Optimal control approach for the fluid-structure interaction
problems
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1 Introduction

A fluid-structure interaction problem is studied. We are interested by the displacement of the
structure and by the velocity and the pressure of the fluid.

The contact surface between fluid and structure is unknown a priori, therefore it is a free
boundary like problem.

In the classical approaches, the fluid and structure equations are coupled via two boundary
conditions: the continuity of the velocity and of the constraint vector at the contact surface.

In our approach, the equality of the fluid and structure velocities at the contact surface will
be relaxed and treated by the Least Squares Method.

We start with a guess for the contact forces. The displacement of the structure can be
computed. We suppose that the fluid domain is completely determined by the displacement of
the structure. Knowing the actual domain of the fluid and the contact forces, we can compute
the velocity and the pressure of the fluid.

In this way, the equality of the fluid and structure forces at the contact surface is trivially
accomplished.

The problem is to find the contact forces such that the equality of the fluid and structure
velocities at the contact surface holds.

It’s a exact controllability problem with Dirichlet boundary control and Dirichlet boundary
observation.

In order to obtain some existence results, this exact controllability problem will be trans-
formed in an optimal control problem using the Least Squares Method.

This mathematical model permits to solve numerically the coupled fluid-structure problem
via partitioned procedures (i.e. in a decoupled way, more precisely the fluid and the structure
equations are solved separately).

The aim of this paper is to present an optimal control approach for a fluid structure inter-
action problem and some numerical tests.
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2 Notations

We study the flow in the two-dimensional canal of breadth Lo
Q= {(z1,72) €ER% 0< 31 < Ly, —H <zo < +H}.

In the interior of the canal there exists a deformable beam fixed at the one of the his
extremities (see the Figure 1).
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Figure 1: The flow around a deformable beam

In the absence of the fluid, the beam has the parallelepiped shape [ABC D]. The coordinates
of the vertices are

A=(-r,0), B=(-r,Ly), C=(r,L1), D= (r0).

The beam is deformed under the action of the fluid and it will have the shape [AB'C'D].
The deformation of the beam is described using the displacement of the median thread

u = (ui,ue) : [0,L1] — R2.

which satisfy the compatibility condition u; (0) = 0,u9 (0) = 0. For instant, we assume that
u; = 0.
The domain occupied by the beam is

Qg = {(371,:62) € R2; xz1 €10, L1[, |z2 —u2 (z1)| < T} .

Consequently, the domain occupied by the fluid is

Q0 = Q\Q5.
The contact surface between fluid and beam is T, = ]AB'[U [B'C'| U]C' D[ where
JAB'[ = {(xl,xg)E]RQ; z1 €10,L1[, 32 =ug (z1) — 1},
[B'C'] = {(z1,22) € R%; z1 = L1, x9 € [, rl},
]C"D[ = {(I1,$2)ER2; z1 €10, Lq][, $2=U2(£L‘1)+7‘}.

The other boundary of the fluid domain is noted I';.



3 Beam equations
We suppose that the structure is governed by the beam equations without shearing stress (see
[1])-

In view of the Sobolev Embedding Theorem, we have

H? (10, L1[) = €' ([0, L1])

and we denote
U={¢eH(0,L]); ¢(0) = ¢'(0) = 0}.
Let D; € R % be given by the formula

Dy = E’/ a:% drodxs
s

where E is the Young’s module and S is the cross section of the beam. We set
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Remark 1 As a consequence of the Laz-Milgram Theorem, we have the following result:
Let f5 € L?(]0, Ly[) and no € L? ()0, L1[). Then the problem:
Find ug in U such that

as (uz, ) = /}OL["Q("““W”C’“ / 55 @) (@) dn, WelU (2

]O7L1[

has a unique solution.

When the data and the solution are smooth enough the solution wsy verifies the strong
formulation given by:

Vr, € ]0 Ll[

uh(z1) = — (m2(z1) + f5(z1))
2 ugy' (L) = 0.

D
2(0) = up(0) = uz (L) =

In the particular case f5 = 0 and n2(x1) = a + Bz1 + yx?, we obtain

1
us(z1) = 360D, [15 (27 — 4z1L1 + 6L%) a + 3 (2} — 1021 L] + 20L3) B

+ (ml — 20z, L} +45L7) 7] .



4 Fluid equations in moving domain

Let ug be the solution of the equation (2).

We have

H? (10, L1[) = C* ([0, L1])

therefore the domain Qf has a Lipschitz boundary, so that we can define the spaces H! (QF),
H'Y?(T}) and H/?(T,). We recall that 90QF =T, UT;. We denote by n = (ny,7,) the unit
outward normal vector and by 7 = (—ng, nl) an unit tangential vector to QL.

We denote by - the scalar product.

Let us consider the following vectorial spaces

W = {w:(wl,wg)EHl(Qf)Q; w=0onTI" andw-nzOonPu},

Q = {qEHl(Qg);q:OonFu},
M = {wEHl(Qg);w:Oonrl}.

Let g € Hé/Q (T'1)? be given, such that fFl g-n do = 0. Then there exists vg € H! (95)2,

such that diveg = 0 in QF, vy =0 on ', and vy = g on T'y.
Let po be given in H/2(T',). Then there exists a function in H' (QF), such that its trace
is po. We denote this function by pg, also.

Proposition 1 For all us in U, and f¥ in L? (95)2, the problem:
Findv—vo€W,p—po €Q, we M, such that

(Bp Ow 8q+ Q){_(Bp Oow 0Oqg Bp)
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(,__1+_2’p_—1+—2)—|—(d1vv,d1vw) (3)
0q op r 0q 9p
F -4 _ == v/ W.V Q.Vpe M
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has a unique solution.

Here, 1 > 0 is the dynamic viscosity of the fluid, f¥ is the external given force per unit
volume and (-, ) is the inner product of L? (QF).
Proof. We first prove that
| |
where |||, is the standard norm of L? (Qf).

Le us consider that ¢ € C* (Qg), g=0onT, and p € C? (Qf), p=0onT;. We have
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But using Green’s formula, we have
P9 op\_ (P4 op
01’ Ozo Oxy’ Oz 4

op op 0%p 0?p
/695 V0w, % /ang V0w, "2 (q’ 33523161) " (q’ 0x10z2

0?p 0?%p
— Vp-7)d ,— :
/Fl q( p T) o+ (q 6:528:51 + 6x18x2
B . . 32p _ 9
y assumption of the regularity of p, we have z-5— = z5-.

Since p = 0 on 'y, we obtain that Vp-7 = 0 on I'; and then, by a density argument, the
equality from the beginning of the proof holds.
The rest of the proof runs as in [3, Sect. 8.2.2]. O

The problem (3) is the least squares variational formulation of the two dimensional Stokes
equations in the velocity-pressure-vorticity formulation:
Find the velocity v : ﬁf — R?, the pressure p : ﬁf — R and the vorticity w : ﬁf — R, such

that
(o, 0@

7 — Foos QF
_p _ _w — Fyn OF
8%2 'ugxl 2 m u
w—a2 L 0 mQf
¢ dry Oxg (4)
divvy = 0 in Qg
v = g only
v.n = 0 only
p = po only
L w = 0 onlj.

On TI'y, we have the boundary conditions v -n = 0 and p = pg. The validity of these
boundary conditions is difficult to prove using other variational formulation. See ([3, Chap.
8]) for more details.

The boundary conditions p = pg and v - 7 = 0 were studied in [10] and the slip boundary
conditions v - n = 0 and (on) - 7 = 0, where o is the stress tensor, were studied in [11| and
[12], but these boundary conditions aren’t appropriate for our approach of the fluid structure
interaction.

5 Optimal control approach of the fluid-structure interaction
problem

In the classical approaches, the fluid and structure equations are coupled via two boundary
conditions: continuity of the velocities and continuity of the forces on the contact surface.

We denote by A = (A1, \2) the forces induced by the beam on the contact surface. Conse-
quently, —\ represent the forces induced by the fluid acting to the beam.



We denote by S : M — U the application which computes the displacement of the beam
knowing the forces on the contact surface. This application is linear and continuous.

We denote by F : U x M — W x @ the application which computes the velocity and the
pressure of the fluid knowing the displacement of the beam (therefore the domain of the fluid)
and the forces on the contact surface. This application is non-linear on U x M.

Y

Figure 2: The computing scheme

We search to find out A, such that vjp, = 0. This is a exact controllability problem. In
our approach, the target condition will be relaxed. We assume that the forces on the contact
surface have the form A = —pgn, where pg is the pressure of the fluid.

We consider the following optimal control problem:

. 1
inf J (a1, ag, B, B2,71,72) = 3 [v- T||8,ru (5)
subject to:
(a1, 2, B1, B2, 71,72) € K C R (6)
1
uQ(xl) = 360D [15 (3}% —4x1Lq + GL%) (041 — az)
+3 (:(:1 — 1O$1L% + ZOL‘;’) (B1 — B2) (7)

+ (LI,‘% — 20m1L§ + 45L‘11) (1 — 72)]
(v, p,w) solution of the Stokes problem (3) with

(1 + Biz1 +nizd), if (x1,29) € |A, B']
po (z1,22) = (a2 + foz1 + 7o), if (z1,72) €]D,C"] (8)
(%—g—f)po (B,)+ (%+g_,2~)p0 (C,)a if (wlaxZ) E]B’,Cl[

It’s an optimal control problem with Dirichlet boundary control (py) and Dirichlet boundary
observation (v|r, ).

The relation (6) represents the control constraint.

The relation (7) represents the displacement of the beam under the cross forces Ao =
(a1 + Bz + 71:1:%) on JA,B'[ and A\g = (—a2 — Box1 — 'ygx%) on |D,C'[. We assume that the
displacement of the beam under the longitudinal forces A; is negligible.

This mathematical model permits to solve numerically the coupled fluid-cable problem via
partitioned procedures (i.e. in a decupled way, more precisely the fluid and the cable equations
are solved separately).



Remark 2 The existence of an optimal control could be find in [5] for a related problem. In
[7] it is proved the differentiability of the cost function and it is given the analytic formula for
the gradient.

Remark 3 An open problem is to find additional conditions in order to obtain zero for the
optimal value of the cost function. This is an approzimate controllability problem. For a linear
model (the domain of the fluid doesn’t depend upon the displacement of the structure), we can
find approzimate controllability results in [4], [8] and [9].

Remark 4 If v - 7 is constant on Ty, then v is constant on T'y,. Using [9, Prop. 3.1], we
can prove that (on) -n = —pg, where o is the stress tensor. Consequently, solving the beam
equations under the action of the surface forces —\ = pyn on L'y is reasonable.

6 Numerical tests

The parameters for the simulation are listed below:

the geometry L1 = 0.5, Ly =1, H =2, r = 0.05,

the beam Doy = 5,

the fluid ;= 1, f¥ =0, g = (0,Vz1) on the left and right parts of I';, g = (0,V) on the
bottom of I'y, g = (0,0) on the top parts of I';, V = 0.5.

For a guest (aq,as,B1,02,71,72), we compute the displacement of the beam using the
formula (7).

Now, we know the moving boundary of the fluid and we generate a mesh consisting of
triangular elements. Then, we solve the fluid equations (3) with boundary condition (8). We
have used the P; finite element for the velocity, the pressure and the vorticity.

The target is to minimize the cost function (5).

The numerical tests have been produced using freefem+ (see [2]).

The boundary condition v -n = 0 on I', was replaced by vy = 0.

Figure 3: The computed velocity around the beam

The computed velocity isn’t a divergence-free field. For a better approximation of the
incompressibility condition, we can penalize the term (divwv,divw) in (3).



The optimal value of the cost function is J=4.08773e-04 and it was obtained for the penal-
izing factor 10°. In this case ||divo||j is 5.19e-03. In the Figure 3, we can see the corresponding
displacement of the beam and the velocity of the fluid. The velocity of the fluid was multiplied
by 2 for a better visualization.

For the penalizing factor 102, the optimal value of the cost function is J=1.20132e-03 and
||div w2 is 7.91e-03.

We can avoid to generate a new mesh for each evaluation of the cost function by using the
dynamic mesh like in [6].
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