
A tutorial on:
Iterative methods for Sparse Linear Systems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CIMPA - Tlemcen – May 14-21

Outline

Part 1

• Sparse matrices and sparsity

• Basic iterative techniques

• Projection methods

• Krylov subspace methods

Part 2

• Preconditioned iterations

• Preconditioning techniques

• Multigrid methods

Part 3

• Parallel implementations

• Parallel Preconditioners

• Software

CIMPA - Tlemcen May 2008April 26, 2008 2

INTRODUCTION TO SPARSE MATRICES

Typical Problem:

Physical Model

↓

Nonlinear PDEs

↓

Discretization

↓

Linearization (Newton)

↓

Sequence of Sparse Linear SystemsAx = b
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Introduction: Linear System Solvers

➤ Problem considered: Linear systems

Ax = b

➤ Can view the problem from somewhat different angles:

• Discretized problem coming from a PDE

• An algebraic system of equations [ignore origin]

• Sometimes a system of equations whereA is not explicitly available
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General
Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 
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Introduction: Linear System Solvers

➤ Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving Robustness, developing more general preconditioners
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A few observations

➤ Problems are getting harder for Sparse Direct methods

(more 3-D models, much bigger problems,..)

➤ Problems are also getting difficult for iterative methodsCause: more

complex models - away from Poisson

➤ Researchers in iterative methods are borrowing techniques from direct

methods:→ preconditioners

➤ The inverse is also happening: Direct methods are being adapted for

use as preconditioners
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What are sparse matrices?

Common definition: “..matrices that allow special techniques to take

advantage of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir

simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, butL andU in the LU factorization

may be reasonably sparse (if a good technique is used).
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Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by  3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP
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➤ Two types of matrices: structured (e.g. Sherman5) and unstructured

(e.g. BP1000)

➤ Main goal of Sparse Matrix Techniques: To perform standard matrix

computations economically i.e., without storing the zeros of the matrix.

➤ Example: To add two square dense matrices of sizen requiresO(n2)

operations. To add two sparse matricesA andB requiresO(nnz(A) +

nnz(B)) wherennz(X) = number of nonzero elements of a matrixX.

➤ For typical Finite Element /Finite difference matrices, number ofnonzero

elements isO(n).
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Graph Representations of Sparse Matrices

➤ Graph theory is a fundamental tool in sparse matrix techniques.

Graph G = (V,E) of ann× n matrix A defined by

VerticesV = {1, 2, ...., N}.

EdgesE = {(i, j)|aij 6= 0}.

➤ Graph is undirected if matrix has symmetric structure: aij 6= 0 iff

aji 6= 0.
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Example: Adjacency graph of:

A =











⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆











.

Example: For any matrix A, what is the graph ofA2? [interpret in

terms of paths in the graph ofA]
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Direct versus iterative methods

Background. Two types of methods:

➤ Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..

➤ Iterative methods: compute a sequence of iterates which converge to

the solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

➤ 40 years ago solving a system withn = 10, 000 was a challenge

➤ Now you can solve this in< 1 sec. on a laptop.
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➤ Sparse direct methods made huge gains in efficiency. As a result they

are very competitive for 2-D problems.

➤ 3-D problems lead to more challenging systems [inherent to the under-

lying graph]

➤ Problems with many unknowns per grid point similar to 3-D problems

Remarks: • No robust ‘black-box’ iterative solvers.

• Robustness often conflicts with efficiency

• However, situation improved in last≈ decade

• Line between direct and iterative solvers blurring
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Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of

A. Try to minimize computations and (perhaps more importantly) storage.

➤ Difficulty in Gaussian elimination: Fill-in

Trivial Example:

A =











+ + + + + +
+ +
+ +
+ +
+ +
+ +










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➤ Reorder equations and un-

knowns in orderN,N − 1, ..., 1

➤ A stays sparse during Gaus-

sian eliminatin – i.e., no fill-in.

A =











+ +
+ +

+ +
+ +

+ +
+ + + + + +











➤ Finding the best ordering to minimize fill-in is NP-complete.

➤ A number of heuristics developed. Among the best known:

• Minimum degree ordering (Tinney Scheme 2)

• Nested Dissection Ordering.

• Approximate Minimal Degree ...
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Reorderings and graphs

➤ Let π = {i1, · · · , in} a permutation

➤ Aπ,∗ =
{
aπ(i),j

}

i,j=1,...,n
= matrix A with its i-th row replaced by row

number π(i).

➤ A∗,π = matrix A with its j-th column replaced by columnπ(j).

➤ Define Pπ = Iπ,∗ = “Permutation matrix” – Then:

(1) Each row (column) ofPπ consists of zeros and exactly one “1”

(2)Aπ,∗ = PπA

(3)PπP T
π = I

(4)A∗,π = AP T
π
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Consider now: A′ = Aπ,π = PπAP
T
π

➤ Entry (i, j) in matrix A′ is exactly entry in position(π(i), π(j)) in A,

i.e., (a′ij = aπ(i),π(j))

(i, j) ∈ EA′ ⇐⇒ (π(i), π(j)) ∈ EA

General picture :

i j

π(i) π(j)
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Example A 9× 9 ’arrow’ matrix and its adjacency graph.
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Graph and matrix after permuting the nodes in reverse order.
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Cuthill-McKee & reverse Cuthill-McKee

➤ A class of reordering techniques proceeds by levels in the graph.

➤ Related toBreadth First Search (BFS) traversal in graph theory.

➤ Idea of BFS is to visit the nodes by ‘levels’. Level 0 = level of starting

node.

➤ Start with a node, visit its neighbors, then the (unmarked) neighbors of

its neighbors, etc...
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Example:

A B H I
*--------*-----*-------*
| | | /
| | | /
| | | /
| | | / BFS from node A:
| | | / Level 0: A
C*--------* D | / Level 1: B, C;
| \ |/ Level 2: E, D, H;
| \ * K Level 3: I, K, E, F, G, H.
| F \

E *-------*----* G
\ /
\ /
\ /
* H
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Implementation using levels

Algorithm BFS(G, v) – by level sets –

• Initialize S = {v}, seen = 1; Mark v;

• While seen < n Do

–Snew = ∅;

– For each nodev in S do

∗ For each unmarkedw in adj(v) do

· Add w to Snew;

· Mark w;

· seen+ +;

–S := Snew
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A few properties of Breadth-First-Search

➤ If G is a connected undirected graph then each vertex will be visited

once each edge will be inspected at least once

➤ Therefore, for a connected undirected graph,

The cost of BFS isO(|V |+ |E|)

➤ Distance = level number;➤ For each nodev we have:

min dist(s, v) = level number(v) = depthT (v)

➤ Several reordering algorithms are based on variants of Breadth-First-

Search
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Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level, nodes

are ordered by increasing degree

Example

A
B

C

D

E

F

G

Level Nodes Deg. Order

0 A 2 A

1 B, C 4, 3 C, B

2 D, E, F 3, 4, 2 F, D, E

3 G 2 G
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ALGORITHM : 1 Cuthill Mc Kee ordering

0. Find an intial node for the traversal

1. Initialize S = {v}, seen = 1, π(seen) = v; Mark v;

2. Whileseen < n Do

3. Snew = ∅;

4. For each nodev, going from lowest to highest degree, Do:

5. π(+ + seen) = v;

6. For each unmarkedw in adj(v) do

7. Addw toSnew;

8. Markw;

9. EndDo

10. S := Snew

11. EndDo

12. EndWhile
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Reverse Cuthill McKee ordering

➤ The Cuthill - Mc Kee ordering has a tendency to create small arrow

matrices (going the wrong way):

Origimal matrix

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

CM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377
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➤ Idea: Take the reverse ordering

RCM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

➤ Reverse Cuthill M Kee ordering (RCM).
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Nested Dissection ordering

➤ The idea of divide and conquer – recursively divide graph in two using

a separator.

1
2

6

7

4
3

5
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Nested dissection for a small mesh

Original Grid
First dissection

Second Dissection Third Dissection

CIMPA - Tlemcen May 2008April 26, 2008 34

Nested dissection: cost for a regular mesh

➤ In 2-D consider ann× n problem,N = n2

➤ In 3-D consider ann× n× n problem,N = n3

2-D 3-D

space (fill) O(N logN) O(N4/3)

time (flops) O(N3/2) O(N2)

➤ Significant difference in complexity between 2-D and 3-D
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Ordering techniques for direct methods in practice

➤ In practice: Nested dissection (+ variants) is preferred for parallel

processing

➤ Good implementations of Min. Degree algorithm work well in practice.

Currently AMD and AMF are best known implementations/variants/

➤ Best practical reordering algorithms usually combine Nested dissection

and min. degree algorithms.
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BASIC RELAXATION METHODS

BASIC RELAXATION SCHEMES

Relaxation schemes: based on the decompositionA = D − E − F

@
@

@
@

@
@

@

@
@

@
@

@
@

@

D

- F

- E

D = diag(A), −E = strict lower

part of A and −F its strict up-

per part.

Gauss-Seidel iteration for solvingAx = b:

(D − E)x(k+1) = Fx(k) + b

→ idea: correct the j-th component of the current approximate solution,

j = 1, 2, ..n, to zero thej − th component of residual.
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Can also define a backwardGauss-Seidel Iteration:

(D − F )x(k+1) = Ex(k) + b

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by back-

ward sweep.

Over-relaxation is based on the decomposition:

ωA = (D − ωE)− (ωF + (1− ω)D)

→ successive overrelaxation, (SOR):

(D − ωE)x(k+1) = [ωF + (1− ω)D]x(k) + ωb
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Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

x(k+1) = Mx(k) + f

•MJac = D−1(E + F ) = I −D−1A

•MGS(A) = (D − E)−1F == I − (D − E)−1A

•MSOR(A) = (D−ωE)−1(ωF +(1−ω)D) = I−(ω−1D−E)−1A

•MSSOR(A) = I − (2ω−1 − 1)(ω−1D − F )−1D(ω−1D − E)−1A

= I − ω(2ω − 1)(D − ωF )−1D(D − ωE)−1A
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General convergence result

Consider the iteration: x(k+1) = Gx(k) + f

(1) Assume thatρ(A) < 1. Then I −G is non-singular andG has a fixed

point. Iteration converges to a fixed point for anyf andx(0).

(2) If iteration converges for anyf andx(0) then ρ(G) < 1.

Example: Richardson’s iteration x(k+1) = x(k) + α(b−A(k))

♦AssumeΛ(A) ⊂ R. When does the iteration converge?

➤ Jacobi and Gauss-Seidel converge for diagonal dominantA

➤ SOR converges for0 < ω < 2 for SPD matrices
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An observation. Introduction to Preconditioning

➤ The iteration x(k+1) = Mx(k) + f is attempting to solve(I−M)x =

f . SinceM is of the formM = I−P−1A this system can be rewritten as

P−1Ax = P−1b

where for SSOR, we have

PSSOR = (D − ωE)D−1(D − ωF )

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme⇐⇒ Preconditioned Fixed Point Iteration

CIMPA - Tlemcen May 2008April 26, 2008 42

PROJECTION METHODS FOR LINEAR SYSTEMS

The Problem

We consider the linear system

Ax = b

whereA isN ×N and can be

• Real symmetric positive definite

• Real nonsymmetric

• Complex

➤ Focus:

A is large and sparse, possibly with an irregular structure
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Projection Methods

Initial Problem: b−Ax = 0

Given two subspacesK andL of RN define the approximate problem:

Find x̃ ∈ K such thatb−Ax̃ ⊥ L

➤ Leads to a small linear system (‘projected problems’) This is a basic

projection step. Typically: sequence of such steps are applied
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➤ With a nonzero initial guessx0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. Leads to a system forδ:

Find δ ∈ K such thatr0 −Aδ ⊥ L
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Matrix representation:

Let
• V = [v1, . . . , vm] a basis ofK &

•W = [w1, . . . , wm] a basis ofL

Then letting x be the approximate solutionx̃ = x0 + δ ≡ x0 +V y where

y is a vector ofRm, the Petrov-Galerkin condition yields,

W T (r0 −AV y) = 0

and therefore

x̃ = x0 + V [W TAV ]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a simple

structure [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspacesK, andL;

2. Choose basesV = [v1, . . . , vm] for K andW = [w1, . . . , wm] for

L.

3. Compute

r ← b−Ax,

y ← (W TAV )−1W Tr,

x← x+ V y.
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Operator Form Representation

Let P be the orthogonal projector ontoK and

Q the (oblique) projector ontoK and orthogonally toL.

Px ∈ K, x−Px ⊥ K
Qx ∈ K, x−Qx ⊥ L

�������������

�������������
K

L

HHHHHHHHH

HHHHHHHHH

?

x

Px	Qx

�
�

�
�

�
�

�
�

�

TheP andQ projectors
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Approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form

Q(b−APx) = 0

Question: what accuracy can one expect?

Let x∗ be the exact solution. Then

1) We cannot get better accuracy than‖(I − P)x∗‖2, i.e.,

‖x̃− x∗‖2 ≥ ‖(I −P)x∗‖2

2) The residual of theexact solutionfor the approximate problemsatisfies:

‖b−QAPx∗‖2 ≤ ‖QA(I −P)‖2 ‖(I −P)x∗‖2
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Two important particular cases.

1. L = AK . then‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

→ class of minimal residual methods: CR, GCR, ORTHOMIN, GM-

RES, CGNR, ...

2. L = K → class of Galerkin or orthogonal projection methods. When

A is SPD then

‖x∗ − x̃‖A = min
z∈K
‖x∗ − z‖A.
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One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃← x+ αd and Petrov-Galerkin condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

Three popular choices:

(I) Steepest descent.

(II) Residual norm steepest descent .

(III) Minimal residual iteration.
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(I) Steepest descent.A is SPD. Take at each stepd = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

➤ Each step minimizes

f(x) = ‖x− x∗‖2A = (A(x− x∗), (x− x∗))

in direction −∇f . Convergence guaranteed ifA is SPD.
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(II) Residual norm steepest descent .A is arbitrary (nonsingular). Take at

each stepd = ATr and e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖22/‖Ad‖

2
2

x← x+ αd

➤ Each step minimizesf(x) = ‖b−Ax‖22 in direction −∇f .

➤ Important Note: equivalent to usual steepest descent applied to normal

equationsATAx = ATb .

➤ Converges under the condition thatA is nonsingular.
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(III) Minimal residual iteration. A positive definite (A+AT is SPD). Take

at each stepd = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

➤ Each step minimizesf(x) = ‖b−Ax‖22 in direction r.

➤ Converges under the condition thatA+AT is SPD.
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Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , A
m−1v1}

• probably the most important class of iterative methods.

• many variants exist depending on the subspaceL.

Simple properties ofKm . Let µ = deg. of minimal polynomial ofv

•Km = {p(A)v|p = polynomial of degree≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover,Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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A little review: Gram-Schmidt process

→ Goal: given X = [x1, . . . , xm] compute an orthonormal setQ =

[q1, . . . , qm] which spans the same susbpace.

ALGORITHM : 2 Classical Gram-Schmidt

1. For j = 1, ...,m Do:

2. Computerij = (xj, qi) for i = 1, . . . , j − 1

3. Computeq̂j = xj −
∑j−1

i=1 rijqi

4. rjj = ‖q̂j‖2 If rjj == 0 exit

5. qj = q̂j/rjj

6. EndDo
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ALGORITHM : 3 Modified Gram-Schmidt

1. For j = 1, ...,m Do:

2. q̂j := xj

3. For i = 1, . . . , j − 1 Do

4. rij = (q̂j, qi)

5. q̂j := q̂j − rijqi

6. EndDo

7. rjj = ‖q̂j‖2. If rjj == 0 exit

8. qj := q̂j/rjj

9. EndDo
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Let:

X = [x1, . . . , xm] (n×m matrix)

Q = [q1, . . . , qm] (n×m matrix)

R = {rij} (m×m upper triangular matrix)

➤ At each step,

xj =

j
∑

i=1

rijqi

Result:

X = QR
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Arnoldi’s Algorithm

➤ Goal: to compute an orthogonal basis ofKm.

➤ Input: Initial vector v1, with ‖v1‖2 = 1 andm.

For j = 1, ...,m do

• Computew := Avj

• for i = 1, . . . , j, do







hi,j := (w, vi)

w := w − hi,jvi

• hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j
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Result of orthogonalization process

1. Vm = [v1, v2, ..., vm] orthonormal basis ofKm.

2.AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm

@
@

@
@

@
@@

@
@

@
@

@
@@

O
Hm =
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Arnoldi’s Method (Lm = Km)

➤ Petrov-Galerkin condition whenLm = Km, shows:

xm = x0 + VmH
−1
m V T

mr0

➤ Selectv1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s algorithm, then:

xm = x0 + βVmH
−1
m e1

Equivalent al-

gorithms:

* FOM [YS, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
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Minimal residual methods(Lm = AKm)

➤ WhenLm = AKm, we letWm ≡ AVm and obtain:

xm = x0 + Vm[W T
mAVm]−1W T

mr0

➤ Use againv1 := r0/(β := ‖r0‖2) and: AVm = Vm+1H̄m

xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

whereym minimizes‖βe1 − H̄my‖2 over y ∈ Rm. Hence, (Generalized

Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

xm = x0 + Vmym where ym : miny ‖βe1 − H̄my‖2

Equivalent methods:
• Axelsson’s CGLS • Orthomin (1980)

• Orthodir • GCR
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Restarting and Truncating

Difficulty: Asm increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimensionm of the subspace

ALGORITHM : 4 Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Computer0 = b−Ax0, andv1 = r0/(β := ‖r0‖2).

2. Arnoldi Process: generateH̄m andVm.

3. Compute ym = H−1
m βe1 (FOM), or

ym = argmin‖βe1 − H̄my‖2 (GMRES)

4. xm = x0 + Vmym

5. If ‖rm‖2 ≤ ǫ‖r0‖2 stop else setx0 := xm and go to 1.
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Second remedy: Truncate the orthogonalization

The formula for vj+1 is replaced by

hj+1,jvj+1 = Avj −

j
∑

i=j−k+1

hijvi

→ eachvj is made orthogonal to the previousk vi’s.

→ xm still computed asxm = x0 + VmH
−1
m βe1.

→ It can be shown that this is again an oblique projection process.

➤ IOM (Incomplete Orthogonalization Method) = replace orthogo-

nalization in FOM, by the above truncated (or ‘incomplete’) orthogo-

nalization.
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The direct version of IOM [DIOM]:

Writing the LU decomposition of Hm asHm = LmUm we get

xm = x0 + VmU−1
m L−1

m βe1 ≡ x0 + Pmzm

➤ Structure of Lm, Um whenk = 3

Lm =










1
x 1
x 1
x 1
x 1
x 1
x 1










Um =










x x x
x x x
x x x
x x x
x x x
x x
x










pm = u−1
mm[vm −

∑m−1
i=m−k+1 uimpi] zm =




zm−1

ζm




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Result: Can updatexm at each step:

xm = xm−1 + ζmpm

Note: Several existing pairs of methods have a similar link: they are

based on the LU, or other, factorizations of theHm matrix

➤ CG-like formulation of IOM called DIOM [Saad, 1982]

➤ ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)

➤ SYMMLQ [Paige and Saunders, ’77] uses LQ factorization ofHm.

➤ Can add partial pivoting to LU factorization of Hm
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The Symmetric Case: Observation

Observe: WhenA is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) symmetric

matrix then the matrix Hm is symmetric tridiagonal.

In other words:

1)hij = 0 for |i− j| > 1

2)hj,j+1 = hj+1,j, j = 1, . . . ,m
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➤ We can write

Hm =

















α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm

















(1)

The vi’s satisfy a three-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

→ simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi → Symmetric Lanczos
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The Lanczos algorithm

ALGORITHM : 5 Lanczos

1. Choose an initial vectorv1 of norm unity.

Setβ1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj

6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo
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Lanczos algorithm for linear systems

➤ Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• BasisVm = [v1, . . . , vm] ofKm generated by the Lanczos algorithm

➤ Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of Hm (DIOM); (3) Conju-

gate gradient.
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ALGORITHM : 6 Lanczos Method for Linear Systems

1. Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0/β

2. For j = 1, 2, . . . ,m Do:

3. wj = Avj − βjvj−1 (If j = 1 setβ1v0 ≡ 0)

4. αj = (wj, vj)

5. wj := wj − αjvj

6. βj+1 = ‖wj‖2. If βj+1 = 0 setm := j and go to 9

7. vj+1 = wj/βj+1

8. EndDo

9. SetTm = tridiag(βi, αi, βi+1), andVm = [v1, . . . , vm].

10. Computeym = T−1
m (βe1) andxm = x0 + Vmym
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ALGORITHM : 7 D-Lanczos

1. Computer0 = b−Ax0, ζ1 := β := ‖r0‖2, v1 := r0/β

2. Setλ1 = β1 = 0, p0 = 0

3. Form = 1, 2, . . ., until convergence Do:

4. Computew := Avm − βmvm−1 andαm = (w, vm)

5. If m > 1: Computeλm = βm
ηm−1

& ζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1
m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged then Stop

10. w := w − αmvm

11. βm+1 = ‖w‖2, vm+1 = w/βm+1

12. EndDo
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The Conjugate Gradient Algorithm (A S.P.D.)

➤ Note: thepi’s areA-orthogonal

➤ The r′i’s are orthogonal.

➤ And we havexm = xm−1 + ξmpm

So there must be an update of

the form:

1. pm = rm−1 + βmpm−1

2. xm = xm−1 + ξmpm

3. rm = rm−1 − ξmApm

CIMPA - Tlemcen May 2008April 26, 2008 74

ALGORITHM : 8 Conjugate Gradient

Start: r0 := b−Ax0, p0 := r0.

Iterate: Until convergence do,

αj := (rj, rj)/(Apj, pj)

xj+1 := xj + αjpj

rj+1 := rj − αjApj

βj := (rj+1, rj+1)/(rj, rj)

pj+1 := rj+1 + βjpj

EndDo

➤ rj = scaling × vj+1. The rj ’s are orthogonal.

➤ The pj ’s areA-conjugate, i.e.,(Api, pj) = 0 for i 6= j.
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METHODS BASED ON LANCZOS BIORTHOGONALIZATION



ALGORITHM : 9 Lanczos Bi-Orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:

4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|
1/2. If δj+1 = 0 Stop

8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo
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➤ Extension of the symmetric Lanczos algorithm

➤ Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AT , w1)

➤ Different ways to choose δj+1, βj+1 in lines 7 and 8.

Let

Tm =














α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm














.

➤ vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).

If the algorithm does not break down before step m, then the

vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are biortho-

gonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m

is a basis of Km(AT , w1) and

AVm = VmTm + δm+1vm+1e
T
m,

ATWm = WmT
T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm .

The Lanczos Algorithm for Linear Systems

ALGORITHM : 10 Lanczos Alg. for Linear Systems

1. Computer0 = b−Ax0 andβ := ‖r0‖2

2. Runm steps of the nonsymmetric Lanczos Algorithm i.e.,

3. Start withv1 := r0/β, and anyw1 such that

(v1, w1) = 1

4. Generate the pair of Lanczos vectorsv1, . . . , vm,

andw1, . . . , wm

5. and the tridiagonal matrixTm from Algorithm 9.

6. Computeym = T−1
m (βe1) andxm := x0 + Vmym.

➤ BCG can be derived from the Lanczos Algorithm similarly to CG
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ALGORITHM : 11 BiConjugate Gradient (BCG)

1. Computer0 := b−Ax0.

2. Chooser∗0 such that(r0, r
∗
0) 6= 0;

Setp0 := r0, p∗0 := r∗0

3. For j = 0, 1, . . ., until convergence Do:,

4. αj := (rj, r
∗
j)/(Apj, p

∗
j)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjApj

7. r∗j+1 := r∗j − αjA
Tp∗j

8. βj := (rj+1, r
∗
j+1)/(rj, r

∗
j)

9. pj+1 := rj+1 + βjpj

10. p∗j+1 := r∗j+1 + βjp
∗
j

11. EndDo
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Quasi-Minimal Residual Algorithm

➤ Recall relation from the lanczos algorithm:AVm = Vm+1T̄m with T̄m

= (m+ 1)×m tridiagonal matrix T̄m =




Tm

δm+1e
T
m



 .

➤ Let v1 ≡ βr0 andx = x0 + Vmy. Residual norm‖b−Ax‖2 equals

‖r0 −AVmy‖2 = ‖βv1 − Vm+1T̄my‖2 = ‖Vm+1

(
βe1 − T̄my

)
‖2

➤ Column-vectors ofVm+1 are not⊥ ( 6= GMRES).

➤ But: reasonable idea to minimize the functionJ(y) ≡ ‖βe1 − T̄my‖2

➤ Quasi-Minimal Residual Algorithm (Freund, 1990).
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Transpose-Free Variants

➤ BCG and QMR require a matrix-by-vector product with A andAT

at each step. The products withAT do not contribute directly to xm. ➤

They allow to determine the scalars (αj andβj in BCG).

➤ QUESTION: is it possible to bypass the use ofAT?

➤ Motivation: in nonlinear equations, A is often not available explicitly

but via the Frechet derivative:

J(uk)v =
F (uk + ǫv)− F (uk)

ǫ
.
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Conjugate Gradient Squared

* Clever variant of BCG which avoids usingAT [Sonneveld, 1984].

In BCG:

ri = ρi(A)r0

whereρi = polynomial of degreei.

In CGS:

ri = ρ2
i (A)r0

➤ Define :

rj = φj(A)r0,

pj = πj(A)r0,



r∗j = φj(A
T )r∗0,

p∗j = πj(A
T )r∗0

Scalarαj in BCG is given by

αj =
(φj(A)r0, φj(A

T )r∗0)

(Aπj(A)r0, πj(AT )r∗0)
=

(φ2
j(A)r0, r

∗
0)

(Aπ2
j(A)r0, r

∗
0)

➤ Possible to get a recursion for theφ2
j(A)r0 andπ2

j(A)r0?

φj+1(t) = φj(t)− αjtπj(t),

πj+1(t) = φj+1(t) + βjπj(t)

➤ Square these equalities

φ2
j+1(t) = φ2

j(t)− 2αjtπj(t)φj(t) + α2
jt

2π2
j(t),

π2
j+1(t) = φ2

j+1(t) + 2βjφj+1(t)πj(t) + β2
jπj(t)

2.

➤ Problem: ...

.. Cross terms
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Solution: Let φj+1(t)πj(t), be a third member of the recurrence. For

πj(t)φj(t), note:

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t))

= φ2
j(t) + βj−1φj(t)πj−1(t).

Result:

φ2
j+1 = φ2

j − αjt
(

2φ2
j + 2βj−1φjπj−1 − αjt π

2
j

)

φj+1πj = φ2
j + βj−1φjπj−1 − αjt π

2
j

π2
j+1 = φ2

j+1 + 2βjφj+1πj + β2
jπ

2
j .

Define:

rj = φ2
j(A)r0, pj = π2

j(A)r0, qj = φj+1(A)πj(A)r0
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Recurrences become:

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) ,

qj = rj + βj−1qj−1 − αjA pj,

pj+1 = rj+1 + 2βjqj + β2
jpj.

Define auxiliary vector dj = 2rj + 2βj−1qj−1 − αjApj

➤ Sequence of operations to compute the approximate solution, starting

with r0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

1.αj = (rj, r
∗
0)/(Apj, r

∗
0)

2.dj = 2rj +2βj−1qj−1−αjApj

3.qj = rj + βj−1qj−1 − αjApj

4.xj+1 = xj + αjdj

5.rj+1 = rj − αjAdj

6.βj = (rj+1, r
∗
0)/(rj, r

∗
0)

7.pj+1 = rj+1 + βj(2qj + βjpj).
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➤ one more auxiliary vector,uj = rj + βj−1qj−1. So

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

➤ vector dj is no longer needed.

CIMPA - Tlemcen May 2008April 26, 2008 88



ALGORITHM : 12 Conjugate Gradient Squared

1. Computer0 := b−Ax0; r∗0 arbitrary.

2. Setp0 := u0 := r0.

3. For j = 0, 1, 2 . . . , until convergence Do:

4. αj = (rj, r
∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj

6. xj+1 = xj + αj(uj + qj)

7. rj+1 = rj − αjA(uj + qj)

8. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj

10. pj+1 = uj+1 + βj(qj + βjpj)

11. EndDo
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➤ Note: no matrix-by-vector products with AT but two matrix-by-vector

products with A, at each step.

Vector: ←→ Polynomial in BCG :

qi ←→ r̄i(t)p̄i−1(t)

ui ←→ p̄2
i (t)

ri ←→ r̄2
i (t)

where r̄i(t) = residual polynomial at stepi for BCG, .i.e., ri = r̄i(A)r0,

and p̄i(t) = conjugate direction polynomial at stepi, i.e.,pi = p̄i(A)r0.
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BCGSTAB (van der Vorst, 1992)

➤ In CGS: residual polynomial of BCG is squared. ➤ bad behavior in

case of irregular convergence.

➤ Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS

which avoids this difficulty. ➤ Derivation similar to CGS.

➤ Residuals in BCGSTAB are of the form,

r′j = ψj(A)φj(A)r0

in which, φj(t) = BCG residual polynomial, and ..

➤ .. ψj(t) = a new polynomial defined recursively as

ψj+1(t) = (1− ωjt)ψj(t)

ωi chosen to ‘smooth’ convergence [steepest descent step]

ALGORITHM : 13 BCGSTAB

1. Computer0 := b−Ax0; r∗0 arbitrary;

2. p0 := r0.

3. For j = 0, 1, . . . , until convergence Do:

4. αj := (rj, r
∗
0)/(Apj, r

∗
0)

5. sj := rj − αjApj

6. ωj := (Asj, sj)/(Asj, Asj)

7. xj+1 := xj + αjpj + ωjsj

8. rj+1 := sj − ωjAsj

9. βj :=
(rj+1,r

∗
0)

(rj,r
∗
0)
×

αj
ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)

11. EndDo
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PRECONDITIONING

Preconditioning – Basic principles

Basic idea is to use the Krylov subspace method on a modified system

such as

M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need to solve

Mw = v whenever needed.

• Consequence: fundamental requirement is that it should be easy to com-

puteM−1v for an arbitrary vector v.
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Left, Right, and Split preconditioning

Left preconditioning: M−1Ax = M−1b

Right preconditioning: AM−1u = b, with x = M−1u

Split preconditioning: M−1
L AM−1

R u = M−1
L b, with x = M−1

R u

[AssumeM is factored:M = MLMR. ]
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Preconditioned CG (PCG)

➤ Assume:A andM are both SPD.

➤ Applying CG directly to M−1Ax = M−1b or AM−1u = b

won’t work because coefficient matrices are not symmetric.

➤ Alternative: when M = LLT use split preconditioner option

➤ Second alternative: Observe thatM−1A is self-adjoint wrt M inner

product:

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M−1Ay)M
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Preconditioned CG (PCG)

ALGORITHM : 14 Preconditioned Conjugate Gradient

1. Computer0 := b−Ax0, z0 = M−1r0, andp0 := z0

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj, zj)/(Apj, pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj, zj)

8. pj+1 := zj+1 + βjpj

9. EndDo
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NoteM−1A is also self-adjoint with respect to(., .)A:

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

➤ Can obtain a similar algorithm

➤ Assume thatM = Cholesky productM = LLT .

Then, another possibility: Split preconditioning option, which applies CG

to the system

L−1AL−Tu = L−1b, with x = LTu

➤ Notation: Â = L−1AL−T . All quantities related to the preconditioned

system are indicated bŷ .

CIMPA - Tlemcen May 2008April 26, 2008 98

ALGORITHM : 15 CG with Split Preconditioner

1. Computer0 := b−Ax0; r̂0 = L−1r0; and p0 := L−T r̂0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (r̂j, r̂j)/(Apj, pj)

4. xj+1 := xj + αjpj

5. r̂j+1 := r̂j − αjL
−1Apj

6. βj := (r̂j+1, r̂j+1)/(r̂j, r̂j)

7. pj+1 := L−T r̂j+1 + βjpj

8. EndDo

➤ The xj ’s produced by the above algorithm and PCG are identical (if

same initial guess is used).
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Flexible accelerators

Question: What can we do in caseM is defined only approximately?

i.e., if it can vary from one step to the other.?

Applications:

➤ Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-grid,

etc..

➤ Chaotic relaxation type preconditioners (e.g., in a parallel computing

environment)

➤ Mixing Preconditioners – mixing coarse mesh / fine mesh precondition-

ers.
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ALGORITHM : 16 GMRES – No preconditioning

1. Start: Choosex0 and a dimensionm of the Krylov subspaces.

2. Arnoldi process:

• Computer0 = b−Ax0, β = ‖r0‖2 andv1 = r0/β.
• For j = 1, ...,m do

– Computew := Avj

– for i = 1, . . . , j, do
{
hi,j := (w, vi)
w := w − hi,jvi

}

;

–hj+1,1 = ‖w‖2; vj+1 = w
hj+1,1

• DefineVm := [v1, ...., vm] andH̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Vmym where
ym = argminy‖βe1 − H̄my‖2 ande1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else setx0← xm and goto 2.
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ALGORITHM : 17 GMRES – (right) Preconditioning

1. Start: Choosex0 and a dimensionm

2. Arnoldi process:

• Computer0 = b−Ax0, β = ‖r0‖2 andv1 = r0/β.
• For j = 1, ...,m do

– Computezj := M−1vj
– Computew := Azj

– for i = 1, . . . , j, do :
{
hi,j := (w, vi)
w := w − hi,jvi

}

–hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• DefineVm := [v1, ...., vm] andH̄m = {hi,j}.

3. Form the approximate solution: xm = x0 +M−1Vmym whereym =

argminy‖βe1 − H̄my‖2 ande1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else setx0← xm and goto 2.

ALGORITHM : 18 GMRES – variable preconditioner

1. Start: Choosex0 and a dimensionm of the Krylov subspaces.

2. Arnoldi process:

• Computer0 = b−Ax0, β = ‖r0‖2 andv1 = r0/β.
• For j = 1, ...,m do

– Computezj := M−1
j vj ; Computew := Azj;

– for i = 1, . . . , j, do:
{
hi,j := (w, vi)
w := w − hi,jvi

}

;

–hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• DefineZm := [z1, ...., zm] andH̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Zmym where
ym = argminy‖βe1 − H̄my‖2 ande1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else setx0← xm and goto 2.
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Properties

• xm minimizesb−Axm over Span{Zm}.

• If Azj = vj (i.e., if preconditioning is ‘exact’ at stepj) then approxima-

tion xj is exact.

• If Mj is constant then method is≡ to Right-Preconditioned GMRES.

Additional Costs:

• Arithmetic: none.

• Memory: Must save the additional set of vectors{zj}j=1,...m

Advantage: Flexibility
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Standard preconditioners

• Simplest preconditioner: M = Diag(A) ➤ poor convergence.

• Next to simplest: SSORM = (D − ωE)D−1(D − ωF )

• Still simple but often more efficient: ILU(0).

• ILU(p) – ILU with level of fill p – more complex.

• Class of ILU preconditioners with threshold

• Class of approximate inverse preconditioners

• Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigr id,

M-level ILU, ..
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An observation. Introduction to Preconditioning

➤ Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel,

SOR, SSOR, ...

➤ These are iterations of the formx(k+1) = Mx(k) + f whereM is of

the form M = I − P−1A . For example for SSOR,

PSSOR = (D − ωE)D−1(D − ωF )
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➤ SSOR attempts to solve the equivalent system

P−1Ax = P−1b

whereP ≡ PSSOR by the fixed point iteration

x(k+1) = (I − P−1A)
︸ ︷︷ ︸

M

x(k)+P−1b instead of x(k+1) = (I−A)x(k)+b

In other words:

Relaxation Scheme⇐⇒ Preconditioned Fixed Point Iteration
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The SOR/SSOR preconditioner

D

−F

−E

➤ SOR preconditioning

MSOR = (D − ωE)

➤ SSOR preconditioning

MSSOR = (D − ωE)D−1(D − ωF )

➤ MSSOR = LU , L = lower unit matrix, U = upper triangular. One

solve withMSSOR ≈ same cost as a MAT-VEC.
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➤ k-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

➤ Questions: Bestω? For preconditioning can takeω = 1

M = (D − E)D−1(D − F )

Observe:M = LU +R with R = ED−1F .

➤ Bestk? k = 1 is rarely the best. Substantial difference in performance.

Iteration times versus

k for SOR(k) precondi-

tioned GMRES
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ILU(0) and IC(0) preconditioners

➤ Notation: NZ(X) = {(i, j) |Xi,j 6= 0}

➤ Formal definition of ILU(0):

A = LU +R
NZ(L)

⋃
NZ(U) = NZ(A)

rij = 0 for (i, j) ∈ NZ(A)

➤ This does not defineILU(0) in a unique way.

Constructive definition: Compute the LU factorization ofA but drop any

fill-in in L andU outside of Struct(A).

➤ ILU factorizations are often based oni, k, j version of GE.

CIMPA - Tlemcen May 2008April 26, 2008 111

What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJI,KJI IJK



IKJ JKI

CIMPA - Tlemcen May 2008April 26, 2008 113

ALGORITHM : 19 Gaussian Elimination – IKJ Variant

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 Do:

3. aik := aik/akk

4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj

6. EndDo

7. EndDo

8. EndDo
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Not accessed 

Accessed but not

Accessed and 
modified 

modified 
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ILU(0) – zero-fill ILU

ALGORITHM : 20 ILU(0)

For i = 1, . . . , N Do:

For k = 1, . . . , i− 1 and if (i, k) ∈ NZ(A) Do:

Computeaik := aik/akj

For j = k + 1, . . . and if (i, j) ∈ NZ(A), Do:

computeaij := aij − aikak,j.

EndFor

EndFor

➤ When A is SPD then the ILU factorization = Incomplete Cholesky

factorization – IC(0). Meijerink and Van der Vorst [1977].

CIMPA - Tlemcen May 2008April 26, 2008 116



Typical eigenvalue distribution of preconditioned matrix
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Pattern of ILU(0) for 5-point matrix
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Stencils and ILU factorization

Stencils ofA and theL andU parts ofA:
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Higher order ILU factorization

➤ Higher accuracy incomplete Cholesky: for regularly structured prob-

lems, IC(p) allowsp additional diagonals inL.

➤ Can be generalized to irregular sparse matrices using the notion of level

of fill-in [Watts III, 1979]

• Initially Levij =







0 for aij 6= 0

∞ for aij == 0

• At a given stepi of Gaussian elimination:

Levkj = min{Levkj;Levki + Levij + 1}
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➤ ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU and...

* ...typically in fewer steps and fewer arithmetic operations.
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ILU(1)
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ALGORITHM : 21 ILU(p)

For i = 2, N Do

For eachk = 1, . . . , i− 1 and if aij 6= 0 do

Computeaik := aik/ajj

Computeai,∗ := ai,∗ − aikak,∗.

Update the levels ofai,∗

Replace any element in rowi with lev(aij) > p by zero.

EndFor

EndFor

➤ The algorithm can be split into a symbolic and a numerical phase.

Level-of-fill ➤ in Symbolic phase
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ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numerical

values➤ potential problems for non M-matrices.

➤ One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver

and incorporate a dropping strategy. [Munksgaard (?), Osterby & Zlatev,

Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]
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Second approach: [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the(i, k, j) version of GE;

2. apply a drop strategy for the elmentlik as it is computed;

3. perform the linear combinations to getai∗. Use full row expansion of

ai∗;

4. apply a drop strategy to fill-ins.
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ILU with threshold: ILUT (k, ǫ)

• Do the i, k, j version of Gaussian Elimination (GE).

• During each i-th step in GE, discard any pivot or fill-in whose value is

belowǫ‖rowi(A)‖.

• Once thei-th row of L + U , (L-part + U-part) is computed retain only

the k largest elements in both parts.

➤ Advantages: controlled fill-in. Smaller memory overhead.

➤ Easy to implement –

➤ Can be made quite inexpensive.
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Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute thek-th row of U and the

k-th column of L at the k-th step.

Computational pattern

Black = part computed at stepk

Blue = part accessed

Main advantages:
1. Less expensive than ILUT (avoids sorting)

2. Allows better techniques for dropping

References:

[1] M. Jones and P. Plassman. An improved incomplete Choleski factoriza-

tion. ACM Transactions on Mathematical Software, 21:5–17, 1995.

[2] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data

structures for sparse symmetric Gaussian elimination.SIAM Journal on

Scientific Computing, 2:225–237, 1981.

[3] M. Bollh öfer. A robust ILU with pivoting based on monitoring the

growth of the inverse factors. Linear Algebra and its Applications, 338(1–

3):201–218, 2001.

[4] N. Li, Y. Saad, and E. Chow. Crout versions of ILU. MSI technical

report, 2002.
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Crout LU (dense case)

➤ Go back to delayed update algorithm (IKJ alg.) and observe: we could

do both a column and a row version

➤ Left: U computed by rows. Right:L computed by columns
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Note: Entries 1 : k − 1 in k-th row of figure need not be computed.

Available from already computed columns ofL.

Similar observation for L (right)
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ALGORITHM : 22 Crout LU Factorization (dense case)

1. For k = 1 : n Do :

2. For i = 1 : k − 1 and if aki 6= 0 Do :

3. ak,k:n = ak,k:n − aki ∗ ai,k:n

4. EndDo

5. For i = 1 : k − 1 and if aik 6= 0 Do :

6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo

8. aik = aik/akk for i = k + 1, ..., n

9. EndDo
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Comparison with standard techniques
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ILUM AND ARMS

Independent set orderings & ILUM (Background)

Independent set orderings permute a matrix into the form



B F

E C





whereB is a diagonal matrix.

➤ Unknowns associated with theB block form an independent set (IS).

➤ IS is maximal if it cannot be augmented by other nodes to form another

IS.

➤ IS ordering can be viewed as a “simplification” of multicoloring

Main observation: Reduced system obtained by eliminating the unknowns

associated with the IS, is still sparse since its coefficient matrix is the Schur

complement

S = C − EB−1F

➤ Idea: apply IS set reduction recursively.

➤ When reduced system small enough solve by any method

➤ Can devise an ILU factorization based on this strategy.

➤ See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, (ILUM), Leuze ’89, ..]
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ALGORITHM : 23 ILUM

For lev = 1, nlev Do

a. Get an independent set for A.

b. Form the reduced system associated with this set;

c. Apply a dropping strategy to this system;

d. Set A := current reduced matrix and go back to (a).

EndDo
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Group Independent Sets / Aggregates

➤ Generalizes (common) Independent Sets

Main goal: to improve robustness

Main idea: use independent sets of “cliques”, or “aggregates”. There is no

coupling between the aggregates.

No Coupling

➤ Reorder equations so

nodes of independent sets

come first
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Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix,A0 = P T
0 AP0 .

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

➤ Block ILU

factorization

ofAl




Bl Fl

El Cl



 ≈




Ll 0

ElU
−1
l I








I 0

0 Al+1








Ul L

−1
l Fl

0 I




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➤ Diagonal blocks treated as sparse

Problem: Fill-in

0 50 100 150 200 250 300
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300

nz = 12205

➤

➤

Remedy: dropping strategy
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300

nz = 4255

➤ Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Basic step: 


B F

E C








y

z



 =




f

g



 →




L 0

EU−1 I



 ×




U L−1F

0 S








y

z



 =




f

g





whereS = C − EB−1F = Schur complement.

➤ Perform block factorization recursively on S

➤ L,U Blocks: sparse

➤ Exploit recursivity
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Factorization: at level l P T
l AlPl =




Bl Fl

El Cl



 ≈




Ll 0

ElU
−1
l I








I 0

0 Al+1








Ul L

−1
l Fl

0 I





➤ L-solve∼ restriction. U-solve∼ prolongation.

➤ Solve Last level system with, e.g., ILUT+GMRES
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ALGORITHM : 24 ARMS(Alev ) factorization

1. If lev = last lev then

2. ComputeAlev ≈ LlevUlev

3. Else:

4 Find an independent set permutationPlev

5. Apply permutationAlev := P T
levAlevP

6. Compute factorization

7. Call ARMS(Alev+1 )

8. EndIf
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Group Independent Set reordering

Separator
First Block 

Simple strategy used:Do a Cuthill-MKee ordering until there are enough

points to make a block. Reverse ordering. Start a new block from a

non-visited node. Continue until all points are visited. Add criterion for

rejecting “not sufficiently diagonally dominant rows.”
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Original matrix

  0.10E-06

  0.19E+07



Block size of 6

  0.10E-06

  0.19E+07

Block size of 20

  0.10E-06

  0.19E+07

M U L T I G R I D (VERY BRIEF)

Introduction

➤ Premise: we now work directly on a Partial Differential Equation e.g.

−∆u = f, +B.C

➤ Main idea of multigrid: exploit a hierarchy of grids to get good conver-

gence from simple iterative schemes

➤ Need a good grasp of matrices and spectra of model problems
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Richardson’s iteration

➤ Simple iterative scheme: Richardson’s iteration for 1-D case

➤ Fixed parameterω. Iteration:

uj+1 = uj + ω(b−Auj) = (I − ωA)uj + ωb .

➤ Iteration matrix is

Mω = I − ωA .

Recall: convergence takes place for0 < ω < 2/ρ(A)

➤ In practice an upper bound ρ(A) ≤ γ is often available
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➤ takeω = 1/γ→ converging iteration since

1/γ ≤ 1/ρ(A) < 2/ρ(A).

➤ Eigenvalues of the iteration matrix are1− ωλk, where

λk = 2(1− cos θk) = 4 sin2 θk
2

➤ Eigenvectors are the same as those ofA.

➤ If u∗ is the exact solution, the error vectordj ≡ u∗ − uj, obeys the

relation,

dj = M j
ωd0

➤ Expand the error vector d0 in the eigenbasis ofMω, as

d0 =
n∑

k=1

ξkwk .

➤ Then from dj = M j
ωd0 andMω = I − ωA:

dj =
n∑

k=1

(

1−
λk

γ

)j

ξkwk .

➤ Each component is reduced by(1− λk/γ)j.

➤ Slowest converging component corresponds toλ1

➤ Possibly very slow convergence rate when|λ1/γ|λ1.

➤ For the model problem – one-dimensional case – Gershgorin’s theorem

yieldsγ = 4, so the corresponding reduction coefficient is

1− sin2 π

2(n+ 1)
≈ 1− (πh/2)2 = 1− O(h2) .

Consequence:convergence can be quite slow for fine meshes, i.e., whenh

is small.
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Basic observation: convergence is not similar for all components.

➤ Half of the error components see a very good decrease.

➤ This is the case for thehigh frequencycomponents, that is, all those

components corresponding tok > n/2. [referred to as theoscillatory part]

➤ The reduction factors for these components are

ηk = 1− sin2 kπ

2(n+ 1)
= cos2 kπ

2(n+ 1)
≤

1

2
.

CIMPA - Tlemcen May 2008April 26, 2008 152



η

η

n

1

n

1/2

1

1 n/2+1 θθθ

Reduction coefficients for Richardson’s method applied to the 1-D model

problem

Observations: Oscillatory components, undergo excellent reduction, Also

reduction factor is independent of the step-sizeh.
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How can we reduce the other components?

➤ Introduce a coarse grid problem. Assumen is odd. Consider the

problem issued from discretizing the original PDE on a meshΩ2h with the

mesh-size2h. Use superscriptsh and 2h for the two meshes.

Observation: note thatx2h
i = xh2i from which it follows that, for k ≤ n/2,

wh
k(x

h
2i) = sin(kπxh2i) = sin(kπx2h

i ) = w2h
k (x2h

i ) .

So: Taking a smooth mode on the fine grid (wh
k with k ≤ n/2) and

canonically injecting it into the coarse grid, i.e., defining its valueson

the coarse points to be the same as those on the fine points, yields the

k-th mode on the coarse grid.
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The modew2 on a fine grid (n = 7) and a coarse grid(n = 3)

➤ Some of the modes which were smooth on the fine grid, become oscilla-

tory.

➤ The oscillatory modes on the fine mesh are no longer represented on the

coarse mesh.
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➤ At some point iteration will fail to make progress on the fine grid: when

the only components left are those associated with the smooth modes.

Multigrid strategy: do not attempt to eliminate these components on the

fine grid. Move down to a coarser grid where smooth modes are translated

into oscillatory ones. Then iterate.

➤ Practically, need to go back and forth between different grids.
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Inter-grid operations: Prolongation

➤ A prolongation operation takes a vector fromΩH and defines the ana-

logue vector inΩh. Common notation in use

IhH : ΩH −→ Ωh .

➤ Simplest approach : linear interpolation. Example: in 1-D. Given

(v2h
i )i=0,...,(n+1)/2, define vectorvh = Ih2hv

2h ∈ Ωh:






vh2j = v2h
j

vh2j+1 = (v2h
j + v2h

j+1)/2
for j = 0, . . . ,

n+ 1

2
.
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Restriction

➤ Given a function vh on the fine mesh, a corresponding function inΩH

must be defined fromvh. Reverse of prolongation

➤ Simplest examplecanonical injection: v2h
i = vh2i.

➤ Termed Injection operator. Obvious 2-D analogue:v2h
i,j = vh2i,2j.

➤ More common restriction operator: full weighting (FW),

v2h
j =

1

4

(

vh2j−1 + 2vh2j + vh2j+1

)

.

➤ Averages the neighboring values using the weights0.25, 0.5, 0.25.
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Standard multigrid techniques

➤ Simplest idea: obtain an initial guess from interpolating a solution

computed on a coarser grid. Repeat recursively. Interpolation from a

coarser grid can be followed by a few s of a smoothing iteration.

➤ known as nested iteration

➤ MG techniques use essentially two main ingredients: a hierarchy of grid

problems (restrictions and prolongations) and a smoother.

What is a smoother? Ans: any scheme which has the smoothing prop-

erty of damping quickly the high frequency components of the error.
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Coarse problems and smoothers

At the highest level (finest grid)

Ahu
h = fh

➤ Can define this problem at next level (mesh-size=H) on meshΩH

➤ Also common (FEM) to define the system byGalerkin projection,

AH = IHh AhI
h
H , fH = IHh f

h .

Notation: uhν = smootherν(Ah, u
h
0
, fh)

uhν == result of ν smoothing s forAhu = fh starting with uh0 .
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V-cycles

ALGORITHM : 25 uh = V-cycle(Ah, u
h
0 , f

h)

1. Pre-smooth: uh := smootherν1(Ah, u
h
0
, fh)

2. Get residual: rh = fh −Ahu
h

3. Coarsen: rH = IHh r
h

4. If (H == h0)

5. Solve: AHδ
H = rH

6. Else

7. Recursion: δH = V-cycle(AH, 0, r
H)

8. EndIf

9. Correct: uh := uh + IhHδ
H

10. Post-smooth: uh := smootherν2(Ah, u
h, fh)

11. Returnuh

➤ V-cyle multigrid is a canonical application of recursivity - starting from

the 2-grid cycle as an example. Notation:H = 2h and h0 is the coarsest

mesh-size.

➤ Many other options avaialble

➤ For Poisson equation MG is a ’fast solver’ – cost of orderN logN . In

factO(N) for FMG.
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Algebraic Multigrid (AMG)

➤ Generalizes ‘geometric’ or ’mesh-based’ MG to general problems

➤ Idea: Define coarsening by looking at ‘strong’ couplings

➤ Define coarse problem from a Galerkin approach, i.e., using the restric-

tion AH = IHh AhI
h
H...

➤ Generally speaking: limited success for problems with several unknowns

per mesh point, of for non-PDE relatex problems..
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PARALLEL IMPLEMENTATION



Introduction

➤ Thrust of parallel computing techniques in most applications areas.

➤ Programming model: Message-passing seems (MPI) dominates

➤ Open MP and threads for small number of processors

➤ Important new reality: parallel programming has penetrated the ‘ap-

plications’ areas [Sciences and Engineering + industry]

➤ Problem 1: algorithms lagging behind somewhat

➤ Problem 2: Message passing is painful for large applications. ‘Time to

solution’ up.
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Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

• Local preconditioners: Polynomial (in the 80s), Sparse Approximate

Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

• Distributed versions of ILU [Ma & YS ’94, Hysom & Pothen ’00]

• Use of multicoloring to unaravel parallelism
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Domain Decomposition ideas:

• Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-Xu, X.

Cai, D. Keyes, Smith, ...]

• Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI),

T.F. Chan et al., YS and Sosonkina ’97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint:

• Multi-level Multigrid-like preconditioners [e.g., Shadid-Tumi naro et al

(Aztec project), ...]

➤ In practice: Variants of additive Schwarz very common (simplicity)
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Intrinsically parallel preconditioners

Some alternatives

(1) Polynomial preconditioners;

(2) Approximate inverse preconditioners;

(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.
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POLYNOMIAL PRECONDITIONING

Principle: M−1 = s(A) wheres is a (low) degree polynomial:

s(A)Ax = s(A)b

Problem: how to obtain s? Note: s(A) ≈ A−1

➤ Several approaches.

* Chebyshev polynomials

* Least squares polynomials

* Others

➤ Polynomial preconditioners are seldom used in practice.
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Domain Decomposition

Problem:







∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =
s⋃

i=1

Ωi,

➤ Domain decomposition or substructuring methods attempt to solve a

PDE problem (e.g.) on the entire domain from problem solutions on the

subdomainsΩi.
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Discretization of domain

Coefficient Matrix
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Types of mappings

(a) Vertex-based; (b) edge-based; and (c) element-based partitioning

➤ Can adapt PDE viewpoint to general sparse matrices

➤ Will use the graph representation and ’vertex-based’ viewpoint –
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DISTRIBUTED SPARSE MATRICES

Generalization: Distributed Sparse Systems

➤ Simple illustration: Block

assignment. Assign equation

i and unknown i to a given

’process’

➤ Naive partitioning - won’t

work well in practice
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➤ Best idea is to use the adjacencygraph ofA:

Vertices ={1, 2, · · · , n};

Edges:i→ j iff aij 6= 0

1 2

34

Graph partitioning problem:

• Want a partition of the vertices of the graph so that

(1) partitions have∼ the same sizes

(2) interfaces are small in size
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General Partitioning of a sparse linear system

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

S1 = {1, 2, 6, 7, 11, 12}: This

means equations and unknowns 1, 2,

3, 6, 7, 11, 12 are assigned to Domain

1.

S2 = {3, 4, 5, 8, 9, 10, 13}

S3 = {16, 17, 18, 21, 22, 23}

S4 = {14, 15, 19, 20, 24, 25}
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Alternative: Map elements / edges rather than vertices

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

Equations/unknowns 3, 8, 12 shared

by 2 domains. From distributed

sparse matrix viewpoint this is an

overlap of one layer

➤ Partitioners : Metis, Chaco, Scotch, ..

➤ More recent: Zoltan, H-Metis, PaToH
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➤ Standard dual objective: “minimize” communication + “balance” par-

tition sizes

➤ Recent trend: use of hypergraphs [PaToh, Hmetis,...]

➤ Hypergraphs are very general.. Ideas borrowed from VLSI work

➤ Main motivation: to better represent communication volumes when

partitioning a graph. Standard models face many limitations

➤ Hypergraphs can better express complex graph partitioning problems

and provide better solutions. Example: completely nonsymmetric patterns.
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Distributed Sparse matrices (continued)

➤ Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing distributed sparse

matrices?

3. How to set up the various “local objects” (matrices, vectors, ..)

4. What can be done to prepare for communication that will be required

during execution?
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Two views of a distributed sparse matrix

External interface
nodes

Internal
nodes   

Local interface
nodes

XiXi
Ai

➤ Local interface variables always ordered last.
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Local view of distributed matrix:

local 
Data 

External data External data 

OO A i
iX Xi

The local system:




Bi Fi

Ei Ci





︸ ︷︷ ︸
Ai




ui

yi



 +




0

∑

j∈Ni
Eijyj





︸ ︷︷ ︸
yext

=




fi

gi





➤ ui : Internal variables; yi : Interface variables
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The local matrix:

Local

points

Internal
Points

Interface

Aloc

Bext

The local matrix consists of 2 parts:

a part (’Aloc’) which acts on local

data and another (’Bext’) which

acts on remote data.

➤ Once the partitioning is available these parts must be identified and

built locally..

➤ In finite elements, assembly is a local process.

➤ How to perform a matrix vector product? [needed by iterative schemes?]
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Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatterxbound to neighbors - Gatherxext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y +Bextxext

NOTE: 1 and 2 are independent and can be overlapped.
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Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.
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Distributed Dot Product

/*-------------------- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);
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A remark: the global viewpoint






















B1 F1

B2 F2

. . . .
. . . .

Bp Fp

E1 C1 E12 · · · E1p

E2 E21 C2 · · · E2p

. . . ... ... ...

Ep Ep1 Ep2 · · · Cp











































u1

u2

...

...

up

y1

y2

...

yp






















=






















f1

f2

...

...

fp

g1

g2

...

gp






















←
Interior

variables
→←

Interface

variables
→
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PARALLEL PRECONDITIONERS

Three approaches:

• Schwarz Preconditioners

• Schur-complement based Preconditioners

• Multi-level ILU-type Preconditioners

➤ Observation: Often, in practical applications, Schwarz Preconditioners

are used : SUB-OPTIMAL
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Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

local 
Data 

External data External data 

OO A i
iX Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external datayi

2. Compute (update) local residualri = (b−Ax)i = bi −Aixi −Biyi

3. SolveAiδi = ri

4. Update solutionxi = xi + δi
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➤ Multiplicative Schwarz. Need a coloring of the subdomains.

1 1

1 1

2 2

3 3

3
3

4
4



Multicolor Block SOR Iteration (Multiplicative Schwarz):

1. Docol = 1, . . . , numcols

2. If (col.eq.mycol) Then

3. Obtain external datayi

4. Update local residualri = (b−Ax)i

5. SolveAiδi = ri

6. Update solutionxi = xi + δi

7. EndIf

8. EndDo
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Breaking the sequential color loop

➤ “Color” loop is sequential. Can be broken in several different ways.

(1) Have a few subdomains per processors

1 12 2 2

4 4
4

3
3

1
1

1

1 1 1
1

2
2

2

23 3 3
3

4 4 4
4

3 3
32

44
4

2

2
2 1

3

1

43

CIMPA - Tlemcen May 2008April 26, 2008 194

(2) Separate interior nodes from interface nodes (2-level blocking)

Color  # 1 
Interior nodes

Color 2

Color 3

Color 3

Color 2

(3) Use a block-GMRES algorithm - with Block-size = number of colors.

SOR step targets a different color on each column of the block➤ no iddle

time.
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Local Solves

➤ Each local systemAiδi = ri can be solved in three ways:

1. By a (sparse) direct solver

2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate ILU

(e.g. ILUT) precondioner

➤ We only use (2) with a small number of inner s (up to 10) or (3).

CIMPA - Tlemcen May 2008April 26, 2008 196



SCHUR COMPLEMENT-BASED PRECONDITIONERS

Schur complement system

Local system can be written as

Aixi +Xiyi,ext = bi. (2)

local 
Data 

External data External data 

OO A i
iX Xi

xi= vector of local unknowns,yi,ext = external interface variables, andbi =

local part of RHS.
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➤ Local equations



Bi Fi

Ei Ci








ui

yi



 +




0

∑

j∈Ni
Eijyj



 =




fi

gi



 (3)

➤ eliminateui from the above system:

Siyi +
∑

j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g

′
i,

whereSi is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (4)
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Structure of Schur complement system

Global Schur complement system: Sy = g′ with :

S =











S1 E12 . . . E1p

E21 S2 . . . E2p

... . . . ...

Ep1 Ep−1,2 . . . Sp





















y1

y2

...

yp











=











g′1

g′2
...

g′p











.

➤ Eij ’s are sparse = same as in the original matrix

➤ Can solve global Schur complement system iteratively. Back-substitute

to recover rest of variables (internal).

➤ Can use the procedure as a preconditining to global system.
CIMPA - Tlemcen May 2008April 26, 2008 200



Simplest idea: Schur Complement Iterations




ui

yi




Internal variables

Interface variables

➤ Do a global primary iteration (e.g., block-Jacobi)

➤ Then accelerate only they variables (with a Krylov method)

Still need to precondition..
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Approximate Schur-LU

➤ Two-level method based on induced preconditioner. Global system can

also be viewed as




B F

E C








u

y



 =




f

g



 , B =














B1 F1

B2 F2

. . . ...

Bp Fp

E1 E2 · · · Ep C














Block LU factorization of A:



B F

E C



 =




B 0

E S








I B−1F

0 I



 ,
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Preconditioning:

L =




B 0

E MS



 and U =




I B−1F

0 I





with MS = some approximation toS.

➤ Preconditioning to global system can be induced from any precondi-

tioning on Schur complement.

Rewrite local Schur system as

yi + S−1
i

∑

j∈Ni

Eijyj = S−1
i

[
gi − EiB

−1
i fi

]
.

➤ equivalent to Block-Jacobi preconditioner for Schur complement.

➤ Solve with, e.g., a few s (e.g., 5) of GMRES
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➤ Question: How to solve withSi?

➤ Can use LU factorization of local matrixAi =




Bi Fi

Ei Ci





and exploit the relation:

Ai =




LBi 0

EiU
−1
Bi

LSi








UBi L

−1
Bi
Fi

0 USi



 → LSiUSi = Si

➤ Need only the (I) LU factorization of theAi [rest is already available]

➤ Very easy implementation of (parallel) Schur complement techniques

for vertex-based partitioned systems : YS-Sosonkina ’97; YS-Sosonkina-

Zhang ’99.
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An experiment

Number of FGMRES(20) iterations for the AF23560 problem.

Name Precon lfil 16 24 32 40 56 64 80 96

af23560 SAPINV 20 32 36 27 29 73 35 71 61

30 32 35 23 29 46 60 33 52

SAPINVS 20 32 35 24 29 55 35 37 59

30 32 34 23 28 43 45 23 35

SLU 20 81 105 94 88 90 76 85 71

30 38 34 37 39 38 39 38 35

BJ 20 37 153 53 60 77 80 95 *

30 36 41 53 57 81 87 97 115
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Times and iteration counts for solving a360 × 360 discretized Laplacean

problem with 3 different preconditioners using flexible GMRES(10).
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➤ Solution times for a Laplacean problem with various local subproblem

sizes using FGMRES(10) with 3 different preconditioners (BJ, SAPINV,

SLU) and the Schur complement iteration (SI).
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PARALLEL ARMS



Parallel implementation of ARMS

Interdomain

Interior points

Local 
Interfaces Interfaces 

Three types of points:

interior (independent sets), local

interfaces, and global interfaces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elimination

of interior points and then interface points.
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Result: 2-part Schur complement: one corresponding to local interfaces

and the other to inter-domain interfaces.
IS I1

I2

Bext
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Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement system

(both I1 and I2) with either a block Jacobi (M. Sosonkina and YS, ’99) or

multicolor ILU(0).

Method 3: Do independent set reductionacross subdomains. Requires

construction of global group independent sets.

➤ Current status Methods 1 and 2.
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Construction of global group independent setsA two level strategy

1. Color subdomains

2. Find group independent sets lo-

cally

3. Color groups consistently

Proc  4

Proc 1

Proc 3

Proc 2
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color 2

color 3

color 4

color 1

color 1

color 3

Internal interface points 

External interface points 

Algorithm: Multicolor Distributed ILU(0)

1. Eliminate local rows,

2. Receive external interf. rows from PEs s.t.color(PE) < MyColor

3. Process local interface rows

4. Send local interface rows to PEs s.t.color(PE) > MyColor
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Methods implemented in pARMS:

add x Additive Schwarz with method x for subdomains. With/out over-

lap. x = one of ILUT, ILUK, ARMS.

sch x Schur complement technique, with methodx = factorization used

for local submatrix. Same x as above. Equiv. to Additive Schwarz

preconditioner on Schur complement.

sch sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel) pre-

conditioning is used instead of additive Schwarz for Schur complement.

sch gilu0 ILU(0) preconditioning to solve global Schur complement sys-

tem obtained from ARMS reduction.
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Test problem

1. Scalability experiment: sample finite difference problem.

−∆u+ γ

(

exy
∂u

∂x
+ e−xy

∂u

∂y

)

+ αu = f ,

Dirichlet Boundary Conditions ; γ = 100, α = −10; centered differences

discretization.

➤ Keep size constant on each processor[100 × 100] ➤ Global linear

system with10, 000 ∗ nproc unknowns.

2. Comparison with a parallel direct solver – symmetric problems

3. Large irregular matrix example arising from magneto hydrodynamics.

CIMPA - Tlemcen May 2008April 26, 2008 215

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Processors

O
rig

in
 3

80
0 

se
co

nd
s

100 x 100 mesh per processor − Wall−Clock Time

add_arms           
add_arms no its    
add_arms ovp       
add_arms ovp no its
add_ilut           
add_ilut no its    
add_ilut ovp       
add_ilut ovp no its

Times for 2D PDE problem with fixed subproblem size



0 10 20 30 40 50 60 70 80 90
10

20

30

40

50

60

70

80

90

100

Processors

Ite
ra

tio
ns

100 x 100 mesh per processor − Iterations
add_arms           
add_arms no its    
add_arms ovp       
add_arms ovp no its
add_ilut           
add_ilut no its    
add_ilut ovp       
add_ilut ovp no its

Iterations for 2D PDE problem with fixed subproblem size

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

Processors

O
rig

in
 3

80
0 

se
co

nd
s

100 x 100 mesh per processor − Wall−Clock Time

add_arms no its    
add_arms ovp no its
sch_arms           
sch_gilu0          
sch_gilu0 no its   
sch_sgs            
sch_sgs no its     

Times for 2D PDE problem with fixed subproblem size
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Iterations

Software

Direct solvers:

➤ SUPERLU

http://crd.lbl.gov/ xiaoye/SuperLU/

➤ MUMPS: [cerfacs]

➤ Univ. Minn. / IBM’s PSPASES [SPD matrices]

http://www-users.cs.umn.edu/ mjoshi/pspases/

➤ UMFPACK
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Iterative solvers:

➤ PETSc

http://acts.nersc.gov/petsc/

and Trilinos (more recent)

http://trilinos.sandia.gov/

... are very comprehensive packages..

➤ PETSc includes few preconditioners...

➤ Hypre, ML, ..., all include interfaces to PETSc or trilinos

➤ pARMS:

http://www.cs.umn.edu∼saad/software

is a more modest effort -
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