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INTRODUCTION TO SPARSE MATRICES

e Sparse matrices and sparsity e Preconditioned iterations
e Basic iterative techniques e Preconditioning techniques
e Projection methods e Multigrid methods

e Krylov subspace methods

e Parallel implementations
e Parallel Preconditioners
e Software

Typical Problem:

Physical Model

l
Nonlinear PDEs

1

Discretization

l

Linearization (Newton)

l
Sequence of Sparse Linear Systeméxz = b



Introduction: Linear System Solvers Direct sparse lterative Methods

Solvers Preconditioned Krylov
[J Problem considered: Linear systems General
Ax =b ¢
Ax=b Purpose

[ Can view the problem from somewhat different angles: -A u=f +bc

# Specialized
e Discretized problem coming from a PDE / \

e An algebraic system of equations [ignore origin] Fast Poisson Multigrid

e Sometimes a system of equations wherd is not explicitly available Solvers Methods

Introduction: Linear System Solvers A few observations

[J Much of recent work on solvers has focussed on: [ Problems are getting harder for Sparse Direct methods

more 3-D models, much bigger problems,..
(1) Parallel implementation — scalable performance ( gaerp )

. ) . [1  Problems are also getting difficult for iterative methodsCause: more
(2) Improving Robustness, developing more general preconditioners
complex models - away from Poisson
[l Researchers in iterative methods are borrowing techniques from dict

methods: — preconditioners

[J The inverse is also happening: Direct methods are being adapted for

use as preconditioners



What are sparse matrices?

Common definition: “..matrices that allow special techniques to take

advantage of the large number of zero elements and the structure.”

A few applications of sparse matrices Structural Engineering, Reservoir

simulation, Electrical Networks, optimization problems, ...

Much less storage and work than dense computations.
A~lis usually dense, butL and U in the LU factorization

may be reasonably sparse (if a good technique is used).

Tl
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Nonzero patterns of a few sparse matrices

AR e e g g
S S R S S S

. .
%% -, A N

O A ~, . X,
e o -] . e

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974  SHERMANS: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

[ Two types of matrices: structured (e.g. Sherman5) and unstructured
(e.g. BP1000)

] Main goal of Sparse Matrix Techniques: To perform standard matrix

computations economically i.e., without storing the zeros of the matrix.

[1 Example: To add two square dense matrices of siza requires O (n?)
operations. To add two sparse matricesA and B requires O(nnz(A) +

nnz(B)) wherennz(X) = number of nonzero elements of a matrixX .

[l Fortypical Finite Element /Finite difference matrices, number ofnonzero

elements isO(n).



Graph Representations of Sparse Matrices

[l Graph theory is a fundamental tool in sparse matrix techniques.
Graph G = (V, E) of ann X n matrix A defined by

VerticesV = {1, 2,...., N}.

EdgesE = {(i, j)|a; # 0}.

[l Graph is undirected if matrix has symmetric structure: a;; # 0 iff
Qaj; 75 0.

Example: IAdjacency graph of:

* % *
* k% *
* X
* x
* * Kk %
* * x

A=

Example: I For any matrix A, what is the graph of A%?? [interpret in

terms of paths in the graph of A]

Direct versus iterative methods

Background. Two types of methods:
[1 Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..

[ Ilterative methods: compute a sequence of iterates which converge to

the solution - preconditioned Krylov methods..

These two classes of methods have always been in competition.

[1 40 years ago solving a system withh = 10, 000 was a challenge

] Now you can solve this in< 1 sec. on a laptop.



[ Sparse direct methods made huge gains in efficiency. As a result they

are very competitive for 2-D problems.
] 3-D problems lead to more challenging systems [inherent to the under-
lying graph]
[l Problems with many unknowns per grid point similar to 3-D problems
Remarks: e No robust ‘black-box’ iterative solvers.

e Robustness often conflicts with efficiency

e However, situation improved in last= decade

e Line between direct and iterative solvers blurring

[J Reorder equations and un- + +
knowns inorder N, N — 1,...,1 + +
[l A stays sparse during Gaus- A= * + i
sian eliminatin —i.e., no fill-in. + +

+++++ +

[1 Finding the best ordering to minimize fill-in is NP-complete.

1 A number of heuristics developed. Among the best known:
e Minimum degree ordering (Tinney Scheme 2)
e Nested Dissection Ordering.

e Approximate Minimal Degree ...

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of

A. Try to minimize computations and (perhaps more importantly) storage.
[ Difficulty in Gaussian elimination: Fill-in

Trivial Example:

Reorderings and graphs

[ Letw = {41, ,i,} @ permutation

0 Ar = {ax.}
number 7 ().

= matrix A with its ¢-th row replaced by row

i,7=1,...,n

[ A, r=matrix Awithits j-th column replaced by column= ().

0 Define P, = I, ="“Permutation matrix”— Then:

(1) Each row (column) of P, consists of zeros and exactly one “1”
() A, = PA

QR PPI =1

(4 A, .= APT



Consider now: A=A, .= P, APT

[l Entry (i,7) in matrix A’is exactly entry in position («(z), w(5)) in A,
8., (@j; = @x(i)x(5)

(4,7) € Ex <= (7(i),7(j§)) € Ea

General picture :

) ()

Graph and matrix after permuting the nodes in reverse order.
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Example |A 9 x 9’arrow’ matrix and its adjacency graph.
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Cuthill-McKee & reverse Cuthill-McKee

[l Aclass of reordering techniques proceeds by levels in the graph.
[l Related toBreadth First Search (BFS) traversal in graph theory.

[ ldea of BFS is to visit the nodes by ‘levels’. Level 0 = level of starting

node.

[] Start with a node, visit its neighbors, then the (unmarked) neighbors of

its neighbors, etc...



Example: Implementation using levels

Algorithm BFS(G,v) — by level sets —

A B H |
o i‘ """ r """ i* e Initialize S = {v}, seen = 1; Mark v;
/
I I / e While seen < n Do
| | / BFS from node A:
| |/ Level 0: A —Shew = 0;
Cr-------- * D |/ Level 1: B, C )
\ |/ Level 2: E, D H — For each nodev in S do
F \\ s K tevel 3 1. K E F G H « For each unmarkedw in adj(v) do
E *#------- *----% G
\ / -Add w t0 Spew;
\ /
\ - Mark w;
* H
- seen + +;
=8 = Shew

A few properties of Breadth-First-Search

Cuthill McKee ordering

. ) ) . Algorithm proceeds by levels. Same as BFS except: in each level, nodes
[l If G is a connected undirected graph then each vertex will be visited

. . are ordered by increasing degree
once each edge will be inspected at least once

[l Therefore, for a connected undirected graph,
The cost of BFS isO(|V| + | E|) Example

[] Distance = level number;] For each nodev we have:

min_dist(s,v) = level number(v) = depthr(v)
Level| Nodes |Deg. |Order

[J Several reordering algorithms are based on variants of Breadth-First-

Search B,C |4,3 |C,B

1
2 D,E,F|3,4,2FD,E
3




ALGORITHM : 1. Cuthill Mc Kee ordering

R =
N RO

© ® N o 0~ w DD PO

Find an intial node for the traversal

Initialize S = {v}, seen = 1, w(seen) = v; Mark v;

While seen < n Do
Snew - 0;

For each nodev, going from lowest to highest degree, Do:

7(+ + seen) = v;

For each unmarkedw in adj(v) do

Addw t0 S,,cw;
Mark w;
EndDo
S = Spew
EndDo
EndWhile

[J ldea: Take the reverse ordering
RCM ordering
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[J Reverse Cuthill M Kee ordering (RCM).

Reverse Cuthill McKee ordering

[J The Cuthill - Mc Kee ordering has a tendency to create small arrow
matrices (going the wrong way):

Origimal matrix CM ordering
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Nested Dissection ordering

[J The idea of divide and conquer — recursively divide graph in two using

a separator.




Nested dissection for a small mesh

Nested dissection: cost for a regular mesh

O

O

First dissection

Original Grid oo

,,,,,,

In 2-D consider ann x n problem, N = n?

In 3-D consider ann x n x mn problem, N = n?

2-D 3-D
space (fill) | O(Nlog N) | O(N*/3)
time (flops) | O(IN%/?) O(N?)

Significant difference in complexity between 2-D and 3-D

Second Dissection __Third Dissection_,

************

,,,,,,,,,,,,

Ordering techniques for direct methods in practi

[J In practice: Nested dissection (+ variants) is preferred for parallel
processing

[] Good implementations of Min. Degree algorithm work well in practice.

Currently AMD and AMF are best known implementations/variants/

[l Best practical reordering algorithms usually combine Nested dissection
and min. degree algorithms.



BASIC RELAXATION METHODS

Can also define a_backwardGauss-Seidel Iteration:
(D — F)z®) = Ez® +p

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by back-

ward sweep.
Over-relaxation is based on the decomposition:
wA = (D —wE) — (wF + (1 —w)D)

— successive overrelaxation, (SOR):
(D — wE)x®* ) = [wF + (1 — w)D]z® + wb

BASIC RELAXATION SCHEMES

Relaxation schemes: based on the decompositiA = D — E — F

= D = diag(A), —E = strict lower

D part of A and —F' its strict up-
-E per part.

Gauss-Seidel iteration for solvingAx = b:
(D — E)z*t) = Fz® +p

— idea: correct the j-th component of the current approximate solution,

j = 1,2,..n,to zero thej — th component of residual.

Iteration matrices I

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form
x2®t) = Ma®) 4 f

eMjw=DYE+F)=I—D"'A
e Mgs(A)=(D—E)"'F==I1—-(D—-E)'A
e Msor(A) = (D—wE) Y (wF+(1—w)D) =I—(w'D—E)'A

° MSSOR(A) =1I-— (20.}_1 — 1)(w‘1D — F)_ID(w_lD — E)_IA
=1 —-w(w—-1)(D—-wF)"'D(D —wE)'A



General convergence result

Consider the iteration: z*D) = Gz®) 4 f

(1) Assume thatp(A) < 1. ThenI — G is non-singular andG has a fixed

point. Iteration converges to a fixed point for any f and z(®.

(2) If iteration converges for any f and z(® then p(G) < 1.
Example: Richardson’s iteration kD) = £®) 1 o(b — AKR)
{OAssumeA(A) C R. When does the iteration converge?

[ Jacobi and Gauss-Seidel converge for diagonal dominamt

[l SOR converges fol0 < w < 2 for SPD matrices

PROJECTION METHODS FOR LINEAR SYSTEMS

An observation. Introduction to Preconditioning

[ Theiteration *+1 = Max® + f is attempting to solve(I — M)x =

f. SinceM is of the form M = I — P~' A this system can be rewritten as
Pl'Az =P 'b

where for SSOR, we have

Pssor = (D = wE)D_l(D = wF)
referred to as the SSOR ‘preconditioning’ matrix.
In other words:

Relaxation Scheme<=> Preconditioned Fixed Point Iteration

The Problem

We consider the linear system
Ax =b

where A is N x N and can be

e Real symmetric positive definite
e Real nonsymmetric

e Complex

[1 Focus:

[A'is large and sparse, possibly with an irregular structurg




Projection Methods

Initial Problem: b— Az =0

Given two subspaceds and L of RY define the approximate problem:

Find £ € K suchthatb — Az 1 L

[l Leads to a small linear system (‘projected problems’) This is a basic

projection step. Typically: sequence of such steps are applied

Matrix representation:

oV = [vy,...,v,] abasis of K &

Let
oW = [wy,...,w,]abasis ofL

Then letting « be the approximate solution = xo+ § = xo + Vy where

y is a vector ofR™, the Petrov-Galerkin condition yields,
WT(rg— AVy) =0

and therefore

T = xo+ V[WTAV]_IWT’I"()

Remark: In practice WT AV is known from algorithm and has a simple

structure [tridiagonal, Hessenberg,..]

[J With a nonzero initial guessxy, the approximate problem is
Find # € o+ K suchthat b — Az L L

Write & = x9 + d andro = b — Ax,. Leads to a system foid:
Find 8 € K suchthatrg — A6 L L

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspace&, and L;

2. Choose base¥ = [vy,...,v,,] for K and W = [wy,...,wy] for
L.
3. Compute
r«—b— Az,

y— WTAV) "Wy,

x +— x+ Vy.



Operator Form Representation Approximate problem amounts to solving

Qb—Az)=0, x € K

Let P be the orthogonal projector onto K and or in operator form

Q the (oblique) projector onto K and orthogonally to L. 9(b— APz) =0

Question: Iwhat accuracy can one expect?

Let * be the exact solution. Then

1) We cannot get better accuracy than| (I — P)z*||2, i.e.,
[z -2, > | - P)a” |

2) The residual of theexact solutionfor the approximate problensatisfies:
| b — QAPa||: < | QAU — P): I — P)a"|: |

The P and Q projectors

Two important particular cases. One-dimensional projection processes

K = span{d}
- . and
1. L = AK .then||b — AZ||2 = min,ck ||b — Az||2 L — span{e}
— class of minimal residual methods: CR, GCR, ORTHOMIN, GM-
RES, CGNR, ... Then & «— x 4 ad and Petrov-Galerkin condition r — Ad L e yields
— _(re)
2. L = K — class of Galerkin or orthogonal projection methods. When @ = de)

A is SPD then Three popular choices:
¥ — Z||4 = min ||z* — z||a.
I la z2EK I la (I) Steepest descent.

(1) Residual norm steepest descent .

(11 Minimal residual iteration.



(I) Steepest descentA is SPD. Take at each stepl = r ande = r.

r<«—b— Ax,
lteration: | a < (r,7)/(Ar,7T)
T «— T+ ar

[1 Each step minimizes

f(@) = |z — 2|} = (A(z — 2"), (z — 7))

in direction —V f. Convergence guaranteed ifA is SPD.

(1) Minimal residual iteration. A positive definite (A + A” is SPD). Take

ateach stepd = rande = Ar.

r«—b— Az,
Iteration: | o < (Ar,r)/(Ar, Ar)

T «— T+ ar

[l Each step minimizesf(z) = ||b — Az||2 in direction .

1 Converges under the condition thatA + A7 is SPD.

(II) Residual norm steepest descentA is arbitrary (nonsingular). Take at
each stepd = ATr ande = Ad.

r«b— Ax,d = ATr
lteration: | « «— ||d||3/||Ad]|3
xr +— x+ ad

[] Each step minimizesf(z) = ||b — Az||2 in direction —V f.

[ Important Note: equivalent to usual steepest descent applied to normal
equationsATAx = ATb.

[] Converges under the condition thatA is nonsingular.

Krylov Subspace Methods

Principle: | Projection methods on Krylov subspaces:

K.(A,v;) = spafvy, Avy, - -+ , Ao}

e probably the most important class of iterative methods.

e many variants exist depending on the subspacg.
Simple properties of K,,, . Let u = deg. of minimal polynomial of v

e K,, = {p(A)v|p = polynomial of degree< m — 1}
o K,, = K, forall m > u. Moreover, K, is invariant under A.

e dim(K,,) = miff p > m.



ALGORITHM : 3. Modified Gram-Schmidt

A little review: Gram-Schmidt process

1. Forj =1,...,mDo:
— Goal: given X = [z1,...,x,] compute an orthonormal setQ =
. 3 For:=1,...,57 —1Do
[q1, - - - » @m] Which spans the same susbpace.
4 rij = (45, @)
ALGORITHM : 2. Classical Gram-Schmidt S. 4j := 4j — Tijqi
1. Forj=1,...,mDo: 6 EndDo
2 Computeri]- = (a:j,qi) for: = 1,... ,j —1 7 T = ”(LHQ If Tj; == 0 exit
3. Computed; = z; — /7 rija; 8. qj:=4;/rj
4. Tij = ||q]||2 If rjj == 0 exit 9. EndDo
5 g5 =4;/ry;
6. EndDo

Let: Arnoldi’'s Algorithm

X = [z1,...,2Tm] (n X m matrix)

; [J Goal: to compute an orthogonal basis ofK,,.
Q = [q1,---5qm] (n X m matrix)

] ] O Input: Initial vector vy, with ||vy||2 = 1 and m.
R = {r;;} (m x m upper triangular matrix)

[] Ateach step, Forj =1,...,mdo

) e Compute w := Av;
J
mj = Zrijqi 3 R hi,j = ('UJ,’UZ')
i=1 efori=1,...,7,do
w = w — h;jv;
Result:

X =QR o hji1;=|lw|:andvjy1 = w/hji1;




Result of orthogonalization process

1.V, = [v1, v2, ..., v,,] Orthonormal basis of K,,.
2. Avm - m+1ﬁm

3.VI'AV,, = H,, = H,,— last row.

AR

Minimal residual methodS L., = AK,)

[l WhenL,, = AK,,, we letW,,, = AV,, and obtain:
T = To + V[ WEAV,, ] 'WEr,
[ Use againu, := ro/(B := ||roll2) and: AV,, = V,,.1 H,,
Ty = Ty + Vm[ﬁiﬁm]_lﬁflﬂel =x0 + Vinym

where y,,, minimizes ||3e; — H,,y||2 overy € R™. Hence, (Generalized
Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

T = To + VinYym  Where  y,, : miny ||Bes — Hyyll2

. e Axelsson’s CGLS e Orthomin (1980)
Equivalent methods:

e Orthodir e GCR

Arnoldi's Method (L., = K1)

[1 Petrov-Galerkin condition when L,,, = K,,, shows:
T, = T + VmH;fVTfrO

[l Selectv; = ro/||7ro||l2 = 7r0/B in Amoldi’s algorithm, then:
Ty = XTo + ﬁVmH;llel

Equivalent al- *FOM [YS, 1981] (above formulation)
gorithms: * Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].

Restarting and Truncating

Difficulty: Asm increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimensionm of the subspace

ALGORITHM : 4. Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Computery = b — Axg, andvy = ro/ (8 := ||rol|2)-
2. Arnoldi Process: generateH,,, and V;,,.

3. Compute y,, = H,,'Be; (FOM), or

Ym = argmin||Be; — H,,y||s (GMRES)

4. Tm = To + mem

If |7mll2 < €]l70]|2 Stop else set := x,, and go to 1.



Second remedy: Truncate the orthogonalization

The formula for v;44 is replaced by

i
hjt1vi = Av; — Y hiv;
i=j—k+1

— eachw; is made orthogonal to the previousk v;’s.
— @y, still computed asz,, = o + V,, H,,,' Bes.

— It can be shown that this is again an oblique projection process.

[J 10M (Incomplete Orthogonalization Method) = replace orthogo-
nalization in FOM, by the above truncated (or ‘incomplete’) orthogo-

nalization.

Result: Can updatex,, at each step:

Ty = Tym—1 + Cmpm

Several existing pairs of methods have a similar link: they are

based on the LU, or other, factorizations of theH,,, matrix

[] CG-like formulation of IOM called DIOM [Saad, 1982]

[ ORTHORES(K) [Young & Jea '82] equivalent to DIOM(K)

[0 SYMMLQ [Paige and Saunders, '77] uses LQ factorization ofH,,,.

[1 Can add partial pivoting to LU factorization of H,,

The direct version of IOM [DIOM]:

Writing the LU decomposition of H,,, as H,,, = L,,U,,, we get
LTy = To + VmUT;1 L;,Llﬁel =x9+ Pnzm

[l Structure of L,,,U,, whenk = 3

1 T T X
x 1 o e
x 1 rxax
L, = z 1 U,, = T T T

x 1 r T T
x 1 xr x
x 1 T

— Zm—1

Pm = ur_nin[vm_zzi»ml_k_,_l uzmpz] Zm = [ C ]

The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:
| Hn = VIAV,, |

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) symmetric
matrix then the matrix H,, is symmetric tridiagonal.

In other words:

2)hjj1=hj15, j=1,...,m



[J We can write

a; (B
B2 az B3

H,, = B3 a3 B4 (l)

/Bm (o7

The v;’s satisfy a three-term recurrence [Lanczos Algorithm]:

| Bi+1vj41 = Avj — ajv; — B |

— simplified version of Arnoldi’s algorithm for sym. systems.

| Symmetric matrix + Arnoldi — Symmetric Lanczos |

Lanczos algorithm for linear systems

[ Usual orthogonal projection method setting:

o L,, = K,, = span{ry, Arg, ..., A" ry}
e BasisV,, = [vy,...,vy] of K, generated by the Lanczos algorithm
[l Three different possible implementations.

(2) Arnoldi-like; (2) Exploit tridigonal nature of H,, (DIOM); (3) Conju-

gate gradient.

The Lanczos algorithm

ALGORITHM : 5. Lanczos

1. Choose an initial vectow; of norm unity.

Setﬁl =0,v9=0

Forj =1,2,...,m Do:
wj = A’Uj — /ijjfl
a; = (wj,v;)

Wy 1= Wj; — ;U

Bj+1 = ||w]||2 If ﬂ]‘+1 = 0then Stop
Vi1 = w;/Bjn

EndDo

© N o g b~ w DN

ALGORITHM : 6. Lanczos Method for Linear Systems

. Computerg = b — Axy, B8 := ||ro||2, andvy := r¢/3
Forj =1,2,...,mDo:
w; = A’Uj — ﬂjvj,l (|f j =1 Setﬁl’UQ = 0)

a; = (wj,v))

1

2

3

4

5. wj 1= W — v
6. Bj+1 = ||lwj|l2. If Bjz1 = 0setm :=jandgoto9

7. it =w;/Bjn

8. EndDo

9. SetT,, = tridiag(Bi, i, Bit1), andVy, = [v1,..., V).
10. Computey,, = Trgl(ﬁel) andx,, = o + VinUm



ALGORITHM : 7. D-Lanczos

1
2
3
4
5.
6
7
8
9

10.
11.
12.

Computero =b-— Aﬂl‘o, Cl = ﬁ = ||’I‘(]||2, v = Tg/ﬁ
Set\; =3, =0,pp =0
Form = 1,2, ..., until convergence Do:

Computew := Av,, — BmUm—1 and a,, = (w, vy,

If m > 1: Compute\,, = Tfn’fl & Cm = —AmCm-_1
Mm = Qm — AmBm

Pm = " (Vm — BmPm—1)

T = Tm—1 + CmPm

If ,, has converged then Stop

W i = W — QU
Bm+1 = ||w||2, Um+1 = w/ﬁm-o-l
EndDo

ALGORITHM : 8. Conjugate Gradient

Start: rg := b — Axg, po := To.

Iterate: Until convergence do,

a; := (rj,75)/(Apj> p;)
Tjt1 1= Tj + yp;

Tj+1 1= Tj — ajAp;

Bj := (rj+1,7i41)/ (5, 75)

Dj+1 := Tjr1 + B;p;

EndDo

O

g

r; = scaling X vj;1. Ther;’s are orthogonal.

The p,’s are A-conjugate, i.e.,(Ap;, p;) = 0for ¢ # j.

The Conjugate Gradient Algorithm A S.P.D.)

[J Note: the p;'s are A-orthogonal
[ Ther!'s are orthogonal.

(1 And we havez,, = Tm_1 + &mPm

1. pm = Tm-1+ BmPm—-1
So there must be an update aof
2. Ty = Typ—1 + gmpm
the form:
3. Tm = Tm—1 — {mApm

METHODS BASED ON LANCZOS BIORTHOGONALIZATION



ALGORITHM : 9. Lanczos Bi-Orthogonalization [ Extension of the symmetric Lanczos algorithm

Choose two vectors vy, w; such that (v, w;) = 1. ) ) _
[1 Builds a pair of biorthogonal bases for the two subspaces
SetﬁlzlleO,wO:’UoEO

Forj=1,2,...,m Do: ’Cm(Aa ’01) and K:m(AT’wl)
a; = (Avj, w;)

1

2

3

4

5. Biv1 = Avj — ajv; — Bivj1 [l Different ways to choose 4;41,3;j+1 inlines 7 and 8.
6

7

8

9

W1 = ATw; — oyw; — djw; Let

341 = |(Djz1,Wjr1) |2 If 8;11 = 0 Stop ay B

Bj+1 = (D41, Wi41)/ i1 o ax [

wjt1 = Wi41/Bj T =
10. w1 = 0j41/0j41 Om—1 Cm_1 Bm
11. EndDo Om O

0 v € Kp(A,v1) and w; € IC,, (AT, wy).

If the algorithm does not break down before step m, then the The Lanczos Algorithm for Linear Systems
vectors v;,¢ = 1,...,m, and w;,j = 1,...,m, are biortho-
gonal, i.e.,

ALGORITHM : 10. Lanczos Alg. for Linear Systems

(i) =8y 126 S s 1. Computero = b — Axgand 3 := ||ro||2

Moreover, {vi}i—1z,..m is abasis of Kp(A,v1) and {witiz12...m 2. Runm steps of the nonsymmetric Lanczos Algorithm i.e.,
is a basis of 1C,,, (AT, w;) and 3. Startwithv, := ro/3, and anyw, such that
AVyy = Vi T + 0 1Vmi1€l, (vi,wr) =1
ATW,, = WL 4 B 1w i1l 4.  Generate the pair of Lanczos vectaos, . . . , Uy,
wraAv,, =T, . andws, ..., wn
5. and the tridiagonal matrixT,,, from Algorithm 9.
6. Computey,, = T,,,*(Be1) and,, := xo + VinYm.

O

BCG can be derived from the Lanczos Algorithm similarly to CG



ALGORITHM : 11. BiConjugate Gradient (BCG) Quasi-MinimaI Residual Algorithm
1

. Computery := b — Awx,.
2. Chooser} such that(rg, 7 0; . . =
0 (ro, 75) # [ Recall relation from the lanczos algorithm: AV;,, = V;,, 1Ty, With T,
Setpg := 19, P := 7§ _ T
= (m + 1) x m tridiagonal matrix T,, =

3. Forj =0,1,...,untl convergence Do, Smsrel
4. a; = (rj,7r3)/(Ap;, Pt

i 3= (15 5)/(Aps, P)) ) Letw, = Broandz = xo + V,,y. Residual norm ||b — Az||, equals
5. iy =zt a;p;
6. 1ji1i=1; — a;Ap; lIro — AViyllz = [|1Bv1 — Vinr1 Tnyllz = | Vingr (Ber — Try) |l
7. Tr =T — ajATp;f

. . [l Column-vectors of V;,,; are not L (# GMRES).
8. By = (rjas i)/ (rio ) i (7 GMRES)
9. Ppjt1:=rjt1+ Bip; [ But: reasonable idea to minimize the functionJ (y) = ||Be1 — Tmy||2
10. p;-H = r;+] + ﬁ]p;k . . .
[ Quasi-Minimal Residual Algorithm (Freund, 1990).

11. EndDo

Transpose-Free Variants Conjugate Gradient Squared

[l BCG and QMR require a matrix-by-vector product with A and A™

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].
at each step. The products withAT do not contribute directly to z,,. |

They allow to determine the scalars &; and 3; in BCG). InBCG:
[l QUESTION: is it possible to bypass the use oAT? ri = pi(A)ro
[1 Motivation: in nonlinear equations, A is often not available explicitly where p; = polynomial of degrees.
but via the Frechet derivative:
Fun + ev) — Flug) In CGS:
J(up)v = p . r; = p?(A)ro
[l Define:

rj = ¢;(A)ro,

pj = m;i(A)ro,



v = by(AT)rs,

p; = mj(AT)rg

Scalar o in BCG is given by

_ (9i(A)ro, 95(AT)r5) (¢3(A)ro,75)
T (Amj(A)re, mi(AT)rg)  (Am2(A)ro,g)

1 Possible to get a recursion for thep? (A)ry and 77 (A)7?

@i1(t) = ¢;(t) — a;tm;(t),
mir1(t) = ¢ja(t) + Bim;(t)

Square these equalities

2(6) = () — 2a5tmi(8) () + o2PmA(t), | TroPem:.

2 2 5 5 Cross terms
mia(t) = 54(8) + 285¢;11(8)m;(t) + Bm;(t)".

Recurrences become:
Tiy1 = 7 — 0GA (215 + 26141 — ;A pj)
q; = 7+ Bj-19j-1 — ;A pj,
pj+1 = iy + 26595 + Bip;-
Define auxiliary vector d; = 2r; + 28;_1qj—1 — o; Ap;
[J Sequence of operations to compute the approximate solution, starting
with 7y := b — Axg, po := 70, qo := 0, By := 0.
laoj= (7’]” TS)/(Apja 7'3)

2. dj = 21‘]‘ —|— 2ﬁj—1qj—1 — Olepj 6 ,8]' = (’I‘j+1, ’I“S)/(’I‘j, ’I“S)

5.Tj+1 = ’I"j — oszdj

3.q; = r; + Bj_1qj—1 — a; Ap; 7.pj+1 = rj+1 + Bi(29; + Bip;).

4. xji1 = xj + o;d;

Solution: Let ¢;41(t)m;(t), be a third member of the recurrence.

7;(t);(t), note:
@i (&)m;i(t) = &;(t) (¢;(t) + Bj—1mj-1(t))
= B2(t) + Bj1ds(B)mia (D).
Result:

S = 9= et (26 426, 165m 0 — gt )
bjm; = ¢ 4 Bi—1¢5mj1 — ajt T

T = G 2600w + B

Define:

rj = ¢3(A)ro, pj = (A)ro, @ = $j1(A)T;(A)ro

[l one more auxiliary vector,u; = r; + 3;_1qj—1. SO

d;

u; + qj,
qj = uj — o Apj,
Pi+1 = wiy1 + Bi(q; + Bipj),

[ vector d; is no longer needed.

For



ALGORITHM : 12. Conjugate Gradient Squared

1. Computerg := b — Axo; r; arbitrary.
2. Setpg := ug := 7.

3. Forj =0,1,2...,until convergence Do:
4. aj = (rj75)/(Ap;,T5)

5 gqj =uj — ajAp;

6. mip =+ a;(u; + g5)

7. mip =71 — o A(u; + gj)

8. Bj = (rjt1,75)/(r>7¢)

9. ujp =T+ Big;

10.  pjt1 = wjn1 + Big; + B;p))

11. EndDo

BCGSTAB (van der Vorst, 1992)

[ In CGS: residual polynomial of BCG is squared. [1 bad behavior in

case of irregular convergence.

[] Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS

which avoids this difficulty. [] Derivation similar to CGS.

[1 Residuals in BCGSTAB are of the form,
i = 1;(A)g;(A)ro

in which, ¢;(t) = BCG residual polynomial, and ..

0 .. 4;(t) = anew polynomial defined recursively as
Pir(t) = (1 — wit)y;(t)

w; chosen to ‘smooth’ convergence [steepest descent step]

[1 Note: no matrix-by-vector products with A™ but two matrix-by-vector

products with A, at each step.

Vector: +— Polynomial in BCG :
q;i +—— Ti(t)Pi—1(t)
u; > P(t)

7y —— T(t)

where 7;(t) = residual polynomial at steps for BCG, .i.e., r; = 7;(A)ro,

and p;(t) = conjugate direction polynomial at stepz, i.e.,p; = p;(A)ro.

ALGORITHM : 13. BCGSTAB

1. Computery := b — Axy; rj arbitrary;

2. Po = To.

3. Forj =0,1,...,untl convergence Do:
4. ;= (r515)/(Apjs1g)

5. sj =1 — jAp;

6. wj:i= (Asj,85)/(Asj, Asj)

7
8
9

Tjt1 1= Tj + oGPj + W;s;

Tj+1 = Sj — ijSj
B_ — ("’j+1~,7’3> ajy
7 (rj>rg) wj

10.  pji1:= T4 + Bi(pj — wiAp;))
11. EndDo



Preconditioning — Basic principles
is to use the Krylov subspace method on a modified system

such as

M=1Az = M~'b.
PRECONDITIONING

e The matrix M~'A need not be formed explicitly; only need to solve
Mw = v whenever needed.

e Consequence: fundamental requirement is that it should be easy to com-

pute M ~v for an arbitrary vector wv.

Left, Right, and Split preconditioning Preconditioned CG (PCG)

Left preconditioning: M ~'Ax = M~'b [1 Assume:A and M are both SPD.

[ Applying CG directlyto M~'Ax = M~'bor AM'u =b

Right preconditioning: AM ~'u = b, with z = M ~lu , - . .

won'’t work because coefficient matrices are not symmetric.

. . T . . .
Split preconditioning: MZIAMEIU _ M;lb, with  — Mglu [1 Alternative: when M = LL* use split preconditioner option
Lo 1A . .

[Assume M is factored: M = My Mp. ] [1 Second alternative: Observe thatM —!' A is self-adjoint wrt M inner

product:

(M~ Az, y)n = (Az,y) = (z, Ay) = (&, M~ Ay)n



Preconditioned CG (PCG)

ALGORITHM : 14. Preconditioned Conjugate Gradient

Computerq := b — Az, 2o = M~ rg, andp := zo
Forj = 0,1,..., until convergence Do:
aj = (rj, z;) / (Apj, pj)

Tjt1 1= Tj + yp;

Zjy1 = M_lTj+1
Bj = (rj+15 2j+1) /(745 25)
Dj+1 = Zj1 + Bipj

1

2

3

4

5 Tjp1 =1 — ajAp;
6

7

8

9. EndDo

ALGORITHM : 15. CG with Split Preconditioner

Computerg := b — Axg; 79 = L™ rg; and py := L~ T#.
Forj = 0,1,..., until convergence Do:

oy = (75, 75)/(Apj, Pj)

1

2

3

4. mjp =T+ ogp;

5. fj41:=7; — oL Ap;
6.  Bj:= (Fis1,7i11)/ (75, 7;)
7. pip1:= LT+ Bip;
8. EndDo

[l The x;’s produced by the above algorithm and PCG are identical (if

same initial guess is used).

Note M ~! A is also self-adjoint with respect to(., .) 4

(M~ Az, y)4 = (AM ™Az, y) = (z, AM ' Ay) = (z, M~ Ay)a

[] Can obtain a similar algorithm
[1 Assume thatM = Cholesky product M = LLT.

Then, another possibility: Split preconditioning option, which applies CG
to the system
L'ALTu = L7'b, with z = LTu

[] Notation: A = L='AL~T. All quantities related to the preconditioned

system are indicated by'.

Flexible accelerators

Question: | What can we do in caseM is defined only approximately?

i.e., if it can vary from one step to the other.?

|

Applications: |

[ Ilterative techniques as preconditioners: Block-SOR, SSOR, Multgrid,

etc..

[J Chaotic relaxation type preconditioners (e.g., in a parallel computing

environment)

[ Mixing Preconditioners — mixing coarse mesh / fine mesh precondition-

ers.



ALGORITHM : 16. GMRES — No preconditioning

1. Start: Choosex, and a dimensionm of the Krylov subspaces.
2. Arnoldi process:
e Computery = b — Axzg, 8 = ||ro|l2 @and v, = r¢/3.
eForj=1,....,mdo
—Computew := Awv;

_forizl’_'.’j’do{hi,j = (w, v;) };

w = w — h;;v;
—hjt1a = ||wllz; v = ﬁ
e DefineV,, := [v1, oee, v @and H,, = {hi;}.
3. Form the approximate solution: Compute| Ty = o + VinUm | where
Ym = argmin,||Be; — H,,y|l2 ande; = [1,0,..., 0]%.
4. Restart: If satisfied stop, else saty «— x,,, and goto 2.

ALGORITHM : 18. GMRES — variable preconditioner
1. Start: Choosex, and a dimensionm of the Krylov subspaces.
2. Arnoldi process:
e Computery = b — Axg, 8 = ||ro||2 @and vy, = r¢/3.
eForj=1,...,mdo
—Computez; := M; 'v; ; Computew := Az;;

hu = (w, v;) };

_fOH:l""’J’dO:{w =w — h; jv;

—hjii1 = [lwlls; vjpr = w/hjiaa
e DefineZ,, := [z1, vuuvy 2| and Hy,, = {h; ;}.
3. Form the approximate solution: Compute| x,,, = xy + Znym | Where
Ym = argmin,||Be, — H,,yll2 ande;, = [1,0,..., 0]%.
4. Restart: If satisfied stop, else sety «— «,,, and goto 2.

ALGORITHM : 17. GMRES — (right) Preconditioning

1. Start: Choosex, and a dimensionm
2. Arnoldi process:
° Compute'f‘(] =b— AII}O, ,3 = ||7‘()||2 andv1 = T‘O/ﬁ.
eForj=1,....,mdo
— Computez; := M~ 'v;
—Computew := Az;
. . . hi’j = (w, 1.7,‘)
—fori = 1,...,g,do.{w ‘= w — hi jv;
—hjii1 = [lwlls; vjpr = w/hjia
e DefineV,, := [vq, ...., vp] and H,, = {h;;}.

3. Form the approximate solution: |a:m =y + M~ 'V,,y,n |Wherey,, =
argmin, ||Be; — Hyyllz ande; = [1,0,...,0]".
4. Restart: If satisfied stop, else sat, «— x,, and goto 2.

e z,, minimizesb — Ax,, over Span{Z,,}.
o If Az; = v; (i.e., if preconditioning is ‘exact’ at stepj) then approxima-
tion x; is exact.

e If M; is constant then method is= to Right-Preconditioned GMRES.

Additional Costs:

e Arithmetic: none.

e Memory: Must save the additional set of vectors{z;};—1,..m

Advantage: |Flexibility




Standard preconditioners An observation. Introduction to Preconditioning

e Simplest preconditioner: M = Diag(A) [] poor convergence. (1 Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel,
SOR, SSOR, ...

e Next to simplest: SSORM = (D — wE)D (D — wF)
[0 These are iterations of the formz*+) = Max®*) + f where M is of

the form M = I — P~'A . For example for SSOR,
e ILU(p) — ILU with level of fill p — more complex. Pssor = (D — wE)D~Y(D — wF)

e Still simple but often more efficient: ILU(O).

e Class of ILU preconditioners with threshold
e Class of approximate inverse preconditioners

e Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigr id,
M-level ILU, ..

[] SSOR attempts to solve the equivalent system The SOR/SSOR preconditioner

1 _ p-1
P Az =P7b [] SOR preconditioning

where P = Pssor by the fixed point iteration —F
2+ = (I — P A) ™4 P~'b instead of 1) = (I—A)z®+b D Mson = (D = wB)
M [1 SSOR preconditioning
In other words: —E
Relaxation Scheme<=- Preconditioned Fixed Point Iteration Mssor = (D — wE)D™/(D — wF)

[0 Mssor = LU, L = lower unit matrix, U = upper triangular. One

solve with Mssor =~ same cost as a MAT-VEC.



[ k-step SOR (resp. SSOR) preconditioning:
| k steps of SOR (resp. SSOR*

[ Questions: Bestw? For preconditioning can takew = 1
| M = (D — E)DY(D — F) |

Observe: M = LU + Rwith R = ED'F.

[ Bestk? k = 1israrely the best. Substantial difference in performance.

ILU(0) and IC(0) preconditioners

0 NZ(X) = {(i,4) | X, # 0}

[ Formal definition of ILU(0):
A=LU+ R

Tij = ofor (¢,5) € NZ(A)

[l This does not definel LU (0) in a unique way.

Constructive definition: Compute the LU factorization of A but drop any
fillinin L and U outside of Struct(A).

[ ILU factorizations are often based oni, k, 7 version of GE.

GMRES(10)

lteration times versusc¢
k for SOR(k) precondi- 1 N
tioned GMRES ‘\\&\5@5@,/

0.50

0. 50 10. 15. 20. 25. 0.
Number of SOR steps

What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJILKJI 1K



IKJ

JKI

. .. CIMPA - Tlemcen May 2008April 26, 2008 [ 113

Accessed but not
modified

Accessed and
" modified

fffffffffffffffff Not accessed

. .. CIMPA - Tlemcen May 2008April 26, 2008 [ 115

ALGORITHM : 19. Gaussian Elimination — IKJ Variant

For: =2,...,n Do:
Fork=1,...,72 — 1Do:
Qf 1= aik/akk

Forj=k+1,...,nDo:

EndDo
EndDo

1

2

3

4

5. Qjj 1= Qij — Qik * Qg
6

7

8. EndDo

. .. CIMPA - Tlemcen May 2008April 26, 2008 [114]

ILU(O) — zero-fill ILU

ALGORITHM : 20. ILU(0)
Forz=1,...,N Do:
Fork=1,...,4—1andif (¢,k) € NZ(A) Do:

Computea;, := a;r/ar;
Forj=k-+1,...andif (¢,5) € NZ(A), Do:
computea;; := a;; — a;rQy,;j-
EndFor
EndFor

1 When A is SPD then the ILU factorization = Incomplete Cholesky
factorization — 1C(0). Meijerink and Van der Vorst [1977].

. .. CIMPA - Tlemcen May 2008April 26, 2008 [ 116]



Typical eigenvalue distribution of preconditioned matrix

Pattern of ILU(O) for 5-point matrix

i SN

Stencils and ILU factorization Higher order ILU factorization

Stencils of A and the L and U parts of A: [ Higher accuracy incomplete Cholesky: for regularly structured prob-

lems, IC(p) allowsp additional diagonals in L.

® ® 06 —© ® [1 Can be generalized to irregular sparse matrices using the notion of level
of fill-in [Watts III, 1979]
([
Stencil of A Stencil of L Stencil of U 0 for a;: 0
e Initially Lev;; = i 7
oo for a;; == 0

e At a given stepz of Gaussian elimination:

| Levy; = min{Levy;; Levy; + Lev;; + 1} |

[ ] Fill-ins



[l ILU(p) Strategy = drop anything with level of fill-in exceeding p. |LU(1)

* Increasing level of fill-in usually results in more accurate ILU and...

Ly Uy

* . typically in fewer steps and fewer arithmetic operations.

Augmented A LU,

ALGORITHM - 21. ILU(p) ILU with threshold — generic algorithms
Forz = 2, N Do

Foreachk =1,...,i — 1landifa;; # 0do ILU(p) factorizations are based on structure only and not numerical
Computea;i, := a;x/ajj; values] potential problems for non M-matrices.
Computea; . := @i« — QixQx- [] One remedy: ILU with threshold — (generic name ILUT.)

Update the levels of; .

Two broad approaches:

Replace any element in ro@with lev(a;;) > p by zero.

EndFor First approach [derived from direct solvers]: use any (direct) sparse solver
EndFor and incorporate a dropping strategy. [Munksgaard (?), Osterby & Zlatev,
Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]
[1 The algorithm can be split into a symbolic and a numerical phase.

Level-of-fill [ in Symbolic phase



Second approach: [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the(i, k, j) version of GE;

2. apply a drop strategy for the elmentl;; as it is computed;

3. perform the linear combinations to geta;.. Use full row expansion of
Qjx;

4. apply a drop strategy to fill-ins.

Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute the k-th row of U and the
k-th column of L at the k-th step.

Computational pattern

Black = part computed at stepk

Blue = partaccessed

) 1. Less expensive than ILUT (avoids sorting)
Main advantages:

2. Allows better techniques for dropping

ILU with threshold: ILUT (k, ¢)

e Do the, k, j version of Gaussian Elimination (GE).

e During each i-th step in GE, discard any pivot or fill-in whose value is
below e||row;(A)||.

e Once thei-th row of L 4+ U, (L-part + U-part) is computed retain only

the k largest elements in both parts.

[ Advantages: controlled fill-in. Smaller memory overhead.
[1 Easy toimplement —

[J Can be made quite inexpensive.

References:

[1] M. Jones and P. Plassman. Animproved incomplete Choleski factoriza-

tion. ACM Transactions on Mathematical Softwar®1:5-17, 1995.

[2] S.C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data
structures for sparse symmetric Gaussian elimination.SIAM Journal on
Scientific Computing 2:225-237, 1981.

[3] M. Bollhofer. A robust ILU with pivoting based on monitoring the
growth of the inverse factors. Linear Algebra and its Applications338(1—
3):201-218, 2001.

[4] N. Li, Y. Saad, and E. Chow. Crout versions of ILU. MSI technical
report, 2002.



Crout LU (dense case) Note: Entries 1 : k — 1 in k-th row of figure need not be computed.

Available from already computed columns ofL.

[l Go back to delayed update algorithm (IKJ alg.) and observe: we could Similar observation for L (right)

do both a column and a row version

[l Left: U computed by rows. Right: L computed by columns

ALGORITHM : 22. Crout LU Factorization (dense case) Comparison with standard techniques
. Fork=1:nDo:

Preconditioning time vs. Lfil for RAEFSKY3

Fori =1:k —1andifa # 0Do: Wreoe
-©- r-LLUT

- c-ILuT
== b-ILUT

1

2

3 Ak lin = Ak kin — Qki * Qi fn 2
4 EndDo

5. Fori =1:k—1andifa; # 0Do:
6

7

8

9

s
T

©
T

Ak +1:nk = Qk+1mk — Aik * Qp41n,i

>
T

EndDo

Preconditioning Time (sec.)

=
T

air = air/aggfori=k+1,...,n

EndDo

o 10 20 30 40 50 60 70
LAfil

Precondition time vs. Lfil for ILUC (solid), row-ILUT (circles), column-

ILUT (triangles) and r-ILUT with Binary Search Trees (stars)



ILUM AND ARMS

Main observation: Reduced system obtained by eliminating the unknowns
associated with the IS, is still sparse since its coefficient matrix is the Bar
complement

S§=C—- EB'F
[ ldea: apply IS set reduction recursively.
[l When reduced system small enough solve by any method

[1 Can devise an ILU factorization based on this strategy.

[ See work by [Botta-Wubbs '96, '97, YS'94, '96, (ILUM), Leuze 89, ..]

Independent set orderings & ILUM (Background

Independent set orderings permute a matrix into the form
B F
EC

] Unknowns associated with theB block form an independent set (1S).

where B is a diagonal matrix.

[l 1S is maximal if it cannot be augmented by other nodes to form another
IS.

[ 1S ordering can be viewed as a “simplification” of multicoloring

ALGORITHM : 23. ILUM

For lev = 1,nlev Do
a. Get an independent set for A.
b. Form the reduced system associated with this set;
c. Apply a dropping strategy to this system;
d. Set A := current reduced matrix and go back tay
EndDo



Group Independent Sets / Aggregates

[ Generalizes (common) Independent Sets
Main goal: to improve robustness

Main idea: use independent sets of “cliques”, or “aggregates”. There is no

coupling between the aggregates.
:"® 1 Reorder equations so
*, No Coupling
i nodes of independent sets
@ . come first

[ Diagonal blocks treated as sparse

Problem: Fill-in Remedy: dropping strategy

h‘*ﬁg °
Fia

150

250

300 EBe

250

150
nz =12205

[1 Next step: treat the Schur complement recursively

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix, Ag = POTAPO .

[] Block ILU

-1
factorization Bk [ Lo 0) (L 0 U L F
of A, E C EU 1) \0 Ay 0o I

Algebraic Recursive Multilevel Solver (ARMS)

-0 -
(o) () (- 2

where § = C — EB~'F = Schur complement.

[l Perform block factorization recursively on S
[0 L,U Blocks: sparse

[1 Exploit recursivity



Factorization: atlevell PlTAlP, = ALGORITHM : 24. ARMS(A,., ) factorization

. 1. If lev = last lev then
B, F, L, 0\ (I o U L'F
= . 2 [ComputeAe, = LicoyUsew |
E C EU 1 0 A 0o I
3. Else:
[ L-solve ~ restriction. U-solve ~ prolongation. i i i
4 |Find an independent set permutatiof, |
[1 Solve Last level system with, e.g., ILUT+GMRES 5. Apply permutationA;., := PlfUAlevP
6. [Compute factorizatioh
7 Call ARMS(Ajev11)
8. EndIf

Group Independent Set reordering OUEITEN RS

0.19E+07
\ /

[ ]
‘ Separator
First Block

Simple strategy used:Do a Cuthill-MKee ordering until there are enough

points to make a block. Reverse ordering. Start a new block from a

non-visited node. Continue until all points are visited. Add criterion for 0.10E-06

rejecting “not sufficiently diagonally dominant rows.”



Block size of 6

MULTIGRID (VERY BRIEF)

0.19E+07

0.10E-06

Block size of 20

Introduction

[ Premise: we now work directly on a Partial Differential Equation e.g.

—Au=f, +B.C

[J Main idea of multigrid: exploit a hierarchy of grids to get good conver-

gence from simple iterative schemes

[J Need a good grasp of matrices and spectra of model problems

0.19E+07

0.10E-06



Richardson’s iteration

[l Simple iterative scheme: Richardson’s iteration for 1-D case
[l Fixed parameterw. Iteration:
ujt1 = uj + w(b — Auj) = (I — wA)u; +wb.
[ Iteration matrix is
M,=1—wA.
Recall: convergence takes place fod < w < 2/p(A)

[ In practice an upper bound p(A) < ~ is often available

0 Thenfrom d; = Mid,and M, = I — wA:

n A 7
d]:Z(].—?k) {kwk.

k=1
[1 Each component is reduced by(1 — A /~).
[1 Slowest converging component corresponds t&;
[l Possibly very slow convergence rate whefA; /v|A1.

[ For the model problem — one-dimensional case — Gershgorin's theorem

yields~v = 4, so the corresponding reduction coefficient is

1- 1— (wh/2)? =1 — O(h?).

sinzL ~
2(n+1)

Consequence:convergence can be quite slow for fine meshes, i.e., whan

is small.

[l takew = 1/~ — converging iteration since
1/v < 1/p(4) < 2/p(A).

[ Eigenvalues of the iteration matrix arel — w\g, where

A = 2(1 — cos6) = 4sin2%’“
[l Eigenvectors are the same as those of.

[ If u, is the exact solution, the error vectord; = wu., — u;, obeys the
relation,

d; = Mid,

(] Expand the error vector d, in the eigenbasis ofM,,, as

n
dy = Zﬁk’wk .
k=1

Basic observation: convergence is not similar for all components.
[1 Half of the error components see a very good decrease.

[J  This is the case for thehigh frequencycomponents, that is, all those

components corresponding tde > n /2. [referred to as theoscillatory pari

[J The reduction factors for these components are

[y

5 kmw 5 km
= cos < -.
2(n+1) 2(n+1) — 2

N = 1 — sin



Reduction coefficients for Richardson’s method applied to the 1-D model

problem

Observations: Oscillatory components, undergo excellent reduction, Also

reduction factor is independent of the step-sizé.

The modew. on a fine grid (n = 7) and a coarse grid(n = 3)

[J Some of the modes which were smooth on the fine grid, become oscilla-

tory.

[ The oscillatory modes on the fine mesh are no longer represented on the

coarse mesh.

How can we reduce the other components?

[J Introduce a coarse grid problem. Assumen is odd. Consider the
problem issued from discretizing the original PDE on a mesi2,;, with the

mesh-size2h. Use superscriptsh and 2h for the two meshes.

Observation: note thatz" = £, from which it follows that, for k < n/2,

2h
7

wi(zh,) = sin(knzh,) = sin(krz?") = wi(z") .

So: Taking a smooth mode on the fine grid ! with k¥ < n/2) and
canonically injecting it into the coarse grid, i.e., defining its valueson
the coarse points to be the same as those on the fine points, yields the

k-th mode on the coarse grid.

[ Atsome point iteration will fail to make progress on the fine grid: when

the only components left are those associated with the smooth modes.

Multigrid strategy: do not attempt to eliminate these components on the
fine grid. Move down to a coarser grid where smooth modes are translated

into oscillatory ones. Then iterate.

[ Practically, need to go back and forth between different grids.



Inter-grid operations: Prolongation

[ A prolongation operation takes a vector fromQ and defines the ana-
logue vector inQ2;,. Common notation in use

I Qy — Q.

[J Simplest approach : linear interpolation. Example: in 1-D. Given

(V") iz0,...,(n+1) /2, define vectorv® = Ik v € Q:

vh =2t n+1
i’ th . for 5=0,..., ;— .
Vojt1 = (vj + vj+1)/2

Standard multigrid techniques

[J Simplest idea: obtain an initial guess from interpolating a solution
computed on a coarser grid. Repeat recursively. Interpolation from a

coarser grid can be followed by a few s of a smoothing iteration.
[ known as nested iteration

[1 MG technigues use essentially two main ingredients: a hierarchy of grid

problems (restrictions and prolongations) and a smoother.

What is a smoother? IAns: any scheme which has the smoothing prop-

erty of damping quickly the high frequency components of the error.

[1 Given a function v" on the fine mesh, a corresponding function i g

must be defined fromv”. Reverse of prolongation
O Simplest examplecanonical injection: v?" = vk,
"1 Termed Injection operator. Obvious 2-D analogue:v; = v}, , ..
] More common restriction operator: full weighting (FW),

1
2h h h h
v} —Z<”2j—1+2”2j+l’2j+1) .

[l Averages the neighboring values using the weigh.25, 0.5, 0.25.

Coarse problems and smoothers

At the highest level (finest grid)
Ahuh - fh

[] Can define this problem at next level (mesh-size#) on meshQ g

[l Also common (FEM) to define the system bysalerkin projection

Ag =IFALIY =1,

u" = smoother” (A, ut, £;)

ufj == result of » smoothing s for A,u = f;, starting with u/.



[ V-cyle multigrid is a canonical application of recursivity - starting from

ALGORITHM : 25. u” = V-cyclg Ay, u?, f*) the 2-grid cycle as an example. Notation:H = 2k and h, is the coarsest
1. Pre-smooth: u™ := smoother! (Ay, ul, £*) mesh-size.
2. Getresidual: rh = fh — Apul
[] Many other options avaialble
3. Coarsen: rH = [Hyh
4. If (H == hy) [l For Poisson equation MG is a 'fast solver’ — cost of ordedV log N. In
5. Solve: Apdt =rH fact O(IN) for FMG.
6. Else
7. Recursion: 0" = V-cyclg Ay, 0, 7H)
8. EndIf
9. Correct: L T I
10. Post-smooth: ul := smoother”?(A,, u*, f*)

11. Returnu”

Algebraic Multigrid (AMG)

[J Generalizes ‘geometric’ or 'mesh-based’ MG to general problems
[l Idea: Define coarsening by looking at ‘strong’ couplings

[ Define coarse problem from a Galerkin approach, i.e., using the restric- PARALLEL IMPLEMENTATION

tion Ay = IFALIR ..

[ Generally speaking: limited success for problems with several unknows

per mesh point, of for non-PDE relatex problems..



Introduction

[l Thrust of parallel computing techniques in most applications areas.
[1 Programming model: Message-passing seems (MPI) dominates
[J Open MP and threads for small number of processors

[ Important new reality: parallel programming has penetrated the ‘ap-

plications’ areas [Sciences and Engineering + industry]
[l Problem 1: algorithms lagging behind somewhat

(] Problem 2: Message passing is painful for large applications. ‘Time to

solution’ up.

Domain Decomposition ideas:

e Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-Xu, X
Cai, D. Keyes, Smith, ...]

e Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI)
T.F. Chan et al., YS and Sosonkina '97, J. Zhang '00, ...]

Multigrid / AMG viewpoint:

e Multi-level Multigrid-like preconditioners [e.g., Shadid-Tumi naro et al

(Aztec project), ...]

[l In practice: Variants of additive Schwarz very common (simplicity)

Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

e Local preconditioners: Polynomial (in the 80s), Sparse Approximate
Inverses, [M. Benzi-Tuma & al '99., E. Chow '00]

e Distributed versions of ILU [Ma & YS '94, Hysom & Pothen '00]

e Use of multicoloring to unaravel parallelism

Intrinsically parallel preconditioners

‘ Some alternatives I

(1) Polynomial preconditioners;
(2) Approximate inverse preconditioners;
(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.



POLYNOMIAL PRECONDITIONING Domain Decomposition
Principle: IM‘1 = s(A) where s is a (low) degree polynomial:

| s(A)Axz = s(A)b | Au = finQ o
. u = uronI' = 9. -

how to obtain s? Note: s(A4) =~ A~} :
* Chebyshev polynomials

[l Several approaches.  * Least squares polynomials Q O Q
— iy
* Others i=1
(1" Polynomial preconditioners are seldom used in practice. [l Domain decomposition or substructuring methods attempt to solve a

PDE problem (e.g.) on the entire domain from problem solutions on the
subdomainsg?;.

30 31 32 (3)

40 39 38 37 19 20 @
7 8 9 36 16 17 18
4 5 6 35 13 14 15
©) 2 3 3 10 i ©®) Coefficient Matrix

Discretization of domain



Types of mappings

W

(a) Vertex-based;  (b) edge-based; and

(c) element-based partitioning

[1 Can adapt PDE viewpoint to general sparse matrices

[1 Will use the graph representation and 'vertex-based’ viewpoint —

Generalization: Distributed Sparse Systems

[1 Simple illustration: Block

assignment. Assign equation
4 and unknown 7 to a given
‘process’

[J  Naive partitioning - won't

work well in practice

DISTRIBUTED SPARSE MATRICES

[] Bestideais to use the adjacencyraph of A:

Q—>©

Vertices ={1, 2, - - -

Edges:i — jiff a;; # 0
[

[
’n}; Y
o

Graph partitioning problem:

e Want a partition of the vertices of the graph so that

(1) partitions have ~ the same sizes

(2) interfaces are small in size

L



General Partitioning of a sparse linear system

S, = {1,2,6,7,11,12}: This

means equations and unknowns 1, 2,

3,6,7,11, 12 are assigned to Domain
1.
S, = {3,4,5,8,9,10,13}

S; = {16,17, 18, 21,22, 23}
S, = {14,15,19, 20,24, 25}

T TS,

Al

%
S R
RS,

2
oS
A AN
i NI

oL
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AL AT AT
GEENDE
ST
o ADEDF
SO0

oy,
o
SO
""'!"ii»‘
D

7
pd

Alternative: | Map elements / edges rather than vertices

Equations/unknowns 3, 8, 12 shared

by 2 domains. From distributed

sparse matrix viewpoint this is an

overlap of one layer

[] Partitioners : Metis, Chaco, Scotch, ..

[1 More recent: Zoltan, H-Metis, PaToH

[ Standard dual objective: “minimize” communication + “balance” par-

tition sizes
[J Recent trend: use of hypergraphs [PaToh, Hmetis,...]
[l Hypergraphs are very general.. Ideas borrowed from VLSI work

[J Main motivation: to better represent communication volumes when

partitioning a graph. Standard models face many limitations

[l Hypergraphs can better express complex graph partitioning problems

and provide better solutions. Example: completely nonsymmetric patterns.



Distributed Sparse matrices (continued)

1 Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing distributed sparse

matrices?

3. How to set up the various “local objects” (matrices, vectors, ..)

4. What can be done to prepare for communication that will be required

during execution?

Local view of distributed matrix: |

The local system:

L Externd data loca External data ;
| Data
,,,,,,,,,,,,,,,,,,,,,,,,, Al Y
Xi Xi
E;, C;) \vy > jen; Eijy; gi
—_—— —_—

A;

Yext

[l wu; : Internal variables; y; : Interface variables

Two views of a distributed sparse matrix

\\ / nodes
\

nodes

1
I
1 . Localinterface

s nodes

External interface

[J Local interface variables always ordered last.

The local matrix: I

Internal
Points

Local
Interface
points

ext

The local matrix consists of 2 parts:
a part (" Ajoc") which acts on local
data and another ('B..) which

acts on remote data.

[J  Once the partitioning is available these parts must be identified and

built locally..

[ Infinite elements, assembly is a local process.

[1 How to perform a matrix vector product? [needed by iterative schems?]



Distributed Sparse Matrix-Vector Product Kerne

Algorithm:

1. Communicate: exchange boundary data.

Scatter xpoung to Neighbors - Gatherx.,, from neighbors

2. Local matrix — vector product

Yy = Alocwlac

3. External matrix — vector product

| y=yv + Bewtmewt |

NOTE: 1 and 2 are independent and can be overlapped.

Distributed Dot Product

R T call blasl function
tloc = DDOT(n, x, incx, y, incy);

I LR call gl obal reduction

MPI _Al'l reduce( &t oc, & o, 1, VPl _DOUBLE, MPI _SUM conmm) ;

Main Operations in (F) GMRES :

1. Saxpy’s — local operation — no communication
2. Dot products — global operation
3. Matrix-vector products — local operation — local communication

4. Preconditioning operations — locality varies.

A remark: the global viewpoint

Bl Fl uy fl
B, F Uz fa
B, Fy up | = | fp
E, C, Ey --- Elp Y1 g1
E, Ey Cy --- Eyy Y2 g2
Ep Epl EpZ et Cp Yp 9p

Interior Interface

“— — —

variables variables




PARALLEL PRECONDITIONERS

Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

(— External data loca External data

| Data |

,,,,,,,,,,,,,,,,,,,,,,,,, Al Y
Xi Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external datay;

2. Compute (update) local residualr; = (b — Az); = b, — A;xz; —

3. SolveAiéi = 173
4. Update solutionz; = x; + 9;

B;y;

Three approaches:

e Schwarz Preconditioners
e Schur-complement based Preconditioners

e Multi-level ILU-type Preconditioners

[1 Observation: Often, in practical applications, Schwarz Preconditioners
are used : SUB-OPTIMAL

[J Multiplicative Schwarz. Need a coloring of the subdomains.



Multicolor Block SOR lteration (Multiplicative Schwarz):

1. Docol =1,...,numcols

2. If (col.eq.mycol) Then

3 Obtain external datay;

4 Update local residualr; = (b — Ax);
5. SolveA;d; = r;

6 Update solutionz; = x; + §;

7 EndIf

8. EndDo

(2) Separate interior nodes from interface nodes (2-level blocking)

Color 3

|

Color #1
lor2 —— n
Colo Interior nodes

Color 2

Color 3

(3) Use a block-GMRES algorithm - with Block-size = number of colors.

SOR step targets a different color on each column of the block! no iddle

time.

Breaking the sequential color loop

[ “Color” loop is sequential. Can be broken in several different ways.

(1) Have a few subdomains per processors

Local Solves

[J Each local systemA;d; = r; can be solved in three ways:

1. By a (sparse) direct solver
2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate ILU

(e.g. ILUT) precondioner

[1 We only use (2) with a small number of inner s (up to 10) or (3).



SCHUR COMPLEMENT-BASED PRECONDITIONERS

[J Local equations
E; C;i) \y > jen; Eijy;

[ eliminate u; from the above system:

Ji
i

Sii+ Y Eijy; = gi— EiB;'fi = g,

JEN;

where S; is the “local” Schur complement

S;=C; — E;B;'F,.

©)

4

Schur complement system

Local system can be written as

Az + XiYiear = bj. 2
3 local !
<~ External data External data !
i Data '
,,,,,,,,,,,,,,,,,,,,,,,,, Al Y
Xij Xij

x;= vector of local unknowns,y; ..: = external interface variables, andb; =
local part of RHS.

Structure of Schur complement system

Global Schur complement system: Sy = g’ with:
S Ep ...Ey Y1 gi
Ey S ... Ey, Y2 Q;
S = =
Epl Ep_l,g co e Sp yp g;

[l E;j’s are sparse = same as in the original matrix

[ Can solve global Schur complement system iteratively. Back-substitute
to recover rest of variables (internal).

[1 Can use the procedure as a preconditining to global system.



Simplest idea: Schur Complement Iterations

u; Internal variables
y; | Interface variables
[l Do aglobal primary iteration (e.g., block-Jacobi)

[J Then accelerate only they variables (with a Krylov method)

Still need to precondition..

Preconditioning:

B 0 I B7'F
L = and U =
E Mg 0o I

with Mg = some approximation to.S.

[J  Preconditioning to global system can be induced from any precondi-

tioning on Schur complement.

Rewrite local Schur system as

JEN;

[ equivalent to Block-Jacobi preconditioner for Schur complement.

[l Solve with, e.g., afew s (e.g., 5) of GMRES

Approximate Schur-LU

[J Two-level method based on induced preconditioner. Global system can

also be viewed as

B, P

32 Fg

B F)\ (u _ f . B= s
E C Yy g BlF
p p

Ey E; --- E,| C

Block LU factorization of A:

-9

[J Question: How to solve withS;?

B; F;
[J Can use LU factorization of local matrix A; = ( )

and exploit the relation:

Lp, 0 Up, L'F;
A = B; B; LB, —  LgUs, = S;
EUg' Lg, 0 Us,

[] Need only the (I) LU factorization of the A; [rest is already available]

[l Very easy implementation of (parallel) Schur complement techniques
for vertex-based partitioned systems : YS-Sosonkina '97; YS-Sosonkina-
Zhang '99.



Number of FGMRES(20) iterations for the AF23560 problem.

Name |Precon |Ifil |16/24 |32|/40|/56 64 80|96
af23560 SAPINV |20 32136 |27/29|73|35|71|61
30 32135 |23/29|46|60| 33|52
SAPINVS | 20 32135 |24/29|55|35|37|59
30 32134 |23/28|43|45|23|35
SLU 20 81/105/94/88|90|76| 85|71
30 |38|34 |37/39|38/39|38|35
BJ 20 37|/153|53|60|77/80|95|*
30 3641 |53|57|81|87|97|115

[ Solution times for a Laplacean problem with various local subproblem
sizes using FGMRES(10) with 3 different preconditioners (BJ, SAPINY

SLU) and the Schur complement iteration (SI).

50 x 50 Mesh in each PE

70 x 70 Mesh

P

, Solid line: BJ

2| /' Dash-dot line: SAPINV
Dash-star line: SLU

° Dash-~circle line: SI

T3E seconds

e e ST

T3E seconds

PG
Processors

50
Processors

360 x 360 Mesh - CPU Time

360 x 360 Mesh - Iterations

T3E seconds

Solid line: BJ
Dash-dot line: SAPINV
Dash-star line: SLU

Solid line: BJ
Dash-dot line: SAPINV

Dash-star line: SLU

Iterations

Bow % e w W w
Processors

w0 1m0 o 1 2 % 4 n  © 10 & 0 i
Processors

Times and iteration counts for solving a360 x 360 discretized Laplacean

problem with 3 different preconditioners using flexible GMRES(10).

PARALLEL ARMS



Parallel implementation of ARMS

Three types of points:

interior (independent sets), local

interfaces, and global interfaces

Interior points

Interdomain
Loca
Interfaces Interfaces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elimination

of interior points and then interface points.

Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement system
(both 11 and 12) with either a block Jacobi (M. Sosonkina and YS, '99) or
multicolor ILU(0).

Method 3: Do independent set reductionacross subdomains. Requires

construction of global group independent sets.

[] Current status Methods 1 and 2.

Result: 2-part Schur complement: one corresponding to local interfaces

and the other to inter-domain interfaces.

%z
OO
OO

|
L

Construction of global group independent setsA two level strategy

Proc 1 EE Proc 2

1. Color subdomains

2. Find group independent sets lo- i m E - - E\E 1
cally | E E\g . G:EL i

3. Color groups consistently

Proc 4 =] Proc3




color 1

color 3
color 3

>~ Internal interface points

color 1

"~ External interface points

color 4

Algorithm: Multicolor Distributed ILU(0)

1. Eliminate local rows,

2. Receive external interf. rows from PEs s.tcolor(PE) < MyColor
3. Process local interface rows
4

Send local interface rows to PEs s.color (PE) > MyColor

Test problem

1. Scalability experiment: sample finite difference problem.
ou ou
—Au+~vy|(eY—+e ™ — | +au=7f,
ox Jdy
Dirichlet Boundary Conditions ; v = 100, « = —10; centered differences

discretization.

[l Keep size constant on each process¢i00 x 100] [I Global linear

system with10, 000 * nproc unknowns.
2. Comparison with a parallel direct solver — symmetric problems

3. Large irregular matrix example arising from magneto hydrodynamics.

Methods implemented in pARMS:

Additive Schwarz with method x for subdomains. With/out over-
lap. x = one of ILUT, ILUK, ARMS.

Schur complement technique, with methodk = factorization used
for local submatrix. Same x as above. Equiv. to Additive Schwarz

preconditioner on Schur complement.

schsgs I Multicolor Multiplicative Schwarz (block Gauss-Seidel) pre-

conditioning is used instead of additive Schwarz for Schur complement.

sch.giluo | ILU(0) preconditioning to solve global Schur complement sys-

tem obtained from ARMS reduction.

100 x 100 mesh per processor — Wall-Clock Time

20 T T
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Times for 2D PDE problem with fixed subproblem size



Iterations

Iterations for 2D PDE problem with fixed subproblem size

Iterations
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Direct solvers:

] SUPERLU

http://crd.|bl.gov/ xiaoyel/ SuperLU

[l MUMPS: [cerfacs]

[l Univ. Minn. / IBM’s PSPASES [SPD matrices]

http://ww-users. cs.um. edu/ nj oshi/pspases/

1 UMFPACK



Iterative solvers:

[l PETSc
http://acts. nersc. gov/ petsc/

and Trilinos (more recent)

http://trilinos. sandia.gov/
... are very comprehensive packages..
(1 PETSc includes few preconditioners...
[l Hypre, ML, ..., all include interfaces to PETSc or trilinos

[l pARMS:

http://ww. cs. um. edu~saad/ sof t war e

is a more modest effort -




