A tutorial on:

Iterative methods for Sparse Linear Systems

Yousef Saad
 University of Minnesota Computer Science and Engineering

```
CIMPA - Tlemcen - May 14-21
```


Outline

Part 1

- Sparse matrices and sparsity
- Basic iterative techniques
- Projection methods
- Krylov subspace methods

Part 3

- Parallel implementations
- Parallel Preconditioners
- Software

Typical Problem:

Part 2

- Preconditioned iterations
- Preconditioning techniques
- Multigrid methods

Introduction: Linear System Solvers

> Problem considered: Linear systems

$$
A x=b
$$

Can view the problem from somewhat different angles:

- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- Sometimes a system of equations where A is not explicitly available

Introduction: Linear System Solvers

> Much of recent work on solvers has focussed on:
(1) Parallel implementation - scalable performance
(2) Improving Robustness, developing more general preconditioners

A few observations

> Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)
> Problems are also getting difficult for iterative methods Cause: more complex models - away from Poisson
$>$ Researchers in iterative methods are borrowing techniques from direct methods: \longrightarrow preconditioners
> The inverse is also happening: Direct methods are being adapted for use as preconditioners

What are sparse matrices?

Common definition: "..matrices that allow special techniques to take advantage of the large number of zero elements and the structure."

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.
Observation: A^{-1} is usually dense, but L and U in the $\mathbf{L U}$ factorization may be reasonably sparse (if a good technique is used).

PORESS: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

$>$ Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)

> Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically i.e., without storing the zeros of the matrix.
$>$ Example: To add two square dense matrices of size n requires $O\left(n^{2}\right)$ operations. To add two sparse matrices A and B requires $O(n n z(A)+$ $n n z(B))$ where $n n z(X)=$ number of nonzero elements of a matrix X.
$>$ For typical Finite Element/Finite difference matrices, number of nonzero elements is $O(n)$.

Graph Representations of Sparse Matrices

$>$ Graph theory is a fundamental tool in sparse matrix techniques.

Graph $G=(V, E)$ of an $n \times n$ matrix A defined by

Vertices $V=\{1,2, \ldots, N\}$.
Edges $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$.
$>$ Graph is undirected if matrix has symmetric structure: $a_{i j} \neq 0$ iff $a_{j i} \neq 0$.

$$
\boldsymbol{A}=\left(\begin{array}{lllll}
\star & \star & & & \star \\
\star & \star & \star & & \\
& \star & \star & & \\
& & & \star & \star \\
& & & \star & \\
& & & \star \\
& \star & & & \star \\
& \star
\end{array}\right)
$$

Example: For any matrix A, what is the graph of A^{2} ? [interpret in terms of paths in the graph of $A]$

Direct versus iterative methods

Background. Two types of methods:
> Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
> Iterative methods: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods..

Remark:
These two classes of methods have always been in competition.
>40 years ago solving a system with $n=10,000$ was a challenge

Now you can solve this in $<1 \mathrm{sec}$. on a laptop.
$>$ Sparse direct methods made huge gains in efficiency. As a result they are very competitive for $2-\mathrm{D}$ problems.
> 3-D problems lead to more challenging systems [inherent to the underlying graph]
$>$ Problems with many unknowns per grid point similar to 3-D problems

Remarks:

- No robust ‘black-box’ iterative solvers.
- Robustness often conflicts with efficiency
- However, situation improved in last \approx decade
- Line between direct and iterative solvers blurring

Reorder equations and un-
knowns in order $N, N-1, \ldots, 1$
$>A$ stays sparse during Gaussian eliminatin - i.e., no fill-in.

$$
A=\left(\begin{array}{lllll}
+ & & & & + \\
& + & & & \\
& & & & + \\
& & & & + \\
& & & + & + \\
& & & & + \\
+ & + & + & + & +
\end{array}\right)
$$

$>$ Finding the best ordering to minimize fill-in is NP-complete.
$>$ A number of heuristics developed. Among the best known:

- Minimum degree ordering (Tinney Scheme 2)
- Nested Dissection Ordering.
- Approximate Minimal Degree ..

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of
A. Try to minimize computations and (perhaps more importantly) storage.
$>$ Difficulty in Gaussian elimination: Fill-in

Trivial Example:

$$
A=\left(\begin{array}{lllll}
+ & + & + & + & + \\
+ & + \\
+ & + & & & \\
+ & + & & \\
+ & & & + & \\
+ & & & + & \\
+ & & & & +
\end{array}\right)
$$

Reorderings and graphs

$>$ Let $\pi=\left\{i_{1}, \cdots, i_{n}\right\}$ a permutation
$>A_{\pi, *}=\left\{a_{\pi(i), j}\right\}_{i, j=1, \ldots, n}=$ matrix A with its i-th row replaced by row number $\pi(i)$.
$A_{*, \pi}=$ matrix A with its j-th column replaced by column $\pi(j)$.
$>$ Define $P_{\pi}=I_{\pi, *}=$ 'Permutation matrix" - Then:
(1) Each row (column) of P_{π} consists of zeros and exactly one " 1 "
(2) $A_{\pi, *}=P_{\pi} A$
(3) $P_{\pi} P_{\pi}^{T}=I$
(4) $\boldsymbol{A}_{*, \pi}=A P_{\pi}^{T}$
$>$ Entry (i, j) in matrix A^{\prime} is exactly entry in position $(\pi(i), \pi(j))$ in A,
i.e., $\left(a_{i j}^{\prime}=a_{\pi(i), \pi(j)}\right)$

$$
(i, j) \in E_{A^{\prime}} \quad \Longleftrightarrow \quad(\pi(i), \pi(j)) \in E_{A}
$$

General picture :

\[\)| i | $>j$ |
| ---: | :--- |
| $\pi(i)$ | |

\]

$$
\text { . CIMPA - Tlemcen May 2008A pril 26, } 200821
$$

Graph and matrix after permuting the nodes in reverse order.

Cuthill-McKee \& reverse Cuthill-McKee

- A class of reordering techniques proceeds by levels in the graph.
$>$ Related to Breadth First Search (BFS) traversal in graph theory.
$>$ Idea of BFS is to visit the nodes by 'levels'. Level $0=$ level of starting node.
$>$ Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...

Example:

BFS from node A:
Level 0: A
Level 1: B, C;
Level 2: E, D, H;
Level 3: I, K, E, F, G, H.

Implementation using levels
Algorithm $B F S(G, v)$ - by level sets -

- Initialize $S=\{v\}$, seen $=1$; Mark v;
- While seen < n Do
$-S_{n e w}=\emptyset ;$
- For each node v in S do
* For each unmarked w in $\operatorname{adj}(v)$ do

$$
\text { Add } w \text { to } S_{n e w}
$$

Mark w;
seen + +;
$-S:=S_{n e w}$

A few properties of Breadth-First-Search

$>$ If G is a connected undirected graph then each vertex will be visited once each edge will be inspected at least once
$>$ Therefore, for a connected undirected graph,

$$
\text { The cost of BFS is } O(|V|+|E|)
$$

$>$ Distance $=$ level number; $>$ For each node v we have:

$$
\min _{-} \operatorname{dist}(s, v)=\text { level_number }(v)=\operatorname{depth}_{T}(v)
$$

$>$ Several reordering algorithms are based on variants of Breadth-FirstSearch

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level, nodes are ordered by increasing degree


```
ALGORITHM : 1^Cuthill Mc Kee ordering
    Find an intial node for the traversal
    Initialize S ={v}, seen = 1,\pi(seen )=v; Mark v;
    While seen < n Do
        S new =\emptyset;
        For each node v, going from lowest to highest degree, Do:
            \pi(++seen) = v;
            For each unmarked w in adj(v) do
                Add w to S S new;
                Mark w;
            EndDo
            S:= S S new
        EndDo
    EndWhile
```

> Idea: Take the reverse ordering

$>$ Reverse Cuthill M Kee ordering (RCM).

Reverse Cuthill McKee ordering

- The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):

Nested Dissection ordering

$>$ The idea of divide and conquer - recursively divide graph in two using a separator.

Nested dissection for a small mesh

Third Dissection

Nested dissection: cost for a regular mesh

In 2-D consider an $n \times n$ problem, $N=n^{2}$
$>$ In 3-D consider an $n \times n \times n$ problem, $N=n^{3}$

	2-D	3-D
space (fill)	$O(N \log N)$	$O\left(N^{4 / 3}\right)$
time (flops)	$O\left(N^{3 / 2}\right)$	$O\left(N^{2}\right)$

$>$ Significant difference in complexity between 2-D and 3-D

Ordering techniques for direct methods in practice
$>$ In practice: Nested dissection (+ variants) is preferred for parallel processing
> Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/
$>$ Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.

BASIC RELAXATION SCHEMES

Relaxation schemes: based on the decomposition $A=D-E-F$

$$
D=\operatorname{diag}(\mathrm{A}),-E=\text { strict lower }
$$ part of A and $-F$ its strict upper part.

Gauss-Seidel iteration for solving $\boldsymbol{A x}=\boldsymbol{b}$:

$$
(D-E) x^{(k+1)}=F \boldsymbol{x}^{(k)}+b
$$

\rightarrow idea: correct the \boldsymbol{j}-th component of the current approximate solution,
$j=1,2, . . n$, to zero the $j-t h$ component of residual.

$$
\text { . CIMPA - Tlemcen May 2008April 26, } 2008
$$

Can also define a backward Gauss-Seidel Iteration:

$$
(D-F) x^{(k+1)}=E x^{(k)}+b
$$

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

$$
\omega A=(D-\omega E)-(\omega F+(1-\omega) D)
$$

\rightarrow successive overrelaxation, (SOR):

$$
(D-\omega E) x^{(k+1)}=[\omega F+(1-\omega) D] x^{(k)}+\omega b
$$

Iteration matrices
Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
x^{(k+1)}=M x^{(k)}+f
$$

- $M_{J a c}=D^{-1}(E+F)=I-D^{-1} A$
- $M_{G S}(A)=(D-E)^{-1} F==I-(D-E)^{-1} A$
- $M_{S O R}(A)=(D-\omega E)^{-1}(\omega F+(1-\omega) D)=I-\left(\omega^{-1} D-E\right)^{-1} A$
- $M_{S S O R}(A)=I-\left(2 \omega^{-1}-1\right)\left(\omega^{-1} D-F\right)^{-1} D\left(\omega^{-1} D-E\right)^{-1} A$

$$
=I-\omega(2 \omega-1)(D-\omega F)^{-1} D(D-\omega E)^{-1} A
$$

General convergence result

Consider the iteration: $\quad x^{(k+1)}=G x^{(k)}+f$
(1) Assume that $\rho(A)<1$. Then $I-G$ is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.
(2) If iteration converges for any f and $x^{(0)}$ then $\rho(G)<1$.

Example: Richardson's iteration $\quad x^{(k+1)}=x^{(k)}+\alpha\left(b-A^{(k)}\right)$
\diamond Assume $\Lambda(A) \subset R$. When does the iteration converge?
$>$ Jacobi and Gauss-Seidel converge for diagonal dominant \boldsymbol{A}
$>$ SOR converges for $0<\omega<2$ for SPD matrices

$$
\text { . CIMPA - Tlemeen May 2008.April 26, } 200841
$$

\qquad -

The Problem

We consider the linear system

$$
A x=b
$$

where A is $N \times N$ and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex
> Focus:
A is large and sparse, possibly with an irregular structure

Projection Methods

Initial Problem:

$$
b-A x=0
$$

Given two subspaces K and L of \mathbb{R}^{N} define the approximate problem:

$$
\text { Find } \tilde{x} \in K \text { such that } b-A \tilde{x} \perp L
$$

> Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied

Matrix representation:

$\bullet V=\left[v_{1}, \ldots, v_{m}\right]$ a basis of $K \&$
$\bullet W=\left[w_{1}, \ldots, w_{m}\right]$ a basis of L

Then letting x be the approximate solution $\tilde{x}=x_{0}+\delta \equiv x_{0}+V y$ where y is a vector of \mathbb{R}^{m}, the Petrov-Galerkin condition yields,

$$
W^{T}\left(r_{0}-A V y\right)=0
$$

and therefore

$$
\tilde{x}=x_{0}+V\left[W^{T} A V\right]^{-1} W^{T} r_{0}
$$

Remark: In practice $W^{T} A V$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]
$>$ With a nonzero initial guess x_{0}, the approximate problem is
Find $\quad \tilde{x} \in x_{0}+K$ such that $b-A \tilde{x} \perp L$
Write $\tilde{x}=x_{0}+\delta$ and $r_{0}=b-A x_{0}$. Leads to a system for δ :
Find $\delta \in K$ such that $r_{0}-A \delta \perp L$

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;
2. Choose bases $V=\left[v_{1}, \ldots, v_{m}\right]$ for K and $W=\left[w_{1}, \ldots, w_{m}\right]$ for L.
3. Compute

$$
\begin{aligned}
& r \leftarrow b-A x, \\
& y \leftarrow\left(W^{T} A V\right)^{-1} W^{T} r, \\
& x \leftarrow x+V y .
\end{aligned}
$$

Operator Form Representation

Let \mathcal{P} be the orthogonal projector onto K and
\mathcal{Q} the (oblique) projector onto K and orthogonally to L.

```
\(\mathcal{P} \boldsymbol{x} \in \boldsymbol{K}, \boldsymbol{x}-\mathcal{P} \boldsymbol{x} \perp \boldsymbol{K}\)
\(\mathcal{Q} x \in K, \quad x-\mathcal{Q} x \perp L\)
```


The \mathcal{P} and \mathcal{Q} projectors

$$
\text { . CIMPA - Tlemeen May 2008A. pril 26, } 200849
$$

Two important particular cases.

1. $L=A K$. then $\|b-A \tilde{x}\|_{2}=\min _{z \in K}\|b-A z\|_{2}$
\rightarrow class of minimal residual methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...
2. $L=K \rightarrow$ class of Galerkin or orthogonal projection methods. When A is SPD then

$$
\left\|x^{*}-\tilde{x}\right\|_{A}=\min _{z \in K}\left\|x^{*}-z\right\|_{A}
$$

Approximate problem amounts to solving

$$
\mathcal{Q}(b-A x)=0, x \in K
$$

or in operator form

$$
\mathcal{Q}(b-A \mathcal{P} x)=0
$$

Question: what accuracy can one expect?

Let x^{*} be the exact solution. Then

1) We cannot get better accuracy than $\left\|(I-\mathcal{P}) x^{*}\right\|_{2}$, i.e.,

$$
\left\|\tilde{x}-x^{*}\right\|_{2} \geq\left\|(I-\mathcal{P}) x^{*}\right\|_{2}
$$

2) The residual of the exact solution for the approximate problem satisfies:

$$
\left\|b-\mathcal{Q} A \mathcal{P} x^{*}\right\|_{2} \leq\|\mathcal{Q} A(I-\mathcal{P})\|_{2}\left\|(I-\mathcal{P}) x^{*}\right\|_{2}
$$

One-dimensional projection processes

$$
\begin{aligned}
K & =\operatorname{span}\{d\} \\
L & =\operatorname{spand}\{e\}
\end{aligned}
$$

Then $\tilde{x} \leftarrow x+\alpha d$ and Petrov-Galerkin condition $r-A \delta \perp e$ yields

$$
\alpha=\frac{(r, e)}{(A d, e)}
$$

Three popular choices:
(I) Steepest descent.
(II) Residual norm steepest descent.
(III) Minimal residual iteration.
(I) Steepest descent. A is SPD. Take at each step $d=r$ and $e=r$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x \\
& \alpha \leftarrow(r, r) /(A r, r) \\
& x \leftarrow x+\alpha r
\end{aligned}
$$

> Each step minimizes

$$
f(x)=\left\|x-x^{*}\right\|_{A}^{2}=\left(A\left(x-x^{*}\right),\left(x-x^{*}\right)\right)
$$

in direction $-\nabla f$. Convergence guaranteed if A is SPD.
(III) Minimal residual iteration. A positive definite ($A+A^{T}$ is SPD). Take at each step $d=r$ and $e=A r$.

$$
\begin{array}{l|l}
\text { Iteration: } & r \longleftarrow b-A x \\
\alpha \longleftarrow(A r, r) /(A r, A r) \\
x \leftarrow x+\alpha r
\end{array}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction r.
$>$ Converges under the condition that $A+A^{T}$ is SPD.
(II) Residual norm steepest descent . A is arbitrary (nonsingular). Take at each step $d=A^{T} r$ and $e=A d$.

$$
\text { Iteration: } \left\lvert\, \begin{aligned}
& r \leftarrow b-A x, d=A^{T} r \\
& \alpha \leftarrow\|d\|_{2}^{2} /\|A d\|_{2}^{2} \\
& x \leftarrow x+\alpha d
\end{aligned}\right.
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction $-\nabla f$.
> Important Note: equivalent to usual steepest descent applied to normal equations $A^{T} A x=A^{T} b$.
$>$ Converges under the condition that A is nonsingular.

Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

$$
K_{m}\left(A, v_{1}\right)=\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

- probably the most important class of iterative methods.
- many variants exist depending on the subspace L.

Simple properties of K_{m}. Let $\boldsymbol{\mu}=$ deg. of minimal polynomial of \boldsymbol{v}

- $K_{m}=\{p(A) v \mid p=$ polynomial of degree $\leq m-1\}$
- $K_{m}=K_{\mu}$ for all $m \geq \mu$. Moreover, K_{μ} is invariant under A.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.

A little review: Gram-Schmidt process

\rightarrow Goal: given $X=\left[x_{1}, \ldots, x_{m}\right]$ compute an orthonormal set $Q=$ $\left[q_{1}, \ldots, q_{m}\right]$ which spans the same susbpace.

ALGORITHM : 2. Classical Gram-Schmidt

1. For $j=1, \ldots, m$ Do:
2. Compute $r_{i j}=\left(x_{j}, q_{i}\right)$ for $i=1, \ldots, j-1$
3. Compute $\hat{\boldsymbol{q}}_{j}=\boldsymbol{x}_{j}-\sum_{i=1}^{j-1} \boldsymbol{r}_{i j} \boldsymbol{q}_{i}$
4. $\quad r_{j j}=\left\|\hat{q}_{j}\right\|_{2}$ If $r_{j j}=0$ exit
5. $\quad \boldsymbol{q}_{j}=\hat{\boldsymbol{q}}_{j} / \boldsymbol{r}_{j j}$
6. EndDo

Let:

$X=\left[x_{1}, \ldots, x_{m}\right](n \times m$ matrix $)$
$Q=\left[q_{1}, \ldots, q_{m}\right](n \times m$ matrix $)$
$R=\left\{r_{i j}\right\}(m \times m$ upper triangular matrix $)$
> At each step,

$$
x_{j}=\sum_{i=1}^{j} r_{i j} \boldsymbol{q}_{i}
$$

Result:

$$
X=Q R
$$

ALGORITHM : 3. Modified Gram-Schmidt

1. For $j=1, \ldots, m$ Do:
2. $\hat{q}_{j}:=x_{j}$
3. $\operatorname{For} i=1, \ldots, j-1$ Do
4. $\quad r_{i j}=\left(\hat{q}_{j}, q_{i}\right)$
5. $\quad \hat{q}_{j}:=\hat{q}_{j}-r_{i j} \boldsymbol{q}_{i}$
6. EndDo
7. $\quad r_{j j}=\left\|\hat{q}_{j}\right\|_{2}$. If $r_{j j}=0$ exit
8. $\quad \boldsymbol{q}_{j}:=\hat{\boldsymbol{q}}_{j} / r_{j j}$
9. EndDo

Arnoldi's Algorithm

$>$ Goal: to compute an orthogonal basis of K_{m}.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.

For $j=1, \ldots, m$ do
\bullet Compute $w:=A v_{j}$

- for $i=1, \ldots, j$, do $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right.$
- $h_{j+1, j}=\|w\|_{2}$ and $v_{j+1}=w / h_{j+1, j}$

Result of orthogonalization process

1. $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of K_{m}.
2. $\boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \overline{\boldsymbol{H}}_{m}$
3. $\boldsymbol{V}_{m}^{T} A V_{m}=H_{m} \equiv \bar{H}_{m}-$ last row.

Minimal residual methods ($L_{m}=A K_{m}$)

$>$ When $L_{m}=A K_{m}$, we let $W_{m} \equiv A V_{m}$ and obtain:

$$
x_{m}=x_{0}+V_{m}\left[W_{m}^{T} A V_{m}\right]^{-1} W_{m}^{T} r_{0}
$$

$>$ Use again $v_{1}:=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$ and: $A V_{m}=V_{m+1} \bar{H}_{m}$

$$
x_{m}=x_{0}+V_{m}\left[\overline{\boldsymbol{H}}_{m}^{T} \overline{\boldsymbol{H}}_{m}\right]^{-1} \overline{\boldsymbol{H}}_{m}^{T} \beta e_{1}=x_{0}+V_{m} y_{m}
$$

where \boldsymbol{y}_{m} minimizes $\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ over $\boldsymbol{y} \in \mathbb{R}^{m}$. Hence, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):
$x_{m}=x_{0}+V_{m} y_{m} \quad$ where $\quad y_{m}: \min _{y}\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2}$

Equivalent methods: | \bullet Axelsson's CGLS \bullet Orthomin (1980) |
| :--- |
| \bullet Orthodir |$\quad \bullet$ GCR

Arnoldi's Method $\left(L_{m}=K_{m}\right)$

$>$ Petrov-Galerkin condition when $L_{m}=K_{m}$, shows:

$$
x_{m}=x_{0}+V_{m} H_{m}^{-1} V_{m}^{T} r_{0}
$$

$>$ Select $v_{1}=r_{0} /\left\|r_{0}\right\|_{2} \equiv r_{0} / \beta$ in Arnoldi's algorithm, then:

$$
x_{m}=x_{0}+\beta V_{m} H_{m}^{-1} e_{1}
$$

Equivalent algorithms:

* FOM [YS, 1981] (above formulation)
* Young and Jea's ORTHORES [1982].
* Axelsson's projection method [1981].

Restarting and Truncating

Difficulty: As \boldsymbol{m} increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 4』 Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Compute $r_{0}=b-A x_{0}$, and $v_{1}=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$.
2. Arnoldi Process: generate \bar{H}_{m} and V_{m}
3. Compute $\quad y_{m}=H_{m}^{-1} \beta e_{1}$ (FOM), or $y_{m}=\operatorname{argmin}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}($ GMRES $)$
4. $x_{m}=x_{0}+V_{m} y_{m}$
5. If $\left\|r_{m}\right\|_{2} \leq \epsilon\left\|r_{0}\right\|_{2}$ stop else set $x_{0}:=x_{m}$ and go to 1 .

The formula for \boldsymbol{v}_{j+1} is replaced by

$$
h_{j+1, j} v_{j+1}=A v_{j}-\sum_{i=j-k+1}^{j} h_{i j} v_{i}
$$

\rightarrow each v_{j} is made orthogonal to the previous $k v_{i}{ }^{\prime}$'s.
$\rightarrow x_{m}$ still computed as $x_{m}=x_{0}+V_{m} H_{m}^{-1} \beta e_{1}$.
\rightarrow It can be shown that this is again an oblique projection process.
> IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.
\qquad

Result: Can update x_{m} at each step:

$$
\boldsymbol{x}_{m}=\boldsymbol{x}_{m-1}+\zeta_{m} \boldsymbol{p}_{m}
$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_{m} matrix
$>$ CG-like formulation of IOM called DIOM [Saad, 1982]
> ORTHORES(k) [Young \& Jea '82] equivalent to DIOM(k)
$>$ SYMMLQ [Paige and Saunders, '77] uses LQ factorization of $\boldsymbol{H}_{\boldsymbol{m}}$.
$>$ Can add partial pivoting to LU factorization of $\boldsymbol{H}_{\boldsymbol{m}}$

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_{m} as $H_{m}=L_{m} U_{m}$ we get
$x_{m}=x_{0}+V_{m} U_{m}^{-1} L_{m}^{-1} \beta e_{1} \equiv x_{0}+P_{m} z_{m}$
$>$ Structure of L_{m}, U_{m} when $k=3$

$$
\begin{aligned}
& L_{m}=\left(\begin{array}{llllllll}
1 & & & & & & \\
\boldsymbol{x} & 1 & & & & & \\
& x & 1 & & & & & \\
& & x & 1 & & & \\
& & & x & 1 & & \\
& & & & x & 1 & \\
& & & & & x & 1
\end{array}\right) \quad U_{m}=\left(\begin{array}{lllllll}
x & x & x & & & & \\
& x & x & x & & & \\
& & x & x & x & & \\
& & & x & x & x & \\
& & & & x & x & x \\
& & & & x & x \\
& & & & & x & x
\end{array}\right) \\
& p_{m}=u_{m m}^{-1}\left[v_{m}-\sum_{i=m-k+1}^{m-1} u_{i m} p_{i}\right] \quad z_{m}=\left[\begin{array}{c}
z_{m-1} \\
\zeta_{m}
\end{array}\right]
\end{aligned}
$$

The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi's method:

$$
H_{m}=V_{m}^{T} A V_{m}
$$

must be symmetric. Therefore
THEOREM. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_{m} is symmetric tridiagonal.

In other words:

1) $h_{i j}=0$ for $|i-j|>1$
2) $h_{j, j+1}=h_{j+1, j}, \quad j=1, \ldots, m$
> We can write

$$
\boldsymbol{H}_{m}=\left(\begin{array}{llllll}
\alpha_{1} & \beta_{2} & & & & \tag{1}\\
\boldsymbol{\beta}_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \beta_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & & \cdot & \\
& & & & \cdot & \cdot \\
& & & & \beta_{m} & \alpha_{m}
\end{array}\right)
$$

The v_{i} 's satisfy a three-term recurrence [Lanczos Algorithm]:

$$
\beta_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}
$$

\rightarrow simplified version of Arnoldi's algorithm for sym. systems.
Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos

Lanczos algorithm for linear systems

> Usual orthogonal projection method setting:

- $L_{m}=K_{m}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}$
- Basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ of K_{m} generated by the Lanczos algorithm
> Three different possible implementations.
(1) Arnoldi-like; (2) Exploit tridigonal nature of \boldsymbol{H}_{m} (DIOM); (3) Conjugate gradient.

The Lanczos algorithm

ALGORITHM : 5. Lanczos

1. Choose an initial vector v_{1} of norm unity.

Set $\beta_{1} \equiv 0, v_{0} \equiv 0$
2. $\operatorname{For} j=1,2, \ldots, m$ Do:
3. $w_{j}:=A v_{j}-\beta_{j} v_{j-1}$
4. $\quad \alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \beta_{j+1}:=\left\|w_{j}\right\|_{2}$. If $\beta_{j+1}=0$ then Stop
7. $\boldsymbol{v}_{j+1}:=\boldsymbol{w}_{j} / \boldsymbol{\beta}_{j+1}$
8. EndDo

[^0]
ALGORITHM:7. D-Lanczos

1. Compute $r_{0}=b-A x_{0}, \zeta_{1}:=\beta:=\left\|r_{0}\right\|_{2}, v_{1}:=r_{0} / \beta$
2. Set $\lambda_{1}=\beta_{1}=0, p_{0}=0$
3. For $m=1,2, \ldots$, until convergence Do:
4. Compute $w:=A v_{m}-\beta_{m} v_{m-1}$ and $\alpha_{m}=\left(w, v_{m}\right)$
5. If $m>1$: Compute $\lambda_{m}=\frac{\beta_{m}}{\eta_{m-1}} \& \zeta_{m}=-\lambda_{m} \zeta_{m-1}$
6. $\boldsymbol{\eta}_{m}=\boldsymbol{\alpha}_{m}-\boldsymbol{\lambda}_{m} \boldsymbol{\beta}_{m}$
7. $\boldsymbol{p}_{m}=\eta_{m}^{-1}\left(\boldsymbol{v}_{m}-\boldsymbol{\beta}_{m} \boldsymbol{p}_{m-1}\right)$
8. $x_{m}=x_{m-1}+\zeta_{m} p_{m}$
9. If x_{m} has converged then Stop
10. $w:=w-\alpha_{m} v_{m}$
11. $\boldsymbol{\beta}_{m+1}=\|w\|_{2}, v_{m+1}=w / \beta_{m+1}$
12. EndDo

ALGORITHM : 8. Conjugate Gradient

Start: $r_{0}:=b-A x_{0}, p_{0}:=r_{0}$.
Iterate: Until convergence do,

$$
\begin{aligned}
& \alpha_{j}:=\left(r_{j}, r_{j}\right) /\left(A p_{j}, p_{j}\right) \\
& x_{j+1}:=x_{j}+\alpha_{j} p_{j} \\
& r_{j+1}:=r_{j}-\alpha_{j} A p_{j} \\
& \beta_{j}:=\left(r_{j+1}, r_{j+1}\right) /\left(r_{j}, r_{j}\right) \\
& p_{j+1}:=r_{j+1}+\beta_{j} p_{j}
\end{aligned}
$$

EndDo
$>r_{j}=$ scaling $\times v_{j+1}$. The r_{j} 's are orthogonal.
$>$ The p_{j} 's are A-conjugate, i.e., $\left(A p_{i}, p_{j}\right)=0$ for $i \neq j$.

The Conjugate Gradient Algorithm (A S.P.D.)
$>$ Note: the p_{i} 's are A-orthogonal
$>$ The r_{i}^{\prime} 's are orthogonal.
$>$ And we have $x_{m}=x_{m-1}+\xi_{m} \boldsymbol{p}_{m}$

| So there must be an update of1. $p_{m}=r_{m-1}+\beta_{m} p_{m-1}$
 2. $x_{m}=x_{m-1}+\xi_{m} p_{m}$
 the form:
 3. $r_{m}=r_{m-1}-\xi_{m} A p_{m}$ |
| :--- | :--- |

ALGORITHM : 9. Lanczos Bi-Orthogonalization

1. Choose two vectors v_{1}, w_{1} such that $\left(v_{1}, w_{1}\right)=1$.
2. Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
3. For $j=1,2, \ldots, m$ Do:
4. $\alpha_{j}=\left(\boldsymbol{A} v_{j}, w_{j}\right)$
5. $\quad \hat{\boldsymbol{v}}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}$
6. $\quad \hat{\boldsymbol{w}}_{j+1}=\boldsymbol{A}^{T} \boldsymbol{w}_{j}-\alpha_{j} \boldsymbol{w}_{j}-\delta_{j} \boldsymbol{w}_{j-1}$
7. $\quad \delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}$. If $\delta_{j+1}=0$ Stop
8. $\boldsymbol{\beta}_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1}$
9. $w_{j+1}=\hat{w}_{j+1} / \boldsymbol{\beta}_{j+1}$
10. $v_{j+1}=\hat{v}_{j+1} / \delta_{j+1}$
11. EndDo
\qquad

If the algorithm does not break down before step m, then the vectors $v_{i}, i=1, \ldots, m$, and $w_{j}, j=1, \ldots, m$, are biorthogonal, i.e.,

$$
\left(v_{j}, w_{i}\right)=\delta_{i j} \quad 1 \leq i, j \leq m
$$

Moreover, $\left\{v_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A, v_{1}\right)$ and $\left\{w_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A^{T}, w_{1}\right)$ and

$$
\begin{aligned}
& A V_{m}=V_{m} T_{m}+\delta_{m+1} v_{m+1} e_{m}^{T} \\
& A^{T} W_{m}=W_{m} T_{m}^{T}+\beta_{m+1} w_{m+1} e_{m}^{T} \\
& W_{m}^{T} A V_{m}=T_{m}
\end{aligned}
$$

$>$ Extension of the symmetric Lanczos algorithm
$>$ Builds a pair of biorthogonal bases for the two subspaces

$$
\mathcal{K}_{m}\left(A, v_{1}\right) \quad \text { and } \quad \mathcal{K}_{m}\left(A^{T}, w_{1}\right)
$$

$>$ Different ways to choose $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8 .
Let

$$
\boldsymbol{T}_{m}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \\
\delta_{2} & \alpha_{2} & \beta_{3} & & \\
& \cdot & \cdot & \cdot & \\
& & \delta_{m-1} & \alpha_{m-1} & \beta_{m} \\
& & & \delta_{m} & \alpha_{m}
\end{array}\right)
$$

$>v_{i} \in \mathcal{K}_{m}\left(A, v_{1}\right)$ and $w_{j} \in \mathcal{K}_{m}\left(A^{T}, w_{1}\right)$.

The Lanczos Algorithm for Linear Systems

ALGORITHM : 10』 Lanczos Alg. for Linear Systems

1. Compute $r_{0}=b-A x_{0}$ and $\beta:=\left\|r_{0}\right\|_{2}$
2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
3. Start with $v_{1}:=r_{0} / \beta$, and any w_{1} such that $\left(v_{1}, w_{1}\right)=1$
4. Generate the pair of Lanczos vectors v_{1}, \ldots, v_{m}, and w_{1}, \ldots, w_{m}
5. and the tridiagonal matrix T_{m} from Algorithm 9.
6. Compute $y_{m}=T_{m}^{-1}\left(\beta e_{1}\right)$ and $x_{m}:=x_{0}+V_{m} y_{m}$.

- BCG can be derived from the Lanczos Algorithm similarly to CG

ALGORITHM : 11. BiConjugate Gradient (BCG

1. Compute $r_{0}:=b-A x_{0}$.
2. Choose r_{0}^{*} such that $\left(r_{0}, r_{0}^{*}\right) \neq 0$;

Set $p_{0}:=r_{0}, p_{0}^{*}:=r_{0}^{*}$
3. For $j=0,1, \ldots$, until convergence Do:,
4. $\alpha_{j}:=\left(r_{j}, r_{j}^{*}\right) /\left(A p_{j}, p_{j}^{*}\right)$
5. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
6. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
7. $r_{j+1}^{*}:=r_{j}^{*}-\alpha_{j} A^{T} p_{j}^{*}$
8. $\quad \beta_{j}:=\left(r_{j+1}, r_{j+1}^{*}\right) /\left(r_{j}, r_{j}^{*}\right)$
9. $p_{j+1}:=r_{j+1}+\beta_{j} p_{j}$
10. $p_{j+1}^{*}:=r_{j+1}^{*}+\beta_{j} p_{j}^{*}$
11. EndDo

Transpose-Free Variants

$>B C G$ and QMR require a matrix-by-vector product with A and A^{T} at each step. The products with A^{T} do not contribute directly to x_{m}. > They allow to determine the scalars (α_{j} and β_{j} in BCG).
$>$ QUESTION: is it possible to bypass the use of \boldsymbol{A}^{T} ?
$>$ Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$
J\left(u_{k}\right) v=\frac{F\left(u_{k}+\epsilon v\right)-F\left(u_{k}\right)}{\epsilon} .
$$

Quasi-Minimal Residual Algorithm

$>$ Recall relation from the lanczos algorithm: $A V_{m}=V_{m+1} \bar{T}_{m}$ with \bar{T}_{m} $=(m+1) \times m$ tridiagonal matrix $\bar{T}_{m}=\binom{T_{m}}{\delta_{m+1} e_{m}^{T}}$.
$>$ Let $v_{1} \equiv \beta r_{0}$ and $x=x_{0}+V_{m} y$. Residual norm $\|b-A x\|_{2}$ equals
$\left\|r_{0}-A V_{m} y\right\|_{2}=\left\|\beta v_{1}-V_{m+1} \bar{T}_{m} y\right\|_{2}=\left\|V_{m+1}\left(\beta e_{1}-\bar{T}_{m} y\right)\right\|_{2}$
$>$ Column-vectors of V_{m+1} are not $\perp(\neq$ GMRES $)$.
$>$ But: reasonable idea to minimize the function $J(y) \equiv\left\|\beta e_{1}-\bar{T}_{m} y\right\|_{2}$
$>$ Quasi-Minimal Residual Algorithm (Freund, 1990).

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^{T} [Sonneveld, 1984].

In BCG:

$$
r_{i}=\rho_{i}(A) r_{0}
$$

where $\rho_{i}=$ polynomial of degree i.
In CGS:

$$
r_{i}=\rho_{i}^{2}(A) r_{0}
$$

> Define:

$$
\begin{aligned}
r_{j} & =\phi_{j}(A) r_{0} \\
p_{j} & =\pi_{j}(A) r_{0}
\end{aligned}
$$

$$
\begin{array}{r}
r_{j}^{*}=\phi_{j}\left(A^{T}\right) r_{0}^{*} \\
p_{j}^{*}=\pi_{j}\left(A^{T}\right) r_{0}^{*}
\end{array}
$$

Scalar α_{j} in BCG is given by

$$
\alpha_{j}=\frac{\left(\phi_{j}(A) r_{0}, \phi_{j}\left(A^{T}\right) r_{0}^{*}\right)}{\left(A \pi_{j}(A) r_{0}, \pi_{j}\left(A^{T}\right) r_{0}^{*}\right)}=\frac{\left(\phi_{j}^{2}(A) r_{0}, r_{0}^{*}\right)}{\left(A \pi_{j}^{2}(A) r_{0}, r_{0}^{*}\right)}
$$

$>$ Possible to get a recursion for the $\phi_{j}^{2}(A) r_{0}$ and $\pi_{j}^{2}(A) r_{0}$?

$$
\begin{array}{c|c}
\phi_{j+1}(t)=\phi_{j}(t)-\alpha_{j} t \pi_{j}(t), \\
\pi_{j+1}(t)=\phi_{j+1}(t)+\beta_{j} \pi_{j}(t) & >\text { Square these equalities } \\
\phi_{j+1}^{2}(t)=\phi_{j}^{2}(t)-2 \alpha_{j} t \pi_{j}(t) \phi_{j}(t)+\alpha_{j}^{2} t^{2} \pi_{j}^{2}(t), & >\text { Problem: ... } \\
\pi_{j+1}^{2}(t)=\phi_{j+1}^{2}(t)+2 \beta_{j} \phi_{j+1}(t) \pi_{j}(t)+\beta_{j}^{2} \pi_{j}(t)^{2} . & \quad \text { Cross terms }
\end{array}
$$

Recurrences become:

$$
\begin{aligned}
r_{j+1} & =r_{j}-\alpha_{j} A\left(2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}\right) \\
q_{j} & =r_{j}+\beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}
\end{aligned}
$$

$$
p_{j+1}=r_{j+1}+2 \beta_{j} q_{j}+\beta_{j}^{2} p_{j}
$$

Define auxiliary vector $d_{j}=2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$
$>$ Sequence of operations to compute the approximate solution, starting
with $r_{0}:=b-A x_{0}, p_{0}:=r_{0}, q_{0}:=0, \beta_{0}:=0$.

1. $\alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$	5. $r_{j+1}=r_{j}-\alpha_{j} A d_{j}$
2. $d_{j}=2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$	6. $\beta_{j}=\left(r_{j+1}, r_{0}^{*}\right) /\left(r_{j}, r_{0}^{*}\right)$
3. $q_{j}=r_{j}+\beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$	7. $p_{j+1}=r_{j+1}+\beta_{j}\left(2 q_{j}+\beta_{j} p_{j}\right)$.
4. $x_{j+1}=x_{j}+\alpha_{j} d_{j}$	

1. Compute $r_{0}:=b-A x_{0} ; r_{0}^{*}$ arbitrary.
2. Set $p_{0}:=u_{0}:=r_{0}$.
3. For $j=0,1,2 \ldots$, until convergence Do:
4. $\alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
5. $q_{j}=u_{j}-\alpha_{j} A p_{j}$
6. $x_{j+1}=x_{j}+\alpha_{j}\left(u_{j}+q_{j}\right)$
7. $r_{j+1}=r_{j}-\alpha_{j} A\left(u_{j}+q_{j}\right)$
8. $\quad \boldsymbol{\beta}_{j}=\left(\boldsymbol{r}_{j+1}, r_{0}^{*}\right) /\left(r_{j}, r_{0}^{*}\right)$
9. $u_{j+1}=r_{j+1}+\beta_{j} q_{j}$
10. $p_{j+1}=u_{j+1}+\boldsymbol{\beta}_{j}\left(q_{j}+\boldsymbol{\beta}_{j} \boldsymbol{p}_{j}\right)$
11. EndDo

BCGSTAB (van der Vorst, 1992)

$>$ In CGS: residual polynomial of BCG is squared. $>$ bad behavior in case of irregular convergence.
$>$ Bi-Conjugate Gradient Stabilized (BCGSTAB) =a variation of CGS which avoids this difficulty. $>$ Derivation similar to CGS.
$>$ Residuals in BCGSTAB are of the form,

$$
r_{j}^{\prime}=\psi_{j}(A) \phi_{j}(A) r_{0}
$$

in which, $\phi_{j}(t)=$ BCG residual polynomial, and ..
$>\ldots \psi_{j}(t)=$ a new polynomial defined recursively as

$$
\psi_{j+1}(t)=\left(1-\omega_{j} t\right) \psi_{j}(t)
$$

ω_{i} chosen to 'smooth' convergence [steepest descent step]
$>$ Note: no matrix-by-vector products with A^{T} but two matrix-by-vector products with A, at each step.

$$
\begin{aligned}
\text { Vector: } & \longleftrightarrow \text { Polynomial in BCG : } \\
q_{i} & \longleftrightarrow \bar{r}_{i}(t) \bar{p}_{i-1}(t) \\
u_{i} & \longleftrightarrow \bar{p}_{i}^{2}(t) \\
r_{i} & \longleftrightarrow \bar{r}_{i}^{2}(t)
\end{aligned}
$$

where $\bar{r}_{i}(t)=$ residual polynomial at step i for BCG , i.e., $r_{i}=\bar{r}_{i}(A) r_{0}$, and $\bar{p}_{i}(t)=$ conjugate direction polynomial at step i, i.e., $p_{i}=\bar{p}_{i}(A) r_{0}$.

[^1]Preconditioning - Basic principles

Basic idea is to use the Krylov subspace method on a modified system such as

$$
M^{-1} A x=M^{-1} b
$$

- The matrix $M^{-1} A$ need not be formed explicitly; only need to solve $M w=v$ whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1} v$ for an arbitrary vector v.

Preconditioned CG (PCG)

$>$ Assume: A and M are both SPD.
> Applying CG directly to $M^{-1} A x=M^{-1} b$ or $A M^{-1} u=b$ won't work because coefficient matrices are not symmetric.
> Alternative: when $M=L L^{T}$ use split preconditioner option
$>$ Second alternative: Observe that $M^{-1} A$ is self-adjoint wrt M inner product:

$$
\left(M^{-1} A x, y\right)_{M}=(A x, y)=(x, A y)=\left(x, M^{-1} A y\right)_{M}
$$

Preconditioned CG (PCG)

ALGORITHM : 14. Preconditioned Conjugate Gradient

1. Compute $r_{0}:=b-A x_{0}, z_{0}=M^{-1} r_{0}$, and $p_{0}:=z_{0}$
2. For $j=0,1, \ldots$, until convergence Do:
3. $\alpha_{j}:=\left(r_{j}, z_{j}\right) /\left(A p_{j}, p_{j}\right)$
4. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
6. $z_{j+1}:=M^{-1} r_{j+1}$
7. $\beta_{j}:=\left(r_{j+1}, z_{j+1}\right) /\left(r_{j}, z_{j}\right)$
8. $p_{j+1}:=z_{j+1}+\beta_{j} p_{j}$
9. EndDo
\qquad

ALGORITHM: 15. CG with Split Preconditioner

1. Compute $r_{0}:=b-A x_{0} ; \hat{r}_{0}=L^{-1} r_{0} ;$ and $p_{0}:=L^{-T} \hat{r}_{0}$.
2. For $j=0,1, \ldots$, until convergence Do:
3. $\alpha_{j}:=\left(\hat{r}_{j}, \hat{r}_{j}\right) /\left(A p_{j}, p_{j}\right)$
4. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad \hat{r}_{j+1}:=\hat{r}_{j}-\alpha_{j} L^{-1} A p_{j}$
6. $\beta_{j}:=\left(\hat{r}_{j+1}, \hat{r}_{j+1}\right) /\left(\hat{r}_{j}, \hat{r}_{j}\right)$
7. $p_{j+1}:=L^{-T} \hat{r}_{j+1}+\beta_{j} p_{j}$
8. EndDo
$>$ The x_{j} 's produced by the above algorithm and PCG are identical (if same initial guess is used).

Note $M^{-1} A$ is also self-adjoint with respect to $(., .)_{A}$:

$$
\left(M^{-1} A x, y\right)_{A}=\left(A M^{-1} A x, y\right)=\left(x, A M^{-1} A y\right)=\left(x, M^{-1} A y\right)_{A}
$$

Can obtain a similar algorithm
$>$ Assume that $M=$ Cholesky product $M=L L^{T}$.
Then, another possibility: Split preconditioning option, which applies CG to the system

$$
L^{-1} A L^{-T} u=L^{-1} b, \text { with } x=L^{T} u
$$

$>$ Notation: $\hat{A}=L^{-1} A L^{-T}$. All quantities related to the preconditioned system are indicated by ${ }^{\wedge}$.

Flexible accelerators

Question: What can we do in case M is defined only approximately? i.e., if it can vary from one step to the other.?

Applications:

Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-grid, etc..
> Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)
> Mixing Preconditioners - mixing coarse mesh / fine mesh preconditioners.

ALGORITHM : 16. GMRES - No preconditioning

1. Start: Choose x_{0} and a dimension m of the Krylov subspaces.
2. Arnoldi process

- Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
- For $j=1, \ldots, m$ do
- Compute $w:=A v_{j}$
-for $i=1, \ldots, j$, do $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\}$;
$-h_{j+1,1}=\|w\|_{2} ; v_{j+1}=\frac{w}{h_{j+1,1}}$
- Define $V_{m}:=\left[v_{1}, \ldots, v_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: Compute $x_{m}=x_{0}+V_{m} y_{m}$ where $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\bar{H}_{m} \boldsymbol{y}\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2.

ALGORITHM : 18』 GMRES - variable preconditioner

1. Start: Choose x_{0} and a dimension m of the Krylov subspaces.
2. Arnoldi process
\bullet Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.

- For $j=1, \ldots, m$ do
- Compute $z_{j}:=M_{j}^{-1} v_{j}$; Compute $w:=A z_{j}$;
-for $i=1, \ldots, j$, do: $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\} ;$
$-h_{j+1,1}=\|w\|_{2} ; v_{j+1}=w / h_{j+1,1}$
- Define $Z_{m}:=\left[z_{1}, \ldots, z_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: Compute $\boldsymbol{x}_{m}=x_{0}+Z_{m} y_{m}$ where
$y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} y\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2 .

ALGORITHM : 17. GMRES - (right) Preconditioning

1. Start: Choose x_{0} and a dimension m
2. Arnoldi process:
```
- Compute \(r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}\) and \(v_{1}=r_{0} / \beta\).
```

- For $j=1, \ldots, m$ do
- Compute $z_{j}:=M^{-1} v_{j}$
- Compute $w:=A z_{j}$
- for $i=1, \ldots, j$, do $:\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\}$
$-h_{j+1,1}=\|w\|_{2} ; v_{j+1}=w / h_{j+1,1}$
- Define $V_{m}:=\left[v_{1}, \ldots, v_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: $x_{m}=x_{0}+M^{-1} V_{m} y_{m}$ where $y_{m}=$ $\operatorname{argmin}_{y}\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2.

Properties

- x_{m} minimizes $b-A x_{m}$ over $\operatorname{Span}\left\{Z_{m}\right\}$.
- If $\boldsymbol{A} \boldsymbol{z}_{j}=\boldsymbol{v}_{j}$ (i.e., if preconditioning is 'exact' at step j) then approximation x_{j} is exact.
- If M_{j} is constant then method is \equiv to Right-Preconditioned GMRES.

Additional Costs:

- Arithmetic: none.
- Memory: Must save the additional set of vectors $\left\{z_{j}\right\}_{j=1, \ldots m}$

Advantage: Flexibility

Standard preconditioners

- Simplest preconditioner: $\mathbf{M}=\operatorname{Diag}(A)>$ poor convergence.
- Next to simplest: SSOR $M=(D-\omega E) D^{-1}(D-\omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) - ILU with level of fill p - more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigrid M-level ILU, .
\qquad
$>$ SSOR attempts to solve the equivalent system

$$
P^{-1} A x=P^{-1} b
$$

where $\boldsymbol{P} \equiv \boldsymbol{P}_{S S O R}$ by the fixed point iteration
$x^{(k+1)}=\underbrace{\left(I-P^{-1} A\right)}_{M} x^{(k)}+P^{-1} b \quad$ instead of $\quad x^{(k+1)}=(I-A) x^{(k)}+b$

In other words:
Relaxation Scheme \Longleftrightarrow Preconditioned Fixed Point Iteration

An observation. Introduction to Preconditioning

> Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel, SOR, SSOR, ...
$>$ These are iterations of the form $x^{(k+1)}=M x^{(k)}+f$ where M is of the form $M=I-P^{-1} A$. For example for SSOR,

$$
P_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

The SOR/SSOR preconditioner

$>$ SOR preconditioning

$$
M_{S O R}=(D-\omega E)
$$

> SSOR preconditioning

$$
M_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

$>M_{S S O R}=L U, L=$ lower unit matrix, $U=$ upper triangular. One solve with $M_{S S O R} \approx$ same cost as a MAT-VEC.
$>k$-step SOR (resp. SSOR) preconditioning:

$$
k \text { steps of SOR (resp. SSOR) }
$$

$>$ Questions: Best ω ? For preconditioning can take $\omega=1$

$$
M=(D-E) D^{-1}(D-F)
$$

Observe: $M=L U+R$ with $R=E D^{-1} F$.

Best k ? $k=1$ is rarely the best. Substantial difference in performance.

ILU(0) and IC(0) preconditioners

Notation: $N Z(X)=\left\{(i, j) \mid X_{i, j} \neq 0\right\}$
$>$ Formal definition of ILU(0):

$$
\begin{aligned}
& A=L U+R \\
& N Z(L) \cup N Z(U)=N Z(A) \\
& r_{i j}=0 \text { for }(i, j) \in N Z(A)
\end{aligned}
$$

$>$ This does not define $I L U(0)$ in a unique way.
Constructive definition: Compute the LU factorization of A but drop any fill-in in L and U outside of $\operatorname{Struct}(A)$.
$>$ ILU factorizations are often based on i, k, j version of GE.

Different computational patterns for gaussian elimination

IKJ

JKI

ALGORITHM : 19. Gaussian Elimination - IKJ Variant

1. $\operatorname{For} i=2, \ldots, n$ Do:
2. \quad For $k=1, \ldots, i-1$ Do:
3. $\quad a_{i k}:=a_{i k} / a_{k k}$
4. \quad For $j=k+1, \ldots, n$ Do:
5. $\quad a_{i j}:=a_{i j}-a_{i k} * a_{k j}$
6. EndDo
7. EndDo
8. EndDo

ILU(0) - zero-fill ILU

ALGORITHM : 20. ILU(0)

For $i=1, \ldots, N$ Do:
For $k=1, \ldots, i-1$ and if $(i, k) \in N Z(A) D o:$
Compute $a_{i k}:=a_{i k} / a_{k j}$

$$
\text { For } j=k+1, \ldots \text { and if }(i, j) \in N Z(A), \text { Do: }
$$

$$
\text { compute } a_{i j}:=a_{i j}-a_{i k} a_{k, j}
$$

EndFor

EndFor

- When A is SPD then the ILU factorization = Incomplete Cholesky factorization - IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution of preconditioned matrix

Stencils and ILU factorization

Stencils of A and the L and U parts of A :

Pattern of ILU(0) for 5-point matrix

LU

Higher order ILU factorization

> Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows p additional diagonals in L.

- Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]
- Initially $L e v_{i j}= \begin{cases}0 & \text { for } a_{i j} \neq 0 \\ \infty & \text { for } a_{i j}==0\end{cases}$
- At a given step \boldsymbol{i} of Gaussian elimination:

$$
\operatorname{Lev}_{k j}=\min \left\{\operatorname{Lev}_{k j} ; \operatorname{Lev}_{k i}+\operatorname{Lev}_{i j}+1\right\}
$$

$>\operatorname{ILU}(\mathbf{p})$ Strategy $=$ drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU and...
*...typically in fewer steps and fewer arithmetic operations.

```
ALGORITHM : 21. ILUU(p)
For i=2,N Do
    For each k=1,\ldots,i-1 and if }\mp@subsup{a}{ij}{}\not=0\mathrm{ do
        Compute aik := a ik
        Compute }\mp@subsup{a}{i,*}{}:=\mp@subsup{a}{i,*}{}-\mp@subsup{a}{ik}{}\mp@subsup{a}{k,*}{
        Update the levels of a }\mp@subsup{a}{i,*}{
        Replace any element in row i with lev ( }\mp@subsup{a}{ij}{})>p\mathrm{ by zero.
    EndFor
EndFor
```

$>$ The algorithm can be split into a symbolic and a numerical phase.

[^2]
ILU(1)

ILU with threshold - generic algorithms

ILU(p) factorizations are based on structure only and not numerical values > potential problems for non M-matrices.
> One remedy: ILU with threshold - (generic name ILUT.)
Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard (?), Osterby \& Zlatev, Sameh \& Zlatev[90], D. Young, \& al. (Boeing) etc...]

Second approach : [derived from 'iterative solvers' viewpoint]

1. use a (row or colum) version of the (i, k, j) version of GE;
2. apply a drop strategy for the elment $l_{i k}$ as it is computed;
3. perform the linear combinations to get $a_{i *}$. Use full row expansion of $a_{i *} ;$
4. apply a drop strategy to fill-ins.

Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute the k-th row of \boldsymbol{U} and the k-th column of L at the k-th step.

Computational pattern
Black $=$ part computed at step k
Blue = part accessed

Main advantages:

1. Less expensive than ILUT (avoids sorting)
2. Allows better techniques for dropping

ILU with threshold: ILUT (k, ϵ)

- Do the i, k, j version of Gaussian Elimination (GE).
- During each i-th step in GE, discard any pivot or fill-in whose value is below $\epsilon\left\|\operatorname{row}_{i}(A)\right\|$.
- Once the i-th row of $L+U$, (L-part + U-part) is computed retain only the k largest elements in both parts.
> Advantages: controlled fill-in. Smaller memory overhead.
> Easy to implement -
Can be made quite inexpensive.
[1] M. Jones and P. Plassman. An improved incomplete Choleski factorization. ACM Transactions on Mathematical Software, 21:5-17, 1995.
[2] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data structures for sparse symmetric Gaussian elimination. SIAM Journal on Scientific Computing, 2:225-237, 1981.
[3] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors. Linear Algebra and its Applications, 338(1-3):201-218, 2001.
[4] N. Li, Y. Saad, and E. Chow. Crout versions of ILU. MSI technical report, 2002.

Crout LU (dense case)

> Go back to delayed update algorithm (IKJ alg.) and observe: we could do both a column and a row version

Left: U computed by rows. Right: L computed by columns

ALGORITHM : 22. Crout LU Factorization (dense case)

1. $\operatorname{For} k=1: n$ Do :
2. \quad For $i=1: k-1$ and if $a_{k i} \neq 0$ Do :
3. $\quad a_{k, k: n}=a_{k, k: n}-a_{k i} * a_{i, k: n}$
4. EndDo
5. \quad For $i=1: k-1$ and if $a_{i k} \neq 0$ Do:
6. $\quad a_{k+1: n . k}=a_{k+1: n, k}-a_{i k} * a_{k+1: n, i}$
7. EndDo
8. $\quad a_{i k}=a_{i k} / a_{k k}$ for $i=k+1, \ldots, n$
9. EndDo

Note: Entries $1: k-1$ in k-th row of figure need not be computed. Available from already computed columns of L.

Similar observation for L (right)

Comparison with standard techniques

Precondition time vs. Lfil for ILUC (solid), row-ILUT (circles), columnILUT (triangles) and r-ILUT with Binary Search Trees (stars)

Main observation: Reduced system obtained by eliminating the unknowns

 associated with the IS, is still sparse since its coefficient matrix is the Schur complement$$
S=C-E B^{-1} F
$$

> Idea: apply IS set reduction recursively.

- When reduced system small enough solve by any method
$>$ Can devise an ILU factorization based on this strategy.

$>$ See work by [Botta-Wubbs '96, '97, YS'94, '96, (ILUM), Leuze '89, ..]

Independent set orderings permute a matrix into the form

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)
$$

where B is a diagonal matrix.

- Unknowns associated with the B block form an independent set (IS).
$>$ IS is maximal if it cannot be augmented by other nodes to form another IS.
> IS ordering can be viewed as a "simplification" of multicoloring

[^3]EndDo

- Generalizes (common) Independent Sets

Main goal: to improve robustness

Main idea: use independent sets of "cliques", or "aggregates". There is no coupling between the aggregates.

Original matrix, A, and reordered matrix, $A_{0}=P_{0}^{T} A P_{0}$.

\quad Block ILU
factorization
of $A_{l}$$\quad\left(\begin{array}{ll}B_{l} & F_{l} \\ E_{l} & C_{l}\end{array}\right) \approx\left(\begin{array}{cc}L_{l} & 0 \\ E_{l} U_{l}^{-1} & I\end{array}\right)\left(\begin{array}{cc}I & 0 \\ 0 & A_{l+1}\end{array}\right)\left(\begin{array}{cc}U_{l} & L_{l}^{-1} F_{l} \\ 0 & I\end{array}\right)$
of A_{l}

Algebraic Recursive Multilevel Solver (ARMS)

Basic step:

$$
\begin{gathered}
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)\binom{y}{z}=\binom{f}{g} \quad \rightarrow \\
\left(\begin{array}{cc}
L & 0 \\
E U^{-1} & I
\end{array}\right) \times\left(\begin{array}{cc}
U & L^{-1} F \\
0 & S
\end{array}\right)\binom{y}{z}=\binom{f}{g} \\
\text { where } S=C-E B^{-1} F=\text { Schur complement. }
\end{gathered}
$$

$>$ Perform block factorization recursively on S
> L, U Blocks: sparse
> Exploit recursivity

Factorization: at level $l \quad P_{l}^{T} A_{l} P_{l}=$

$$
\left(\begin{array}{ll}
B_{l} & F_{l} \\
E_{l} & C_{l}
\end{array}\right) \approx\left(\begin{array}{rr}
L_{l} & 0 \\
E_{l} U_{l}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & A_{l+1}
\end{array}\right)\left(\begin{array}{cc}
U_{l} & L_{l}^{-1} F_{l} \\
0 & I
\end{array}\right)
$$

$>$ L-solve \sim restriction. \mathbf{U}-solve \sim prolongation.
> Solve Last level system with, e.g., ILUT+GMRES

Group Independent Set reordering

Simple strategy used: Do a Cuthill-MKee ordering until there are enough points to make a block. Reverse ordering. Start a new block from a non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

1. If lev = last_lev then
2. Compute $A_{l e v} \approx L_{l e v} U_{l e v}$
3. Else:
$4 \quad$ Find an independent set permutation $P_{l e v}$
4. Apply permutation $A_{l e v}:=P_{l e v}^{T} A_{\text {lev }} P$
5. Compute factorization
6. Call ARMS ($\left.A_{l e v+1}\right)$
7. EndIf

Original matrix

Block size of 6

Block size of 20

Introduction

> Premise: we now work directly on a Partial Differential Equation e.g.

$$
-\Delta u=f,+\mathbf{B} . \mathbf{C}
$$

> Main idea of multigrid: exploit a hierarchy of grids to get good convergence from simple iterative schemes
$>$ Need a good grasp of matrices and spectra of model problems

Richardson's iteration

> Simple iterative scheme: Richardson's iteration for 1-D case
> Fixed parameter ω. Iteration:

$$
u_{j+1}=u_{j}+\omega\left(b-A u_{j}\right)=(I-\omega A) u_{j}+\omega b
$$

$>$ Iteration matrix is

$$
M_{\omega}=I-\omega A
$$

Recall: convergence takes place for $0<\omega<2 / \rho(A)$
$>$ In practice an upper bound $\rho(A) \leq \gamma$ is often available

$$
\text { ... CIMPA - Tlemcen May 2008A.April } 26,2008149
$$

$>$ Then from $d_{j}=M_{\omega}^{j} d_{0}$ and $M_{\omega}=I-\omega A:$

$$
d_{j}=\sum_{k=1}^{n}\left(1-\frac{\lambda_{k}}{\gamma}\right)^{j} \xi_{k} w_{k}
$$

$>$ Each component is reduced by $\left(1-\lambda_{k} / \gamma\right)^{j}$.
$>$ Slowest converging component corresponds to $\boldsymbol{\lambda}_{1}$
$>$ Possibly very slow convergence rate when $\left|\lambda_{1} / \gamma\right| \lambda 1$.
> For the model problem - one-dimensional case - Gershgorin's theorem yields $\gamma=4$, so the corresponding reduction coefficient is

$$
1-\sin ^{2} \frac{\pi}{2(n+1)} \approx 1-(\pi h / 2)^{2}=1-O\left(h^{2}\right)
$$

Consequence: convergence can be quite slow for fine meshes, i.e., when h is small.
$>$ take $\omega=1 / \gamma \rightarrow$ converging iteration since
$1 / \gamma \leq 1 / \rho(A)<2 / \rho(A)$.
$>$ Eigenvalues of the iteration matrix are $1-\omega \lambda_{k}$, where

$$
\lambda_{k}=2\left(1-\cos \theta_{k}\right)=4 \sin ^{2} \frac{\theta_{k}}{2}
$$

$>$ Eigenvectors are the same as those of A.
$>$ If u_{*} is the exact solution, the error vector $d_{j} \equiv u_{*}-u_{j}$, obeys the relation,

$$
d_{j}=M_{\omega}^{j} d_{0}
$$

$>$ Expand the error vector d_{0} in the eigenbasis of M_{ω}, as

$$
d_{0}=\sum_{k=1}^{n} \xi_{k} w_{k}
$$

Basic observation: convergence is not similar for all components.

$>$ Half of the error components see a very good decrease.
$>$ This is the case for the high frequency components, that is, all those components corresponding to $k>n / 2$. [referred to as the oscillatory part]
> The reduction factors for these components are

$$
\eta_{k}=1-\sin ^{2} \frac{k \pi}{2(n+1)}=\cos ^{2} \frac{k \pi}{2(n+1)} \leq \frac{1}{2}
$$

Reduction coefficients for Richardson's method applied to the 1-D model problem

Observations: Oscillatory components, undergo excellent reduction, Also reduction factor is independent of the step-size h.

The mode w_{2} on a fine grid $(n=7)$ and a coarse grid $(n=3)$
> Some of the modes which were smooth on the fine grid, become oscillatory.
> The oscillatory modes on the fine mesh are no longer represented on the coarse mesh.

How can we reduce the other components?

- Introduce a coarse grid problem. Assume n is odd. Consider the problem issued from discretizing the original PDE on a mesh $\Omega_{2 h}$ with the mesh-size $2 h$. Use superscripts h and $2 h$ for the two meshes.

Observation: note that $x_{i}^{2 h}=x_{2 i}^{h}$ from which it follows that, for $k \leq n / 2$,

$$
w_{k}^{h}\left(x_{2 i}^{h}\right)=\sin \left(k \pi x_{2 i}^{h}\right)=\sin \left(k \pi x_{i}^{2 h}\right)=w_{k}^{2 h}\left(x_{i}^{2 h}\right) .
$$

So: Taking a smooth mode on the fine grid (w_{k}^{h} with $k \leq n / 2$) and canonically injecting it into the coarse grid, i.e., defining its values on the coarse points to be the same as those on the fine points, yields the k-th mode on the coarse grid.
> At some point iteration will fail to make progress on the fine grid: when the only components left are those associated with the smooth modes.

Multigrid strategy: do not attempt to eliminate these components on the fine grid. Move down to a coarser grid where smooth modes are translated into oscillatory ones. Then iterate.

Practically, need to go back and forth between different grids.

Inter-grid operations: Prolongation

$>$ A prolongation operation takes a vector from Ω_{H} and defines the ana-
logue vector in Ω_{h}. Common notation in use

$$
I_{H}^{h}: \Omega_{H} \longrightarrow \Omega_{h}
$$

> Simplest approach : linear interpolation. Example: in 1-D. Given $\left(v_{i}^{2 h}\right)_{i=0, \ldots,(n+1) / 2}$, define vector $v^{h}=I_{2 h}^{h} v^{2 h} \in \Omega_{h}$:

$$
\left\{\begin{array}{l}
v_{2 j}^{h}=v_{j}^{2 h} \\
v_{2 j+1}^{h}=\left(v_{j}^{2 h}+v_{j+1}^{2 h}\right) / 2
\end{array} \quad \text { for } \quad j=0, \ldots, \frac{n+1}{2} .\right.
$$

Restriction

$>$ Given a function \boldsymbol{v}^{h} on the fine mesh, a corresponding function in Ω_{H} must be defined from \boldsymbol{v}^{h}. Reverse of prolongation
$>$ Simplest example canonical injection: $v_{i}^{2 h}=v_{2 i}^{h}$.
$>$ Termed Injection operator. Obvious 2-D analogue: $v_{i, j}^{2 h}=v_{2 i, 2 j}^{h}$.
> More common restriction operator: full weighting (FW),

$$
v_{j}^{2 h}=\frac{1}{4}\left(v_{2 j-1}^{h}+2 v_{2 j}^{h}+v_{2 j+1}^{h}\right) .
$$

$>$ Averages the neighboring values using the weights $0.25,0.5,0.25$.

Coarse problems and smoothers

At the highest level (finest grid)

$$
A_{h} u^{h}=f^{h}
$$

$>$ Can define this problem at next level (mesh-size= H) on mesh Ω_{H}

- Also common (FEM) to define the system by Galerkin projection,

$$
\begin{gathered}
\boldsymbol{A}_{\boldsymbol{H}}=I_{h}^{H} \boldsymbol{A}_{h} \boldsymbol{I}_{\boldsymbol{H}}^{h}, \quad f^{H}=\boldsymbol{I}_{h}^{H} \boldsymbol{f}^{h} . \\
u_{\nu}^{h}=\operatorname{smoother}^{\nu}\left(\mathrm{A}_{\mathrm{h}}, \mathrm{u}_{0}^{\mathrm{h}}, \mathrm{f}_{\mathrm{h}}\right)
\end{gathered}
$$

Notation:
$u_{\nu}^{h}==$ result of ν smoothing s for $A_{h} u=f_{h}$ starting with u_{0}^{h}.

V-cycles

ALGORITHM :25	$u^{h}=\operatorname{V-cycle}\left(A_{h}, u_{0}^{h}, f^{h}\right)$
1. Pre-smooth:	$u^{h}:=\operatorname{smoother}{ }^{\nu_{1}}\left(\mathrm{~A}_{\mathrm{h}}, \mathrm{u}_{0}^{\mathrm{h}}, \mathrm{f}^{\mathrm{h}}\right)$
2. Get residual:	$r^{h}=f^{h}-A_{h} u^{h}$
3. Coarsen:	$r^{H}=I_{h}^{H} r^{h}$
4. If $\left(H==h_{0}\right)$	$A_{H} \delta^{H}=r^{H}$
5. Solve:	
6. Else	
7. Recursion:	$\delta^{H}=V$-cycle $\left(A_{H}, 0, r^{H}\right)$
8. EndIf	
9. Correct:	$u^{h}:=u^{h}+I_{H}^{h} \delta^{H}$
10. Post-smooth:	$u^{h}:=\operatorname{smoother}^{\nu_{2}}\left(\mathrm{~A}_{\mathrm{h}}, \mathrm{u}^{\mathrm{h}}, \mathrm{f}^{\mathrm{h}}\right)$
11. Return u^{h}	

Algebraic Multigrid (AMG)

> Generalizes 'geometric' or 'mesh-based' MG to general problems
> Idea: Define coarsening by looking at 'strong' couplings

D Define coarse problem from a Galerkin approach, i.e., using the restric $\operatorname{tion} A_{H}=I_{h}^{H} A_{h} I_{H}^{h} .$.
-Generally speaking: limited success for problems with several unknowns per mesh point, of for non-PDE relatex problems..
> V-cyle multigrid is a canonical application of recursivity - starting from the 2 -grid cycle as an example. Notation: $H=2 h$ and h_{0} is the coarsest mesh-size.

- Many other options avaialble
$>$ For Poisson equation MG is a 'fast solver' - cost of order $N \log N$. In fact $O(N)$ for FMG.
\qquad
\qquad

Introduction

Thrust of parallel computing techniques in most applications areas.
$>$ Programming model: Message-passing seems (MPI) dominates

Open MP and threads for small number of processors

- Important new reality: parallel programming has penetrated the 'applications' areas [Sciences and Engineering + industry]

Problem 1: algorithms lagging behind somewhat
> Problem 2: Message passing is painful for large applications. 'Time to solution' up.

$$
\text { . . CIMPA - Tlemcen May 208AApril 26, } 2008165
$$

Domain Decomposition ideas

- Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-Xu, X. Cai, D. Keyes, Smith, ...]
- Schur-complement techniques [Gropp \& Smith, Ferhat et al. (FETI), T.F. Chan et al., YS and Sosonkina '97, J. Zhang '00, ...]

Multigrid / AMG viewpoint:

- Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et al (Aztec project), ...]
- In practice: Variants of additive Schwarz very common (simplicity)

Parallel preconditioners: A few approaches
"Parallel matrix computation" viewpoint:

- Local preconditioners: Polynomial (in the 80s), Sparse Approximate Inverses, [M. Benzi-Tuma \& al '99., E. Chow ’00]
- Distributed versions of ILU [Ma \& YS '94, Hysom \& Pothen '00]
- Use of multicoloring to unaravel parallelism

Intrinsically parallel preconditioners

Some alternatives
(1) Polynomial preconditioners;
(2) Approximate inverse preconditioners;
(3) Multi-coloring + independent set ordering;
(4) Domain decomposition approach.

POLYNOMIAL PRECONDITIONING

Principle: $M^{-1}=s(A)$ where s is a (low) degree polynomial:

$$
s(A) A x=s(A) b
$$

Problem: how to obtain s ? Note: $s(A) \approx A^{-1}$

* Chebyshev polynomials
> Several approaches.
* Least squares polynomials
* Others
> Polynomial preconditioners are seldom used in practice.

Discretization of domain

Domain Decomposition

> Domain decomposition or substructuring methods attempt to solve a PDE problem (e.g.) on the entire domain from problem solutions on the subdomains Ω_{i}.

Coefficient Matrix

(a) Vertex-based
(b) edge-based; and
(c) element-based partitioning
> Can adapt PDE viewpoint to general sparse matrices
> Will use the graph representation and 'vertex-based' viewpoint -

Generalization: Distributed Sparse Systems

> Simple illustration: Block assignment. Assign equation i and unknown i to a given 'process'
$>$ Naive partitioning - won't work well in practice

$>$ Best idea is to use the adjacency graph of A :

Vertices $=\{1,2, \cdots, n\}$;
Edges: $i \rightarrow j$ iff $a_{i j} \neq 0$

Graph partitioning problem:

- Want a partition of the vertices of the graph so that
(1) partitions have \sim the same sizes
(2) interfaces are small in size

General Partitioning of a sparse linear system

$S_{1}=\{1,2,6,7,11,12\}:$ This
means equations and unknowns 1,2 ,
3, 6, 7, 11, 12 are assigned to Domain
1.
$S_{2}=\{3,4,5,8,9,10,13\}$
$S_{3}=\{16,17,18,21,22,23\}$
$S_{4}=\{14,15,19,20,24,25\}$

Alternative: Map elements / edges rather than vertices

Equations/unknowns 3, 8, 12 shared by 2 domains. From distributed sparse matrix viewpoint this is an overlap of one layerPartitioners : Metis, Chaco, Scotch, ..
$>$ More recent: Zoltan, H-Metis, PaToH

$$
\ldots \text { CIMPA - Tlemcen May 2008A pril 26, } 2008 \boxed{178}
$$

> Standard dual objective: "minimize" communication + "balance" partition sizes

Recent trend: use of hypergraphs [PaToh, Hmetis,...]

Hypergraphs are very general.. Ideas borrowed from VLSI work
> Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
> Hypergraphs can better express complex graph partitioning problems and provide better solutions. Example: completely nonsymmetric patterns.

Distributed Sparse matrices (continued)

Once a good partitioning is found, questions are:

1. How to represent this partitioning?
2. What is a good data structure for representing distributed sparse matrices?
3. How to set up the various "local objects" (matrices, vectors, ..)
4. What can be done to prepare for communication that will be required during execution?

$$
\text { CIMPA - Tlemen May 2088April 26, } 2008181
$$

Local view of distributed matrix:

The local system:

$$
\underbrace{\left(\begin{array}{cc}
B_{i} & F_{i} \\
E_{i} & C_{i}
\end{array}\right)}_{A_{i}}\binom{u_{i}}{y_{i}}+\underbrace{\binom{0}{\sum_{j \in N_{i}} E_{i j} y_{j}}}_{y_{\text {ext }}}=\binom{f_{i}}{g_{i}}
$$

$>u_{i}$: Internal variables; y_{i} : Interface variables

Two views of a distributed sparse matrix

> Local interface variables always ordered last.

Once the partitioning is available these parts must be identified and built locally..
> In finite elements, assembly is a local process.
> How to perform a matrix vector product? [needed by iterative schemes?]

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter $x_{\text {bound }}$ to neighbors - Gather $x_{e x t}$ from neighbors
2. Local matrix - vector product

$$
y=A_{l o c} x_{l o c}
$$

3. External matrix - vector product

$$
y=y+B_{e x t} x_{e x t}
$$

NOTE: 1 and 2 are independent and can be overlapped.

$$
\ldots \text { cimpa - Tlemen May 2008s prili } 26,2008 ~ 185
$$

Distributed Dot Product

Main Operations in (F) GMRES :

1. Saxpy's - local operation - no communication
2. Dot products - global operation
3. Matrix-vector products - local operation - local communication
4. Preconditioning operations - locality varies.

A remark: the global viewpoint

- Schwarz Preconditioners
- Schur-complement based Preconditioners
- Multi-level ILU-type Preconditioners
> Observation: Often, in practical applications, Schwarz Preconditioner are used : SUB-OPTIMAL

Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external data y_{i}
2. Compute (update) local residual $r_{i}=(b-A x)_{i}=b_{i}-A_{i} x_{i}-B_{i} y_{i}$
3. Solve $\boldsymbol{A}_{i} \delta_{i}=r_{i}$
4. Update solution $x_{i}=x_{i}+\delta_{i}$

$>$ Multiplicative Schwarz. Need a coloring of the subdomains.

1. Do col $=1, \ldots$, numcols

If (col.eq.mycol) Then
Obtain external data y_{i}
Update local residual $r_{i}=(b-A x)_{i}$
Solve $A_{i} \delta_{i}=r_{i}$
Update solution $x_{i}=x_{i}+\delta_{i}$
EndIf
EndDo

$$
\text { . . . CIMPA - Tlemcen May 2008April } 26,2008193
$$

(2) Separate interior nodes from interface nodes (2-level blocking)

(3) Use a block-GMRES algorithm - with Block-size = number of colors. SOR step targets a different color on each column of the block $>$ no iddle time.

Breaking the sequential color loop

$>$ "Color" loop is sequential. Can be broken in several different ways.
(1) Have a few subdomains per processors

Local Solves

$>$ Each local system $A_{i} \delta_{i}=r_{i}$ can be solved in three ways:

1. By a (sparse) direct solver
2. Using a standard preconditioned Krylov solver
3. Doing a backward-forward solution associated with an accurate ILU (e.g. ILUT) precondionerWe only use (2) with a small number of inner s (up to 10) or (3).

Local system can be written as

$x_{i}=$ vector of local unknowns, $y_{i, e x t}=$ external interface variables, and $b_{i}=$ local part of RHS.
$>$ Local equations

$$
\left(\begin{array}{cc}
B_{i} & \boldsymbol{F}_{i} \tag{3}\\
\boldsymbol{E}_{i} & C_{i}
\end{array}\right)\binom{u_{i}}{\boldsymbol{y}_{i}}+\binom{0}{\sum_{j \in N_{i}} \boldsymbol{E}_{i j} \boldsymbol{y}_{j}}=\binom{\boldsymbol{f}_{i}}{g_{i}}
$$

$>$ eliminate u_{i} from the above system:

$$
\boldsymbol{S}_{i} \boldsymbol{y}_{i}+\sum_{j \in N_{i}} E_{i j} \boldsymbol{y}_{j}=g_{i}-E_{i} B_{i}^{-1} \boldsymbol{f}_{i} \equiv g_{i}^{\prime}
$$

where S_{i} is the "local" Schur complement

$$
\begin{equation*}
S_{i}=C_{i}-E_{i} B_{i}^{-1} F_{i} \tag{4}
\end{equation*}
$$

Structure of Schur complement system

Global Schur complement system: $\quad S y=g^{\prime}$ with :

$$
S=\left(\begin{array}{cccc}
S_{1} & E_{12} & \ldots & E_{1 p} \\
E_{21} & S_{2} & \ldots & E_{2 p} \\
\vdots & & \ddots & \vdots \\
E_{p 1} & E_{p-1,2} & \ldots & S_{p}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right)=\left(\begin{array}{c}
g_{1}^{\prime} \\
g_{2}^{\prime} \\
\vdots \\
g_{p}^{\prime}
\end{array}\right)
$$

$>E_{i j}$'s are sparse $=$ same as in the original matrix
> Can solve global Schur complement system iteratively. Back-substitute
to recover rest of variables (internal).
> Can use the procedure as a preconditining to global system.

Simplest idea: Schur Complement Iterations

$$
\binom{u_{i}}{y_{i}} \text { Internal variables }
$$

> Do a global primary iteration (e.g., block-Jacobi)
$>$ Then accelerate only the y variables (with a Krylov method)
Still need to precondition..

Preconditioning:

$$
L=\left(\begin{array}{cc}
B & 0 \\
E & M_{S}
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{cc}
I & B^{-1} F \\
0 & I
\end{array}\right)
$$

with $M_{S}=$ some approximation to S.
$>$ Preconditioning to global system can be induced from any preconditioning on Schur complement.

Rewrite local Schur system as

$$
y_{i}+S_{i}^{-1} \sum_{j \in N_{i}} E_{i j} y_{j}=S_{i}^{-1}\left[g_{i}-E_{i} B_{i}^{-1} f_{i}\right] .
$$

$>$ equivalent to Block-Jacobi preconditioner for Schur complement.
> Solve with, e.g., a few s (e.g., 5) of GMRES

Approximate Schur-LU

> Two-level method based on induced preconditioner. Global system can also be viewed as

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)\binom{u}{y}=\binom{f}{g}, \quad B=\left(\begin{array}{cccc|c}
B_{1} & & & & F_{1} \\
& B_{2} & & & F_{2} \\
& & \ddots & & \vdots \\
& & & B_{p} & \boldsymbol{F}_{p} \\
\hline & & & & \\
E_{1} & E_{2} & \cdots & E_{p} & C
\end{array}\right)
$$

Block LU factorization of \boldsymbol{A} :

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)=\left(\begin{array}{ll}
B & 0 \\
E & S
\end{array}\right)\left(\begin{array}{cc}
I & B^{-1} F \\
0 & I
\end{array}\right)
$$

$$
\ldots \text { cinPA - Tlemen May 20084. priti 26, 2008 } 202
$$

$>$ Question: How to solve with S_{i} ?
$>$ Can use LU factorization of local matrix $A_{i}=\left(\begin{array}{cc}B_{i} & F_{i} \\ E_{i} & C_{i}\end{array}\right)$
and exploit the relation:

$$
A_{i}=\left(\begin{array}{cc}
L_{B_{i}} & 0 \\
E_{i} U_{B_{i}}^{-1} & L_{S_{i}}
\end{array}\right)\left(\begin{array}{cc}
U_{B_{i}} & L_{B_{i}}^{-1} F_{i} \\
0 & U_{S_{i}}
\end{array}\right) \quad \rightarrow \quad L_{S_{i}} U_{S_{i}}=S_{i}
$$

$>$ Need only the (I) LU factorization of the A_{i} [rest is already available]
> Very easy implementation of (parallel) Schur complement techniques for vertex-based partitioned systems : YS-Sosonkina '97; YS-SosonkinaZhang '99.

An experiment

Number of FGMRES(20) iterations for the AF23560 problem.

Name	Precon	lfil	$\mathbf{1 6}$	$\mathbf{2 4}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 6}$	$\mathbf{6 4}$	$\mathbf{8 0}$	$\mathbf{9 6}$
af23560	SAPINV	$\mathbf{2 0}$	$\mathbf{3 2}$	$\mathbf{3 6}$	$\mathbf{2 7}$	29	$\mathbf{7 3}$	$\mathbf{3 5}$	$\mathbf{7 1}$	$\mathbf{6 1}$
		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{3 5}$	$\mathbf{2 3}$	29	$\mathbf{4 6}$	$\mathbf{6 0}$	$\mathbf{3 3}$	$\mathbf{5 2}$
	SAPINVS	$\mathbf{2 0}$	$\mathbf{3 2}$	$\mathbf{3 5}$	$\mathbf{2 4}$	$\mathbf{2 9}$	$\mathbf{5 5}$	$\mathbf{3 5}$	$\mathbf{3 7}$	$\mathbf{5 9}$
		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{3 4}$	$\mathbf{2 3}$	$\mathbf{2 8}$	$\mathbf{4 3}$	$\mathbf{4 5}$	$\mathbf{2 3}$	$\mathbf{3 5}$
	SLU	$\mathbf{2 0}$	$\mathbf{8 1}$	$\mathbf{1 0 5}$	$\mathbf{9 4}$	$\mathbf{8 8}$	$\mathbf{9 0}$	$\mathbf{7 6}$	$\mathbf{8 5}$	$\mathbf{7 1}$
		$\mathbf{3 0}$	$\mathbf{3 8}$	$\mathbf{3 4}$	$\mathbf{3 7}$	$\mathbf{3 9}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{3 8}$	$\mathbf{3 5}$
	BJ	$\mathbf{2 0}$	$\mathbf{3 7}$	$\mathbf{1 5 3}$	$\mathbf{5 3}$	$\mathbf{6 0}$	$\mathbf{7 7}$	$\mathbf{8 0}$	$\mathbf{9 5}$	$*$
		$\mathbf{3 0}$	$\mathbf{3 6}$	$\mathbf{4 1}$	$\mathbf{5 3}$	$\mathbf{5 7}$	$\mathbf{8 1}$	$\mathbf{8 7}$	$\mathbf{9 7}$	$\mathbf{1 1 5}$

$$
\text { . . CIMPA - Tlemcen May 2008April 26, } 2008205
$$

> Solution times for a Laplacean problem with various local subproblem sizes using FGMRES(10) with 3 different preconditioners (BJ, SAPINV, SLU) and the Schur complement iteration (SI).

Times and iteration counts for solving a 360×360 discretized Laplacean problem with 3 different preconditioners using flexible GMRES(10).
\qquad
\qquad

Parallel implementation of ARMS

Main ideas: (1) exploit recursivity (2) distinguish two phases: elimination of interior points and then interface points.

Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement system (both I1 and I2) with either a block Jacobi (M. Sosonkina and YS, '99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Requires construction of global group independent sets.
$>$ Current status Methods 1 and 2.

Result: 2-part Schur complement: one corresponding to local interfaces and the other to inter-domain interfaces.

Construction of global group independent sets A two level strategy

1. Color subdomains
2. Find group independent sets locally
3. Color groups consistently

Algorithm: Multicolor Distributed ILU(0)

1. Eliminate local rows,
2. Receive external interf. rows from PEs s.t. color $(P E)<M y C o l o r$
3. Process local interface rows
4. Send local interface rows to PEs s.t. color $(P E)>$ MyColor
\qquad

Test problem

1. Scalability experiment: sample finite difference problem.

$$
-\Delta u+\gamma\left(e^{x y} \frac{\partial u}{\partial x}+e^{-x y} \frac{\partial u}{\partial y}\right)+\alpha u=f
$$

Dirichlet Boundary Conditions; $\gamma=100, \alpha=-10$; centered differences discretization.
$>$ Keep size constant on each processor $[100 \times 100]>$ Global linear system with $10,000 *$ nproc unknowns.
2. Comparison with a parallel direct solver - symmetric problems
3. Large irregular matrix example arising from magneto hydrodynamics.

Methods implemented in pARMS:

add_xAdditive Schwarz with method x for subdomains. With/out overlap. $x=$ one of ILUT, ILUK, ARMS.
sch_x Schur complement technique, with method $x=$ factorization used for local submatrix. Same x as above. Equiv. to Additive Schwarz preconditioner on Schur complement.
sch_sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel) preconditioning is used instead of additive Schwarz for Schur complement. sch_gilu0 $\operatorname{ILU}(0)$ preconditioning to solve global Schur complement system obtained from ARMS reduction.

Times for 2D PDE problem with fixed subproblem size

Iterations for 2D PDE problem with fixed subproblem size

Iterations

Times for 2D PDE problem with fixed subproblem size

Software

Direct solvers:
> SUPERLU
http://crd.lbl.gov/ xiaoye/SuperLU/
> MUMPS: [cerfacs]
> Univ. Minn. / IBM's PSPASES [SPD matrices] http://www-users.cs.umn.edu/ mjoshi/pspases/
> UMFPACK

Iterative solvers:

$>$ PETSc

http://acts.nersc.gov/petsc/

and Trilinos (more recent)
http://trilinos.sandia.gov/
... are very comprehensive packages..
> PETSc includes few preconditioners...
$>$ Hypre, ML, ..., all include interfaces to PETSc or trilinos
> pARMS:
http://www.cs.umn.edu~saad/software

is a more modest effort -

[^0]: ALGORITHM : 6• Lanczos Method for Linear Systems

 1. Compute $r_{0}=b-A x_{0}, \beta:=\left\|r_{0}\right\|_{2}$, and $v_{1}:=r_{0} / \beta$
 2. For $j=1,2, \ldots, m$ Do:
 3. $\quad w_{j}=A v_{j}-\beta_{j} v_{j-1}\left(\right.$ If $j=1$ set $\left.\beta_{1} v_{0} \equiv 0\right)$
 4. $\alpha_{j}=\left(w_{j}, v_{j}\right)$
 5. $w_{j}:=w_{j}-\alpha_{j} v_{j}$
 6. $\quad \beta_{j+1}=\left\|w_{j}\right\|_{2}$. If $\beta_{j+1}=0$ set $m:=j$ and go to 9
 7. $\boldsymbol{v}_{j+1}=\boldsymbol{w}_{j} / \boldsymbol{\beta}_{j+1}$
 8. EndDo
 9. Set $T_{m}=\operatorname{tridiag}\left(\beta_{i}, \alpha_{i}, \beta_{i+1}\right)$, and $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$.
 10. Compute $y_{m}=T_{m}^{-1}\left(\beta e_{1}\right)$ and $x_{m}=x_{0}+V_{m} y_{m}$
[^1]: ALGORITHM : 13. BCGSTAB

 1. Compute $r_{0}:=b-A x_{0} ; r_{0}^{*}$ arbitrary;
 2. $p_{0}:=r_{0}$
 3. For $j=0,1, \ldots$, until convergence Do:
 4. $\alpha_{j}:=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
 5. $s_{j}:=r_{j}-\alpha_{j} A p_{j}$
 6. $\omega_{j}:=\left(A s_{j}, s_{j}\right) /\left(A s_{j}, A s_{j}\right)$
 7. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}+\omega_{j} s_{j}$
 8. $\quad r_{j+1}:=s_{j}-\omega_{j} A s_{j}$
 9. $\quad \boldsymbol{\beta}_{j}:=\frac{\left(r_{j+1}, r_{0}^{*}\right)}{\left(r_{j}, r_{0}^{*}\right)} \times \frac{\alpha_{j}}{\omega_{j}}$
 10. $p_{j+1}:=r_{j+1}+\beta_{j}\left(p_{j}-\omega_{j} A p_{j}\right)$
 11. EndDo
[^2]: Level-of-fill > in Symbolic phase

[^3]: ALGORITHM: 23. ILUM
 For lev $=1$, nlev Do
 a. Get an independent set for A.
 b. Form the reduced system associated with this set;
 c. Apply a dropping strategy to this system;
 d. Set A := current reduced matrix and go back to (a).

