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Abstract

In this paper we investigate the similarity solutions of a plane mixed convection
boundary layer flow near a semi-vertical plate, with a prescribed power law function
of the distance from the leading edge for the temperature, that is embedded in a
porous medium. We show the existence and uniqueness of convex and concave
solutions for positive values of the power law exponent.

1 Introduction

We look at the nonlinear autonomous differential equation established in [1]

f ′′′ + (1 + λ)ff ′′ + 2λ(1− f ′)f ′ = 0 (1)

on [0,∞) with the boundary conditions

f(0) = α, (2)

f ′(0) = β, (3)

f ′(∞) = 1 (4)

where β > 0 and f ′(∞) := lim
t→∞

f ′(t).
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The problem (1)-(4) with α = 0 and β = 1 + ε, −1 < ε < 1
2

is considered in [1] and
[2] and comes from the study of the mixed convection boundary-layer flow along a semi-
infinite vertical plate embedded in a saturated porous medium. We take a rectangular
Cartesian co-ordinate system with the origin fixed at the leading edge of the vertical plate,
the x-axis directed upward along the plate and the y-axis normal to it and we write the
temperature on the plate as T (x, 0) = T∞ + Axλ with A > 0, λ ∈ R and where T∞
denotes the tempetature far from the wall. The fluid velocity at the edge of the boundary
layer is writen as Bxλ with B > 0 and we suppose that there is no normal velocity on
the plate. Then, for large Péclet numbers, one can compute the stream function and the
temperature of the fluid in the porous medium using the dimensionless similarity function
f given by (1)-(4). For more details on the derivation of the model, see [1], [2] and [3].
One can find some numerical results in [1], [2] and [4].

The solution of (1)-(4) depends on two parameters, the power law exponent λ and the
mixed convection parameter ε = Ra

Pe
with Ra the Rayleigh number and Pe the Péclet

number. For ε = 0 we have forced convection, ε > 0 corresponds to aiding mixed
convection and ε < 0 to opposing mixed convection.

For λ = 0 (isothermal surface), equation (1) reduces to the Blasius equation (see [5])
and is studied with conditions (2)-(4) in [6] for α ≥ 0 and β > 0, in [7] for α ∈ R and
β ∈ (0, 1) and in [8] for α ∈ R and β > 1. Blasius equation is also a particular case of the
Falkner-Skan equation f ′′′ + ff ′′ + λ(1− f ′2) = 0 (see [7]).

In [9] one can found interesting new results about the problem (1)-(4) for λ < 0
and α = 0, in particular that there are infinitely many solutions for −1 < λ < 0 and
0 < β < 3

2
, no solutions for λ = −1 (except the trivial one f(t) = t for β = 1) and no

nonnegative solutions for λ < −1 and β > 3
2
.

In this note, we are interested in the case λ > 0, and prove existence and uniqueness
of the solution of (1)-(4) whose second derivative does not vanish.

2 Existence and uniqueness results

First, let us suppose that f satisfies equation (1) on some interval I and denote by F any
anti-derivative of f on I, then we have(

f ′′e(1+λ)F
)′

= −2λ(1− f ′)f ′e(1+λ)F . (5)

As for the Falkner-Skan equation, and contrary to what occurs in [10], the relation (5)
shows that oscillatory solutions may exist (see [11]). Nevertheless, for the problem (1)-
(4) we could expect convex solutions (i.e. such that f ′′ > 0) if 0 < β < 1, and concave
solutions (i.e. such that f ′′ < 0) if β > 1. Before proving this, let us look briefly at the case
λ > 0 and β = 1; the function g(t) = t + α is then a solution of (1)-(4). Let f be another
solution with f ′′(0) = γ and assume first that γ > 0. Then, since f ′(0) = f ′(∞) = 1,
there exists t0 > 0 such that f ′(t0) > 1, f ′′(t0) = 0 and f ′′′(t0) ≤ 0. However, from (1)
we obtain f ′′′(t0) = −λf ′(t0)(1− f ′(t0)) > 0 and thus a contradiction. If γ < 0, the same
approach does not allow us to produce a contradiction, but leads to f ′(t0) < 0, and thus g
is the unique increasing solution of (1)-(4) when λ > 0 and β = 1. Clearly, at this stage,
we cannot exclude that oscillatory solutions exist.
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In order to obtain solutions of (1)-(4), we consider the following initial value problem:
f ′′′ + (1 + λ)ff ′′ + 2λ(1− f ′)f ′ = 0,
f(0) = α,
f ′(0) = β,
f ′′(0) = γ

(6)

with λ > 0, α ∈ R, β > 0 and a suitable γ. We denote the solution by fγ and by [0, Tγ)
its right maximal interval of existence. Next, integrating (1) on [0, t] for 0 < t < Tγ, we
obtain the useful identity

f ′′γ (t)− γ + (1 + λ)(fγ(t)f
′
γ(t)− αβ) + 2λ(fγ(t)− α) = (3λ + 1)

∫ t

0

f ′γ(s)
2ds. (7)

We also need the following lemma.

Lemma 1 If f is a solution of (1) on [0, Tγ) such that there exists a point t0 satisfying
f ′′(t0) = 0 and f ′(t0) = 1, then f ′′(t) = 0 for every t ∈ [0, Tγ).

Proof. Let f be a solution of (1) on [0, Tγ) such that f ′′(t0) = 0 and f ′(t0) = 1 for
some t0 ∈ [0, Tγ). Since the function g(t) = t − t0 + f(t0) is a solution of (1) such that
g(t0) = f(t0), g′(t0) = f ′(t0) and g′′(t0) = f ′′(t0), we obtain g = f and f ′′ ≡ 0.

Theorem 1 Let λ > 0. For α ∈ R and 0 < β < 1 problem (1)-(4) admits a unique
convex solution.

Proof of existence. Let fγ be a solution of the initial value problem (6) with 0 < β < 1
and γ ≥ 0. We notice that fγ(t) exists as long as we have f ′′γ > 0 and f ′γ < 1. From
Lemma 1, f ′′γ cannot vanish at a point where f ′γ = 1. Therefore, it follows that there are
only three possibilities:

(a) f ′′γ becomes negative from a point such that f ′γ < 1,
(b) f ′γ takes the value 1 at some point for which f ′′γ > 0,
(c) we always have 0 < f ′γ < 1 and f ′′γ > 0.

As f ′0(0) = β < 1, f ′′0 (0) = 0 and f ′′′0 (0) = 2λβ(β − 1) < 0 we have that f0 is of type (a),
and by continuity it must be so for fγ with γ > 0 small enough.

On the other hand, as long as f ′′γ (t) > 0 and f ′γ(t) ≤ 1, we have fγ(t) ≤ t + α, and (7)
leads to

f ′′γ (t) ≥ −(1 + λ)fγ(t)f
′
γ(t)− 2λfγ(t) + (1 + λ)αβ + 2λα + γ

≥ −(3λ + 1)t + (1 + λ)(αβ − |α|) + γ

and integrating once again we have

f ′γ(t) ≥ −3λ + 1

2
t2 + ((1 + λ)(αβ − |α|) + γ)t + β. (8)

Hence, for γ large enough, the polynomial on the right of (8) takes values greater than 1.
Therefore, for such a γ, there exists t0 such that f ′γ(t0) = 1 and f ′′γ (t) > 0 for t ≤ t0, and
fγ is of type (b).
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Defining A = {γ > 0 ; fγ is of type (a)} and B = {γ > 0 ; fγ is of type (b)} we have
that A 6= ∅, B 6= ∅ and A ∩ B = ∅. Both A and B are open sets, so there exists a
γ∗ > 0 such that the solution fγ∗ of (6) is of type (c) and is defined on the whole interval
[0,∞). For this solution we have that 0 < f ′γ∗ < 1 and f ′′γ∗ > 0 which implies that
f ′γ∗(t) → l ∈ (0, 1] as t →∞. Suppose that l 6= 1, as f ′γ∗ is increasing we have f ′γ∗ ≤ l and

f ′′′γ∗(t) ≤ −(1 + λ)αf ′′γ∗(t)− 2λ(1− l)f ′γ∗(t).

Integrating this inequality leads to

f ′′γ∗(t)) ≤ γ∗ − (1 + λ)α(f ′γ∗(t)− β)− 2λ(1− l)(fγ∗(t)− α)

and, as f ′γ∗(t) → l < 1 and fγ∗(t) → ∞ as t → ∞, we obtain a contradiction with the
positivity of f ′′γ∗ .

Proof of uniqueness. Let f be a convex solution of (1)-(4). As f(t) > 0 for t large
enough, we have that f ′′′(t) < 0 for t large enough. Then f ′′(t) → 0 as t →∞.
As f ′ and f ′′ are positive, we can define a function v : [β2, 1) → [α,∞) such that

∀t ≥ 0, v(f ′(t)2) = f(t).

Setting y = f ′(t)2 leads to

f(t) = v(y), f ′′(t) =
1

2v′(y)
and f ′′′(t) = −

v′′(y)
√

y

2v′(y)3
(9)

and using (1) we obtain

∀y ∈ [β2, 1), v′′ = (1 + λ)
vv′2
√

y
+ 4λ (1−√

y) v′3 (10)

with

v(β2) = v(f ′(0)2) = α, v(1) = lim
t→∞

f(t) = ∞ and v′(β2) =
1

2γ
> 0.

Suppose now that there are two convex solutions f1 and f2 of (1)-(4) with f ′′i (0) = γi > 0,
i ∈ {1, 2} and γ1 > γ2. They gives v1, v2 solutions of equation (10) defined on [β2, 1) such
that

v1(β
2) = v2(β

2) = α, v′1(β
2) =

1

2γ1

and v′2(β
2) =

1

2γ2

.

Let w = v1 − v2, we have w(β2) = 0 and w′(β2) < 0. If w′ vanishes, there exists an x in
[β2, 1) such that w′(x) = 0, w′′(x) ≥ 0 and w(x) < 0. But from (10) we then obtain

w′′(x) = (1 + λ)
v′1(x)2

√
x

w(x) < 0

and this is a contradiction. Therefore w′ < 0 and w < 0 on [β2, 1). Set now Vi = 1
v′i

for

i ∈ {1, 2} and W = V1 − V2. We have W > 0 and using (10) we obtain

W ′(y) = −(1 + λ)
w(y)
√

y
− 4λ(1−√

y)w′(y) > 0.

But, using (9) we have Vi(f
′(t)2) = 2f ′′(t) and thus Vi(y) → 0 as y → 1. Hence W (y) → 0

as y → 1, a contradiction.
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Theorem 2 Let λ > 0. For α ∈ R and β > 1, problem (1)-(4) admits a unique concave
solution.

Proof of existence. Let fγ be a solution of the initial value problem (6) with β > 1
and γ ≤ 0. As long as we have f ′γ > 1 and f ′′γ < 0, then fγ exists. Because of Lemma 1,
there are only three possibilities

(a) f ′′γ becomes positive from a point such that f ′γ > 1,
(b) f ′γ takes the value 1 at some point for which f ′′γ < 0,
(c) we always have 1 < f ′γ and f ′′γ < 0.

As f ′0(0) = β > 1, f ′′0 (0) = 0 and f ′′′0 (0) = 2λβ(β − 1) > 0 we have that f ′0(t) > 1 and
f ′′0 (t) > 0 on some interval [0, t0). Then, by continuity for small values of −γ we have
that f ′′γ becomes positive at some point with f ′γ > 1 and fγ is of type (a).

As long as f ′′γ (t) < 0 and f ′γ(t) ≥ 1, we have fγ(t) ≥ α and (7) leads to

f ′′γ (t) ≤ γ + (1 + λ)αβ + (3λ + 1)β2t + |α|(1 + λ)β.

Integrating once again we have

f ′γ(t) ≤
3λ + 1

2
β2t2 + (γ + (1 + λ)αβ + |α|(1 + λ)β)t + β.

Hence, for −γ large enough, there exists t0 such that f ′γ(t0) = 1 and f ′′γ (t) < 0 for t ≤ t0,
and fγ is of type (b).

Defining A = {γ < 0 ; fγ is of type (a)} and B = {γ < 0 ; fγ is of type (b)} we have
that A 6= ∅, B 6= ∅ and A ∩B = ∅. Both A and B are open sets, so there exists a γ∗ < 0
such that the solution fγ∗ of (6) is of type (c) and is defined on the whole interval [0,∞).
For this solution we have that f ′γ∗ > 1 and f ′′γ∗ < 0 which implies that f ′γ∗ → l ≥ 1 as
t →∞. Suppose that l 6= 1, as f ′γ∗ is decreasing we have f ′γ∗ ≥ l and

f ′′′γ∗(t) ≥ −(1 + λ)αf ′′γ∗(t)− 2λ(1− f ′γ∗(t))f
′
γ∗(t).

Integrating this inequality leads to

f ′′γ∗(t) ≥ γ∗ − (1 + λ)α(f ′γ∗(t)− β)− 2λ(1− l)(fγ∗(t)− α)

and, as f ′γ∗(t) → l > 1 and fγ∗(t) → ∞ as t → ∞, we obtain a contradiction with the
negativity of f ′′γ∗ .

Proof of uniqueness. Let f1 and f2 be two concave solutions of (1)-(4) and let
γi = f ′′i (0) < 0, i ∈ {1, 2} with γ1 > γ2. Writing g = f1−f2, we have g′(0) = 0, g′(∞) = 0
and g′′(0) > 0. Hence there exists t0 > 0 such that g′ admits a positive maximum at t0,
and this means

g′(t0) > 0, g′′(t0) = 0 and g′′′(t0) ≤ 0.

From (1), and since f ′i > 1 and f ′′i < 0, we obtain

g′′′(t0) = −(1 + λ)f ′′1 (t0)g(t0)− 2λg′(t0)(1− f ′1(t0)− f ′2(t0)) > 0

and hence a contradiction.
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