FST Mulhouse Licence 2 Math 3.3

TD 3 (Octobre 2006)

Exercice 1. Soit $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ définie par:

$$d(x,y) = \begin{cases} 1 & \text{si} \quad x \neq y \\ 0 & \text{si} \quad x = y \end{cases}$$

- 1. Montrer que d est une distance sur \mathbb{R} .
- 2. Décrire les boules ouvertes suivantes (pour cette distance): $B\left(5,\frac{1}{2}\right)$ et $B\left(5,2\right)$.
- 3. Soit $a \in \mathbb{R}$; décrire en discutant suivant les valeurs de r > 0 la boule ouverte B(a, r).
- 4. Montrer que pour tout $a \in \mathbb{R}$, $\{a\}$ est un ouvert de (\mathbb{R}, d) . En déduire tous les ouverts de (\mathbb{R}, d) ?

Exercice 2.

- 1. Soit (X,d) un espace métrique. Montrer que pour tout élément a de X et tout réel r>0 les diamètres de la boule ouverte B(a,r), de la boule fermée Bf(a,r) et de la sphère S(a,r) sont inférieurs ou égaux à 2r.
- 2. On considère l'espace métrique $E =]-\infty,0]$ muni de la distance usuelle. Déterminer le diamètre des parties suivantes de E: B(0,1), S(0,1), Bf(0,1), B(-1,2), S(-1,2) et B(-1,1).
- 3. Soit $(E, \|.\|)$ un espace vectoriel normé. Montrer que pour tout élément a de E et tout réel r > 0, diam(B(a, r)) = diam(Bf(a, r)) = diam(S(a, r)) = 2r.

Exercice 3. Pour chaque partie A de l'espace métrique spécifié X, donner l'adhérence, l'intérieur, la frontière et l'ensemble dérivé des points d'accumulation de A lorsque,

- 1. $X = \mathbb{R}$ muni de |.|, et A l'une des parties: $]1,2] \cup \{3\}, \]1,2] \cup]2,3[, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}, \ [0,1] \cap \mathbb{Q}, \{\frac{1}{n+1}, n \in \mathbb{N}\}.$
- 2. X est le sous espace métrique $[0,1] \cup \{2\} \cup [3,4[$ de $(\mathbb{R},|.|)$ et A l'une des parties: $\{2\}, [0,1] \cup \{2\}, [0,1[,]0,1], \{0,1,2\}, \{2\} \cup [3,4[$.
- 3. $X = \mathbb{R}^2$ muni d'une norme usuelle et A l'une des parties: $[0,1] \times]0,1[, \{(x,y) \in \mathbb{R}^2, y < x\}, \{(x,y) \in \mathbb{R}^2, y < x\} \cup \{(0,1)\}.$

Exercice 4. Montrer que toute partie infinie et bornée de \mathbb{R} admet un point d'accumulation.

Exercice 5. Soit A une partie d'un espace métrique (X,d). Montrer que l'ensemble dérivé A' de A des points d'accumulation de A vérifie: $A' \subset \overline{A}$, A' est un fermé et $\overline{A} = A \cup A'$. Montrer que \overline{A} est réunion de A' et de l'ensemble des points isolés de A.

Exercice 6. Donner un exemple d'une partie A de l'evn $(\mathbb{R}, |.|)$ vérifiant:

- 1. $A \cap A' = \emptyset$.
- 2. $A \subset A'$, $A \neq \emptyset$ et $A \neq A'$.
- 3. $A' \subset A$, $A' \neq \emptyset$ et $A \neq A'$.
- 4. A' = A.