Université de Haute Alsace

L1 - Théorèmes fondamentaux d'analyse et d'algèbre

Feuille d'exercices n° 1 Groupes, anneaux, corps Borne supérieure

Notation: $x^n = x^{n-1} * x, n \ge 2$; $x^{p+q} = x^p * x^q, (x^p)^q = x^{pq}, p, q \in \mathbb{N}^*$.

Exercice 1. On considère sur \mathbb{N} la loi de composition interne * définie par $a*b=a^2+b^2$. Cette loi est-elle commutative ? associative ? munie d'un élément neutre ?

Exercice 2. Soient (G, *) un groupe et $x, y \in G$ tels que x * y = y * x. Montrer que pour tout entier $n \ge 1$, $(x * y)^n = x^n * y^n$.

Exercice 3. Soient (G, *) un groupe et $x, y, z \in G$. Montrer que

- i) $x * y = x * z \Rightarrow y = z$
- ii) $y * x = z * x \Rightarrow y = z$
- *iii*) $(x * y)^{-1} = y^{-1} * x^{-1}$

Exercice 4. Soit $(A, +, \cdot)$ un anneau non commutatif. On considère sur A la loi de composition interne * définie par $x * y = x \cdot y - y \cdot x$.

- a) Montrer que la loi * est distributive par rapport à la loi +.
- **b)** Montrer que x * y = -y * x.
- c) Montrer que x*(y*z) + y*(z*x) + z*(x*y) = 0 et x*(y*z) (x*y)*z = (z*x)*y.

Exercice 5. Soit G un groupe. On suppose que pour tout $x \in G$, on a $x^2 = 1$.

- a) Montrer que pour tout $x \in G$, $x = x^{-1}$.
- b) Montrer que le groupe G est commutatif.

Exercice 6. Soit G un groupe. On pose $H=\{x\in G|\ xy=yx,\ \forall y\in G\}$. Montrer que H est un sous-groupe commutatif de G.

Exercice 7. On note $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, a, b \in \mathbb{Z}\}.$

- a) Montrer que $\mathbb{Z}[\sqrt{2}]$ muni des opérations + et \times de \mathbb{R} est un anneau.
- **b)** Montrer que $3 + 2\sqrt{2}$ est inversible et calculer $(3 + 2\sqrt{2})^{-1}$.
- c) Montrer qu'il existe une infinité d'éléments inversibles.

Exercice 8. On considère sur IR la loi de composition interne * définie par x*y=x+y-xy.

- a) \mathbf{R} est-il un groupe pour *?
- **b)** Montrer que $(\mathbb{R} \setminus \{1\}, *)$ est un groupe commutatif. Calculer $x^{(n)}$.

Exercice 9. On munit $\mathbb{Q}^2 = \mathbb{Q} \times \mathbb{Q}$ des lois de compositions internes + et * définies par (a,b)+(a',b')=(a+a',b+b') et (a,b)*(a',b')=(aa'+2bb',ab'+a'b). Montrer que $(\mathbb{Q}^2,+,*)$ est un corps.

Exercice 10. Soient deux groupes (G, *) et (G', *') et f un morphisme de (G, *) dans (G', *').

- a) Montrer que (f(G), *') est un groupe.
- b) Sur G, on définit la relation $x\mathcal{R}y$ si f(x) = f(y). Montrer que \mathcal{R} est une relation d'équivalence compatible avec la loi de G. En déduire que l'ensemble des classes d'équivalence, appelé ensemble quotient et noté G/\mathcal{R} , est un groupe pour la loi quotient (que l'on notera encore *).

Exercice 11. Soit A une partie non vide et majorée de IR. Montrer que la borne supérieure de A est l'unique nombre réel tel que :

- i) si $x \in A$, alors $x \leq \sup A$
- ii) pour tout $t < \sup A$, il existe $x \in A$ tel que t < x.

Exercice 12. Soit $A = \left\{ x \in \mathbb{R}, \ x = \frac{n}{n+2}, \ n \in \mathbb{N} \right\}$. Trouver $\sup A$.

Exercice 13. Soit $A = \{x = (-1)^n + \frac{1}{n}, n \in \mathbb{N}\}$. Trouver $\inf A$ et $\sup A$.

Exercice 14. Soit A et B des parties non vides de \mathbb{R} telles que $A \subset B$. Montrer que si B est majorée, alors A est majorée et sup $A \leq \sup B$.

Exercice 15. Soient A et B deux parties non vides et majorées de R. On pose $A+B=\{x\in I\!\!R,\ \exists a\in A,\ \exists b\in B,\ x=a+b\}$. Montrer que $\sup(A+B)=\sup A+\sup B$.