Université de Haute-Alsace

L1 - Théorèmes fondamentaux d'analyse et d'algèbre

Feuille d'exercices n°4 Fonctions d'une variable réelle Limite - Continuité

Exercice 1. Etudier les limites suivantes :

i)
$$\frac{x^2 + 5}{5x^3 - x^2 + 2}$$
 en $+\infty$. ii) $\frac{e^{5x} + 5}{5e^{3x} + 2}$ en $+\infty$. iii) $\sqrt{x^2 + 2x} - x$ en $+\infty$.

iv)
$$\frac{\sqrt{x-2}}{x^2-5x+4}$$
 en 4. v) $\sqrt[3]{x^3+x^2-1}-x$ en $+\infty$.

Exercice 2. a) Montrer que la fonction $f(x) = \cos(x)$ n'admet pas de limite en $+\infty$.

- **b)** Montrer que $\lim_{x \to +\infty} \frac{\cos(x)}{x} = 0$.
- c) Etudier la continuité de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 0 & \text{si } x \le 2\\ a - \frac{b}{x} & \text{si } 2 < x \le 4\\ 1 & \text{si } x > 4. \end{cases}$$

Déterminer les réels a et b pour que cette fonction soit continue sur $I\!\!R$.

Exercice 4. a) Etudier et représenter graphiquement la fonction f(x) = x - E(x).

b) Pour quelles valeurs du réel a la fonction g(x) = (x - E(x))(x - E(x) - a) est-elle continue sur \mathbb{R} ? Quel est alors son graphe?

Exercice 5. Montrer que toute fonction f périodique qui admet une limite finie en $+\infty$ est constante.

Exercice 6. a) Etudier les limites en 0 des fonctions suivantes définies sur \mathbb{R}_+^* :

i)
$$f_0(x) = E\left(\frac{1}{x}\right)$$
, ii) $f_1(x) = xE\left(\frac{1}{x}\right)$, iii) $f_2(x) = x^2E\left(\frac{1}{x}\right)$.

b) Quels sont les points où f_2 est continue? Donner les limites de f_2 à droite et à gauche en un point de discontinuité.

Exercice 7. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Montrer que f est discontinue en tout point de \mathbb{R} .

Exercice 8. Soit f une fonction continue sur IR telle que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

Déterminer f sur $I\!\!N$, puis sur $\mathbb Q$ et enfin sur $I\!\!R$.

Exercice 9. a) Soit f une fonction continue sur un segment I = [a, b] tel que $f(I) \subset I$. Montrer que f admet un point fixe, c'est-à-dire qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) = x_0$.

b) Soit f une fonction continue et strictement décroissante sur \mathbb{R} . Montrer que f admet un unique point fixe.

Exercice 10. a) Soit $f:[0,1] \to \mathbb{R}$ une fonction croissante. Montrer que f a une limite à droite en 0, une limite à gauche en 1 et des limites à droite et à gauche en tout point $x_0 \in]0,1[$.

- **b)** Montrer qu'une fonction f croissante et surjective de [0,1] dans [0,1] est continue.
- c) Soit f une fonction croissante de \mathbb{R}_+^* dans \mathbb{R} telle que la fonction $g(x) = \frac{f(x)}{x}$ soit décroissante sur \mathbb{R}_+^* . Montrer que f est continue sur \mathbb{R}_+^* .

Exercice 11. Soit f une application définie et continue sur \mathbb{R}^+ qui tend vers $+\infty$ en $+\infty$. Montrer que f est minorée et atteint sa borne inférieure.