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Abstract  The aim of this paper is to describe the general averaging principle and
to discuss the particular case of single-frequency systems, the case of
systems with constant frequencies and the case of Hamiltonian systems.
‘We show how the stroboscopic method, which is a method of the non-
standard perturbation theory of differential equations, can be used in
this kind of problems. We give various examples which illustrate the
simplicity and the effectiveness of the method.
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1. Introduction

In nature one often encounters systems which are small perturbations
of unperturbed systems. The unperturbed motion is assumed to be
completely described. The main problem is to describe the perturbed
motion. The problem of the motion of planets around the Sun can
be regarded as a perturbation of the integrable problem of the motion
of noninteracting planets around a fixed center of attraction. The un-
perturbed problem decomposes into k Kepler problems, where k is the
number of planets. Perturbation theory and Averaging are the most ef-
fective methods for studying such perturbed motions. Historically these
methods have arisen in the works of Lagrange and Laplace on secular
perturbations of planets.

We consider the unperturbed system defined on B x T*

I=0, ¢=w{), (1)

where I € B, B is an open subset of R™, ¢ € T*, T is the k-dimensional
torus, and w(I) € R¥. The variables I = (Iy,- - -, I,;,) are m first integrals
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of the system. On each torus I =const, the phases ¢ = (¢1,--+, k)
are coordinates. The frequencies are w(I) = (w1(I), -, wk(I)). They
are constant on each torus, but are varying from torus to torus. The
perturbed system is a slow-fast system of the form

I=cf(I,pe), @=w(l)+egl,pe), (2)

where f and g are 2m-periodic in . In Equations (2) the variables I are
slow and the phases ¢ are fast variables.

The averaging principle consists of replacing the perturbed system (2)
by the averaged system

J=eF(J), F(J)= @ A (T, 0)dp. (3)

This principle relies on the belief that the slow variable I(¢,¢) and the
solution J(et) of the averaged system, with the same initial condition,
should be close together over time 1/e. This principle does not always
lead to the correct answer and the question of the correspondence be-
tween the solutions of both systems is far from being completely solved
(for more details see [1] page 293 or [2] page 139).

This paper is organized as follows. In Section 2 we give a justification
of the averaging principle for single-frequency systems. As an applica-
tion we get the adiabatic invariants for Hamiltonian systems, with one
degree of freedom. In Section 3 we describe the stroboscopic method
and show how to use it to obtain adiabatic invariants. In Section 4 we
give a justification of the averaging principle for systems with constant
frequencies. In Section 5 we describe the averaging principle in the case
where the perturbed system is a small Hamiltonian perturbation of an
integrable system.

2. Averaging in Single-Frequency Systems
Consider the system of (m + 1)-equations (2) where £ = 1. Assume

that the frequency w(I) does not vanish. Assume that the solution J(et)
of the averaged system (3) is defined for 0 < ¢ < 1/e.

Theorem 1 Let I(t,€) be the slow variable of the perturbed system (2).
Let J(et) be the solution of the averaged system (3) with the same initial
condition. Then I(t,e) remains close to J(et) over time 1/e, that is to
say, for any v > 0, there exists & > 0 such that ||I(t,e) — J(et)|| < v for
0<e<dand0<t<1/e.

Proof. Consider the change of variable

P=Iteh(lg), hPy) = /0 C(F(P) - 1(P.,0)) d.
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This change of variable takes the perturbed system (2) into the averaged
system to which a small perturbation of order 2 is added :

P =¢F(P) + €%u(P, ¢, ¢).

Over time 1/¢, the solution P(¢,¢) of this system is close to the solution
J(et) of the averaged system (3). Since P(t,¢) is close to I(t,€), the
desired result follows (for more details see [1] page 294). [ |

2.1. Adiabatic Invariants

Consider a Hamiltonian system with one degree of freedom. Assume
that the Hamiltonian H(p,q,\) depends on some parameter A. The
equations of motion have the form

. 0H ) OH
i=—5 (¢, Dp=-5-(00A. (4)
p 9q

If A is constant then the total energy E = H(p(t),q(t), ) is conserved
and the phase trajectories are curves C(F, ) of equation H(p,q,\) =
E. We introduce action-angle variables for the Hamiltonian system (4)
where A is considered as a fixed parameter :

I:I(p’qa)‘)a SOZ(P(p,q,)\) mod 27.

The action variable is defined as follows. Assume that the phase tra-
jectory C(FE, )) is closed. Consider the closed phase trajectory passing
through a point (p,q). It bounds some region in the phase plane. The
area of this region is denoted by 27I(p,q, ). In the variables I, ¢ the
Hamiltonian system (4) is described by the Hamiltonian H(p,q,\) =
H(I, M) :

i=o, ="My )
Assume that A = et. System (4) becomes

. OH ) oOH
qg= %(p,q,st), p= —a—q(p,qaet)- (6)

Theorem 2 If the frequency w(I,\) = OH/OI(I,\) of system (5) is
nowhere zero, then I(p,q,\) is an adiabatic invariant of the system (6),
that is to say, I(p(t),q(t),et) is nearly constant over time 1/e.

Proof. In the variables I, ¢ the system with slowly varying Hamiltonian
(6) is described by the Hamiltonian H(I,\) + K (I, ¢, \) :

. oK . . OH 0K
I——&'%(I,QO,)\), A—&‘, (p_ﬁ(IaA)—Fgﬁ(Ia(pa)‘)a (7)
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where K is 2m-periodic in . Since w(I, ) # 0, Theorem 1 is applicable.
Since the mean value of the derivative 0K /0y of a periodic function is
equal to zero, the averaged system has the form J = 0. Thus I(t,¢)
remains nearly constant over time 1/e. |

Notice that the form (7) of system (6) is not obtained through straight-
forward calculations. It needs the Hamiltonian formalism of time depen-
dent canonical transformations (for more details see [1] page 299).

2.2. The Lorentz pendulum

The small oscillations of a pendulum are described by the differential
equation
i+ wz =0, w? = g/I, (8)

where [ is the length of the pendulum, g the constant of gravitation and z
the angular deviation. The associated vector field to (8) in phase space
(9 = z,p = %) is a Hamiltonian system with slowly varying Hamil-
tonian H(p,q,\) = (p> + w?(N\)¢?) /2. The phase trajectories are el-
lipses of equation H(p,q,\) = E. The semi-axes of each ellipse are
a = V2E/w()\) and b = v/2E. The area of the region bounded by each
ellipse is mab = 2w E /w(A). Thus the action variable is I = E/w()).

If the length [ of the pendulum is slowly varying, that is, w is a func-
tion of et where € is small, by Theorem 2, the ratio E(t,¢)/w(et) of
the total energy E = (22 + w?z?)/2 to the frequency remains nearly
constant over time 1/e, despite of the fact that E(¢,¢) and w(et) may
change by quantities of order 1. This model was proposed by Einstein
and Lorentz at the Solvay Congress in Brussels in 1911 to explain how in
the Bohr atomic model, the ration of the energy to the frequency of an
electron is constant, even if the electron moves in a varying electromag-
netic field. Their explanation was based on the fact that the variation of
the surrounding electromagnetic field is very slow compared to the high
frequency of the electron. Shortly afterwards it appeared that quantum
mechanics was more suitable to understand atomic behavior.

3. The stroboscopic method

The stroboscopic method is a method of the nonstandard perturbation
theory of differential equations. It was proposed by J. L. Callot and G.
Reeb (see [3, 5, 10, 11]). The principle of this method is as follows. Let
z(7) be a function. Suppose there exists a sequence of points (7, z, =
z(7y)) such that 7,41 ~ 7, (1) ~ z, on the interval [1,, T,+1] and

T -z
sntl T on F(Tn, Tn),
Tn4+1l — Tn
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where f is a standard continuous function. Then the function z(7) is
infinitely close to a solution of the differential equation z' = f(r,z).
The values 7, are called the instants of observation of the stroboscopic
method.

There is another approach, based on the stroboscopic method, of the
adiabatic invariance of the action variable in single frequency slowly
varying systems. Let us explain it in the more general case of a non
Hamiltonian perturbation of (4)

q ap (paqa )+8f(paq7>‘)a QER,
p:_a_q(p7Q7>‘)+8g(paqu)a pERa (9)
A = eh(p,q, ), AER,
Let v(t,e) = (q(t,€),p(t,€), A(t,€)) be a solution of (9). The total energy
E(t,e) = H(p(t,e),q(t,€), A(t,€)) is slowly varying :
. OH OH 0H

Over time 1, the quantities \(¢,e) and E(t, ) remain nearly constant,
so that the phase trajectory ~y(t,€) passing through the point (go, po, Ao)
remains close to the curve C(Fy, \g) defined by H(p,q, A\g) = Ey where
H (pg, g0, N\o) = Ey. The problem is to describe what happens over time
1/e. This question is answered in the following section.

3.1. Non Hamiltonian Perturbations

It is more natural to consider system (9) at the time scale 7 = €t. Let
= d/dt be the derivative with respect to the new time variable 7. The
system (9) becomes

p = _é%_H(paqu)-l_g(paqa)‘)a (11)
X—h@%M-

A region of oscillations of the Hamiltonian function H(p, g, \) is a domain
D C R x R' such that for all (E,\) € D, the equation H(p,q,\) = E
defines a closed curve C'(E, \) in the plane (g, p) which does not contain
any singular point where both derivatives 0H/dp and 0H/dq vanish.
This closed curve corresponds to a periodic solution (¢(¢, A, E), p(t, A, E))
of (4) of energy E. Let P(E, \) be the period of this solution. We define
the functions G(E, \) and K(F, ) on D by

R(E, \)
P(E, )

P(E\)
G(E, )\ = . R(E,) = / Qp(t, ) ), q(t, A, E), Ndt,
0



S(E, \)
P(E, )\

P(E,\)
K(EN =Py SEN= [ Aot \E)a(t ) B), Vit
0

Theorem 3 Let y(1,¢) = (q(7,¢),p(7,€), \(7,€)) be a solution of sys-
tem (11) passing through the point (qo,po,Ao). Assume that (Fy, o)
where Ey = H(po,qo, M), belongs to a region of oscillation D and that
the closed curve C(Eg, Ao) contains the point (po,qo). Let E(r,e) =
H(p(7,e),q(7,e), \(1,€)) be the total energy of v(7,€). Then, the func-
tion (E(7,€),\(,¢€)) is infinitely close to the solution (Ey(T), Xo(7)) of
the averaged system

E'=G(E,\), XN=K(E,N\), (12)

with initial condition (Ey, Ao), as long as 7 is limited and (FEo(7), Ao(7))
1s limited and takes values in D.

Proof. Let 7, be an instant of observation. Let p, = p(m,¢€), ¢ =
q(1n,€), Ep = E(1p,€) and A, = A(7y,,€). The change of variables
T —Tn E(r, +e€r,e) — Ep M +er) — A

r=1"" Fne) . . AGe) T

transforms system (11) and equation (10) into the system

dg/dr = 3 (p, ¢, \n + €M) +ef (D, q, M + €A),
dp/dr = =92 (p,q, M + €M) + £g(p, ¢, A + €), (13)
dA/dr = h(p,q, \n + ), dF/dr = Q(p,q, A\n + €A).

By continuous dependence of the solutions we get
q(r,€) = q(r, An;, En), p(r,€) = p(r, An, En), (14)

where (q(r, A, Ey), p(r, A, Ey)) is the solution of the unperturbed sys-
tem (4) with A = A, of total energy E,, and starting from (g, pp)-
From (13) and (14) we have

)
Firye) = / QUp(t, My En), q(t, Ay ), M),
0

T
Alr,e) = / B(p(t, My Fn), q(t; Any ), M)t
0

The successive instant of observation is defined by 7,11 = 7, + er, where
r = P(Ep,\n). Let Ent1 = E(Tp41,€) and Apy1 = AM(Tn41,€). Then

Eny1— E,  F(rye) ~ G(Ey \) Al — M A(r,e) ~ K(Ey. )
- - ny\njs - —_ ny\nj-

Tpn+1 — Tn T Tn+1 — Tn T
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Using the stroboscopic method we conclude that (E(7,¢), A(7,€)) is in-
finitely close to the solution (Ey(7), Ao(7)) of the averaged system (12)
with the same initial condition. |

3.2. Applications

Let us give in this section some applications of Theorem 3. This
theorem applies in many other situations. See [9] for applications to the
study of some second, third and n order singularly perturbed differential
equations.

Example 1. For the Lorentz Pendulum we have f =g =0, h =1
and H(p,q,\) = (p2 +w2(/\)q2) /2. Hence the averaged system (12)

takes the form :
E' = EJ' (1) /w(7).

Hence E(7,¢) ~ E(0,¢)w(7)/w(0), that is to say, the ratio E(r,¢)/w(7)
remains nearly constant over time 1.

Example 2. Consider the second order differential equation
i+ f(z,et) =0,

or equivalently, at time scale 7, 22" + f(x,7) = 0. The change of
variables ¢ = =, p = ez’ transforms this equation into the system

ql = p/‘Sa pl = _f(an)/‘Sa

which is of the form (11) with Hamiltonian H(p,q, \) = p?/2 + U(q, A),
where 0U/0q = f. Hence the averaged system (12) takes the form

fq2((ET) _aelgm)dg

E,r

E =G(E,7), G(E,7)= — "NV = U("’
fqg(E T

o(B,1) \JE—U(qr) U(q,

where ¢1(E,7) and ¢o(E,7) are the minimum and the maximum of an
oscillation. There are the solutions of equation U(g,7) = E. From
Theorem 3 we see that the energy F(T,¢) remains infinitely close to the
corresponding solution Ey(7) of the averaged system.

Example 3. Consider the third order differential equation
2d3z/dm® + f(r,z,dz/dT) = 0.

The change of variables ¢ = dz/dr, p = ed?z/dr?, X = (7,z) transforms
this equation into the system

d=ple, pP=-f\g1)e, N=(,9),



8

which is of the form (11) with Hamiltonian H(p, g, \) = p?/2 + U(), q),
where 0U/0q = f. Hence the averaged system (12) takes the form

2B (Z200)+75% (A\q))dg
a(BN) VE-U(\9)
q2 (EyA) dq ?

a(EA) \/E-U(\9)

E'=G(E,)\), G(EN=

(I2((E;/\)) qdq
r_ _ alBN VE-U()
A _K(E?A)’ K(E’ )_ qz(E,)\) dg ’

a(EN) \/E-U(Nq)
where ¢1(E, \) and ¢o(E, \) are the minimum and the maximum of an
oscillation. There are the solutions of equation U(), q) = E. From The-
orem 3 we see that the energy E(7,¢) and A(1,e) = (7, 2z(7,€)) remain
infinitely close to the corresponding components of the solution (Ey(7),
Ao(7)) of the averaged system.

Example 4. The third order differential equation

2z /dr® + dx/dr =1 — 2? (15)
was considered in [4] to explain the behavior of the so-called ghost so-
lutions appearing in numerical schemes. The change of variables ¢ = «z,
p = edx/dT, A = z+e2d?x/dr? transforms equation (15) into the system

d=ple, P=N-qfe, N=1-¢,
which is of the form (11) with Hamiltonian H (p, ¢, A) = (p* + (A — ¢)?) /2.
Hence the averaged system (12) takes the form
E' =2E), N=1-FE - )2

From Theorem 3 we see that a solution z(t, €) of (15) is rapidly oscillating
and satisfies

)\0(7')— 2E()(T) S:C(T,é‘) S)\()(T)+ 2E0(T),

where Eo(7) and Ag(7) are the corresponding solutions of the averaged
system.

3.3. The evolution of the action variable

Let I, ¢ be the action-angle variables for the Hamiltonian system (4)
where A is considered as a fixed parameter. In the variables I, ¢ the
system (11) is equivalent to a system of the form

I-:gfl(Ia()%)‘% )‘:‘ehl(Ia(PaE)a ()b:w(Ia)‘)—l—‘Egl(Ia(PaA)'
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This system is of the form of system (2) to which Theorem 1 applies.
Here, it is not so easy to use the Hamiltonian formalism of canonical
transformations to determine the functions fi, g1 and hq, as it was the
case in the proof of Theorem 2. Thus, we cannot compute the averages
of the functions f; and ¢g; and apply Theorem 1 to obtain the evolution
of I. However, from Theorem 3 we can obtain the evolution of I. Let
A(E, ) be the area of the region bounded by the closed curve C(E, \) :

A(E,)\) = 7{ pdgq.
C(E,\)

Recall that I = A/(2r) is the action variable for the Hamiltonian system
(4) where A is a fixed parameter.

Theorem 4 Let y(7,e) = (q(7,¢),p(7,€),A(7,€)) be a solution of sys-
tem (11). Let (Ey(T), Ao(7)) be the corresponding solution of the aver-
aged system (12) described in Theorem 3. Let a(7,e) = A(E(T,¢€), A\(T,€)).
Then

a(t,e) ~ a(0,¢) + /OT L(Ey(s), Xo(s))ds,
where L(E,\) = R(E,\) — Q(E,\)K(E,\) and

P(E,\) OH
QB ) = / O (1t ), q(t, A, E), \)dt.
0 oA
Proof. A straightforward computation shows that 0A/0F = P and
0A/OX = —Q. Hence

da dE dx
- (1,6) = P(E(1,6),\(1,€)) =~ (1,6) = Q(E(t,), (7, €)= (7,6).

By Theorem 3 we have da/d7(7,€) ~ L(Eo(7), Ao (T)). [ |

As a consequence of this result we get the adiabatic invariance of the
action variable in single frequency slowly varying Hamiltonian systems
obtained in Theorem 2.

Theorem 5 Let y(t,e) = (q(t,¢),p(t,€)) be a solution of system (6)
where A\ = et. Let a(t,e) = A(E(t,€),et). Then a(t,e) remains nearly
constant over time 1/e.

Proof. In the particular case of system (6), we have ¢ = f = 0 and
h = 1. Hence L = 0. By Theorem 4, a(7,¢) remains nearly constant
over time 1. ]
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3.4. Single-frequency systems

The stroboscopic method allows also another approach of Theorem 1
(for the details see [3]). With the new time variable 7 = €t, the perturbed
system (2) becomes

I'=f(I,pe), ¢ =wl)/e+g(,pe) (16)
and the averaged system (3) becomes
J =F(J). (17)

Let (I(,€),¢(7,€)) be a solution of (16). Let 7, be an instant of obser-
vation. Let I,, = I(7y,,¢) and @, = ¢(7,,€). The change of variables

- I — 1
"= - €Tn’ J(T,E) - (Tn+€§’€) n7 ¢(T,€) :¢(Tn+€r78)_¢na
transforms the system (16) into the system
dJ/d’I‘ = f(Inason +¢,O) +5f1(Ja¢a8)a J(O) =0, (18)
dyp/dr = w(ly) +eg1(J, ¥, ¢€), P(0) = 0.

By continuous dependence of the solutions we get

r 1 Ontw(In)r
10 = [ Gipn+ wll)s00ds = 7 [ £ (L 0, 00
0 w(In) n
Let 741 = 7 +er and Iny1 = I(7p41,€), where r = 27 /w(I,). We have

Inyi—In _ J(re) 1

On+27
/ T o+ 0,0)ds = F(I,).

Tn4+1l — Tn T 27 J,

Using the stroboscopic method we conclude that I(7, ¢) is infinitely close
to a solution of the averaged system (17).

4. Systems with Constant Frequencies
Consider a system with constant frequencies
I':gf(IaQDaE)a ¢:w+5g(15‘p’8)3 (19)

where the frequency vector w does not depend on the slow variable I.
The change of variable § = ¢ — wt transforms (19) into

I=ef(I,0+wte), &=eg(I,0+uwte) (20)
Let © = (1,0). System (20) becomes
T = cA(t,z,¢), z € Rtk (21)

where A(t,z,e) = (f(1,0 + wt,e),9(I,0 + wt,€)). Since f and g are 27-
periodic in ¢, the function A is quasiperiodic in ¢t. Hence system (21) is
a Krylov-Bogoliobov- Mitropolski (KBM) system.
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4.1. KBM Theory
Assume that A(¢,z,0) is 2m-periodic in ¢. Let

1

Ao(z) = o

2
/ A(t, 3, 0)dt.
0

The aim of KBM theory is to approximate the solutions of system (21)
by the solutions of the averaged system

T =eAy(z). (22)

Assume that (22) has the uniqueness of the solution with prescribed
initial condition.

Theorem 6 Let z(t,e) be a solution of (21). Let xo(et) be the solution
of (22) with initial condition x(0,0). Assume that xo(et) is defined on
the interval [0,1/e]. Then x(t,€) is defined at least on the same interval
and satisfies

z(t,e) ~ xo(et), 0<t<1/e.

Proof. 1t is more natural to consider systems (21) and (22) at the time
scale 7 = et. Let ' = d/dr be the derivative with respect to the new
time variable 7. The system (21) becomes

7' = A(1/e, x,€), (23)
and the averaged system (22) becomes

Let z(7,¢) be a solution of (23). Let 7, be an instant of observation.
Let z, = 2(7,,€). Consider the change of variables

T —Tn Tn + €T,€) — Tp,

r= , X(r,s):x(

9 &

The system (23) is taken into the system

X

I =A(s+r,zy,+eX,¢),

where s = 7, /e. By continuous dependence of the solutions we get

r s+r
X(r,e) ~ / A(s 4+ r,2,,0)dr = / A(t, xy,,0)dt.
0 s
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Let 7,41 = T, +€27 be the successive instant of observation. Let ;11 =
Z(Tp+1,€). We have

Tnt1 —2Tn _ X(2me) 1

s42m
_ ~ L / A(t, 30, 0)dt = Ao(z).
T+l — Tn 2w 2 J
Using the stroboscopic method we conclude that z(7, ¢) is infinitely close

to the solution zy(7) of the averaged system (24). [ |

Theorem 6 was extended to quasi periodic vector fields and KBM
vector fields (see [7] and the references in there). In these cases the
average Ao(z) is obtained as follows. If A(¢,,0) is quasiperiodic in ¢
then the limit

1 s+T
A = lim — Alt dt
o(z) T;IEMT/S (t,z,0)
exists and is uniform with respect to s. If A is a so-called KBM vector
fields, then the limit

1 T
Agla) = lim /O Alt, 7,0)dt

exists. The stroboscopic method allows us to obtain the KBM theorem
of averaging in these more general cases (for more details see [11]).

Theorem 7 Assume that the function A(t,z,0) is continuous in T uni-
formly with respect to t and that the average Ao(x) exists. Let z(t,€) be
a solution of (23). Let xo(7) be the solution of (24) with initial condition
z(0,0). Assume that zo(T) is defined on the interval [0,1]. Then z(T,¢)
is defined at least on this interval and is approzimated by xo(T).

In the classical formulation of the previous theorem (see [7]) it is usually
required that the function A(t,z,¢) is Lipschitz continuous in z. In our
formulation this condition has been weakened : only the continuity in z
uniformly with respect to ¢ is required. The differential equation

x' = sin(rz/¢) (25)

provides an example for which the conclusion of Theorem 7 does not
hold. The average of A(t,z) = sin(tx) is Ag(xz) = 0. But the function
A(t, ) is not continuous in z uniformly with respect to ¢. The study of
(25) was at the origin of the birth of the stroboscopic method (see [3, 10]).
Actually, we prove [3, 11] that the solutions of (25) are approximated
on the subset U = {(z,7) € R? : £ > 7 > 0} by the solutions of the
averaged differential equation

2

T
!

T =

—T4 -
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4.2. Precession of the planet Mercury

The Einstein equation for the planet Mercury is

2
%+u:a+eu2, (26)

where u = 1/r and r, 6 are the polar coordinates of Mercury in the plane
centered at the Sun. Here

_ GMT
a=—

where G is the Newtonian gravitational constant, M the mass of the Sun,
h the angular momentum of Mercury, 7 the mean value of r and c¢ the
speed of the light in vacuum. For ¢ = 0, we have the Newtonian model :
the trajectory is an ellipse u = a+ A sin . The usual perturbation theory
predicts that, under the gravitational effects of the other planets, this
orbit should rotate slowly in space, so that the major semi axis of the
ellipse should advance by about 529 seconds of arc per century. The
precession is actually observed to be of 572 seconds of arc per century.
The difference is explained by the general relativity theory.
Let x = u — a, and t = 6, then equation (26) is equivalent to

_ 3GM

s— ~8.16 x 107°,
c°r

~098, ¢

i+z=¢cz+a)?
which is a particular case of an equation of type

I+z=cf(z, ). (27)
The vector field associated to equation (27) is

:f,':y, :l):—$+€f($,y)-

The Van der Pol change of variables z = Asin(t + B), y = A cos(t + B)
transforms this system into

A =ef(Asin(t + B), Acos(t + B)) cos(t + B),
B= £ f(Asin(t + B), Acos(t + B))sin(t + B).

By Theorem 6 the solutions of this system are approximated by the
solutions of the averaged system. For f(z,y) = (z + a)?, the averaged
system is ] )

A =0, B =a.

Hence the amplitude A remains nearly constant (there is no secular
variation of the major semi-axis of Mercury due to gravitational effects of
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general relativity) but the phase is slowly varying (there is a precession).
More precisely we have A(t) ~ A and B(t) ~ eat thus

u(t) ~ a + Asin((1 + €a)t).

Hence the precession due to the gravitational effects of general relativity
is of
27ea radians = 3600 x 360 ca second of arc

per orbit of Mercury. Since the period of Mercury is 88 days, the pre-
cession of Mercury due to the relativity theory is of

3600 x 360 x (8.16) x 10~® x (0.98) x 100 x 365 _
88 -

seconds of arc per century. For more details on this subject the reader
is referred to [6] page 39, [12] page 29 or [13] page 144.

43

5. Averaging in Hamiltonian Systems

Consider the case where k = m = n and the perturbed system (2) is a
small Hamiltonian perturbation of a completely integrable Hamiltonian
system with n degrees of freedom. The Hamiltonian of the perturbed
system takes the form

H(Iv 90) = HO(I) +5H1(Ia ®, 8)'

We have assumed that some domain in phase space is foliated by in-
variant tori, and that action-angle variables I = (I1,---,I,) € B C R",
¢ = (p1,-++,n) € T" for the unperturbed system are introduced in
this domain. The Hamiltonian Hy(I) of the unperturbed system depends
only on the action variables I. The equations governing the unperturbed
motion have the form :

. 0H,
= 51D (28)

The equations governing the perturbed motion have the form :

. o ,_ Oy OH,
I_ € 8(,0 (Iasoag)a Y= 6[ (I)+8 6[ (I,<P,€)- (29)

I=o,

Since ¢r., 0H1/0p(I,p,0)dp = 0, the averaged system is J = 0. Using
the averaging principle we assert that there is no evolution in the slow
variables I(t) of system (29) over time 1/e. A mathematical problem
central to Hamiltonian systems theory is to establish this result for the
perturbed system. Historically this problem gave rise, with the works of
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Laplace and Lagrange, to the first formulation of the averaging principle
and the birth of the perturbation theory. Considerable progress in this
problem has been achieved in the framework of the Kolmogorov-Arnold-
Moser (KAM) (for more details see [2] page 171).

5.1. KAM Theory

For the unperturbed Hamiltonian system (28) the phase space is fo-
liated by invariant tori I =const. Each torus carries on a conditionally-
periodic motion with constant frequencies w(I) = dHy/0I(I). A torus
on which the frequencies w(I) = (wi(I),---,w,(I)) are rationally inde-
pendent is filled densely by phase trajectories. Such a torus is said to
be non resonant. The remaining tori I =const on which the frequencies
are rationally dependent are said to be resonant. Each phase trajectory
on such a torus fills densely a torus of smaller dimension.

Consider now the perturbed system (29). Under a condition of non
degeneracy of the frequencies, the theorem of Kolmogorov ([2] page 183)
asserts that, for sufficiently small Hamiltonian perturbations, most non
resonant invariant tori do not vanish but are only slightly deformed. In
the phase space of the perturbed system there are invariant tori densely
filled with phase curves. These tori are called the Kolmogorov tori.
Their union is the Kolmogorov set. The measure of the complement of
the Kolmogorov set does not exceed a quantity of order /e.

5.2. Arnold diffusion

In systems with two degrees of freedom, the phase space is four-
dimensional and the energy level manifolds are three-dimensional. Since
the Kolmogorov tori are two-dimensional, a phase curve starting in a gap
between two Kolmogorov tori remains forever trapped between them.
Thus, the slow variables remain forever nearly constant, and the aver-
aging principle leads to the correct answer.

If the number n of degrees of freedom is greater than two, the n-
dimensional Kolmogorov tori do not divide the (2n — 1)-dimensional
energy level manifolds, so that the “gaps” between Kolmogorov tori
are connected to one another. Arnold conjectured that through an ar-
bitrary small neighborhood of any point there pass phase trajectories
along which the slow variables I do not remain nearly constant. Nu-
merical examples show that the evolution of I is not directional but
represents a more or less random wandering in the complement of the
Kolmogorov set. This behavior is known as Arnold’s diffusion (for more
details see [2] page 189).
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