ON THE CLASSIFICATION OF RIGID LIE ALGEBRAS
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ABSTRACT. After having given the classification of solvable rigid Lie algebras
of low dimensions, we study the general case concerning rigid Lie algebras
whose nilradical is filiform and present their classification.
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1. STRUCTURE OF RIGID LIE ALGEBRAS

1.1. Definition. Let L™ be the algebraic variety of complex Lie algebra laws on
C". Consider the natural action of the algebraic group GL (n,C) on L™ given by

GL(n,C) x L™ — L"
(fiw) = fx*p

with (f * u)(X,Y) = f 1 (u(f(X), f(Y)) for all X,Y € C"*. We note by O(u) the
orbit of p.

Definition 1.1. The Lie algebra law p (or the complex Lie algebra g of law u) is
called rigid if O(w) is a Zariski open set of L™.

Each open orbit of this action of GL (n,C) on L™ gives, considering its Zariski
closure, an irreducible component of L™ . Therefore, only a finite number of those
orbits exist. The first results about rigid Lie algebras are due to Gerstenhaber
[7], Nijenhuis and Richardson [10]. The last two authors have transformed the
topological problems related to rigidity into cohomological problems, proving that
an algebra is rigid if the second group of the Chevalley cohomology is trivial. This
theorem allows the construction of examples of rigid Lie algebras and is used in
proving that semi-simple algebras are rigid. However, the existence of rigid Lie
algebras with non trivial second cohomology group shows that the cohomological
viewpoint is not fully satisfactory in the study of rigidity [1]. In this paper, we
recall some structural theorems related to rigid complex Lie algebras which allow
a general classification of these Lie algebras.

All Lie algebras considered are finite dimensional complex Lie algebras.

1.2. Decomposability of rigid Lie algebras. By a result due to Carles [6], it
follows that any rigid Lie algebra g is algebraic, i. e., it is isomorphic to the Lie
algebra of an algebraic group. As the algebraicity is equivalent to the decompos-
ability of the algebra [6], it follows that for solvable rigid Lie algebras g we have
the decomposition g = t @ n, where n is the nilradical and t an exterior torus of
derivations in the sense of Malcev; that is, t an abelian subalgebra of g such that
adX is semisimple for all X € t.

In [2] we introduced the notion of roots for rigid solvable Lie algebras. We recall
this approach briefly.
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Definition 1.2. We say that X € t is reqular if the dimension of
WX)={yYeg | [X,Y]=0}
is minimal that is, dim Vg (X) < dim Vg (Z) for all Z such that adZ belongs to T.

Choose a regular vector X and let be p = dim V, (X). Consider a basis (X, Y1, ..., Yp_p,
X1, ...,Xp_1) of eigenvectors of adX such that (X, X4, ..., X,_1) is a basis of V; (X),
(Y1,., Yn_p, X1, ..., Xi,) is a basis of the maximal nilpotent ideal n of g, and
(Xko+15 -+, Xp—1) are vectors such that adX; € T.

Definition 1.3. Suppose that g is not nilpotent. The root system of g associated to
(X,Y1, .., Yo p, X1, ..op—1 ) is the linear system (S) defined by the following equa-
tions :

z; + z; = zy, if the X-component of [X;, X;] is non-zero.

Yi +Y; = yr if the Yy-component of [Y;,Y;] is non-zero.

x; +y; =y if the Yi-component of [X;,Y;] is non-zero.

Yi +y; = xp if the X component of [Y;,Y;] is non-zero.

Theorem 1.1. If rank (S) # dim (n) — 1, then g is not rigid.
See [2] for a proof.

Corollary 1.2. If g is rigid then there is regular vector X such that adgX is
diagonal and its eigenvalues are integers.

These properties determine if a given Lie algebra is rigid or not. For example,
let us suppose that all elements of V; (X) are semi-simple. If

rank (S) # dim D' (g) — 1
where D! (g) is the derived subalgebra of g, then g is not rigid.

Remark 1.1. Ewven if the roots can be choosen in Z, this does not in general imply
that the Lie algebra is rational. In [}] various examples of this have been worked
out.

2. CONSTRUCTION OF RIGID LIE ALGEBRAS FROM THE
NILRADICAL

The goal of this section is to prepare a classification method of rigid Lie algebras.
We sketch here an approach based on the theorem 1.1. By fixing some properties
of the nilradical we determine the corresponding rigid Lie algebras.

2.1. Characteristic sequence of a nilpotent Lie algebra. Let n be a nilpotent
complex finite dimensional Lie algebra. Let Y € n — D!(n) be a vector of n .
Consider the ordered sequence

C(Y) = (hl,hz,"' ,)

hi > ha, ..., > hy, where h; is the dimension of the it" Jordan block of the nilpotent
operator adY. As Y is an eigenvector of adY, h, = 1. Let ¥; and Y5 be in
n— D'(n). Let be ¢(Y1) = (h1,...,hy, = 1) and ¢(Ya) = (k1,...,kp, = 1) the
corresponding sequences. We will say that ¢(Y;) > ¢(Y3) if there is an ¢ such that
hi = ki, ha = ko, ... , hj_1 = k;_1, h; > k;. This defines a total order relation on
the set of sequences ¢(Y") (lexicografic order).
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Definition 2.1. The characteristic sequence of the nilpotent Lie algebra n is :
c(n) = Sup{c(Y),Y € n— D*(n)}

It is an invariant of n (up to isomorphism). A vector X € nsuch that ¢(X) = ¢(n)
is called a characteristic vector of n.

2.2. Rigid Lie algebras whose radical is abelian. We begin by studying the
case where the nilradical has the smallest characteristic sequence : (1,1,...,1). If
g = t@n is rigid, then

rankS(X) = dimn —1

where X € tis a regular vector. As n is abelian, the equations of S(X) are the
equations corresponding to the action of t on n. Thus

dimt = dimn

and t corresponds to the subalgebra of diagonal derivations of the abelian algebra
n. Then dimg = 2p, where dimn = p. Let (X = Xj,...,, X,) be a basis of t. There
is a basis of n satisfying

and there are no other nontrivial brackets because rankS(X) = dimn-1. Now con-
sider the 2-dimensional Lie algebra ro defined by [X,Y] =Y. Then we have :
g:rz@rz@---@rg.

Proposition 2.1. Every solvable rigid Lie algebra whose nilrdical is abelian is iso-
morphic to

g=roOra @ .- dry (direct sum)
where ro is the 2-dimensional non abelian solvable Lie algebras. Therefore, we have

dim H?(g,g) = 0.

2.3. Rigid Lie algebras whose nilradical is of type (2,1,...,1). Consider a
rigid solvable Lie algebra g= t@®n such that c¢(n) = (2,1,...,1). Then

g= t @( Hp X .An_gp_l).

where Hj, is the 2p 4+ 1—dimensional Heisenberg algebra. As the abelian case has
already been studied we can suppose that n = H) is the Heisenberg algebra of
dimension 2p + 1. Thus r¢S(X) = 2p. The brackets of H,, are given by :

Yait1,Yaiyo] =Yopy1 9=0,---,p—1.

The associated linear system is the following :

a; + as = a2p+1
as + a4 = Q2p+1
A2p—1 + A2p = A2pt1

and its rank is p. As rangS(X) = 2p, necessarly dimt = p + 1. The corresponding
decomposable Lie algebra

g=t1 & H,
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defined in the adapted basis
(X07X17 e 7Xp7 le: Y'27 Tt 7Yr2p+1)
by

Y2i—1,Y2] =Yopys i=1,---,p
[Xo,Y2,-1] =iY21 i=1,---,p
[Xo,Yoi] = (2p+1—-1i)Yo; i=1,---,p
[Xo, Y2pt1] = (2p + 1)Yap 41

(X, Y2i1] =Yai—1 i=1,---,p
[Xi,Yo;] = =Yo; i=1,---,p

is rigid. In fact, it is sufficient to compute the dimension of the second cohomology
group. We can deduce :

Proposition 2.2. Every solvable rigid Lie algebra whose nilradical has dimension
equal to n and characteristic sequence (2,1,1,...1) has dimension 2n — p and it is
isomorphic to

0=(t1 O Hy) Oro@ry---dry
where ro is the 2-dimensional non abelian solvable Lie algebra. Therefore, we have
dim H?(g,g) = 0.

2.4. Rigid Lie algebras whose nilradical is of type (2,2,..,2,1,...,1). The
most important cases concerning these nilpotent Lie algebras are the algebras whose
characteristic sequence is (2,2,---,2,1). Let n be a nilpotent Lie algebra such that
c¢(n) =(2,2,...,2,1). There is a basis (Y1,---,Y,, Z1,- -+ ,Z,,Y) of n satistying :

[V, Yl =Y alZ, 1<i<j<p
[Yi7 Z]'] =0
[Z;, Z;] = 0.

(the afj being free parameters).

Let g = t ® n be a decomposable solvable Lie algebra with ¢(n) = (2,2,...,2,1).
The determination of all rigid Lie algebras of this type is still an open problem.
Nevertheless, we will begin this study considering the particular case afj =0. If
X € tis a regular vector, then rank(S(X)) = p. In fact the linear system S(X) is
given by the linear equations

y+yi=z,i=1,..,p
Thus, if g is rigid, dimt = p + 1. In this case, the Lie algebra g is given by :
(XY =1iY; 5 [X,Z]=(1+p+i)Z; ; [X,Y]=(p+1)Y
[Xi7Y]=07 Z:177p
[Xpt1,Ys] =1Y; 5[Xpp1, Zi] = (i +p+1)Z;, i=1,---,p
[Xp+1,Y]=(p+1)Y

This Lie algebra is rigid. We can verify this by considering a perturbation. In
this perturbation, there is a vector X such that adX is diagonalizable with the

\
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same eigenvalues 1,...,p,p+ 1,...,2p + 1,0. The multiplicity of this last eigenvalue
is always equal to p + 1.

3. CLASSIFICATION OF SOLVABLE RIGID LIE ALGEBRAS WITH
FILIFORM NILRADICAL

The goal of this section is to give the general classification of solvable rigid Lie
algebras whose nilradical is filiform.

3.1. Filiform Lie algebras.

Definition 3.1. A n—dimensional nilpotent Lie algebra n whose characteristic se-
quence is c(n) = (n — 1,1) is called filiform.

Filiform Lie algebras are completely classified up to dimension eleven [9].
example 3.1. Let L, and @), the n-dimensional filiform Lie algebras defined by
Ln:{[H:Y}]:Yi+j7 j:27"'5n_1
Q — [}/17}/3']:}/1-}-]'; .7= 2,...771—1
" [Y'iayn—i—i-l] = (_]-)HrlYna i= 27 Sy 4
These Lie algebras are filiform and naturally graded.

where n = 2p.

Let us recall that the rank of a nilpotent Lie algebra is the dimension of a
maximal exterior torus. If the Lie algebra g is filiform, its rank r(g) satisfies

r(g) < 2.
For the proof, see [8].
3.1.1. Filiform Lie algebras of rank 2.

Proposition 3.2. ([8]) Every filiform Lie algebras of rank 2 is isomorphic to L,
or Qn.

For each Lie algebra, a maximal exterior torus is precisely determined.
If g = L,, there exists a torus generated by the diagonal derivations :

) =0, AM)=Yi,2<i<n

M)=%, fY)=1Y;2<i<n

the basis {Y;} being as above.
If g = @y, the basis {Y;} is not a basis of eigenvectors for a diagonalizable
derivation. We can consider the new basis given by

Z1=Y1-Y2,22=Ys,.... 2, =Y,
This basis satisfies
(Z1,Z;) = Z14j, J=2,...,n—2,
[Zi, Zpip1] = (=1)*1Z,, i=2,..p ,andn=2p
Then the diagonal derivations
H(Z) =0, filZ)=2Z;,2<i<n-1, f1(Z,) =22,

f20Zh) =2y, fo(Zi) =(i—2)Z;,2<i<n—1, fo(Z,)=(n—3)Zy,.

generates a maximal exterior torus of derivations.
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3.1.2. Filiform Lie algebras of rank 1.

Theorem 3.3. [8] Every filiform Lie algebra of rank 1 and dimension n is isomor-
phic to one of the following Lie algebras

i) AE (A1, dem1), t = [2=EHL] 2<k<n-3

DflaY;] =Yit1,1=2,..,n—-1
[Yi, Yiga] = X1 Yaipn-1, 2<i <t
Y, Y] = aijYivjrn—2 , 2<i<j,i+j+k—-2<n

i) BE (A, 1) n=2m , t=[25£] ,2<k<n-3

[Yi7}/;] :Y'H-l 122,,TL—2
[E7Yn—i+1] = (_1)17,,_’_1 Y ’ i = 27 sy — 1

[Yi, Yig1) = Mic1Yoiqp—1, 1 =2,...,t

iii) C,, (A1, -0y M) ,m=2m+2,t=m—1

[)/I;Y;] =Y;'+1 i=2,...,n—2
Vi, Yn_it1] = (—1):1 Y,,i=2,.m+1

Vi, Yocicokia] = (D) NY, , i=2,on—2-2k  k=1,...,m—1

The non defined brackets are equal to zero. In this theorem, [z] denotes the inte-
ger part of z and (A1, ..., A¢) are non simultaneously vanishing parameters satisfying
polynomial equations associated to the Jacobi conditions. Moreover, the constants
a;j satisfy

Gij = Qij41 + Giq1,j

and @41 = Aj—1.
3.2. Classification of rigid algebras with nilradical of rank 2.

Proposition 3.4. Every solvable nonsplit Lie algebra whose nilradical is isomor-
phic to the filiform Lie algebra L, has dimension n+ 2 and it is isomorphic to the
Lie algebra given by :

[X1,Y] =iY; 1<i<n
X2, Y] =Y; 2<i<n
V,Yi] =Y 2<i<n—1

Morever, these algebras satisfy H*(g,g) = 0.

Proof. These algebras have been studied in [4]. The rank of the roots system is
equal to n — 3. Then only the brackets associated to the filiformity of the nilradical
are nonzero. The determination of the dimension of the second cohomology space
is easy, using the Hochschild-Serre spectral sequence. From this we deduce the
rigidity of these Lie algebras.
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Proposition 3.5. Fvery Lie algebra whose nilradical is isomorphic to the filiform
Lie algebra @, (n = 2m) is isomorphic to s ® g where s is semi-simple and g
solvable,of dimension n + 2 and isomorphic to the Lie algebra given by :

( [X17Yv1]=le
[X1,Y,] = (n —3)Y,

< [X27Yn]:2Yn
X,V =Y; ,i=2n-1
[Vi,Yi] =Yg, 2<i<n—2

\ [}/;'JY”‘Fl*’i]:(_l)iY" ,7;=1,--- , M

Proof. In fact, if n = Q2,,, the torus t is generated by the derivations :

fl(yvl):Y'l ) fl(y;) :(i_2)Y;7 z:27 72m_1 ) fl(yém):(2m_3)y-2m

f2()/1):05 fQ(Y;):Y; i:27"'32m_17 f2(Y2m):2}/ém
As Qa2 is the only algebra admitting such a torus of derivations, the algebra g
= t®n is rigid.
3.3. Rigid Lie algebra whose nilradical is filiform of rank 1.

3.3.1. n=Ak(A\;, .-+, A\o1). Let {Y1,---,Y,} be a basis of n defined as in theorem
5.3. As the rank of AF is 1, we have dimt = 1. A diagonal derivation of n is given
by :

The classification of rigid Lie algebras of the form g = t ® A% is a consequence of
the resolution of polynomial equations satisfied by the parameters Ai,--- , A¢_, -

One defines the weight of the Jacobi equation Y [X;,[X;, X;]] =0by p = i+j+1.
It is clear that 6 < p < 3n — 3.

Lemma 3.6. The number of Jacobi equations of weight p is :

N(p)=3p2 =30 +1 if p=6y

N(p)=3p2=2p if p=6p'+1
N(p)=3p? —p' if p=6p +2
N(p)=3p" if p=6p'+3
N(p)=3p7+p" if p=6p' +4
N(p)=3p"7+2p" if p=6p'+5

As a consequence, one deduces that the number of Jacobi equations concerning
the parameters A1,---,\—_1, and defining the Lie algebra g (or A¥ ), is equal to
Ei;‘? N(p). This system of polynomial equations was completely solved in [2]
and [3] in the cases k = 1 and k£ = 2. We pretend to determine the algebraic set
parametrized by A;,---,A\i—1 defined by the N homogeneous algebraic equations
of degree 1 or 2.

Let us choose an adapted basis. The equations of weight p = 1+ + j are linear.

They are the only linear equations, and they are written as :

ajj = Qij+1 + Qit1j
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This implies
Jj+h
agj = Z Ciich—1Ai-14s-
s=0

Therefore we can study the equations of weight p =i+ j + 1 with ¢ > 2,5 > i. The
first non trivial equation is the one of weight p = 9 = 2 + 3 + 4. This equation
concerns the vector of weight 3k + 3.

Proposition 3.7. 1. If k > n — 3, the Lie algebra g is not rigid .

2. If k =n — 3, there is only one ( up to isomorphism ) Lie algebra t & AT—3,
which is defined by :

[Xalfl] =" ’ [X,Yé] = kY, > T [Xayn—l] = (n_3+k)Yn—1
[X,Ya] = (n -2+ B)Y,
Y1, =Yin 2<i<n-1
[Ya,Y3] =Y,
3. If k = n — 4, there is only one ( up to isomorphism ) Lie algebra of type
t® AP which is defined by
[Xayvl] =N ) [X;}/é] = kY > T [X;Ynfl] = (n_3+k)Yn71
X, Ya] = (n— 2+ B)Y;
V1,Y;] = Yiy1 2<i<n-—1
[Y27Y3] =Y., [Y27Y4] =Yn.

Proof. In fact, if 2k + 1 > n + k — 2, [¥;,Y;] = 0 and the torus is 2-dimensional.
Let us suppose k < n — 5.

Lemma 3.8. Ifn > 2k + 5, then g is not rigid .

In fact, the Jacobi equation of weight p = 9 concerns the vector of weight k +
k+ 1+ k+2=3k+ 3. This equation is trivial if 3k + 3 > n + k — 2 (that is the
highest weight).

Therefore, we can suppose that
n—>5
2
One looks for the independent Jacobi equations. We saw that the first nontrivial
equation is the one of weight p = 9. It is written as :

<k<n-—4.

—02,5034 + 03,5-102,4 — A4,5—2a23 =0, s=k+5.

Lemma 3.9. The equation E1g corresponding to the weight p =10=2+ 345 is
related to the equation Fy.

In fact, this equation Fg is :

—Q2,54103,5 + 3,5025 — G5,5—202,3 =0

As Gij = Qij+1 + Qiy1; then :

Eio = —(a2,s —ass)as s + (as,s—2 — as,5-102,3 — (a3,5—1 — 4,5—1)(a2,4 — a2,3)

= Ey + —04,5,03,4 — a4,s—1(az,4 - a2,3) +G4,5-103,4



ON THE CLASSIFICATION OF RIGID LIE ALGEBRAS 9

and
E10 = Eg .

Comnsequences ;From the Jacobi conditions, we find dependance relations between
the equations for p > 10 and k = 2. So the scheme L™ is not reduced at the point
n®t as soon asn > 11.

Remark 3.1.

1. The variables of the polynomial equation Eg are Aq,--- , Ay, where tg =
if k is even, or 345—’“ if k is odd.

2. There are two equations of weight 11: p=2+3+6 and p =2+ 4+ 5. The
first equation is independent of Ey. We will denote these equations by E#% and
E25

4+k
2

Lemma 3.10.
E}® = —Ef° + Ei°.
In fact
B}’ = —aggi0a45+ a4 025 — a5 1024

= —agsq2(ass —ase) + (as,s — as,s—1)a2,5 — (as5,5—2 — G6,5-2)a2.4

02,5+203,6 — 43,54+102,5 — 06,5—202,4 — 02,5+203,5 + 03 5025 — Q45,5202 4
= Qa2,4+203,6 — a3,s+1(a2,6 + 03,5) + ag,5—202,3 — A2,51203 5 + A3 5025
—Qas5,5-2024
_E236 _ _ + _
11 a3,54+10a3,5 — A2,54-203,5 T A3,542,5 — A5,5—202,4

236

= —Ei{° —asst1a35 + 03,5025 — 05,5202 4
236

= _Ell +E10-
To understand the dependance relations, we will describe the equations of weight
p=12.
Lemma 3.11.

246 _ _ 237 | 11236
By =—En" + By

345 _ 1237 236 234
EYy° = Eiy" —2E5 + Eg™.

The polynomial system {Ey, E3}% E%7} is a reduced system with to + 1 or to + 2

parameters, depending on the parity of n + k.

For k = 2, the reduced system is :

—2XM A3+ 302 - X3 =0
21 A4 + )\2(—4)\3 - )\4) + A3 (6)\3 - )\4) =0
—4)\§ +3X3XM + 30 =0
A resolution is given in [2].
Let us now consider, for a fixed weight p, the reduced system S, of Jacobi

equations of weight less or equal than p. Let us determine the reduced system
Sp41- We put p' = p — 5 and we suppose that

p<n—2k-1.
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Lemma 3.12.

B = —EI + EJFN (L4, k) > (2,3,0 + 1),

The proof is analogous to the ones of the previous lemmas.
Suppose now that p < n — 2k + 4, then the system S, is :

Sy = (B3 B0, . B2},
Thus, for a given weight p, the reduced system has p—9 equations. Let us suppose
n > 3k + 7 (or 3k + 6). There exist at least two nontrivial solutions of the Jacobi

system for which the corresponding Lie algebras are rigid and nonisomorphic. Take,
for example, (A, = 1,X\; = 0,7 #0) and (A\; =0,i # ¢, \s = 1).We can conclude :

Theorem 3.13. Letg = tdAX (A1, .., \s_1) be a decomposable p = (n+1)—dimensional
Lie algebra. Then

i) If n—Fk is odd and 2k+5 < n < 3k+7 or if n—k is even and 2k+5 < n < 3k+6,
then g is not rigid.

it) If n > 3k + 7 with n — k odd or n > 3k + 6 with n — k even, then g is rigid
as soon as there exists an i such that A\; # 0. In this case, two rigid Lie algebras

associated with the parameters (A1, ..., A¢) and (A}, ..., A}) are isomorphic if and only
if there is a # 0 such that (A1,..., A\) = a(A], ., A})

34. n = B¥(\y,---,\). Let us consider the Lie algebra B (A1,..,A\;—1) defined
by :

V1,Yi] =Y, 2<i<n—2

[Yi, Yoit1] = (-1)"*'Y,, 2<i<n-1

[Y:, Y] = aijYetirj 2 ,2<6,j<n—-2,i+j+k—-2<n-1
It is defined for even n. Let us put n = 2p + 4. There is a derivation f of this
algebra n, which generates the maximal external torus. Its eigenvalues are :

Lkk+1,k+2- k+2p+1,2k+2p+1

The basis {Y;} given in the definition of B (A4, .., \;_1) is the basis of corresponding
eigenvectors. It is clear that if k > 2p, the Lie algebra B¥ (\q, .., \s_1) is isomorphic
to - This case has been studied. Let us suppose k < 2p.

First case : k is even
Let us put k = 2p — 2[. This implies n = k + 2] + 4 and the eigenvalues of f are :

Lkk+1,k+2--,2k -, 2k+20+1,3k+ 20 + 1.

All the structural constants a;; are linear combinations of the constants A\; =
Qit1,i42 , ¢ = 1,--- 1+ 1. Let us begin by examining the three particular cases :
[=0,l=1,1=2.

i) I = 0. The Lie algebra g is defined by :

[HJY;:]:Y;:JrlJ i:2a"'an_2;
[Y;'5Y7lfi+1] = (_l)zYﬂa 1= 2)' ,n — 27
[Y2,Y3] =Y, 1

with kK =n — 4 # 0 and n even. This Lie algebra is rigid.
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ii) I = 1. There exists only one Lie algebra (up to isomorphism) verifying the
hypothesis. It is given by :

[leay;,] = Y;Z+17 = 27 ,H—Q; [Yviyyn—i+1] = (_]—)lYn: i= 27 7n_27
[Y2,Y3] = Yy _3; [Ya,Yy] = Vi _o; [Y2,Ys] =9V, 15 [Y3,Ya] =2V, —1

with k =n — 6 and n even. This Lie algebra is rigid.

iii) I = 2. This case is different from the previous cases.

Lemma 3.14. If k = n—8, then the corresponding Lie algebras is rigid if and only
if k=2 (and n = 10).

In this case, there exist two non isomorphic Lie algebras (of dimension 11) :

[
[ ] :Yi+1; 71227 )8; [Yiayvllfi] = (_l)zYv10; 7122) )5;
[Ya}/;]:}/;+2a 7’:3747 [YQ,Y;]:_ i+2 $:6a77

[ )| =Yits, 1 =4,5; [Y1,Y5] =Y.

[leayrl] :Y;'+17 1= 27 38; [Yvi;lel—i] = (_1)1.}/107 1= 27 35;
[Y2,Yi] = Yita, i = 3,4; [Y2,Y5] = 2Y7; [Ya,Ye] = 3Ys; [Y2, Y] = TYy;
[Y3,Yi] = —Yiys, i = 4,5; [V3,Ys] = —4Yy; [Ya,Ys] = 3Ys.

Let us consider the general case [ > 3.

Proposition 3.15. If 2] < k + 2, then the decomposable algebra g of nilradical
B (A1, .., A\i—1) is not rigid.

This is a consequence of the previous section. We consider the parameters
Al = a23,A\2 = @34, " , \j41 = Gp4i42,k+1+3- These parameters generate all the
coeflicients a;;. From the previous section, the number of independent Jacobi equa-
tions is 2l — k — 2 if 21 — k — 2 > 0, otherwise we have zero equation. Then let us
suppose 2l > k + 2.

Proposition 3.16. Let g = t ® B (A1,..,A\;_1) be a decomposable algebra of di-
mensionn +1=k+ 21+ 5 withdimt=1 .

1) If k> [HTQ] +1—2, then g is not rigid.

2) Ifk < [HTQ] +1—2, then g is rigid.

In fact the coefficients a;; are deduced from the parameters A; by the rule

(=521
Ar42,5+2 = Z (_1)z+15;7572i+2A3+1’7 s>
i=1

where S7 is determined by the relations

Si=8_,+87" i=1,---,1+1, S,=8"=1VpeN
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As the central quotient algebra BZ(A}C’Y%;:M‘I) is isomorphic to A¥ | (A1,.., \—1),
the coeflicients a;; verify the same Jacobi relations as the equations relative to
the case AX_; (A1, ..,\—1). Moreover, these coefficients satisfy linear equations
corresponding to the Jacobi conditions related to the vectors Ya, Yoy p, Y301 for

2h<2l+1land h>1,Y2,,, Yo s, Y3 9 5¢ for 0 < s <s' and s +2s' < 2[ + 1.

Lemma 3.17. The rank of the linear system defined by the parameters \; is equal
to [142].

In fact the Jacobi equations corresponding to the triples (Ya, Yoy p, Y310i—p) are:

Ah+2,21+3—h — (_l)ha2,2l+37h + (—l)hflaz,h+2 =0,

We replace the coeflicients a;; by their expressions in the A;. We obtain:

T 5
Z (_1)l+155(l—h—i+1)+1)‘h+z’ - (_1)h Z (_1)Z+155(l—i+1)+1—h)‘i
i=1 i=1

+(=t! Z (_1)i+1sliz—2(i—1))‘i =0.

i=1
The equations corresponding to (Ya1s, Yors, Yoroi—s—s1+1) are written as:

! 442]—s—s'

(_1)8+1a2+s’,2l+3—s—s’ - (_]-)s +1a2+s,21+3—3—s’ + (_1) 245,245 = 07

and this gives :

2l—s5—25"42
(_1)5+1 Z (_I)H_lsé(lfsfs’72i+3)+1)‘s'+z’
i=1
- (=1’ (_1)Z+15;l—2i+3—2s—s’)‘S+i
i=1

[s'—s+1]
2

+(_1)4+2l—s_3’ Z (_1)i+15’§17572i+2))‘8+i =0.

i=1
In particular the equations corresponding to (Yaias, Y312, Yotoi—as) with 6s <
2l — 1 have the following form:

_2A23+1 + (2l - 68 - 3))\23+2 + cee = 07

so the system has rank less or equal to [:51] + 1. If we note by E, , the equation
(Yous,Yors,Y310i_5—s ), we obtain the relations:
Es,s’ = _Es,s’fl + Esfl,s’-

This proves that every Jacobi equation is deduced from the equations E; ;1. As
the equations Fagst1,2s4+2 coincide with the equations Easy2 2543, the Jacobi system
is reduced to the system of independent equations Ey; 254+1. This proves the lemma.

Second case : k is odd.
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It is clear that £+ 1 < 2p. Let us put k = 2p — 2] — 1.This gives n = k+ 2] + 5.
The eigenvalues of the semisimple derivation f are

Lk k+1,--+,2k+20+2 3k + 20 + 2.

The number of undetermined structural constants is equal to [+ 1. The correspond-
ing cases to [ = 0,1,2 and 3 are particular, so we will study them firstly.
1 =0 (k=2p—1). There exists only one rigid law up to isomorphism :

[K;Y;]:Y;+17':257n_2 [E/Q,YE;]:Y”_Q, [Yéan] Y -1
[Yi, Yiig1] = (=1)'Yn.

I=1(k=2p—3). There does not exist a rigid law.

I =2 (k= 2p->5). There exist only two laws if k = 3. Otherwise, the corresponding
Lie algebras are not rigid.

1 =3 (k= 2p—T). There exists 4 rigid laws as soon as k = 3 (dimg = 15). These
laws define non rational and non real rigid Lie algebras.

Now let us suppose [ > 4. Then we have :

Proposition 3.18. Let g = t ® B¥ (A1, .., \:_1) be a decomposable Lie algebra of
dimension n +1 =k + 2l + 6 with dimt = 1.

1) Ifk> [%] +1—2, then g is not rigid.

2) If k< [H—l] +1—2, then g is rigid.

Let us note the equation (Y245, Y24, Yata1—s—s') by Ej .. The proof of this propo-
sition is based on the proof of theorem 3.3 noting that the equation Ey ., is the
same as E; 1 g42 in the lemma 3.17.

Remark.

The equation EQ,S q1concerns only the parameters A, - - -, ;. Then the Lie algebras
corresponding to Ay =1,\; =0,i # 1 and A1 =1,); = 0,7 # [+ 1 and satisfying
k< [HL] 41— 2 are rigid.

Theorem 3.19. Let g = t ® BF(\,...,\i—1) (n = 2m) be a n + 1—dimensional
decomposable Lie algebra.

i) If k is even, this Lie algebra is rigid if and only if k < [i
l=f(n—k—-4) ork=n—4,ork=n—6 or k=2 and n = 10.

ii) If k is odd, this Lie algebra is rigid if and only if k < [li] + 1 — 2 where
l=4(m—-k—-5) ork=n—5,ork=3andn =12 or n = 14.

iii) two Lie algebras corresponding to the parameters (A, ..., 1) and (Xp, ..., A, )
are isomorphic if and only if there exists an a # 0 such that (Ay,...; \i41) =

0‘( ’\§+1)
3.5. n=CkA1, -, M)

Theorem 3.20. Let g = t® Cy, (A1, .., \) be a (n + 1)-dimensional decomposable
Lie algebra. Then g is not rigid.

In fact if (X,Y3,...,Y,) is a basis of g with X € t and if (Y1,...,Y,) is the
basis of Cy, (A1, .., A¢) given in 3.3, then the 2-cocycle defined by ¢ (X,Ys) = Y,,—1
determines a deformation y + ¢ non isomorphic to u, where p is the law of g. Thus
g is not rigid.

] +1—2 where
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4. APPENDIX : RIGID LIE ALGEBRAS OF DIMENSION LESS THAN 8

In this section we recall the classification of solvable Lie algebras of dimension less or
equal to 8. The proof can be found in [1]. In the following lists we note by (X, Xo, X{, X{, ...)
the basis of #, X being the characteristic vector and by (Y;);cr a basis of n satisfy-

ing adX (Y;) = 4Y;. If the eigenvalue 4 is of multiplicity less than one, we note by

Y, Yy, Y/,

..) the corresponding basis of eigenvectors.
Dimension 2 . We have, up an isomorphism, only one rigid law : p? (X,Y7) = Y;.

Dimension 3. There are no solvable rigid laws in dimension 3.
Dimension 4. Any solvable rigid laws on C* is isomorphic to the Lie algebra:

{P’All (X7 YI)

:Yl,

pa (Xo,Y2) = V3.

Dimension 5. Any solvable rigid law on C® is isomorphic to:

{ ps (X,Y;) = iY;,

ps (X0, Y:) =Y;, i=2,3,

Dimension 6. Any solvable rigid law in C? is isomorphic to one of the following :

i=1,2,3,

ps (Y1,Y2) = Y.

we (X, ;) =iY; fori=1,2,3,4,5, pe (X,Y;) =iY; fori=1,2,3,4,
Hé (YlaY) = H—l for ¢ = 25374, l‘% (XO’Y'Z) =Y; fori= 2a3,47
s (Y2, Y3) = Vs pg (Y1,Ys) = Yip fori=2,3.
pg(XY)_zY fori=1,2,3,

)U‘g( ) Y2,

Ng (X07Y3) YS-

Dimension 7. Any rigid solvable law in

C s isomorphic to one of the following :

ph(X,Y:) =4Y;, i=1,2,3,4,5,6, pr(X,Yi) =a%, i=1,2,3,4,5,7,
1 . l’/7 (Yl,}fz) Y;'+1 1= 213747
ﬂ?(Yth) Z}/i"rl) 222)374751 2 .
/j,l(Y2 Y'):Y' 5 i=23.4 H7(Y )= i+2, ©=3,95,
7 y L i+2, ) E- u% (Y3,Y4) —Y7
4 —
WXy)=iv, i=134567 | [ MW=, 1=L2345
3 : p7 (X,Ys) = 3Ys,
M7(Y17Yi):m+1a 1=3,4,5,6, 4 .
H3 (YS Y4) — Y7. 1254 (Yl,}fz) Y;'+1) 1= 2 3 4
T 7 (Ya, Ys) = pa (Y, Ys) = V5.
”?(X Y;)—lmz 1=1,2,3,4,5,
W (X,Yi) =iYi, i=1,2,3,4,5, 1 (Xo,Yi) =Y, i=2,3,4,
)U‘? (XO,K) = lea 1= 2,35475: H? (X01Y5) - 2Y51
p3 (Y1,Y:) =Yip, i=2,3,4 p; (Y1,Yi) =Yip, i=2,3,
p3 (Y2, Y3) = V5.
ﬂ; (X Y:-) 1Y;, 1=1,2,3,4,5, I‘? (X Y;) =14Y;, 1=1,2,3,4,
u;(Xoa}/l):}fla l=374557 u?(X(),Y)_}fla i=273a
)U"'; (Y17 Yl) - YFH—l, 1= 33 4: H? (X01Y4) Y4a
[,L; (Y27Y3) = Y5. 8 (Yl Y2) — Y3

Dimension 8. Any rigid solvable law in C® is 1somorph1c to one of the following :
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T 3 3
pe (O = IZ LR DOTE (X ) =i, i=1,3,4,5,6,7,8
)U‘S(Yhyi)_yvi-l-l, 1_2:6775 2 .
1 _ 1 _ 12 (Y17Y;J)=Y75+17 'L=3a4757677a
e (Y2,Y3) = Y5, pg (Ye,Ys) = Y7, { 2 (V3. ¥)) = V; i — 4.5
ps (Y2, Yo) = Ya, pg (Ys,Y5) = Ya. et T s TR
pg (X,Y)) = i, $=1,3,4,5,6,7,9, B (X,¥0) = i%5, i = 1,4,5,6,7,8,9,
ug(Y1,Y1) Yz+1, 1—3456 .
3 MS(Ylax)_K+1: 224:5’6:778:
12 (Y37 ) l+3, 1= 4; 6: 4 (Y Y) Y
pi (Ya, Ys) = —Yo. pa iT, Ta) = o
43 (X,Yi) = iV, i = 2,3,4,5,6,7,8, u%(XY)-lYl,z—23467810
{ui(n, ) =Yita, i =3,4,5,6, R
/Lg (Y37Y;) le+3a 1= 43 5. ZE ( YG) : yzvl-l(;fi: oy
/Lé(X Y;) =iY;, i=2,3,5,6,7,8,9, ps (X,Y;) =iY5, 1= 2,3,5,7,8,9,11,
,ug(Yz, )— i+2,l—3,5,6,7, HS(Y Y)— ¢+2,Z—3579
M8 (YS: ): i+3, 22556 Ng (Y3:Y)_ i+3) 1_5 8.
( pg(X,Y;) iY;, i=1,2,3,4,5,6, il (X Y:) =, i=1,2,3,4,5,6,
ug (X, ¥4) = 3v4, 2 (X, Y{) = 41,
:U'g (leyti) =Yit1, ©1=2,3,4,5, S /Léo (Yl,y;«) Yit1, 9=2,3,4,5,
p8 (Y2,Y;) = Yiga,i = 3,4, pe’ (Y2,Y:) =Yiye, i=3,4,
(s (¥2,Y3) = Vs, pg (Vs,Y3) = Y. L s’ (Y2,Y]) = Ye.
( N%:( Y))=4Y;, i=1,2,3,4,5,7,
U8 ( 5Y3’)=3Y3’7
¢ M%i(X,Y;")—zY},’z—123456 /AEI;Z(Y1,Y2)—Y3I,
Mg (X7Y)=5Y57 12 ’
Mll (Yl,Y) = H‘la ’L— 2 3 4 5 //'8 (YI’Y3) _Y4
) Mél (Y1: 5,) = Yﬁ: Néz (YI’Y4) = Y5’
/},2131 (YQ, Yg) = Yg,’, Mtlg (Y2’Y3) = Y5:
[ pa' (Y2, Y1) =Y ps’ (Yz,Yef =Y
| 137 (12, ¥5) =l (¥5,%4) = ¥7
(e (X,Y;) =14Y;, i=1,2,3,4,5,7
pd (X, Y?) = 5YY, wt (X, Y:) =45, i=1,3,4,5,6,7,
l/’Elia (Yl Y)_ i1, ©=2,3,4, //%4 (X5Y4’)=4Y4’7
\ ps (Y2, Y3) =Y5, pst (Y1,Y:) =Yiq1, 1 =3,4,5,6
/'Lég (Y21Y5) = NS (Y2 Y5) Yz, /’Lé4 (Y37Y4) = lj,é4 (Y37Y4,) =Yz
[ pi® (Y, Ya) = —Y7.
(g’ (X,Y;) =1Y;, i=1,2,3,4,5,
( II’S (X Y)_Z}/H i=1a2737475a é6 (X5Y1’)=Y1’7
Ns (X,Ys) = 3Ys, 8 (X,Y3) = 3Y3,
Ns (X, Y4)—4Y4: 2 (V1,Y:) =Yip, i=2,4,
| WO Y) =Yip, =234 ] s (V1Y) =Yiy, i=1,3,
/j’ (Y17Y3) Y47 éﬁ (Yllyn) =Yi+17 i=3a47
(w8’ (V1,Y0) = p3’ (Y2, Y3) = V5. (YI:Y2)—Y3’:
L e’ (Y2, Y3) = —ps’ (Y2, Y3) = Vs
( é (X Y;) - Z}flv
}; (X, Y)_zY' i=1,2,3,
pd (X, Y:) =4Yi, i=1,2,3,4,5 s S (X, 7)) =Y]
(X)) =], =35 (Yl,Yl’) =Y,
1 I
I Y
ps’ (Ya,Ys) = Y4, (Y Y2) =Y,
ps’ (Ya,Ys) = Ys + 2Y5. pi® (Y1,Y3) = V3,
é (Y1’7Y2) =Y37 R
L ps® (Y1, Y3) = ps® (Y1,Y2) = Y.
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(X, Y) =i, i=1,2,3,4,5,6, H (XY) =¥, i=1,2,3,456
Hs (XO,Y;) _lea 1231455:6:
IJ’S (X07Y)_}/l7 =2737475567 20 -
pd® (V1,Y3) = Yiy1, i=2,3,4,5 ue (ML Ya) = Vi, i=3,45,
8 s Li i+1, y 9y MgO(Y27E)=K+2, i=3,4.
( 22 \ _
WYy =, i=123,456 | [ 1500 0 BA400
; M8 (XO’Y;‘)_}/Z) 7/:213)47
:U'S (X Yb) Y, 1=4,5,6, 22 .
21 . M8 (XO,Y;):2YM 12536:
/*1’8 (YlaY)_ i+1, Z=274751 22 _ .
(Y2 Y4)—Y Mg ()/17}/1')_}/14—17 ©1=2,3,5,
e’ ¢ (18 (Ya,Y:) = Yien, i = 3,4
(us (X,Y;) =14Y;, i=1,2,3,4,5,7,
B(X,Y:) =Y, i=1,234,5,6, p2(Xo,Y:) = Yi, i=3,4,5,
)u‘g (X YG) Y67 M5254 (XO,Y'T) = 2Y7:
NS (Yl,Y)_ i+1, i=2=3747 Mé‘l()/h}/i)_}/lq—l) 123747
psd (Y2,Y3) = Ys. p3t (Y2, Y3) = Y5,
| n3' (V3,Ya) = V7.

( Mgs (X7Y;):ZY;1 1=1,2,3,4,5,7, ( M§6 (X:Yvi)_zyviy 1=1,2,3,4,5,7,
)U‘gS (X(]’Yl) = Yvi: 1= 2,3: 47 I‘%G (XO’Y;) - Yvia 1= 21334:5:
pa° (Xo,Ys) = 2Ys, ) w3t (vo,Y7) = 2Y7,

M§5 (XO)Y7) = 3Yr, Mgﬁ (levyvl) =Yit1, 1=2,3,4,
pa (Y1,Y) = Yipr, i=2,3, p3° (Ya,Ys) = Yz,

\ Més (Y27}/1) = }/i+2a 1= 375 \ MéG (Y37Y4) = _Y7

((p2 (X,Y:) =14Y;, i=1,2,3,4,5,7

( (X Y))=iY;, i=1,2,3,5,6,7, 2 (Xo,Yz) = Yo,

(X(]y}/l) Y;d i=2)37 Mg (XO)}/’L)_QYvh 7/23:47
< (X07 Y5) - 2Y5) Hgs (.X(],Y5) = 3Y5,
(X ) =3Y;, =6,7, Més (X07Y7) = 4Y7,
(YlaY) =Yit1, = 2,6, Ngs (Y-I:Y?)) =Y,
\ (YQ,Y) = H—Q: = 3) 5. Hgs (YQ,Y'I) = Y-i+2: 1= 355,
L p8° (Ys,Ya) = -Y7
( MS (X Y)_ZYU i=1a21374,5a
29 _
MSQ (X, ) 3Y3, I"S (X Y) lY;: 1= 152,3:4753
pi (XoYi)—Yz,z_234 0¥y, 13) = Vi
9 Hgg (Xo,Y3) = Y3, pg’ (Xo,Ys) = 2Ys B e vy
223 (XO’Y'-L)_-Y:U 1_21354,
//’ (YlaY)_ i+1, 1—2537 MSO(Y'I Y’)ZY 1 i=2.3
W2 (i, Y9) = Vi, S L) =Yin, =23
[ 18 (Y2, Y3) = Y5
X,Y;) =15, i=1,2,3,4,5,
W (X, V) =iV, i=1,2,3,4,5, ue (X,Y) =%, 4 34,9
31 ; M8 (XO’Y;) _Y;Ja 122:455:
Hs (X():le) - Y-l, 1= 2a3, 32 ! - 3
31 4 ; He (Xan-l) —Y;,; ? 3a4a57
22 (X07Yi) =Y, i=4,5, 32
ud (V1,Yi) = Yia, i=2,4 ue (1,) = 5,
i ot e ’ pd (Y2,Ys) = Ys.
/‘gd (X’Y;)_zY'“ 1=1,2,3,4,
15 (Xo, Y2) = Ya,
Hgs (X67Y3) - Y37
)U‘ga (X(l)lay‘l) =Y,

Moreover the laws are pairwise non isomorphic.

Remark : The first classification of these algebras was presented in [3]. It was based on
the survey of the eigenvalues of the regular operator adX. The theorem of rank simplifies
the problem considerably and allows to complete this list. Indeed two algebras were
forgotten in the first paper. Later Carles established a list based on the classification of
the nilpotent Lie algebras of dimension seven [11].
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4.1. Remark : Dimensions greater than 8. The problem of classifying the rigid
algebras of dimension greater than 8 lies in the existence of a too big number of laws. For
example, in [1] we have given an approach of dimension 9, and in a particular case we
have found 49 classes of pairwise non isomorphic rigid Lie algebras.
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