OF MINNESOTA TWIN CITIES

A tutorial on: Iterative methods for Sparse Linear Systems

Yousef Saad

University of Minnesota Computer Science and Engineering

CIMPA - Tlemcen – May 14-21

Outline

Part 1

- Sparse matrices and sparsity
- Basic iterative techniques
- Projection methods
- Krylov subspace methods

Part 2

- Preconditioned iterations
- Preconditioning techniques
- Multigrid methods

- Parallel implementations
- Parallel Preconditioners
- Software

... CIMPA - Tlemcen May 2008April 26, 2008 2

Introduction: Linear System Solvers

> Problem considered: Linear systems

Ax = b

- > Can view the problem from somewhat different angles:
- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- Sometimes a system of equations where A is not explicitly available

. . . CIMPA - Tlemcen May 2008April 26, 2008 5

Introduction: Linear System Solvers

- > Much of recent work on solvers has focussed on:
- (1) Parallel implementation scalable performance
- (2) Improving Robustness, developing more general preconditioners

A few observations

- Problems are getting harder for Sparse Direct methods
 (more 3-D models, much bigger problems,..)
- Problems are also getting difficult for iterative methods Cause: more complex models away from Poisson
- ➤ Researchers in iterative methods are borrowing techniques from direct methods: → preconditioners
- > The inverse is also happening: Direct methods are being adapted for use as preconditioners

... CIMPA - Tlemcen May 2008April 26, 2008 7

. . . CIMPA - Tlemcen May 2008April 26, 2008 8

What are sparse matrices?

Common definition: "...matrices that allow special techniques to take advantage of the large number of zero elements and the structure." A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).

... CIMPA - Tlemcen May 2008April 26, 2008 9

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

... CIMPA - Tlemcen May 2008April 26, 2008 11

- Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)
- ► Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically i.e., without storing the zeros of the matrix.
- **Example:** To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

> For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

Graph Representations of Sparse Matrices

> Graph theory is a fundamental tool in sparse matrix techniques.

Graph G = (V, E) of an $n \times n$ matrix A defined by

Vertices $V = \{1, 2, ..., N\}.$

Edges $E = \{(i, j) | a_{ij} \neq 0\}.$

► Graph is undirected if matrix has symmetric structure: $a_{ij} \neq 0$ iff $a_{ji} \neq 0$.

x x x

terms of paths in the graph of A]

Direct versus iterative methods
Background. Two types of methods:

- > Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
- ► Iterative methods: compute a sequence of iterates which converge to the solution preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

- > 40 years ago solving a system with n = 10,000 was a challenge
- > Now you can solve this in < 1 sec. on a laptop.

... CIMPA - Tlemcen May 2008April 26, 2008 16

... CIMPA - Tlemcen May 2008April 26, 2008 15

Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.

3-D problems lead to more challenging systems [inherent to the underlying graph]

- > Problems with many unknowns per grid point similar to 3-D problems
- **Remarks:** No robust 'black-box' iterative solvers.
 - Robustness often conflicts with efficiency
 - However, situation improved in last \approx decade
 - Line between direct and iterative solvers blurring

... CIMPA - Tlemcen May 2008April 26, 2008 17

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of

- A. Try to minimize computations and (perhaps more importantly) storage.
- > Difficulty in Gaussian elimination: Fill-in

Trivial Example:

... CIMPA - Tlemcen May 2008April 26, 2008 18

 Reorder equations and unknowns in order N, N - 1, ..., 1
 A stays sparse during Gaussian eliminatin - i.e., no fill-in.

- **>** Finding the best ordering to minimize fill-in is NP-complete.
- > A number of heuristics developed. Among the best known:
 - Minimum degree ordering (Tinney Scheme 2)
 - Nested Dissection Ordering.
 - Approximate Minimal Degree ...

.... CIMPA - Tlemcen May 2008April 26, 2008 19

Reorderings and graphs

- > Let $\pi = \{i_1, \cdots, i_n\}$ a permutation
- ► $A_{\pi,*} = \{a_{\pi(i),j}\}_{i,j=1,...,n}$ = matrix *A* with its *i*-th row replaced by row number $\pi(i)$.
- ► $A_{*,\pi}$ = matrix A with its *j*-th column replaced by column $\pi(j)$.
- > Define $P_{\pi} = I_{\pi,*}$ = "Permutation matrix" Then:

(1) Each row (column) of P_π consists of zeros and exactly one "1"
 (2) A_{π,*} = P_πA
 (3) P_πP_π^T = I
 (4) A_{*,π} = AP_π^T

> Entry (i, j) in matrix A' is exactly entry in position $(\pi(i), \pi(j))$ in A,

i.e.,
$$(a'_{ij} = a_{\pi(i),\pi(j)})$$

$$(i,j)\in E_{A'}\quad\Longleftrightarrow\quad (\pi(i),\pi(j))\,\in E_A$$

Graph and matrix after permuting the nodes in reverse order.

Cuthill-McKee & reverse Cuthill-McKee

- > A class of reordering techniques proceeds by levels in the graph.
- > Related to Breadth First Search (BFS) traversal in graph theory.
- ➤ Idea of BFS is to visit the nodes by 'levels'. Level 0 = level of starting node.
- > Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...

... CIMPA - Tlemcen May 2008April 26, 2008 23

A few properties of Breadth-First-Search

- ► If *G* is a connected undirected graph then each vertex will be visited once each edge will be inspected at least once
- > Therefore, for a connected undirected graph, The cost of BFS is O(|V| + |E|)
- ► Distance = level number; ► For each node v we have: $min_dist(s, v) = level_number(v) = depth_T(v)$
- > Several reordering algorithms are based on variants of Breadth-First-Search

... CIMPA - Tlemcen May 2008April 26, 2008 27

Level	Nodes	Deg.	Order		
0	Α	2	Α		
1	B, C	4, 3	C, B		
2	D, E, F	3, 4, 2	F, D, E		
3	G	2	G		

ALGORITHM : 1 . Cuthill Mc Kee ordering

0.	Find an intial node for the traversal
<i>1</i> .	Initialize $S = \{v\}$, seen = 1, $\pi(seen) = v$; Mark v ;
2.	While $seen < n Do$
З.	$S_{new}=\emptyset;$
4.	For each node v, going from lowest to highest degree, Do:
5.	$\pi(++seen)=v;$
<i>6</i> .	For each unmarked w in $adj(v)$ do
7.	Add w to S_{new} ;
8.	Mark w;
<i>9</i> .	EndDo
<i>10</i> .	$S:=S_{new}$
<i>11</i> .	EndDo
12.	EndWhile CIMPA - Tlemcen May 2008April 26, 2008 29

Reverse Cuthill McKee ordering

► The Cuthill - Mc Kee ordering has a tendency to create small arrow

matrices (going the wrong way):

> Reverse Cuthill M Kee ordering (RCM).

... CIMPA - Tlemcen May 2008April 26, 2008 31

Nested Dissection ordering

> The idea of divide and conquer – recursively divide graph in two using a separator.

Nested dissection for a small mesh

... CIMPA - Tlemcen May 2008April 26, 2008 34

Nested dissection: cost for a regular mesh

- > In 2-D consider an $n \times n$ problem, $N = n^2$
- > In 3-D consider an $n \times n \times n$ problem, $N = n^3$

	2-D	3-D			
space (fill)	$O(N \log N)$	$O(N^{4/3})$			
time (flops)	$O(N^{3/2})$	$O(N^2)$			

> Significant difference in complexity between 2-D and 3-D

Ordering techniques for direct methods in practice

► In practice: Nested dissection (+ variants) is preferred for parallel processing

Good implementations of Min. Degree algorithm work well in practice.
 Currently AMD and AMF are best known implementations/variants/

 Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.

... CIMPA - Tlemcen May 2008April 26, 2008 35

BASIC RELAXATION SCHEMES

Relaxation schemes: based on the decomposition A = D - E - F

D = diag(A), -E = strict lowerpart of A and -F its strict upper part.

Gauss-Seidel iteration for solving Ax = b:

$$(D-E)x^{(k+1)} = Fx^{(k)} + b$$

 \rightarrow idea: correct the *j*-th component of the current approximate solution, j=1,2,..n, to zero the j-th component of residual.

... CIMPA - Tlemcen May 2008April 26, 2008 38

Can also define a <u>backward</u> Gauss-Seidel Iteration:

 $(D - F)x^{(k+1)} = Ex^{(k)} + b$

BASIC RELAXATION METHODS

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)$$

 \rightarrow successive overrelaxation, (SOR):

$$(D-\omega E)x^{(k+1)}=[\omega F+(1-\omega)D]x^{(k)}+\omega b$$

... CIMPA - Tlemcen May 2008April 26, 2008 39

Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form $x^{(k+1)} = M x^{(k)} + f$

•
$$M_{Iac} = D^{-1}(E+F) = I - D^{-1}A$$

•
$$M_{GS}(A) = (D - E)^{-1}F == I - (D - E)^{-1}A$$

•
$$M_{SOR}(A) = (D - \omega E)^{-1}(\omega F + (1 - \omega)D) = I - (\omega^{-1}D - E)^{-1}A$$

•
$$M_{SSOR}(A) = I - (2\omega^{-1} - 1)(\omega^{-1}D - F)^{-1}D(\omega^{-1}D - E)^{-1}A$$

= $I - \omega(2\omega - 1)(D - \omega F)^{-1}D(D - \omega E)^{-1}A$

General convergence result

Consider the iteration: $x^{(k+1)} = Gx^{(k)} + f$

(1) Assume that $\rho(A) < 1$. Then I - G is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.

(2) If iteration converges for any f and $x^{(0)}$ then ho(G) < 1.

Example: Richardson's iteration

 $x^{(k+1)} = x^{(k)} + lpha(b-A^{(k)})$

- $Assume \Lambda(A) \subset \mathbb{R}$. When does the iteration converge?
- > Jacobi and Gauss-Seidel converge for diagonal dominant A
- **>** SOR converges for $0 < \omega < 2$ for SPD matrices

.... CIMPA - Tlemcen May 2008April 26, 2008 41

An observation. Introduction to Preconditioning

 \blacktriangleright The iteration $x^{(k+1)} = M x^{(k)} + f$ is attempting to solve (I - M)x =

f. Since M is of the form $M = I - P^{-1}A$ this system can be rewritten as

 $P^{-1}Ax = P^{-1}b$

where for SSOR, we have

$$P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$$

referred to as the SSOR 'preconditioning' matrix.

In other words:

Relaxation Scheme \iff **Preconditioned Fixed Point Iteration**

... CIMPA - Tlemcen May 2008April 26, 2008 42

PROJECTION METHODS FOR LINEAR SYSTEMS

The Problem

We consider the linear system

Ax = b

where A is $N \times N$ and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex
- **Focus:**

A is large and sparse, possibly with an irregular structure

Projection Methods

Initial Problem:

b - Ax = 0

Given two subspaces K and L of \mathbb{R}^N define the *approximate problem*: Find $\tilde{x} \in K$ such that $b - A\tilde{x} \perp L$

Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied \blacktriangleright With a nonzero initial guess x_0 , the approximate problem is

Find $\tilde{x} \in x_0 + K$ such that $b - A\tilde{x} \perp L$

Write $\tilde{x} = x_0 + \delta$ and $r_0 = b - Ax_0$. Leads to a system for δ :

Find $\delta \in K$ such that $r_0 - A\delta \perp L$

•••• CIMPA - Tlemcen May 2008April 26, 2008 46

Matrix representation:

Let $egin{array}{ll} \bullet V = [v_1, \dots, v_m] ext{ a basis of } K \ \& \ \bullet W = [w_1, \dots, w_m] ext{ a basis of } L \end{array}$

Then letting x be the approximate solution $\tilde{x} = x_0 + \delta \equiv x_0 + Vy$ where y is a vector of \mathbb{R}^m , the Petrov-Galerkin condition yields,

$$W^T(r_0 - AVy) = 0$$

and therefore

$$ilde{x} = x_0 + V [W^T A V]^{-1} W^T r_0$$

Remark: In practice $W^T A V$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

... CIMPA - Tlemcen May 2008April 26, 2008 47

... CIMPA - Tlemcen May 2008April 26, 2008 45

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces *K*, and *L*;

2. Choose bases $V = [v_1, \ldots, v_m]$ for K and $W = [w_1, \ldots, w_m]$ for L.

3. Compute

$$egin{aligned} & r \leftarrow b - Ax, \ & y \leftarrow (W^T A V)^{-1} W^T v \ & x \leftarrow x + V y. \end{aligned}$$

Q the (oblique) projector onto K and orthogonally to L.

Approximate problem amounts to solving

or in operator form

$$\mathcal{Q}(b-A\mathcal{P}x)=0$$

Question: what accuracy can one expect?

Let x^* be the exact solution. Then

1) We cannot get better accuracy than $\|(I - \mathcal{P})x^*\|_2$, i.e.,

 $\| ilde{x}-x^*\|_2\geq \|(I-\mathcal{P})x^*\|_2$

2) The residual of the *exact solution* for the *approximate problem* satisfies:

 $\|oldsymbol{b}-oldsymbol{\mathcal{Q}}A\mathcal{P}x^*\|_2\leq \|oldsymbol{\mathcal{Q}}A(I-\mathcal{P})\|_2\,\|(I-\mathcal{P})x^*\|_2$

... CIMPA - Tlemcen May 2008April 26, 2008 50

Two important particular cases.

- 1. L = AK. then $||b A\tilde{x}||_2 = \min_{z \in K} ||b Az||_2$
- → class of minimal residual methods: CR, GCR, ORTHOMIN, GM-RES, CGNR, ...
- 2. $L = K \rightarrow$ class of Galerkin or orthogonal projection methods. When

A is SPD then

$$\|x^* - ilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A$$

(I) Steepest descent. A is SPD. Take at each step d = r and e = r.

Iteration:
$$\begin{array}{l} r \leftarrow b - Ax, \\ \alpha \leftarrow (r, r) / (Ar, r) \\ x \leftarrow x + \alpha r \end{array}$$

Each step minimizes

$$f(x) = \|x - x^*\|_A^2 = (A(x - x^*), (x - x^*))$$

(II) Residual norm steepest descent . A is arbitrary (nonsingular). Take at each step $d = A^T r$ and e = Ad.

$$\begin{array}{|c|c|c|c|c|} \hline r\leftarrow b-Ax, d=A^Tr\\ \alpha\leftarrow \|d\|_2^2/\|Ad\|_2^2\\ x\leftarrow x+\alpha d \end{array}$$

- **>** Each step minimizes $f(x) = ||b Ax||_2^2$ in direction $-\nabla f$.
- ► Important Note: equivalent to usual steepest descent applied to normal equations $A^T A x = A^T b$.
- **Converges under the condition that** *A* **is nonsingular.**

... CIMPA - Tlemcen May 2008April 26, 2008 54

(III) Minimal residual iteration. A positive definite $(A + A^T \text{ is SPD})$. Take at each step d = r and e = Ar.

Iteration:
$$\begin{array}{l} r \leftarrow b - Ax, \\ \alpha \leftarrow (Ar, r)/(Ar, Ar) \\ x \leftarrow x + \alpha r \end{array}$$

- **Each step minimizes** $f(x) = ||b Ax||_2^2$ in direction r.
- > Converges under the condition that $A + A^T$ is SPD.

<section-header>
Krylov Subspace Methods
Principle: Projection methods on Krylov subspaces:
\$\mathcal{K}_m(A, v_1) = span{\$v_1, Av_1, \dots, A^{m-1}v_1\$}\$
\$\mathcal{Probably}\$ the most important class of iterative methods.
\$\mathcal{Properties}\$ of \$K_m\$, Let \$\mu\$ = deg. of minimal polynomial of \$v\$
\$\mathcal{K}_m = {p(A)v|p = polynomial of degree \$\leq m - 1\$}\$
\$\mathcal{K}_m = K_\mu\$ for all \$m \$\geq \mu\$. Moreover, \$K_\mu\$ is invariant under \$A\$.
\$\mathcal{dim}(K_m) = \$m\$ iff \$\mu \$\geq m\$.

... CIMPA - Tlemcen May 2008April 26, 2008 55

A little review: Gram-Schmidt process

 \rightarrow Goal: given $X = [x_1, \ldots, x_m]$ compute an orthonormal set $Q = [q_1, \ldots, q_m]$ which spans the same susbpace.

ALGORITHM : 2 . Classical Gram-Schmidt

1. For j = 1, ..., m Do:

- 2. Compute $r_{ij} = (x_j, q_i)$ for i = 1, ..., j 1
- 3. Compute $\hat{q}_j = x_j \sum_{i=1}^{j-1} r_{ij}q_i$

4.
$$r_{jj} = \|\hat{q}_j\|_2$$
 If $r_{jj} == 0$ exi

- 5. $q_j = \hat{q}_j / r_{jj}$
- 6. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 57

ALGORITHM : 3 . Modified Gram-Schmidt

- 1. For j = 1, ..., m Do:
- $2. \quad \hat{q}_j := x_j$
- 3. For i = 1, ..., j 1 Do
- 4. $r_{ij}=(\hat{q}_j,q_i)$
- $5. \qquad \hat{q}_j := \hat{q}_j r_{ij}q_i$
- 6. EndDo
- 7. $r_{jj} = \|\hat{q}_j\|_2$. If $r_{jj} == 0$ exit
- 8. $q_j := \hat{q}_j / r_{jj}$
- 9. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 58

Let:

- $X = [x_1, \dots, x_m]$ (n imes m matrix)
- $Q = [q_1, \ldots, q_m]$ ($n \times m$ matrix)
- $R = \{r_{ij}\}$ ($m \times m$ upper triangular matrix)
- > At each step,

$$x_j = \sum_{i=1}^j r_{ij} q_i$$

Result:

X=QR

... CIMPA - Tlemcen May 2008April 26, 2008 59

Arnoldi's Algorithm

- **>** Goal: to compute an orthogonal basis of K_m .
- > Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

For
$$j = 1, ..., m$$
 do

• Compute $w := Av_j$

$$ullet$$
 for $i=1,\ldots,j,$ do $egin{cases} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{cases}$

•
$$h_{j+1,j} = \|w\|_2$$
 and $v_{j+1} = w/h_{j+1,j}$

Result of orthogonalization process

- **1.** $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m \text{last row.}$

... CIMPA - Tlemcen May 2008April 26, 2008 61

Arnoldi's Method $(L_m = K_m)$

> Petrov-Galerkin condition when $L_m = K_m$, shows:

$$x_m = x_0 + V_m H_m^{-1} V_m^T r_0$$

$$\blacktriangleright$$
 Select $v_1 = r_0/\|r_0\|_2 \equiv r_0/eta$ in Arnoldi's algorithm, then:

$$x_m=x_0+eta V_m H_m^{-1}e_1$$

Equivalent al-

gorithms:

* FOM [YS, 1981] (above formulation)

* Young and Jea's ORTHORES [1982].

* Axelsson's projection method [1981].

... CIMPA - Tlemcen May 2008April 26, 2008 62

Minimal residual methods $(L_m = AK_m)$

> When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain:

 $x_m = x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0$

> Use again $v_1 := r_0/(\beta := ||r_0||_2)$ and: $AV_m = V_{m+1}H_m$

$$x_m = x_0 + V_m [ar{H}_m^T ar{H}_m]^{-1} ar{H}_m^T eta e_1 = x_0 + V_m y_m$$

where y_m minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ over $y \in \mathbb{R}^m$. Hence, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

 $x_m = x_0 + V_m y_m$ where $y_m : \min_y \|\beta e_1 - \bar{H}_m y\|_2$

• Axelsson's CGLS • Orthomin (1980) **Equivalent methods:** • Orthodir • GCR

... CIMPA - Tlemcen May 2008April 26, 2008 63

ŀ	Restarting and Truncating					
Di	ifficulty: As m increases, storage and work per step increase fast.					
Fi	irst remedy: Restarting. Fix the dimension <i>m</i> of the subspace					
A	LGORITHM : 4 . Restarted GMRES (resp. Arnoldi)					
1.	Start/Restart: Compute $r_0 = b - Ax_0$, and $v_1 = r_0/(\beta := \ r_0\ _2)$.					
2.	Arnoldi Process: generate \bar{H}_m and V_m .					
3.	Compute $y_m = H_m^{-1} eta e_1$ (FOM), or					
	$y_m = argmin \ eta e_1 - ar{H}_m y\ _2$ (GMRES)					
4.	$x_m = x_0 + V_m y_m$					
5.	If $\ r_m\ _2 \leq \epsilon \ r_0\ _2$ stop else set $x_0 := x_m$ and go to 1.					

Second remedy: Truncate the orthogonalization

The formula for v_{i+1} is replaced by

$$h_{j+1,j}v_{j+1}=Av_j-\sum_{i=j-k+1}^jh_{ij}v_i$$

 \rightarrow each v_j is made orthogonal to the previous $k v_i$'s.

$$ightarrow x_m$$
 still computed as $x_m = x_0 + V_m H_m^{-1} eta e_1$.

 \rightarrow It can be shown that this is again an oblique projection process.

► IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

.... CIMPA - Tlemcen May 2008April 26, 2008 65

... CIMPA - Tlemcen May 2008April 26, 2008 67

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_m U_m$ we get

$$x_m = x_0 + V_m U_m^{-1} \mid L_m^{-1}eta e_1 \equiv x_0 + P_m z_m$$

> Structure of L_m , U_m when k = 3

... CIMPA - Tlemcen May 2008April 26, 2008 66

 $egin{aligned} eta_{j+1}v_{j+1} = Av_j - lpha_jv_j - eta_jv_{j-1} \end{aligned}$

 \rightarrow simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi → Symmetric Lanczos

... CIMPA - Tlemcen May 2008April 26, 2008 69

The Lanczos algorithm

ALGORITHM : 5 . Lanczos

1. Choose an initial vector v_1 of norm unity.

Set $\beta_1 \equiv 0, v_0 \equiv 0$

- 2. For $j = 1, 2, \ldots, m$ Do:
- $3. \quad w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_j := (w_j, v_j)$
- 5. $w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1} := w_j / eta_{j+1}$
- 8. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 70

Lanczos algorithm for linear systems

- > Usual orthogonal projection method setting:
- $\bullet L_m = K_m = span\{r_0, Ar_0, \dots, A^{m-1}r_0\}$
- Basis $V_m = [v_1, \ldots, v_m]$ of K_m generated by the Lanczos algorithm
- > Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of H_m (DIOM); (3) Conjugate gradient.

ALGORITHM : 6 • Lanczos Method for Linear Systems 1. Compute $r_0 = b - Ax_0$, $\beta := ||r_0||_2$, and $v_1 := r_0/\beta$

- 2. For $j = 1, 2, \ldots, m$ Do:
- 3. $w_j = Av_j \beta_j v_{j-1}$ (If j = 1 set $\beta_1 v_0 \equiv 0$)
- 4. $\alpha_j = (w_j, v_j)$
- 5. $w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} = ||w_j||_2$. If $\beta_{j+1} = 0$ set m := j and go to 9
- 7. $v_{j+1} = w_j / \beta_{j+1}$
- 8. EndDo
- 9. Set $T_m = tridiag(\beta_i, \alpha_i, \beta_{i+1})$, and $V_m = [v_1, \ldots, v_m]$.
- 10. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m = x_0 + V_m y_m$

... CIMPA - Tlemcen May 2008April 26, 2008 72

ALGORITHM : 7 . **D-Lanczos**

1. Compute $r_0 = b - Ax_0$, $\zeta_1 := \beta := ||r_0||_2$, $v_1 := r_0/\beta$ 2. Set $\lambda_1 = \beta_1 = 0$, $p_0 = 0$ 3. For m = 1, 2, ..., until convergence Do: 4. Compute $w := Av_m - \beta_m v_{m-1}$ and $\alpha_m = (w, v_m)$ 5. If m > 1: Compute $\lambda_m = \frac{\beta_m}{\eta_{m-1}} \& \zeta_m = -\lambda_m \zeta_{m-1}$ 6. $\eta_m = \alpha_m - \lambda_m \beta_m$ 7. $p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1})$ 8. $x_m = x_{m-1} + \zeta_m p_m$ 9. If x_m has converged then Stop 10. $w := w - \alpha_m v_m$ 11. $\beta_{m+1} = ||w||_2$, $v_{m+1} = w/\beta_{m+1}$ 12. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 73

The Conjugate Gradient Algorithm (A S.P.D.)

- > Note: the p_i 's are A-orthogonal
- > The r'_i 's are orthogonal.
- **>** And we have $x_m = x_{m-1} + \xi_m p_m$

So there must be an undate of	1. $p_m=r_{m-1}+eta_mp_{m-1}$				
So there must be an update of	2. $x_m=x_{m-1}+\xi_m p_m$				
the form:	3. $r_m=r_{m-1}-\xi_mAp_m$				

... CIMPA - Tlemcen May 2008April 26, 2008 74

ALGORITHM : 8 • Conjugate Gradient Start: $r_0 := b - Ax_0, p_0 := r_0$. Iterate: Until convergence do, $\alpha_j := (r_j, r_j)/(Ap_j, p_j)$ $x_{j+1} := x_j + \alpha_j p_j$ $r_{j+1} := r_j - \alpha_j Ap_j$ $\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j)$ $p_{j+1} := r_{j+1} + \beta_j p_j$ EndDo $r_j = scaling \times v_{j+1}$. The r_j 's are orthogonal.

> The p_i 's are A-conjugate, i.e., $(Ap_i, p_j) = 0$ for $i \neq j$.

... CIMPA - Tlemcen May 2008April 26, 2008 75

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

ALGORITHM : 9 . Lanczos Bi-Orthogonalization

1. Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$.

2. Set $\beta_1 \equiv \delta_1 \equiv 0$, $w_0 \equiv v_0 \equiv 0$

- 3. For j = 1, 2, ..., m Do:
- $4. \quad \alpha_j = (Av_j, w_j)$
- 5. $\hat{v}_{j+1} = Av_j \alpha_j v_j \beta_j v_{j-1}$
- 6. $\hat{w}_{j+1} = A^T w_j \alpha_j w_j \delta_j w_{j-1}$
- 7. $\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$. If $\delta_{j+1} = 0$ Stop
- 8. $eta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1}$
- 9. $w_{j+1} = \hat{w}_{j+1} / eta_{j+1}$
- 10. $v_{j+1} = \hat{v}_{j+1} / \delta_{j+1}$
- 11. EndDo

```
... CIMPA - Tlemcen May 2008April 26, 2008 77
```

- Extension of the symmetric Lanczos algorithm
- > Builds a pair of biorthogonal bases for the two subspaces

 $\mathcal{K}_m(A,v_1) \hspace{0.2cm} ext{and} \hspace{0.2cm} \mathcal{K}_m(A^T,w_1)$

> Different ways to choose $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8.

Let

$$T_m = egin{pmatrix} lpha_1 & eta_2 & & \ \delta_2 & lpha_2 & eta_3 & & \ & \ddots & \ddots & & \ & & \delta_{m-1} & lpha_{m-1} & eta_m & \ & & & \delta_m & lpha_m \end{pmatrix} \,.$$

$$\blacktriangleright v_i \in \mathcal{K}_m(A,v_1)$$
 and $w_j \in \mathcal{K}_m(A^T,w_1)$.

If the algorithm does not break down before step m, then the vectors v_i , i = 1, ..., m, and w_j , j = 1, ..., m, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij}$$
 , $1\leq i,\ j\leq m$,

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^T,w_1)$ and

$$egin{aligned} AV_m &= V_m T_m + \delta_{m+1} v_{m+1} e_m^T, \ A^T W_m &= W_m T_m^T + eta_{m+1} w_{m+1} e_n^T \ W_m^T A V_m &= T_m ~. \end{aligned}$$

The Lanczos Algorithm for Linear Systems

ALGORITHM : 10 . Lanczos Alg. for Linear Systems

- 1. Compute $r_0 = b Ax_0$ and $\beta := ||r_0||_2$
- 2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
- 3. Start with $v_1 := r_0/\beta$, and any w_1 such that $(v_1, w_1) = 1$
- 4. Generate the pair of Lanczos vectors v_1, \ldots, v_m , and w_1, \ldots, w_m
- 5. and the tridiagonal matrix T_m from Algorithm 9.
- 6. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.
- **BCG** can be derived from the Lanczos Algorithm similarly to CG

ALGORITHM : 11 . BiConjugate Gradient (BCG)

- 1. Compute $r_0 := b Ax_0$.
- 2. Choose r_0^* such that $(r_0, r_0^*) \neq 0$;

Set $p_0 := r_0, p_0^* := r_0^*$

- 3. For $j = 0, 1, \ldots$, until convergence Do:,
- 4. $\alpha_j := (r_j, r_j^*)/(Ap_j, p_j^*)$
- 5. $x_{j+1} := x_j + \alpha_j p_j$
- $\textit{6.} \quad r_{j+1} := r_j \alpha_j A p_j$
- 7. $r_{j+1}^* := r_j^* \alpha_j A^T p_j^*$
- 8. $\beta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$
- 9. $p_{j+1} := r_{j+1} + \beta_j p_j$
- 10. $p_{j+1}^* := r_{j+1}^* + \beta_j p_j^*$

11. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 81

Quasi-Minimal Residual Algorithm

- ► Recall relation from the lanczos algorithm: $AV_m = V_{m+1}\bar{T}_m$ with \bar{T}_m = $(m+1) \times m$ tridiagonal matrix $\bar{T}_m = \begin{pmatrix} T_m \\ \delta_{m+1}e_m^T \end{pmatrix}$.
- **>** Let $v_1 \equiv \beta r_0$ and $x = x_0 + V_m y$. Residual norm $||b Ax||_2$ equals

$$\|m{r}_0 - m{A} V_m m{y}\|_2 = \|m{eta} v_1 - V_{m+1} ar{T}_m m{y}\|_2 = \|V_{m+1} \left(m{eta} e_1 - ar{T}_m m{y}
ight)\|_2$$

- ► Column-vectors of V_{m+1} are not $\perp (\neq \text{GMRES})$.
- **>** But: reasonable idea to minimize the function $J(y) \equiv \|\beta e_1 \bar{T}_m y\|_2$
- > Quasi-Minimal Residual Algorithm (Freund, 1990).

... CIMPA - Tlemcen May 2008April 26, 2008 82

Transpose-Free Variants

▶ BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m . ▶ They allow to determine the scalars (α_i and β_i in BCG).

> QUESTION: is it possible to bypass the use of A^T ?

► Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = rac{F(u_k+\epsilon v)-F(u_k)}{\epsilon}$$

... CIMPA - Tlemcen May 2008April 26, 2008 83

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$r_i = ho_i(A)r_0$

where $\rho_i =$ polynomial of degree *i*.

In CGS:

$$r_i=
ho_i^2(A)r_0$$

Define :

$$r_j = \phi_j(A) r_0$$

 $p_j=\pi_j(A)r_0,$

$$egin{aligned} r_j^* &= \phi_j(A^T)r_0^*, \ p_j^* &= \pi_j(A^T)r_0^* \end{aligned}$$

Scalar α_j in BCG is given by

$$lpha_j = rac{(\phi_j(A)r_0,\phi_j(A^T)r_0^*)}{(A\pi_j(A)r_0,\pi_j(A^T)r_0^*)} = rac{(\phi_j^2(A)r_0,r_0^*)}{(A\pi_j^2(A)r_0,r_0^*)}$$

> Possible to get a recursion for the $\phi_j^2(A)r_0$ and $\pi_j^2(A)r_0$?

$$\phi_{j+1}(t) = \phi_j(t) - \alpha_j t \pi_j(t),$$

$$\pi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \pi_j(t)$$

$$\phi_{j+1}^2(t) = \phi_j^2(t) - 2\alpha_j t \pi_j(t) \phi_j(t) + \alpha_j^2 t^2 \pi_j^2(t),$$

$$\pi_{j+1}^2(t) = \phi_{j+1}^2(t) + 2\beta_j \phi_{j+1}(t) \pi_j(t) + \beta_j^2 \pi_j(t)^2.$$

$$Froblem: ... \\ .. Cross terms$$

$$\dots CIMPA - Tencen May 2008April 26, 2008$$

Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence. For $\pi_j(t)\phi_j(t)$, note:

$$egin{aligned} \phi_j(t)\pi_j(t) &= \phi_j(t)\left(\phi_j(t) + eta_{j-1}\pi_{j-1}(t)
ight) \ &= \phi_j^2(t) + eta_{j-1}\phi_j(t)\pi_{j-1}(t). \end{aligned}$$

Result:

$$egin{aligned} \phi_{j+1}^2 &= \phi_j^2 - lpha_j t \left(2 \phi_j^2 + 2 eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2
ight) \ \phi_{j+1} \pi_j &= \phi_j^2 + eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2 \ \pi_{j+1}^2 &= \phi_{j+1}^2 + 2 eta_j \phi_{j+1} \pi_j + eta_j^2 \pi_j^2. \end{aligned}$$

Define:

$$r_j = \phi_j^2(A) r_0, \hspace{1em} p_j = \pi_j^2(A) r_0, \hspace{1em} q_j = \phi_{j+1}(A) \pi_j(A) r_0$$

... CIMPA - Tlemcen May 2008April 26, 2008 86

Recurrences become:

$$egin{aligned} r_{j+1} &= r_j - lpha_j A \left(2 r_j + 2 eta_{j-1} q_{j-1} - lpha_j A \, p_j
ight), \ & q_j &= r_j + eta_{j-1} q_{j-1} - lpha_j A \, p_j, \ & p_{j+1} &= r_{j+1} + 2 eta_j q_j + eta_j^2 p_j. \end{aligned}$$

Define auxiliary vector $d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j Ap_j$

> Sequence of operations to compute the approximate solution, starting

with $r_0:=b-Ax_0, p_0:=r_0, q_0:=0, eta_0:=0.$

$$\begin{split} \mathbf{1.} & \alpha_j = (r_j, r_0^*) / (Ap_j, r_0^*) & \mathbf{5.} \ r_{j+1} = r_j - \alpha_j Ad_j \\ \mathbf{2.} & d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j Ap_j & \mathbf{6.} \ \beta_j = (r_{j+1}, r_0^*) / (r_j, r_0^*) \\ \mathbf{3.} & q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j Ap_j & \mathbf{7.} \ p_{j+1} = r_{j+1} + \beta_j (2q_j + \beta_j p_j). \\ \mathbf{4.} & x_{j+1} = x_j + \alpha_j d_j & \mathbf{7.} \end{split}$$

... CIMPA - Tlemcen May 2008April 26, 2008 87

> one more auxiliary vector, u_j = r_j + β_{j-1}q_{j-1}. So
d_j = u_j + q_j,
q_j = u_j - α_jAp_j,
p_{j+1} = u_{j+1} + β_j(q_j + β_jp_j),
> vector d_j is no longer needed.

... CIMPA - Tlemcen May 2008April 26, 2008 89

> Note: no matrix-by-vector products with A^T but two matrix-by-vector products with A, at each step.

Vector:
$$\longleftrightarrow$$
 Polynomial in BCG :
 $q_i \longleftrightarrow \bar{r}_i(t)\bar{p}_{i-1}(t)$
 $u_i \longleftrightarrow \bar{p}_i^2(t)$
 $r_i \longleftrightarrow \bar{r}_i^2(t)$

where $\bar{r}_i(t)$ = residual polynomial at step *i* for BCG, .i.e., $r_i = \bar{r}_i(A)r_0$, and $\bar{p}_i(t)$ = conjugate direction polynomial at step *i*, i.e., $p_i = \bar{p}_i(A)r_0$.

... CIMPA - Tlemcen May 2008April 26, 2008 90

BCGSTAB (van der Vorst, 1992)

➤ In CGS: residual polynomial of BCG is squared. ➤ bad behavior in case of irregular convergence.

Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty.
 Derivation similar to CGS.

> Residuals in BCGSTAB are of the form,

$$r_j'=\psi_j(A)\phi_j(A)r_0$$

in which, $\phi_j(t) = BCG$ residual polynomial, and ..

> ... $\psi_i(t)$ = a new polynomial defined recursively as

$$\psi_{j+1}(t) = (1-\omega_j t)\psi_j(t)$$

 ω_i chosen to 'smooth' convergence [steepest descent step]

ALGORITHM : 13 • BCGSTAB 1. Compute $r_0 := b - Ax_0$; r_0^* arbitrary;

- 2. $p_0 := r_0$.
- 3. For $j = 0, 1, \ldots$, until convergence Do:
- 4. $\alpha_j := (r_j, r_0^*)/(Ap_j, r_0^*)$
- 5. $s_j := r_j \alpha_j A p_j$
- 6. $\omega_j := (As_j, s_j)/(As_j, As_j)$
- 7. $x_{j+1}:=x_j+lpha_jp_j+\omega_js_j$
- 8. $r_{j+1} := s_j \omega_j A s_j$

9.
$$\beta_j := \frac{(r_{j+1}, r_0)}{(r_j, r_0^*)} \times \frac{\alpha_j}{\omega_j}$$

10.
$$p_{j+1} := r_{j+1} + eta_j (p_j - \omega_j A p_j)$$

11. EndDo

PRECONDITIONING

Preconditioning – Basic principles

Basic idea is to use the Krylov subspace method on a modified system such as

$M^{-1}Ax = M^{-1}b.$

- The matrix $M^{-1}A$ need not be formed explicitly; only need to solve Mw = v whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1}v$ for an arbitrary vector v.

... CIMPA - Tlemcen May 2008April 26, 2008 94

Left, Right, and Split preconditioning

Left preconditioning: $M^{-1}Ax = M^{-1}b$

Right preconditioning: $AM^{-1}u = b$, with $x = M^{-1}u$

Split preconditioning: $M_L^{-1}AM_R^{-1}u = M_L^{-1}b$, with $x = M_R^{-1}u$

[Assume M is factored: $M = M_L M_R$.]

Preconditioned CG (PCG)

- > Assume: A and M are both SPD.
- ► Applying CG directly to $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$ won't work because coefficient matrices are not symmetric.
- > Alternative: when $M = LL^T$ use split preconditioner option
- Second alternative: Observe that $M^{-1}A$ is self-adjoint wrt M inner product:

$$(M^{-1}Ax,y)_M = (Ax,y) = (x,Ay) = (x,M^{-1}Ay)_M$$

... CIMPA - Tlemcen May 2008April 26, 2008 95

Preconditioned CG (PCG)

ALGORITHM: 14.	Preconditioned	Conjugate	Gradient
----------------	----------------	------------------	----------

- 1. Compute $r_0 := b Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
- 2. For $j = 0, 1, \ldots$, until convergence Do:
- 3. $\alpha_j := (r_j, z_j)/(Ap_j, p_j)$
- $4. \qquad x_{j+1}:=x_j+\alpha_j p_j$
- $5. \quad r_{j+1} := r_j \alpha_j A p_j$
- 6. $z_{j+1} := M^{-1} r_{j+1}$
- 7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$
- 8. $p_{j+1} := z_{j+1} + \beta_j p_j$
- 9. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 97

Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax,y)_A = (AM^{-1}Ax,y) = (x,AM^{-1}Ay) = (x,M^{-1}Ay)_A$$

- > Can obtain a similar algorithm
- > Assume that M = Cholesky product $M = LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b$$
, with $x = L^{T}u$

► Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by $\hat{}$.

... CIMPA - Tlemcen May 2008April 26, 2008 98

ALGORITHM : 15 . CG with Split Preconditioner

- 1. Compute $r_0 := b Ax_0$; $\hat{r}_0 = L^{-1}r_0$; and $p_0 := L^{-T}\hat{r}_0$.
- 2. For $j = 0, 1, \ldots$, until convergence Do:
- 3. $\alpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j)$
- 4. $x_{j+1} := x_j + \alpha_j p_j$
- 5. $\hat{r}_{j+1} := \hat{r}_j \alpha_j L^{-1} A p_j$
- 6. $\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$
- 7. $p_{j+1} := L^{-T} \hat{r}_{j+1} + eta_j p_j$
- 8. EndDo

> The x_j 's produced by the above algorithm and PCG are identical (if same initial guess is used).

... CIMPA - Tlemcen May 2008April 26, 2008 99

Flexible accelerators

Question: What can we do in case *M* is defined only approximately? i.e., if it can vary from one step to the other.?

Applications:

- Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-grid, etc..
- Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)
- Mixing Preconditioners mixing coarse mesh / fine mesh preconditioners.

1. Start: Choose x_0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

• Compute
$$r_0 = b - Ax_0$$
, $\beta = ||r_0||_2$ and $v_1 = r_0/\beta$.
• For $j = 1, ..., m$ do
- Compute $w := Av_j$
- for $i = 1, ..., j$, do $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$;
- $h_{j+1,1} = ||w||_2; v_{j+1} = \frac{w}{h_{j+1,1}}$
• Define $V_m := [v_1, ..., v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.

3. Form the approximate solution: Compute $x_m = x_0 + V_m y_m$ where $y_m = \operatorname{argmin}_y \|\beta e_1 - \bar{H}_m y\|_2$ and $e_1 = [1, 0, \dots, 0]^T$.

4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

... CIMPA - Tlemcen May 2008April 26, 2008 101

ALGORITHM : 18 . *GMRES – variable preconditioner*

- 1. Start: Choose x_0 and a dimension m of the Krylov subspaces.
- 2. Arnoldi process:

• Compute
$$r_0 = b - Ax_0$$
, $\beta = ||r_0||_2$ and $v_1 = r_0/\beta$.
• For $j = 1, ..., m$ do
- Compute $z_j := M_j^{-1}v_j$; Compute $w := Az_j$;
- for $i = 1, ..., j$, do: $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$;
- $h_{j+1,1} = ||w||_2$; $v_{j+1} = w/h_{j+1,1}$
• Define $Z_m := [z_1, ..., z_m]$ and $\bar{H}_m = \{h_{i,j}\}$.

- 3. Form the approximate solution: Compute $x_m = x_0 + Z_m y_m$ where $y_m = \operatorname{argmin}_y \|\beta e_1 \bar{H}_m y\|_2$ and $e_1 = [1, 0, \dots, 0]^T$.
- 4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

ALGORITHM : 17 • GMRES – (right) Preconditioning

1. Start: Choose x_0 and a dimension m

2. Arnoldi process:

• Compute
$$r_0 = b - Ax_0$$
, $\beta = ||r_0||_2$ and $v_1 = r_0/\beta$.
• For $j = 1, ..., m$ do
- Compute $z_j := M^{-1}v_j$
- Compute $w := Az_j$
- for $i = 1, ..., j$, do : $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$
- $h_{j+1,1} = ||w||_2; v_{j+1} = w/h_{j+1,1}$
• Define $V_m := [v_1, ..., v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.
3. Form the approximate solution: $\boxed{x_m = x_0 + M^{-1}V_m y_m}$ where $y_m = \arg \min_y ||\beta e_1 - \bar{H}_m y||_2$ and $e_1 = [1, 0, ..., 0]^T$.
4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

Properties

- x_m minimizes $b Ax_m$ over $\text{Span}\{Z_m\}$.
- If $Az_j = v_j$ (i.e., if preconditioning is 'exact' at step j) then approximation x_j is exact.
- If M_j is constant then method is \equiv to Right-Preconditioned GMRES.

Additional Costs:

- Arithmetic: none.
- Memory: Must save the additional set of vectors $\{z_j\}_{j=1,...m}$

Advantage: Flexibility

Standard preconditioners

- Simplest preconditioner: M = Diag(A) > poor convergence.
- Next to simplest: SSOR $M = (D \omega E)D^{-1}(D \omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) ILU with level of fill p more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigrid, M-level ILU, ..

... CIMPA - Tlemcen May 2008April 26, 2008 105

An observation. Introduction to Preconditioning

> Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel, SOR, SSOR, ...

▶ These are iterations of the form $x^{(k+1)} = Mx^{(k)} + f$ where M is of the form $M = I - P^{-1}A$. For example for SSOR,

 $P_{SSOR} = (D-\omega E)D^{-1}(D-\omega F)$

... CIMPA - Tlemcen May 2008April 26, 2008 106

SSOR attempts to solve the equivalent system

$$P^{-1}Ax = P^{-1}b$$

where $P \equiv P_{SSOR}$ by the fixed point iteration

$$x^{(k+1)} = \underbrace{(I - P^{-1}A)}_{M} x^{(k)} + P^{-1}b$$
 instead of $x^{(k+1)} = (I - A)x^{(k)} + b$

In other words:

Relaxation Scheme \iff **Preconditioned Fixed Point Iteration**

► $M_{SSOR} = LU, L =$ lower unit matrix, U = upper triangular. One solve with $M_{SSOR} \approx$ same cost as a MAT-VEC.

... CIMPA - Tlemcen May 2008April 26, 2008 107

► *k*-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

> Questions: Best ω ? For preconditioning can take $\omega = 1$

 $M = (D - E)D^{-1}(D - F)$

Observe: M = LU + R with $R = ED^{-1}F$.

> Best k? k = 1 is rarely the best. Substantial difference in performance.

... CIMPA - Tlemcen May 2008April 26, 2008 110

... CIMPA - Tlemcen May 2008April 26, 2008 111

What is the IKJ version of GE?

Different computational patterns for gaussian elimination

ALGORITHM : 19 . Gaussian Elimination – IKJ Variant

- 1. For i = 2, ..., n Do:
- 2. For $k = 1, \ldots, i 1$ Do:
- $3. \qquad a_{ik} := a_{ik}/a_{kk}$
- 4. For j = k + 1, ..., n Do:
- $5. a_{ij} := a_{ij} a_{ik} * a_{kj}$
- 6. EndDo
- 7. EndDo
- 8. EndDo

... CIMPA - Tlemcen May 2008April 26, 2008 114

... CIMPA - Tlemcen May 2008April 26, 2008 115

ILU(0) – zero-fill ILU

ALGORITHM : 20 . ILU(0)

For i = 1, ..., N *Do:*

For $k = 1, \ldots, i - 1$ and if $(i, k) \in NZ(A)$ Do:

- Compute $a_{ik} := a_{ik}/a_{kj}$
- For $j = k + 1, \ldots$ and if $(i, j) \in NZ(A)$, Do:

compute $a_{ij} := a_{ij} - a_{ik}a_{k,j}$.

EndFor

EndFor

➤ When A is SPD then the ILU factorization = Incomplete Cholesky factorization – IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution of preconditioned matrix

... CIMPA - Tlemcen May 2008April 26, 2008 117

Pattern of ILU(0) for 5-point matrix

... CIMPA - Tlemcen May 2008April 26, 2008 118

Higher order ILU factorization

► Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows p additional diagonals in L.

► Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

- **ILU(p)** Strategy = drop anything with level of fill-in exceeding *p*.
- * Increasing level of fill-in usually results in more accurate ILU and...
- * ...typically in fewer steps and fewer arithmetic operations.

ILU(1)

... CIMPA - Tlemcen May 2008April 26, 2008 122

... CIMPA - Tlemcen May 2008April 26, 2008 121

ALGORITHM : 21 . ILU(p)

For i = 2, N Do

For each $k = 1, \ldots, i - 1$ and if $a_{ij} \neq 0$ do

Compute $a_{ik} := a_{ik}/a_{jj}$

Compute $a_{i,*} := a_{i,*} - a_{ik}a_{k,*}$.

Update the levels of $a_{i,*}$

```
Replace any element in row i with lev(a_{ij}) > p by zero.
```

EndFor

EndFor

➤ The algorithm can be split into a symbolic and a numerical phase. Level-of-fill ➤ in Symbolic phase

... CIMPA - Tlemcen May 2008April 26, 2008 123

ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numerical values ➤ potential problems for non M-matrices.

> One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard (?), Osterby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]

Second approach : [derived from 'iterative solvers' viewpoint]

- 1. use a (row or colum) version of the (i, k, j) version of GE;
- 2. apply a drop strategy for the elment l_{ik} as it is computed;
- 3. perform the linear combinations to get a_{i*} . Use full row expansion of a_{i*} ;
- 4. apply a drop strategy to fill-ins.

... CIMPA - Tlemcen May 2008April 26, 2008 125

ILU with threshold: $ILUT(k, \epsilon)$

- Do the i, k, j version of Gaussian Elimination (GE).
- During each i-th step in GE, discard any pivot or fill-in whose value is below $\epsilon \|row_i(A)\|$.
- Once the *i*-th row of L + U, (L-part + U-part) is computed retain only the k largest elements in both parts.
- > Advantages: controlled fill-in. Smaller memory overhead.
- > Easy to implement -
- > Can be made quite inexpensive.

... CIMPA - Tlemcen May 2008April 26, 2008 126

Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute the k-th row of U and the k-th column of L at the k-th step.

Computational pattern

Black = part computed at step k Blue = part accessed

Main advantages:

Less expensive than ILOT (avoids sorting)
 Allows better techniques for dropping

References:

- [1] M. Jones and P. Plassman. An improved incomplete Choleski factorization. *ACM Transactions on Mathematical Software*, 21:5–17, 1995.
- [2] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data structures for sparse symmetric Gaussian elimination. *SIAM Journal on Scientific Computing*, 2:225–237, 1981.
- [3] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors. *Linear Algebra and its Applications*, 338(1–3):201–218, 2001.
- [4] N. Li, Y. Saad, and E. Chow. Crout versions of ILU. MSI technical report, 2002.

Crout LU (dense case)

- > Go back to delayed update algorithm (IKJ alg.) and observe: we could
- do both a column and a row version

> Left: *U* computed by rows. Right: *L* computed by columns

... CIMPA - Tlemcen May 2008April 26, 2008 129

Note: Entries 1 : k - 1 in k-th row of figure need not be computed. Available from already computed columns of L.

Similar observation for *L* (right)

... CIMPA - Tlemcen May 2008April 26, 2008 130

Independent set orderings & ILUM (Background)

Independent set orderings permute a matrix into the form

$$\begin{pmatrix} B & F \\ E & C \end{pmatrix}$$

where **B** is a diagonal matrix.

- **>** Unknowns associated with the *B* block form an independent set (IS).
- **>** IS is maximal if it cannot be augmented by other nodes to form another

IS.

> IS ordering can be viewed as a "simplification" of multicoloring

<u>Main observation:</u> Reduced system obtained by eliminating the unknowns associated with the IS, is still sparse since its coefficient matrix is the Schur complement

ILUM AND ARMS

$$S = C - EB^{-1}F$$

- ► Idea: apply IS set reduction recursively.
- > When reduced system small enough solve by any method
- > Can devise an ILU factorization based on this strategy.

> See work by [Botta-Wubbs '96, '97, YS'94, '96, (ILUM), Leuze '89, ..]

... CIMPA - Tlemcen May 2008April 26, 2008 135

ALGORITHM : 23 . ILUM

For lev = 1, nlev Do

- a. Get an independent set for A.
- b. Form the reduced system associated with this set;
- c. Apply a dropping strategy to this system;
- **d.** Set A := current reduced matrix and go back to (a).

EndDo

Group Independent Sets / Aggregates

- **Generalizes** (common) Independent Sets
- Main goal: to improve robustness

Main idea: use independent sets of "cliques", or "aggregates". There is no coupling between the aggregates.

... CIMPA - Tlemcen May 2008April 26, 2008 137

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A, and reordered matrix, $A_0 = P_0^T A P_0$.

Algebraic Recursive Multilevel Solver (ARMS)

Basic step:

where $S = C - EB^{-1}F$ = Schur complement.

- > Perform block factorization recursively on S
- ► L, U Blocks: sparse
- > Exploit recursivity

Factorization: at level $l P_l^T A_l P_l =$ ALGORITHM : 24 . ARMS(A_{lev}) factorization 1. If $lev = last_lev$ then $egin{pmatrix} egin{array}{cc} egin{array} egin{array}{cc} egin{array}{cc} egin{arra$ Compute $A_{lev} \approx L_{lev} U_{lev}$ 2. 3. Else: \blacktriangleright L-solve ~ restriction. U-solve ~ prolongation. Find an independent set permutation P_{lev} 4 Apply permutation $A_{lev} := P_{lev}^T A_{lev} P$ > Solve Last level system with, e.g., ILUT+GMRES 5. Compute factorization *6*. $Call ARMS(A_{lev+1})$ 7. 8. EndIf

... CIMPA - Tlemcen May 2008April 26, 2008 141

Simple strategy used: Do a Cuthill-MKee ordering until there are enough points to make a block. Reverse ordering. Start a new block from a non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

Block size of 6

Block size of 20

Introduction

> Premise: we now work directly on a Partial Differential Equation e.g.

$$-\Delta u = f, +B.C$$

- ➤ Main idea of multigrid: exploit a hierarchy of grids to get good convergence from simple iterative schemes
- > Need a good grasp of matrices and spectra of model problems

M U L T I G R I D (VERY BRIEF)

Richardson's iteration

- **>** Simple iterative scheme: Richardson's iteration for 1-D case
- \succ Fixed parameter ω . Iteration:

$$u_{j+1} = u_j + \omega(b - Au_j) = (I - \omega A)u_j + \omega b$$
.

> Iteration matrix is

 $M_{\omega} = I - \omega A$.

Recall: convergence takes place for $0 < \omega < 2/\rho(A)$

> In practice an upper bound $\rho(A) \leq \gamma$ is often available

... CIMPA - Tlemcen May 2008April 26, 2008 149

> take $\omega = 1/\gamma \rightarrow$ converging iteration since $1/\gamma \leq 1/ ho(A) < 2/ ho(A).$

- \succ Eigenvalues of the iteration matrix are $1 \omega \lambda_k$, where $\lambda_k = 2(1 - \cos heta_k) = 4 \sin^2 rac{ heta_k}{2}$
- **Eigenvectors are the same as those of** *A***.**
- > If u_* is the exact solution, the error vector $d_j \equiv u_* u_j$, obeys the relation,

$$d_j = M^j_\omega d_0$$

 \succ Expand the error vector d_0 in the eigenbasis of M_{ω} , as

$$d_0=\sum_{k=1}^n oldsymbol{\xi}_k w_k\,.$$

> Then from $d_j = M^j_{\omega} d_0$ and $M_{\omega} = I - \omega A$:

$$d_j = \sum_{k=1}^n \left(1 - rac{\lambda_k}{\gamma}
ight)^j oldsymbol{\xi}_k w_k \, .$$

- **Each component is reduced by** $(1 \lambda_k / \gamma)^j$.
- > Slowest converging component corresponds to λ_1
- > Possibly very slow convergence rate when $|\lambda_1/\gamma|\lambda_1$.
- **>** For the model problem one-dimensional case Gershgorin's theorem yields $\gamma = 4$, so the corresponding reduction coefficient is

$$1 - \sin^2 rac{\pi}{2(n+1)} pprox 1 - (\pi h/2)^2 = 1 - O(h^2) \,.$$

Consequence: convergence can be quite slow for fine meshes, i.e., when h is small. ... CIMPA - Tlemcen May 2008April 26, 2008 151

Basic observation: convergence is not similar for all components.

- > Half of the error components see a very good decrease.
- > This is the case for the *high frequency* components, that is, all those components corresponding to k > n/2. [referred to as the oscillatory part]
- > The reduction factors for these components are

$$\eta_k = 1 - \sin^2 rac{k\pi}{2(n+1)} = \cos^2 rac{k\pi}{2(n+1)} \leq rac{1}{2} \, .$$

Reduction coefficients for Richardson's method applied to the 1-D model problem

Observations: Oscillatory components, undergo excellent reduction, Also reduction factor is independent of the step-size *h*.

... CIMPA - Tlemcen May 2008April 26, 2008 153

How can we reduce the other components?

> Introduce a coarse grid problem. Assume n is odd. Consider the problem issued from discretizing the original PDE on a mesh Ω_{2h} with the mesh-size 2h. Use superscripts h and 2h for the two meshes.

Observation: note that $x_i^{2h} = x_{2i}^h$ from which it follows that, for $k \le n/2$,

$$w^h_k(x^h_{2i}) = \sin(k\pi x^h_{2i}) = \sin(k\pi x^{2h}_i) = w^{2h}_k(x^{2h}_i) \ .$$

So: Taking a smooth mode on the fine grid $(w_k^h \text{ with } k \leq n/2)$ and canonically injecting it into the coarse grid, i.e., defining its values on the coarse points to be the same as those on the fine points, yields the k-th mode on the coarse grid.

... CIMPA - Tlemcen May 2008April 26, 2008 154

The mode w_2 on a fine grid (n = 7) and a coarse grid (n = 3)

Some of the modes which were smooth on the fine grid, become oscillatory.

> The oscillatory modes on the fine mesh are no longer represented on the coarse mesh.

... CIMPA - Tlemcen May 2008April 26, 2008 155

► At some point iteration will fail to make progress on the fine grid: when the only components left are those associated with the smooth modes.

Multigrid strategy: do not attempt to eliminate these components on the fine grid. Move down to a coarser grid where smooth modes are translated into oscillatory ones. Then iterate.

> Practically, need to go back and forth between different grids.

Inter-grid operations: Prolongation

> A prolongation operation takes a vector from Ω_H and defines the analogue vector in Ω_h . Common notation in use

 $I_H^h: \Omega_H \longrightarrow \Omega_h$.

Simplest approach : linear interpolation. Example: in 1-D. Given $(v_i^{2h})_{i=0,\dots,(n+1)/2}$, define vector $v^h = I_{2h}^h v^{2h} \in \Omega_h$:

$$\left\{egin{array}{ll} v_{2j}^h &= v_j^{2h} \ v_{2j+1}^h &= (v_j^{2h}+v_{j+1}^{2h})/2 \end{array}
ight.$$
 for $j=0,\ldots,rac{n+1}{2}$.

... CIMPA - Tlemcen May 2008April 26, 2008 157

Restriction

- > Given a function v^h on the fine mesh, a corresponding function in Ω_H must be defined from v^h . Reverse of prolongation
- > Simplest example canonical injection: $v_i^{2h} = v_{2i}^h$.
- > Termed Injection operator. Obvious 2-D analogue: $v_{i,j}^{2h} = v_{2i,2j}^h$.
- > More common restriction operator: full weighting (FW),

$$v_{j}^{2h}=rac{1}{4}\left(v_{2j-1}^{h}+2v_{2j}^{h}+v_{2j+1}^{h}
ight)$$

> Averages the neighboring values using the weights 0.25, 0.5, 0.25.

... CIMPA - Tlemcen May 2008April 26, 2008 158

Standard multigrid techniques

Simplest idea: obtain an initial guess from interpolating a solution computed on a coarser grid. Repeat recursively. Interpolation from a coarser grid can be followed by a few s of a smoothing iteration.

known as nested iteration

MG techniques use essentially two main ingredients: a hierarchy of grid problems (restrictions and prolongations) and a smoother.

What is a smoother? Ans: any scheme which has the smoothing property of damping quickly the high frequency components of the error.

... CIMPA - Tlemcen May 2008April 26, 2008 159

Coarse problems and smoothers

At the highest level (finest grid)

$$A_h u^h = f^h$$

- **>** Can define this problem at next level (mesh-size= H) on mesh Ω_H
- > Also common (FEM) to define the system by *Galerkin projection*,

$$A_H = I_h^H A_h I_H^h , \qquad f^H = I_h^H f^h .$$

Notation:

 $u^h_
u = ext{smoother}^
u(extsf{A}_ extsf{h}, extsf{u}^ extsf{h}_ extsf{0}, extsf{f}_ extsf{h})$

 $u_{\nu}^{h} ==$ result of ν smoothing s for $A_{h}u = f_{h}$ starting with u_{0}^{h} .

V-cycles

ALGORITHM : 25 • $u^h = V$ -cycle (A_h, u_0^h, f^h)							
1. Pre-smooth:	$u^h:= ext{smoother}^{ u_1}(ext{A}_ ext{h}, ext{u}^ ext{h}_0, ext{f}^ ext{h})$						
2. Get residual:	$r^h=f^h-A_hu^h$						
3. Coarsen:	$r^H = I^H_h r^h$						
4. If $(H == h_0)$							
5. Solve:	$A_H\delta^H=r^H$						
6. Else							
7. Recursion:	$\delta^{H} = V$ -cycle $(A_{H}, 0, r^{H})$						
8. EndIf							
9. Correct:	$u^h:=u^h+I^h_H\delta^H$						
10. Post-smooth:	$u^h:= extsf{smoother}^{ u_2}(extsf{A}_{ extsf{h}}, extsf{u}^{ extsf{h}}, extsf{f}^{ extsf{h}})$						
11. Return u^h							

> V-cyle multigrid is a canonical application of recursivity - starting from the 2-grid cycle as an example. Notation: H = 2h and h_0 is the coarsest mesh-size.

> Many other options avaiable

► For Poisson equation MG is a 'fast solver' – cost of order $N \log N$. In fact O(N) for FMG.

... CIMPA - Tlemcen May 2008April 26, 2008 162

Algebraic Multigrid (AMG)

- **>** Generalizes 'geometric' or 'mesh-based' MG to general problems
- ► Idea: Define coarsening by looking at 'strong' couplings
- ► Define coarse problem from a Galerkin approach, i.e., using the restriction $A_H = I_h^H A_h I_H^h$...
- Generally speaking: limited success for problems with several unknowns per mesh point, of for non-PDE relatex problems..

PARALLEL IMPLEMENTATION

Introduction

- > Thrust of parallel computing techniques in most applications areas.
- > Programming model: Message-passing seems (MPI) dominates
- > Open MP and threads for small number of processors
- Important new reality: parallel programming has penetrated the 'applications' areas [Sciences and Engineering + industry]
- > Problem 1: algorithms lagging behind somewhat
- Problem 2: Message passing is painful for large applications. 'Time to solution' up.

---- CIMPA - Tlemcen May 2008April 26, 2008 165

Parallel preconditioners: A few approaches

"Parallel matrix computation" viewpoint:

- Local preconditioners: Polynomial (in the 80s), Sparse Approximate Inverses, [M. Benzi-Tuma & al '99., E. Chow '00]
- Distributed versions of ILU [Ma & YS '94, Hysom & Pothen '00]
- Use of multicoloring to unaravel parallelism

... CIMPA - Tlemcen May 2008April 26, 2008 166

Domain Decomposition ideas:

- Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-Xu, X. Cai, D. Keyes, Smith, ...]
- Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI), T.F. Chan et al., YS and Sosonkina '97, J. Zhang '00, ...]

Multigrid / AMG viewpoint:

- Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et al (Aztec project), ...]
- > In practice: Variants of additive Schwarz very common (simplicity)

Intrinsically parallel preconditioners

Some alternatives

- (1) Polynomial preconditioners;
- (2) Approximate inverse preconditioners;
- (3) Multi-coloring + independent set ordering;
- (4) Domain decomposition approach.

... CIMPA - Tlemcen May 2008April 26, 2008 167

POLYNOMIAL PRECONDITIONING

Domain Decomposition

> Domain decomposition or substructuring methods attempt to solve a PDE problem (e.g.) on the entire domain from problem solutions on the subdomains Ω_{i} .

... CIMPA - Tlemcen May 2008April 26, 2008 170

Discretization of domain

Coefficient Matrix

Types of mappings

(a) Vertex-based; (b) edge-based; and (c) element-based partitioning

- > Can adapt PDE viewpoint to general sparse matrices
- > Will use the graph representation and 'vertex-based' viewpoint –

... CIMPA - Tlemcen May 2008April 26, 2008 173

DISTRIBUTED SPARSE MATRICES

> Best idea is to use the adjacency graph of A:

Graph partitioning problem:

- Want a partition of the vertices of the graph so that
- (1) partitions have \sim the same sizes
- (2) interfaces are small in size

Simple illustration: Block assignment. Assign equation *i* and unknown *i* to a given 'process'

 Naive partitioning - won't work well in practice

... CIMPA - Tlemcen May 2008April 26, 2008 175

General Partitioning of a sparse linear system

... CIMPA - Tlemcen May 2008April 26, 2008 177

► More recent: Zoltan, H-Metis, PaToH

... CIMPA - Tlemcen May 2008April 26, 2008 178

Standard dual objective: "minimize" communication + "balance" partition sizes

- **>** Recent trend: use of hypergraphs [PaToh, Hmetis,...]
- > Hypergraphs are very general.. Ideas borrowed from VLSI work
- > Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
- ► Hypergraphs can better express complex graph partitioning problems and provide better solutions. Example: completely nonsymmetric patterns.

... CIMPA - Tlemcen May 2008April 26, 2008 179

Distributed Sparse matrices (continued)

- > Once a good partitioning is found, questions are:
- 1. How to represent this partitioning?
- 2. What is a good data structure for representing distributed sparse matrices?
- 3. How to set up the various "local objects" (matrices, vectors, ..)
- 4. What can be done to prepare for communication that will be required during execution?

Two views of a distributed sparse matrix

> Local interface variables always ordered last.

... CIMPA - Tlemcen May 2008April 26, 2008 181

The local system:

$$\underbrace{egin{pmatrix} B_i & F_i \ E_i & C_i \end{pmatrix}}_{A_i} egin{pmatrix} u_i \ y_i \end{pmatrix} + \underbrace{egin{pmatrix} 0 \ \sum_{j \in N_i} E_{ij} y_j \end{pmatrix}}_{y_{ext}} = egin{pmatrix} f_i \ g_i \end{pmatrix}$$

 \succ u_i : Internal variables; y_i : Interface variables

... CIMPA - Tlemcen May 2008April 26, 2008 183

► Once the partitioning is available these parts must be identified and built locally..

- > In finite elements, assembly is a local process.
- > How to perform a matrix vector product? [needed by iterative schemes?]

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter x_{bound} to neighbors - Gather x_{ext} from neighbors

2. Local matrix – vector product

 $y = A_{loc} x_{loc}$

3. External matrix – vector product

 $y = y + B_{ext} x_{ext}$

NOTE: 1 and 2 are independent and can be overlapped.

... CIMPA - Tlemcen May 2008April 26, 2008 185

Main Operations in (F) GMRES :

- **1.** Saxpy's local operation no communication
- 2. Dot products global operation
- 3. Matrix-vector products local operation local communication
- 4. Preconditioning operations locality varies.

... CIMPA - Tlemcen May 2008April 26, 2008 186

Distributed Dot Product

/*---- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*---- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

A remark: the global viewpoint

... CIMPA - Tlemcen May 2008April 26, 2008 188

Three approaches:

- Schwarz Preconditioners
- Schur-complement based Preconditioners
- Multi-level ILU-type Preconditioners
- **Observation:** Often, in practical applications, Schwarz Preconditioners are used : SUB-OPTIMAL

... CIMPA - Tlemcen May 2008April 26, 2008 190

Domain-Decomposition-Type Preconditioners

4. Update solution $x_i = x_i + \delta_i$

... CIMPA - Tlemcen May 2008April 26, 2008 191

> Multiplicative Schwarz. Need a coloring of the subdomains.

PARALLEL PRECONDITIONERS

Breaking the sequential color loop

> "Color" loop is sequential. Can be broken in several different ways.

(1) Have a few subdomains per processors

•••• CIMPA - Tlemcen May 2008April 26, 2008 194

... CIMPA - Tlemcen May 2008April 26, 2008 193

(2) Separate interior nodes from interface nodes (2-level blocking)

Local Solves

- **>** Each local system $A_i \delta_i = r_i$ can be solved in three ways:
- 1. By a (sparse) direct solver
- 2. Using a standard preconditioned Krylov solver
- **3.** Doing a backward-forward solution associated with an accurate ILU (e.g. ILUT) precondioner
- > We only use (2) with a small number of inner s (up to 10) or (3).

Schur complement system

Local system can be written as

 x_i = vector of local unknowns, $y_{i,ext}$ = external interface variables, and b_i = local part of RHS.

... CIMPA - Tlemcen May 2008April 26, 2008 198

► Local equations

$$egin{pmatrix} B_i & F_i \ E_i & C_i \end{pmatrix} egin{pmatrix} u_i \ y_i \end{pmatrix} + egin{pmatrix} 0 \ \sum_{j \in N_i} E_{ij} y_j \end{pmatrix} = egin{pmatrix} f_i \ g_i \end{pmatrix}$$

 \succ eliminate u_i from the above system:

$$S_iy_i+\sum_{j\in N_i}E_{ij}y_j=g_i-E_iB_i^{-1}f_i\equiv g_i',$$

SCHUR COMPLEMENT-BASED PRECONDITIONERS

where S_i is the "local" Schur complement

$$S_i = C_i - E_i B_i^{-1} F_i. (4)$$

Structure of Schur complement system Global Schur complement system: Sy = g' with : $S = \begin{pmatrix} S_1 & E_{12} & \dots & E_{1p} \\ E_{21} & S_2 & \dots & E_{2p} \\ \vdots & & \ddots & \vdots \\ E_{p1} & E_{p-1,2} & \dots & S_p \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix} = \begin{pmatrix} g'_1 \\ g'_2 \\ \vdots \\ g'_p \end{pmatrix}.$ • E_{ij} 's are sparse = same as in the original matrix • Can solve global Schur complement system iteratively. Back-substitute to recover rest of variables (internal). • Can use the procedure as a preconditining to global system.

... CIMPA - Tlemcen May 2008April 26, 2008 199

(3)

Simplest idea: Schur Complement Iterations

 $\begin{pmatrix} u_i \\ y_i \end{pmatrix}$ Internal variables Interface variables

- **>** Do a global primary iteration (e.g., block-Jacobi)
- **>** Then accelerate only the *y* variables (with a Krylov method)

Still need to precondition..

... CIMPA - Tlemcen May 2008April 26, 2008 201

Approximate Schur-LU

> Two-level method based on induced preconditioner. Global system can also be viewed as

.

Block LU factorization of *A***:**

$$\begin{pmatrix} B & F \\ E & C \end{pmatrix} = \begin{pmatrix} B & 0 \\ E & S \end{pmatrix} \begin{pmatrix} I & B^{-1}F \\ 0 & I \end{pmatrix}$$

... CIMPA - Tlemcen May 2008April 26, 2008 202

Preconditioning:

$$L = egin{pmatrix} B & 0 \ E & M_S \end{pmatrix} \quad ext{and} \quad U = egin{pmatrix} I & B^{-1}F \ 0 & I \end{pmatrix}$$

with M_S = some approximation to S.

> Preconditioning to global system can be induced from any preconditioning on Schur complement.

Rewrite local Schur system as

$$y_i+S_i^{-1}\sum_{j\in N_i}E_{ij}y_j=S_i^{-1}\left[g_i-E_iB_i^{-1}f_i
ight].$$

- > equivalent to Block-Jacobi preconditioner for Schur complement.
- **>** Solve with, e.g., a few s (e.g., 5) of GMRES

... CIMPA - Tlemcen May 2008April 26, 2008 203

- > Question: How to solve with S_i ?
- **>** Can use LU factorization of local matrix $A_i = \begin{pmatrix} B_i & F_i \\ E_i & C_i \end{pmatrix}$

and exploit the relation:

$$A_i = egin{pmatrix} L_{B_i} & 0 \ E_i U_{B_i}^{-1} \ L_{S_i} \end{pmatrix} egin{pmatrix} U_{B_i} \ L_{B_i}^{-1} F_i \ 0 \ U_{S_i} \end{pmatrix} \quad o \quad L_{S_i} U_{S_i} = S_i$$

> Need only the (I) LU factorization of the A_i [rest is already available]

Very easy implementation of (parallel) Schur complement techniques for vertex-based partitioned systems : YS-Sosonkina '97; YS-Sosonkina-Zhang '99.

An experiment

Number of FGMRES(20) iterations for the AF23560 problem.

Name	Precon	lfil	16	24	32	40	56	64	80	96
af23560	SAPINV	20	32	36	27	29	73	35	71	61
		30	32	35	23	29	46	60	33	52
	SAPINVS	20	32	35	24	29	55	35	37	59
		30	32	34	23	28	43	45	23	35
	SLU	20	81	105	94	88	90	76	85	71
		30	38	34	37	39	38	39	38	35
	BJ	20	37	153	53	60	77	80	95	*
		30	36	41	53	57	81	87	97	115

... CIMPA - Tlemcen May 2008April 26, 2008 205

Times and iteration counts for solving a 360×360 discretized Laplacean problem with 3 different preconditioners using flexible GMRES(10).

... CIMPA - Tlemcen May 2008April 26, 2008 206

Solution times for a Laplacean problem with various local subproblem sizes using FGMRES(10) with 3 different preconditioners (BJ, SAPINV, SLU) and the Schur complement iteration (SI).

Parallel implementation of ARMS

Three types of points: interior (independent sets), local interfaces, and global interfaces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elimination of interior points and then interface points.

... CIMPA - Tlemcen May 2008April 26, 2008 209

Result: 2-part Schur complement: one corresponding to local interfaces and the other to inter-domain interfaces.

... CIMPA - Tlemcen May 2008April 26, 2008 210

Three approaches

1 Interdomain

Interfaces

Local

Interfaces

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement system (both I1 and I2) with either a block Jacobi (M. Sosonkina and YS, '99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Requires construction of global group independent sets.

> Current status Methods 1 and 2.

Construction of global group independent sets A two level strategy

- **1. Color subdomains**
- 2. Find group independent sets locally
- 3. Color groups consistently

... CIMPA - Tlemcen May 2008April 26, 2008 211

Algorithm: Multicolor Distributed ILU(0)

- 1. Eliminate local rows,
- 2. Receive external interf. rows from PEs s.t. color(PE) < MyColor
- 3. Process local interface rows
- 4. Send local interface rows to PEs s.t. color(PE) > MyColor

... CIMPA - Tlemcen May 2008April 26, 2008 213

Methods implemented in pARMS: add_x Additive Schwarz with method x for subdomains. With/out overlap. x = one of ILUT, ILUK, ARMS. sch_x Schur complement technique, with method x = factorization used for local submatrix. Same x as above. Equiv. to Additive Schwarz preconditioner on Schur complement. sch_sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel) preconditioning is used instead of additive Schwarz for Schur complement. sch_gilu0 ILU(0) preconditioning to solve global Schur complement system obtained from ARMS reduction.

... CIMPA - Tlemcen May 2008April 26, 2008 214

Test problem

1. Scalability experiment: sample finite difference problem.

$$- \, \Delta u + \gamma \left(e^{xy} rac{\partial u}{\partial x} + e^{-xy} rac{\partial u}{\partial y}
ight) + lpha u = f \, ,$$

Dirichlet Boundary Conditions ; $\gamma=100, \alpha=-10;$ centered differences discretization.

- ► Keep size constant on each processor $[100 \times 100]$ ► Global linear system with 10,000 * *nproc* unknowns.
- 2. Comparison with a parallel direct solver symmetric problems
- 3. Large irregular matrix example arising from magneto hydrodynamics.

.... CIMPA - Tlemcen May 2008April 26, 2008 215

Times for 2D PDE problem with fixed subproblem size

Iterations for 2D PDE problem with fixed subproblem size

Iterations

Software

Direct solvers:

SUPERLU

http://crd.lbl.gov/ xiaoye/SuperLU/

- ► MUMPS: [cerfacs]
- ► Univ. Minn. / IBM's PSPASES [SPD matrices]

http://www-users.cs.umn.edu/ mjoshi/pspases/

► UMFPACK

Iterative solvers:

► PETSc

http://acts.nersc.gov/petsc/

and Trilinos (more recent)

http://trilinos.sandia.gov/

- ... are very comprehensive packages..
- **> PETSc includes few preconditioners...**
- ► Hypre, ML, ..., all include interfaces to PETSc or trilinos
- **>** pARMS:

http://www.cs.umn.edu~saad/software

is a more modest effort -

