
bounded in Lr(0, T ;E2) with r > 1. Assume

lim
h→0+

‖v(·+ h)− v‖Lp(0,T−h;E2) = 0 uniformly for v ∈ V. (1)

Then V is relatively compact in Lp(0, T ;E2) (and in C(0, T ;E2) if p = +∞).

Remarks :

1. One can easily check that theorem 1 holds if we assume only U bounded in L1
loc(0, T ;E1) and V

bounded in Lrloc(0, T ;E2).

2. In the case where B is the canonical injection from E1 to E2, the assumption on B corresponds to the
compactness of the embedding of E1 into E2, and the conclusion falls in the scope of previous results
of J. Simon [1], theorem 3.

3. The point in this result is that we do not make any structural assumption on B (e.g. strict monotony,
which would fall in the scope of results of A. Visintin [4]) except compactness. Note that in the case of
a compact embedding of E1 into E2, B needs only to be continuous from E1 to E2 for the E2 topology.

Idea of the proof : A su�cient condition for compactness is to prove that for each couple (t1,t2),
∫ t2
t1
v(t)dt

describes a relatively compact subset of E2 as v describes V . First the u(t), u ∈ U are truncated in norm at
height M > 0 and form a bounded subset of E1 which B maps to a relatively compact subset VM (t) of E2.

The key point is that thanks to equi-integrability assumption,
∫ t2
t1
v(t)dt can be approximated uniformly in

v by Riemann sums involving truncated elements of the VM (t).

Proof : Thanks to the equi-integrability (1) of V and results of [1], we only have to prove that for each
(t1, t2) such that 0 < t1 < t2 < T , the set

K =
{∫ t2

t1

v(t)dt, v ∈ V
}

is relatively compact in E2. For that purpose, we introduce for u ∈ U and M > 0 the measurable subset of
[0, T ] de�ned by

GMu =
{
t ∈ [0, T ], ‖u(t)‖E1

> M
}
.

From our assumptions on U , there exists a constant C > 0 such that

∀u ∈ U, ‖u‖L1(0,T ;E1) ≤ C,

and since we have

meas(GMu ) =
∫
GMu

1dt ≤
∫
GMu

‖u(t)‖E1

M
dt ≤ C

M

that gives
lim

M→+∞
meas(GMu ) = 0, uniformly in u. (2)

Introducing the truncated functions

uM (t) = u(t) if t 6∈ GMu , 0 otherwise,

we have by construction

∀M > 0, ∀u ∈ U, ∀t ∈ [0, T ],
∥∥uM (t)

∥∥
E1
≤M. (3)
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Lemma 1 Under condition (1), K can be uniformly approximated by Riemann sums involving elements of
the form vM (t) = B(uM (t)), in the following sense : given ε > 0, there exist integers N and M such that for
all v = B(u) ∈ V , there exists sN,Mv ∈]0, h[ such that∥∥∥∥∥

∫ t2

t1

v(t)dt−
N∑
i=1

hvM (ξNi−1 + sN,Mv )

∥∥∥∥∥
E2

< ε (4)

where h = t2−t1
N and ξNi = t1 + ih.

Proof : We �rst note that∫ t2

t1

v(t)dt−
N∑
i=1

hvM (ξNi−1 + sN,Mv ) =
∫ t2

t1

(
v(t)−

N∑
i=1

vM (ξNi−1 + sN,Mv )χ]ξNi−1,ξ
N
i ](t)

)
dt. (5)

Then we prove the following inequality, where r′ stands for the conjuguate exponent of r :

1
h

∫ h

0

∫ t2

t1

∥∥∥∥∥v(t)−
N∑
i=1

vM (ξNi−1 + s)χ]ξNi−1,ξ
N
i ](t)

∥∥∥∥∥
E2

dtds

≤ 2T 1− 1
p sup
σ∈[−h,h]

‖v(·+ σ)− v‖Lp(0,T−σ;E2) + 2
(
measGMu

) 1
r′ ‖v −B(0)‖Lr(0,T ;E2) . (6)

Let us denote by I the left-hand side of the stated inequality. Then

I =
1
h

∫ h

0

N∑
i=1

∫ ξNi

ξNi−1

∥∥v(t)− vM (ξNi−1 + s)
∥∥
E2
dtds =

1
h

N∑
i=1

∫ ξNi

ξNi−1

∫ ξNi

ξNi−1

∥∥v(t)− vM (s)
∥∥
E2
dtds.

Using Fubini's theorem, and setting σ = s− t we get

I =
1
h

N∑
i=1

∫ ξNi

ξNi−1

∫ ξNi −t

ξNi−1−t

∥∥v(t)− vM (t+ σ)
∥∥
E2
dσdt,

which gives thanks to a new application of Fubini's theorem,

I =
1
h

∫ h

−h

N∑
i=1

∫ min(ξNi ,ξ
N
i −σ)

max(ξNi−1,ξ
N
i−1−σ)

∥∥v(t)− vM (t+ σ)
∥∥
E2
dtdσ ≤ 1

h

∫ h

−h

∫ min(t2,t2−σ)

max(t1,t1−σ)

∥∥v(t)− vM (t+ σ)
∥∥
E2
dtdσ.

From the de�nition of vM we thus have

I ≤ 1
h

∫ h

−h

∫ min(t2,t2−σ)

max(t1,t1−σ)

‖v(t)− v(t+ σ)‖E2
dtdσ +

1
h

∫ h

−h

∫ min(t2,t2−σ)

max(t1,t1−σ)

χGMu (t+ σ) ‖v(t)−B(0)‖E2
dtdσ.

As V is a bounded subset of Lr(0, T ;E2) one has the second term bounded by

1
h

∫ h

−h

(∫ min(t2,t2−σ)

max(t1,t1−σ)

χGMu (t+ σ)dt

) 1
r′ (∫ t2

t1

||v(t)−B(0)||rE2
dt

) 1
r

dσ ≤ 2(measGMu )
1
r′ ||v−B(0)||Lr(0,T ;E2).

and the Hölder inequality gives the announced estimation (6).
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Using (1), (2) and as v belongs to a bounded subset V of Lr(0, T ;E2), we conclude from (6) that

1
h

∫ h

0

∫ t2

t1

∥∥∥∥∥v(t)−
N∑
i=1

vM (ξNi−1 + s)χ]ξNi−1,ξ
N
i ](t)

∥∥∥∥∥
E2

dtds→ 0, when M and N go to in�nity, uniformly in v.

(7)
We claim that there exists at least one s = sN,Mv ∈ [0, h] such that∫ t2

t1

∥∥∥∥∥v(t)−
N∑
i=1

vM (ξNi−1 + sN,Mv )χ]ξNi−1,ξ
N
i ](t)

∥∥∥∥∥
E2

dt→ 0, (8)

when M,N go to in�nity, uniformly in v. Indeed, let us set by sake of readability

fvN,M (s) =
∫ t2

t1

∥∥∥∥∥v(t)−
N∑
i=1

vM (ξNi−1 + s)χ]ξNi−1,ξ
N
i ](t)

∥∥∥∥∥
E2

dt

so that the uniform convergence (7) reads

1
h

∫ h

0

fvN,M (s)ds→ 0, when M and N =
1
h
go to in�nity, uniformly in v. (9)

Then for �xed v,N,M there exists at least one s = sN,Mv ∈ [0, h] such that

fvN,M (sN,Mv ) ≤ 1
h

∫ h

0

fvN,M (s)ds.

If not, we would have the reverse strict inequality for all s ∈ [0, h] which by averaging on [0, h] would lead to
a contradiction. Then as fvN,M is positive, the uniform convergence (9) implies

fvN,M (sN,Mv )→ 0, when M and N =
1
h
go to in�nity, uniformly in v, (10)

which is exactly (8).
A fortiori, (4) holds thanks to (5) and since∥∥∥∥∥

∫ t2

t1

(
v(t)−

N∑
i=1

vM (ξNi−1 + sN,Mv )χ]ξNi−1,ξ
N
i ](t)

)
dt

∥∥∥∥∥
E2

≤
∫ t2

t1

∥∥∥∥∥v(t)−
N∑
i=1

vM (ξNi−1 + sN,Mv )χ]ξNi−1,ξ
N
i ](t)

∥∥∥∥∥
E2

dt

This proves lemma 1. To conclude the proof of theorem 1, note that lemma 1 means that K ⊂ εBE2 +KM,N

where BE2 is the unit open ball of E2 and

KM,N =

{
N∑
i=1

hvM (ξNi−1 + sN,Mv ), vM = B(uM ), u ∈ U

}
.

For �xed M,N and from (3) we note that uM (ξNi−1 + sN,Mv ) is bounded in E1 uniformly in u ∈ U . As B is
compact, KM,N is thus a relatively compact subset of E2. Thus K is also relatively compact in E2. ♦

Corollary 1 : Let U be a bounded subset of L1(0, T ;E1) such that V = B(U) is bounded in Lr(0, T ;E2)
with r > 1. Assume

∂V

∂t
=
{
∂v

∂t
, v ∈ V

}
is bounded in L1(0, T ;E2).

Then V is relatively compact in Lp(0, T ;E2) for any p < +∞.
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Proof : Condition (1) of theorem 1 is satis�ed (see [1], lemma 4).
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