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In order to cope with the large amounts of data that have become available
in genomics, mathematical tools for the analysis of networks of interactions
between genes, proteins, and other molecules are indispensable. We present a
method for the qualitative simulation of genetic regulatory networks, based on a
class of piecewise-linear (PL) differential equations that has been well-studied in
mathematical biology. The simulation method is well-adapted to state-of-the-art
measurement techniques in genomics, which often provide qualitative and coarse-
grained descriptions of genetic regulatory networks. Given a qualitative model of
a genetic regulatory network, consisting of a system of PL differential equations
and inequality constraints on the parameter values, the method produces a graph
of qualitative states and transitions between qualitative states, summarizing the
qualitative dynamics of the system. The qualitative simulation method has been
implemented in Java in the computer tool Genetic Network Analyzer.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Recent progress in genomics has provided us with experimental tools that
hold great promises for unraveling the networks of regulatory interactions
between genes, proteins, and small molecules which underlie the functioning
of living organisms. On the one hand, these techniques allow protein–DNA
and protein–protein interactions to be identified, thus providing insight into the
structure of genetic regulatory systems [e.g.,Pandey and Mann(2000), Renet al.
(2000)]. On the other hand, they allow the evolution of the state of the system to
be characterized, by large-scale measurement of the level of gene expression and
protein activity across time [e.g.,Lockhart and Winzeler(2000), Zhu and Snyder
(2001)].

In order to cope with the large amounts of data that have thus become available,
formal methods for the representation and analysis of genetic regulatory networks
are indispensable. Mathematical models allow networks of interactions to be
described in a precise and unambiguous manner, while a large variety of analysis
and simulation techniques exists to systematically derive behavior predictions from
the models. The application of formal methods, especially when supported by
computer tools, may lead to a comprehension of the structure and functioning
of large and complex networks of interactions that cannot be obtained through
intuitive approaches alone (McAdams and Arkin, 1998; Endy and Brent, 2001).

The use of formal methods to study regulatory networks is currently subject
to two major constraints (de Jong, 2002). First of all, the biochemical reaction
mechanisms underlying the interactions are usually not or incompletely known.
This prevents the formulation of detailed kinetic models, such as those developed
for the genetic switch controlling phageλ growth (McAdams and Shapiro, 1995)
or the feedback mechanisms regulating tryptophan synthesis inE. coli (Santillán
and Mackey, 2001). A second constraint arises from the general absence of
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quantitative information on kinetic parameters and molecular concentrations. As a
consequence, traditional methods for numerical analysis are difficult to apply.

Few of the modeling and simulation methods that have been developed thus far
are capable of handling the above constraints. A notable exception is formed by
approaches based on a class ofpiecewise-linear (PL) differential equation models
originally proposed byGlass and Kauffman(1973). The state variables in the
PL models correspond to the concentrations of proteins encoded by genes in the
network, while the differential equations represent the interactions arising from the
regulatory influence of some proteins on the synthesis and degradation of others.
The regulatory interactions are modeled by means of step functions, which gives
rise to the PL structure of the differential equations. The use of step functions is
motivated by the nonlinear, switch-like character of many of the interactions in
gene expression and proteolysis (Yagil and Yagil, 1971; Ptashne, 1992).

The PL models provide a coarse-grained description of genetic regulatory
networks, well-adapted to state-of-the-art measurement techniques in genomics.
Furthermore, the models have mathematical properties that favor qualitative
analysis of the steady-state and transient behavior of regulatory systems (Glass,
1975a,b; Glass and Pasternack, 1978a,b; Snoussi, 1989; Lewis and Glass, 1991;
Snoussi and Thomas, 1993; Plahteet al., 1994; Mestl et al., 1995a,b; Edwards,
2000; Edwards and Glass, 2000; Edwardset al., 2001; Gouzé and Sari, 2003).
On a formal level, the PL models are related to a class of asynchronous logical
models proposed by Thomas and colleagues (Thomas and d’Ari, 1990; Thomas
et al., 1995). PL models and their logical relatives have been used for the study
of a number of prokaryotic and eukaryotic regulatory networks (Prokudinaet al.,
1991; Thieffry and Thomas, 1995; Omholtet al., 1998; Mendozaet al., 1999; Alur
et al., 2001; Ghosh and Tomlin, 2001; Sánchez and Thieffry, 2001; Ghoshet al.,
2003). In addition, they have been used for modeling food webs (Plahteet al.,
1995), neural networks (Lewis and Glass, 1992), and biological computers (Ben-
Hur and Siegelmann, 2001).

The use of step functions in PL models of genetic regulatory networks brings
about some nontrivial mathematical problems. In particular, it involves the sub-
division of the phase space into regions at the boundaries of which discontinuities
may occur. Existing approaches either avoid these problems by restricting the anal-
ysis to a subclass of regulatory networks, or adopt solutions that have undesirable
consequences for the predictiveness of the method. Recently, it has been shown
that an approach capable of dealing with differential equations having discontin-
uous right-hand sides, widely used in control theory, allows the above-mentioned
problems to be resolved in a mathematically proper and practically useful manner
(Gouzé and Sari, 2003). This approach, originally proposed byFilippov (1988), is
based on the generalization of the differential equations to differential inclusions.

In this paper we present a method for thequalitative simulation of genetic
regulatory networks described by the generalized PL models. The method is
obtained by formulating the analysis of PL models in terms of concepts developed
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for the qualitative simulation of dynamical systems (Kuipers, 1989, 1994; de
Jonget al., 2001). The qualitative simulation method has been implemented in
a publicly-available computer tool, calledGenetic Network Analyzer (GNA) (de
Jonget al., 2003b). In the accompanying paper (de Jonget al., 2003a), we use the
method and the tool to analyze a genetic regulatory network of biological interest,
consisting of the genes and interactions that regulate the initiation of sporulation in
Bacillus subtilis. The application shows that the simulation method can help to gain
insight into the qualitative dynamics of complex regulatory networks involving a
dozen genes.

Two qualitative abstractions lie at the basis of our approach. First, we give a
description of the dynamics of the system in terms of a graph of qualitative states
and transitions between qualitative states. Aqualitative state corresponds to a
region in the phase space where the system behaves in a qualitatively distinct
way. There exists atransition between two qualitative states, corresponding to
contiguous regions in the phase space, if a solution starting in the first region
reaches the second region, without passing through a third region. Second, instead
of specifying numerical values for the parameters, we supplement the differential
equations with inequality constraints that can usually be inferred from available
biological data. The resultingqualitative PL model corresponds to a region in the
parameter space where, under certain conditions to be specified, the behavior of the
system is described by the same graph of qualitative states and transitions between
qualitative states. Given a qualitative PL model and an initial qualitative state,
the simulation method determines all qualitative states that are reachable from the
initial state through one or more transitions. The simulation is guaranteed to cover
all possible solutions of the quantitative PL models subsumed by the qualitative
PL model.

In the next section of the paper, the modeling of genetic regulatory networks
by means of PL models will be discussed. The mathematical analysis of these
models will be reviewed inSection 3. Sections 4and 5 introduce a qualitative
description of the dynamics of PL models and the notion of qualitative PL model,
respectively. The qualitative simulation algorithm is detailed inSection 6, followed
by an investigation of its formal properties inSection 7. In the final section of the
paper, the method is discussed in the context of related work.

2. PIECEWISE-LINEAR MODELS OF GENETIC REGULATORY NETWORKS

Fig. 1 shows an example of a simple genetic regulatory network. The genesa
andb, transcribed from separate promoters, encode the proteins A and B, each of
which controls the expression of both genes∗. Proteins A and B repress genesa
andb at different concentrations. Repression of the genes is achieved by binding

∗As a notational convention, names of genes are printed in italic and names of proteins start with a
capital.
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a b

A B

Figure 1. Example of a genetic regulatory network of two genes (a and b) coding for a
regulatory protein (A and B). The notation follows, in a somewhat simplified form, the
graphical conventions proposed by Kohn (2001).

of the proteins to regulatory sites overlapping with the promoters. The pattern of
interactions gives rise to one positive and two negative feedback loops.

The dynamics of genetic regulatory networks can be modeled by a class of
differential equations proposed by Mestl et al. (1995a), extending previous work
by Glass and Kauffman (1973) [see also the work of Snoussi (1989), Thomas and
d’Ari (1990), Tchuraev and Ratner (1983)]. The equations have the general form

ẋi = fi(x)− gi (x)xi , xi ≥ 0, 1 ≤ i ≤ n, (1)

where x = (x1, . . . , xn)
′ is a vector of cellular protein concentrations. The state

equations (1) define the rate of change of each concentration xi as the difference
of the rate of synthesis fi(x) and the rate of degradation gi (x)xi of the protein. In
vector notation, the system of differential equations (1) is written as

ẋ = f(x)− g(x)x, (2)

with f = ( f1, . . . , fn)
′ and g = diag(g1, . . . , gn).

The function fi : R
n
≥0 → R≥0 expresses how the rate of synthesis of the protein

encoded by gene i depends on the concentrations x of proteins in the cell. It is
defined as

fi(x) =
∑
l∈L

κil bil(x), (3)

where κil is a rate parameter (κil > 0), bil : R
n
≥0 → {0, 1} a regulation function,

and L a possibly empty set of indices of regulation functions. The function gi

describes the regulation of protein degradation. It is defined analogously to fi ,
except that we demand that gi (x) is strictly positive. In addition, in order to
formally distinguish degradation rates from synthesis rates, we will denote the
former by γ instead of κ . Notice that with the above definitions of fi and gi ,
the state equations (1) and (2) are piecewise-linear (PL).

A regulation function bil describes the logic of gene regulation (Snoussi, 1989;
Plahte et al., 1998). More precisely, it describes the conditions under which
the protein encoded by gene i is synthesized (degraded) at a rate κil(γil xi ).
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State equation for gene a:

State equation for gene b:

Figure 2. State equations for the network of Fig. 1. We will assume the following
parameter values: θ1

a = 4, θ2
a = 8, θ1

b = 4, θ2
b = 8, κa = 20, κb = 20, γa = 2,

and γb = 2.

These conditions are formulated as expressions of step functions s+, s− : R
2 →

{0, 1}:

s+(x j , θ j ) =
{

1, x j > θ j ,

0, x j < θ j ,
and s−(x j , θ j ) = 1 − s+(x j , θ j ), (4)

where x j is an element of the state vector x and θ j a constant denoting a threshold
concentration (θ j > 0). Notice that step functions s+(x j , θ j ) and s−(x j , θ j ) are not
defined for x j = θ j , so neither are the regulation functions in which they occur. We
will use regulation functions that are the arithmetic equivalent of logical functions,
as described in Plahte et al. (1998).

The simplest example of a regulation function is bil (x) = s+(x j , θ j ), which
evaluates to 1, if the concentration x j is above its threshold θ j . Another example is
bil (x) = 1 − s+(x j , θ j )s+(xk, θk), which evaluates to 1, if x j is below its threshold
θ j or xk below its threshold θk . The use of step functions has been motivated by
the observation that the activity of a gene, as a function of the concentration of a
regulatory protein, often follows a steep sigmoidal curve (Yagil and Yagil, 1971;
Ptashne, 1992). That is, the activity of the gene changes in a switch-like manner at
a threshold concentration of the regulatory protein.

In Fig. 2 the state equations for the example network are shown. Gene a is
expressed at a rate κa, if the concentration of protein A is below its threshold θ2

a

and the concentration of protein B below its threshold θ1
b , that is, if the regulation

function ba((xa, xb)
′) = s−(xa, θ

2
a )s

−(xb, θ
1
b ) evaluates to 1. Analogously, gene b

is expressed at a rate κb, if the concentration of protein A is below the threshold
θ1

a and the concentration of protein B below the threshold θ2
b (bb((xa, xb)

′) =
s−(xa, θ

1
a )s

−(xb, θ
2
b ) = 1). Degradation of the proteins A and B is assumed

to be spontaneous, which gives rise to regulation functions having the value 1,
independent of the concentrations of the proteins.

The PL models can be extended to take into account input variables u = (u1, . . . ,

um)
′, representing the concentration of proteins and small molecules whose

synthesis and degradation are regulated outside the system. This leads to models
of the form:

ẋ = f(x,u)− g(x,u)x. (5)

In what follows, we will assume that the input variables are constant, i.e., u̇ = 0.
As a consequence, (5) can be reduced to (2) without loss of generality, by prior
evaluation of the step function expressions in which input variables occur.
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3. MATHEMATICAL ANALYSIS OF PIECEWISE-LINEAR MODELS

3.1. Domains in phase space. The dynamical properties of PL models of the
form (2) can be analyzed in the n-dimensional phase space box� = �1×· · ·×�n ,
where every �i , 1 ≤ i ≤ n, is defined as

�i = {xi ∈ R≥0 | 0 ≤ xi ≤ maxi }. (6)

maxi is a parameter denoting a maximum concentration for the protein. It can be
shown, by generalizing the argument in Glass (1977), that if we choose

maxi > max
x≥0

fi(x)/gi(x),

all trajectories starting inside � will remain in it, while trajectories starting outside
will enter the phase space box at some point.

In general, a protein encoded by a gene will be involved in different interac-
tions at different threshold concentrations, which after ordering are denoted by
θ1

i , . . . , θ
pi

i . The (n − 1)-dimensional hyperplanes xi = θ
ki
i , 1 ≤ ki ≤ pi , par-

tition � into hyperrectangular regions that are called domains. Within each such
region, the concentration of a protein equals a threshold or is bounded by thresh-
olds. More precisely, a domain D ⊆ � is defined by D = D1 × · · · × Dn , with
every Di , 1 ≤ i ≤ n, given by one of the following equations:

Di = {xi ∈ �i | 0 ≤ xi < θ1
i },

Di = {xi ∈ �i | xi = θ1
i },

Di = {xi ∈ �i | θ1
i < xi < θ2

i },
Di = {xi ∈ �i | xi = θ2

i },
· · ·

Di = {xi ∈ �i | xi = θ
pi

i },
Di = {xi ∈ �i | θ pi

i < xi ≤ maxi}. (7)

D denotes the set of all domains in �. As can be easily verified, |D| = ∏n
i=1

(2pi + 1).
We will distinguish two kinds of domain. A domain D ∈ D is called a

regulatory domain, if there are no i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ pi , such that
Di = {xi ∈ �i | xi = θ

j
i }. That is, in a regulatory domain none of the variables

assumes a threshold value. On the other hand, D ∈ D is called a switching domain,
if for at least one i , 1 ≤ i ≤ n, it holds that there is some j , 1 ≤ j ≤ pi ,
such that Di = {xi ∈ �i | xi = θ

j
i }. The corresponding variables xi are called
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(a) (b)

Figure 3. (a) Phase space box � for the PL model in Fig. 2. (b) Target equilibrium
φ(D1) for the regulatory domain D1. The variables xa and xb converge towards target
equilibrium values κa/γa and κb/γb, respectively. With the parameter values in Fig. 2, the
target equilibrium lies in the upperright domain.

switching variables†. The order of a switching domain is a number between 1 and
n, equal to the number of switching variables. The sets of regulatory and switching
domains are denoted by Dr and Ds , respectively. We have |Dr | = ∏n

i=1(pi + 1)
and |Ds | = ∏n

i=1(2pi + 1)− ∏n
i=1(pi + 1).

In Fig. 3(a) the two-dimensional phase space box � for the example network
is shown. As proteins A and B have two thresholds each, the phase space box is
partitioned into nine regulatory and sixteen switching domains. An example of a
regulatory domain is D1 = {(xa, xb)

′ ∈ � | 0 ≤ xa < θ1
a , 0 ≤ xb < θ1

b }, while
D4 = {(xa, xb)

′ ∈ � | 0 ≤ xa < θ1
a , xb = θ2

b } is an example of a switching
domain. Notice that xb is the (only) switching variable in D4.

As a preliminary step for the analysis of the dynamical properties of (2) in
regulatory and switching domains, we define some auxiliary concepts. Let D be a
switching domain of order k, and C the hyperplane of dimension n − k containing
D. The boundary of D in C is the set B(D) of all points x ∈ C , such that each
ball BC(x, ε) in C of center x and radius ε(ε > 0) intersects both D and C\D
(Kelley, 1969). In the case that D is a regulatory domain, C equals �. Now, for
every D ∈ D we define the sets

A(D) = {D′ ∈ Ds | D′ ⊆ B(D)}, and

R(D)= {D′ ∈ Dr | D ⊆ B(D′)}.

A(D) contains the (switching) domains in the boundary of D, whereas R(D)
contains the regulatory domains that have D in their boundary. In the case of

†In Mestl et al. (1995a) switching domains are called�-regions and switching variables are referred
to as primary variables.
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the regulatory domain D1 in Fig. 3, we find A(D1) = {D2, D6, D7}, while
A(D2) = {D7}. Furthermore, R(D1) = { } and R(D2) = {D1, D3}.

3.2. Analysis in regulatory domains. The behavior of systems described by a
PL model of the form (2) has been well-characterized in the regulatory domains
of � (Glass, 1975b; Plahte et al., 1994; Snoussi, 1989). When evaluating the step
function expressions in (3) in a regulatory domain D ∈ Dr , fi(x) reduces to some
constant µD

i ∈ Mi , and gi (x) to some constant νD
i ∈ Ni , where

Mi = { fi(x) | 0 ≤ x ≤ max}, (8)

Ni = {gi (x) | 0 ≤ x ≤ max}. (9)

More precisely, as a consequence of (3), µD
i and νD

i equal sums of rate constants
κil and γil , respectively. Mi and Ni collect the synthesis and degradation rates of
the protein in different domains of �. Inside a regulatory domain D, the state
equations thus simplify to linear and uncoupled differential equations

ẋi = µD
i − νD

i xi , 1 ≤ i ≤ n, (10)

or, equivalently,

ẋ = µD − νDx, (11)

with µD = (µD
1 , . . . , µ

D
n )

′ and νD = diag(νD
1 , . . . , ν

D
n ).

Let θ = (. . . , θ
ki
i , . . .)

′, κ = (. . . , κil , . . .)
′, and γ = (γ1, . . . , γn)

′ be numerical
parameter values. Furthermore, let x(0) = x0 be a point in � representing the
initial conditions. A continuously differentiable function ξ(t, x0, θ, κ, γ ) is a
solution of (11) on a time-interval [0, τ ], τ > 0, if ξ(0) = x0 and for all t ∈ [0, τ ]
it holds that ξ(t) ∈ D and ξ̇(t) = µD − νDξ(t). For initial values x0 ∈ D, there
exists a function ξ(t) and a τ(τ > 0), such that ξ(t) is the unique solution for (11)
on [0, τ ].

Let φi be a function from Dr to �i , defined as

φi (D) = µD
i /ν

D
i . (12)

It follows directly from (11) that all solutions ξ(t) in D monotonically converge
towards a so-called target equilibrium x = φ(D), with

φ(D) = (φ1(D), . . . , φn(D))
′. (13)

Intuitively speaking, the target equilibrium level φi (D) of xi gives an indication
of the strength of gene expression in the regulatory domain. If φ(D) ∈ D, then
for t → ∞ all solutions in D approach the target equilibrium, which is then a



310 H. de Jong et al.

Figure 4. Examples of the behavior of the system of Fig. 2 at threshold boundaries. The
figures show the regulatory domains D1, . . . , D5, and the target equilibria φ(D1), φ(D3),
φ(D5). In (a) the solution trajectories in D1 can be continued in D3, whereas in (b) the
solution trajectories in D3 cannot be continued in D5.

stable equilibrium point of the system, also called regular steady state (Snoussi
and Thomas, 1993). If φ(D) /∈ D, all solutions will leave D at some point.

In the example of Fig. 2, as can be easily checked from the state equations, we
have Ma = {0, κa}, Na = {γa} for protein A, and Mb = {0, κb}, Nb = {γb}
for protein B. In the regulatory domain D1 in Fig. 3(b), the state equations
simplify to

ẋa = κa − γaxa,

ẋb = κb − γbxb.

As a consequence, the target equilibrium φ(D1) of D1 equals (κa/γa, κb/γb)
′,

which lies outside D1. The trajectories in D1 will therefore leave the domain at
some point. Different regulatory domains generally have different target equilibria.
For instance, in the regulatory domain D3 defined by 0 ≤ xa < θ1

a and θ1
b < xb <

θ2
b , the target equilibrium is given by (0, κb/γb)

′.

3.3. Analysis in switching domains. In the switching domains of �, (2) is
generally not defined, because one or more of the concentration variables take
a threshold value. This is not much of a problem, if solution trajectories in
one regulatory domain arrive at a switching domain from which they can be
continued in another regulatory domain (Snoussi, 1989; Edwards et al., 2001).
The trajectories arriving at D2 from D1 in Fig. 4(a) are a case in point. However,
if solution trajectories in different regulatory domains evolve towards the same
switching domain, as is the case for trajectories arriving at D4 from D3 or D5

[Fig. 4(b)], mathematical perplexities arise. In the framework of the previous
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subsection, there is no indication on how the solutions in D3 and D5 can be
continued‡.

The underlying cause of this problem is the occurrence of discontinuities in
the right-hand side of (2), due to the use of step functions. The discontinuities
occur at threshold hyperplanes separating regulatory domains in each of which
the dynamics is described by a different system of differential equations (11). In
order to deal with these discontinuities in a general and rigorous way, we will use
a method originally proposed by Filippov (1988). This method, recently applied
by Gouzé and Sari (2003) to PL systems of the form (2), consists of extending a
system of differential equations with discontinuous right-hand sides into a system
of differential inclusions. By means of this extension we can explicitly describe
the behavior of the system in a threshold hyperplane.

More precisely, the differential equations (2) are extended into differential
inclusions

ẋ ∈ H(x), (14)

where H : � → 2R
n

is a set-valued function§. For x ∈ D, and D a regulatory
domain, we define H(x) simply as

H(x) = {µD − νDx}. (15)

Notice that the extension of the PL system agrees with the original system in the
regulatory domains. If D is a switching domain, H(x) is defined by

H(x) = co({µD′ − νD′
x | D′ ∈ R(D)}). (16)

The smallest closed convex set co(E) of a set E is the intersection of all closed
convex sets containing E (Filippov, 1988). In the case of switching domains, H(x)
will not generally be single-valued.

An absolutely continuous function ξ(t, x0, θ , κ, γ ) is a solution of (14) in the
sense of Filippov on [0, τ ](τ > 0), if ξ(0) = x0 and for almost all t ∈ [0, τ ]
it holds that ξ̇(t) ∈ H(ξ(t)) (Filippov, 1988). The qualification ‘ for almost all
t ∈ [0, τ ]’ means that the set of time-points for which the condition does not hold
is of measure 0. In particular, the condition is not satisfied at time-points when
the solution arrives at or leaves a switching domain D. If no misunderstanding is
possible, we will often simply speak of ‘a solution of (14)’ , instead of ‘a solution
of (14) in the sense of Filippov’ . For all initial values x0 ∈ � there exists a solution
of (14) on some [0, τ ] (Filippov, 1988). However, this solution is not guaranteed

‡In Plahte et al. (1994) and Mestl et al. (1995a), D2 is called a transparent wall and D4 a black
wall. Another problem, not shown here, occurs when a switching domain is a white wall, that is,
when the trajectories in two regulatory domains evolve from a common bounding switching domain.

§2E represents the powerset (the set of subsets) of the set E .
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(a) (b)

Figure 5. Behavior of the system of Fig. 1 at a point x in a threshold boundary, when the
differential equations are generalized into differential inclusions by the method of Filippov.
Whereas in (a) solution trajectories cross D2 instantaneously, in (b) they slide along D4.

to be unique, due to the generalization of the differential equations to differential
inclusions.

In order to get an intuitive feeling for the meaning of the above concepts, consider
again the examples in Fig. 4. In the first case, D2 is the switching domain bounding
the regulatory domains D1 and D3. If x ∈ D2, then H(x) is the smallest closed
convex set including the end-points of the vectors µD1 − νD1

x and µD3 − νD3
x

starting at x. This set is graphically represented in Fig. 5(a) by the linear segment
connecting the end-points of the vectors. An absolutely continuous function ξ(t)
defined on a time-interval [0, τ ], which remains in D1 and satisfies (14) for t in
the right-open interval [0, σ [, crosses x ∈ D2 for t equal to σ , and remains in D3

and satisfies (14) for t in the left-open interval ]σ, τ ], σ < τ , is a solution. In the
second example of Fig. 4, H(x) is a linear segment connecting the end-points of
the vectors µD3 − νD3

x and µD5 − νD5
x. Contrary to the previous example, H(x)

intersects with the threshold boundary, because the vector fields in D3 and D5 are
directed towards D4 [Fig. 5(b)]. An absolutely continuous function ξ(t) defined on
a time-interval [0, τ ], which remains in D3 and satisfies (14) for t ∈ [0, σ [, arrives
at x ∈ D4 at t = σ , and slides along D4 and satisfies (14) on t ∈]σ, τ ], σ < τ , is a
solution.

For every domain D, a target equilibrium set �(D) can be defined. If D is a
regulatory domain, then

�(D) = {φ(D)}, (17)

where φ(D) is the target equilibrium of D, defined by (13). If D is a switching
domain, the definition is a little bit more complicated. Let D be a switching domain
of order k, contained in the (n − k)-dimensional hyperplane C . Then

�(D) = C ∩ co({φ(D′) | D′ ∈ R(D)}). (18)

That is,�(D) is the smallest closed convex set of the target equilibria of regulatory
domains D′ having D in their boundary, intersected with the threshold hyperplane
containing D. In the case of switching domains, �(D) is not generally a
single point.



Qualitative Simulation of Genetic Regulatory Networks 313

(a) (b)

Figure 6. Determination of the target equilibrium sets (a) �(D2) = { } and (b) �(D4) =
{(0, θ2

b )
′}.

Gouzé and Sari (2003) have shown that all solutions ξ(t) either cross a domain D
instantaneously or remain in it on some extended time-interval, while converging
towards �(D). For the latter solutions to exist, it must hold

�(D) �= { }. (19)

In regulatory domains, (19) is always satisfied and solutions monotonically
converge towards �(D), as discussed in Section 3.2. In switching domains, if (19)
is satisfied, the convergence of the solutions in D is monotonic in a weak sense
(Appendix A)¶. If �(D) ∩ D = { }, all solutions will leave D at some point. On
the other hand, if �(D)∩ D �= { }, there exist solutions in D that approach or enter
the target equilibrium set�(D) as t → ∞. Every φ ∈ �(D)∩ D is an equilibrium
point of the system, in the sense that there exists a solution ξ(t, x0, θ, κ, γ ), such
that ξ(t) = φ for all t ≥ 0. In the special case that �(D) is a singleton, the
equilibrium point φ has been called a singular steady state of the system (Snoussi
and Thomas, 1993). Whether this equilibrium point is stable or unstable must be
determined through further analysis.

Consider the examples in Fig. 6. The target equilibrium set �(D2) of
the switching domain D2 is defined, following (18), by the intersection of
co({φ(D1),φ(D3)}) and the threshold boundary xb = θ1

b . The smallest closed
convex set consists of the linear segment connecting the points (κa/γa, κb/γb)

′
and (0, κb/γb)

′, as shown in (a). co({φ(D1),φ(D3)}) and the threshold boundary
xb = θ1

b do not intersect in the figure, so �(D2) = { }. Following criterion (19),
there are no solutions remaining in D2. This is different in the case of D4. Here, the
target equilibrium set �(D4) is given by the intersection of co({φ(D3),φ(D5)}),
the linear segment connecting the points (0, κb/γb)

′ and (0, 0)′, and the threshold

¶The solutions satisfying (19) in switching domains are known as sliding mode solutions in control
theory (Edwards and Spurgeon, 1998).
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boundary xb = θ2
b . Consequently, �(D4) equals {(0, θ2

b )
′}, and there exists a solu-

tion remaining in D4, converging towards (0, θ2
b )

′. Because the target equilibrium
lies inside D4, it is an equilibrium point of the system. Closer analysis reveals that
it is stable.

4. QUALITATIVE DESCRIPTION OF DYNAMICS OF PIECEWISE-LINEAR

MODELS

The mathematical framework presented in the previous section suggests an
intuitive qualitative description of the dynamics of regulatory systems described
by the PL models (2). This description is based on an abstraction of the state of
a regulatory system, a qualitative state, consisting of the domain D in which the
system resides and the position of the target equilibrium set �(D) with respect
to D. There exists a transition between two qualitative states QS and QS′,
corresponding to contiguous domains D and D′, if some solution trajectories
starting in D reach D′, without passing through an intermediate domain. The
sets of qualitative states and transitions between qualitative states define a state
transition graph concisely representing the qualitative dynamics of the regulatory
system. In this section we will elaborate the ideas of qualitative state, transition
between qualitative states, and state transition graph.

4.1. Qualitative states. As a preliminary step, we define a function v : D×� →
{−1, 0, 1}n that maps a domain D and a point e to a sign vector describing the
relative position of D and e. More precisely, we define v(D, e), such that the i th
component of the sign vector, 1 ≤ i ≤ n, is given by

v(D, e)i =



1, if for all d ∈ Di : ei > d,
0, if for some d ∈ Di : ei = d,
−1, if for all d ∈ Di : ei < d.

(20)

As an example, consider the relative position of domains and their target equilibria
in Fig. 4. We find v(D1, φ(D1)) = (1, 1), v(D3, φ(D3)) = (0, 1), and
v(D5, φ(D5)) = (0,−1).

The definition of v can be generalized to obtain a set function V : D × 2� →
2{−1,0,1}n

, which maps a domain D and a set E to a set of sign vectors describing
the relative position of D and points in E :

V (D, E) = {v(D, e) | e ∈ E}. (21)

For example, in Fig. 7, we have V (D1,�(D1)) = {(1, 1)}, V (D2,�(D2)) = { },
V (D3,�(D3)) = {(0, 1)}, V (D4,�(D4)) = {(0, 0)}, and V (D5,�(D5)) =
{(0,−1)}. Moreover, V (D1, D2) = {(0, 1)}, V (D1, D7) = {(1, 1)}, and
V (D1, D2 ∪ D7) = {(0, 1), (1, 1)}.
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Figure 7. Examples of qualitative states and transitions between qualitative states for the
PL model in Fig. 2.

To every domain D ∈ D, we associate a qualitative state QS defined as follows:

QS = 〈D, V (D,�(D))〉. (22)

That is, the qualitative state describes the relative position of D and its target
equilibrium set �(D), thus capturing the local dynamics of the system in D. The
set of qualitative states associated with the domains D is denoted by QS . In
the example system we have QS1 = 〈D1, {(1, 1)}〉, QS2 = 〈D2, { }〉, QS3 =
〈D3, {(0, 1)}〉, QS4 = 〈D4, {(0, 0)}〉 and QS5 = 〈D5, {(0,−1)}〉 (Fig. 7).

4.2. Transitions between qualitative states. Let QS, QS′ ∈ QS be two
qualitative states associated with contiguous domains D, D′ ∈ D. Contiguity
implies that either D′ is in the boundary of D, or D is in the boundary of D′.
Consider D′ ∈ A(D). There exists a transition T = 〈QS, QS′〉 between the
qualitative states, if there is a solution ξ(t, x0, θ, κ, γ ) defined on a finite time
interval [0, τ ], such that

(1) ξ(t) ∈ D for 0 ≤ t < τ , and
(2) ξ(τ ) ∈ D′.

The definition expresses that there exists a solution trajectory reaching D′ from D
in finite time, without passing through a third domain. A similar definition covers
the case that D ∈ A(D′). For a transition T = 〈QS, QS′〉 to exist, there must be a
solution ξ(t, x0, θ, κ, γ ) defined on a finite time interval [0, τ ], such that

(1) ξ(0) ∈ D, and
(2) ξ(t) ∈ D′ for 0 < t ≤ τ .

We will use T to denote the set of transitions between the qualitative states QS of
a regulatory system.
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Figure 8. Phase space and state transition graph for the PL model in Fig. 2. Qualitative
states associated with regulatory and switching domains are indicated by unfilled and filled
dots, respectively. Qualitative equilibrium states are circled in addition. The attraction set
of the qualitative equilibrium state QS4 is marked by the dotted border.

Fig. 7 gives a few examples of transitions between qualitative states in the
example system. For the parameter values in Fig. 2, trajectories starting in D1

converge towards �(D1) and reach the boundary domains D2, D6, or D7 in finite
time, thus giving rise to transitions T 1→2 = 〈QS1, QS2〉, T 1→6 = 〈QS1, QS6〉,
and T 1→7 = 〈QS1, QS7〉, respectively. Solution trajectories starting in D2 will
immediately enter D3, D2 ∈ A(D3), so that T 2→3 = 〈QS2, QS3〉 is a transition
of the system. All trajectories in D3 reach D4 ∈ A(D3) in finite time, which
results in the transition T 3→4 = 〈QS3, QS4〉. There is no transition possible from
D4, because all trajectories starting in D4 remain in this domain, sliding towards
the target equilibrium set �(D4) in D4. In other words, no solutions reach D9,
domain in the boundary of D4, and no solutions reach D3 and D5, domains having
D4 in their boundary.

What would happen if we choose the parameter values such that φ(D3) is located
in the threshold boundary defined by xb = θ2

b ? The trajectories starting in D3

would still reach D4, but not in finite time! So, according to the definition, there
would be no transition between QS3 and QS4. This akward situation can be
avoided under the condition that, if there exists φ ∈ �(D) included in the boundary
of D, i.e., φ ∈ �(D)∩ B(D), then there exists another φ′ ∈ �(D) not included in
the boundary of D, i.e., φ′ /∈ �(D) ∩ B(D), such that v(D,φ) = v(D,φ′). The
condition guarantees that, if there are solutions reaching the boundary in infinite
time, there are also solutions doing so in finite time. For regulatory domains, this
simplifies to the generic assumption that φ(D) is not located in the boundary of D.

4.3. State transition graph. A state transition graph is a directed graph G
consisting of the qualitative states QS of a system and the transitions T between
these qualitative states, that is, G = 〈QS, T 〉. Fig. 8 shows the state transition
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graph obtained for the model in Fig. 2. The state transition graph obtained from
a PL model provides a qualitative picture of the dynamics of a genetic regulatory
system, as will be discussed below.

PROPOSITION 4.1. Let QS = 〈D, V (D,�(D))〉 be a qualitative state. There
exist solutions remaining in D, iff V (D,�(D)) �= { }. Conversely, no such
solutions exist, iff V (D,�(D)) = { }.

Proof. There exist solutions remaining in D, iff D is a regulatory domain or
D is a switching domain satisfying condition (19). In both cases, �(D) �= { }
and hence V (D,�(D)) �= { }. There do not exist any such solutions, iff D is
a switching domain not satisfying condition (19). In that case, �(D) = { } and
hence V (D,�(D)) = { }. �

A qualitative state QS = 〈D, V (D,�(D))〉, such that V (D,�(D)) �= { },
will be called persistent. On the other hand, a qualitative state for which
V (D,�(D)) = { } will be called instantaneous. The instantaneous qualitative
states in Fig. 8 are QS2, QS6, QS8, QS9, QS10, QS12, QS14, QS17, QS18, QS19,
QS20, QS22, and QS24. Instantaneous qualitative states can be removed from a
state transition graph, because their biological significance is limited. This results
in a state transition graph that is smaller and hence easier to interpret.

PROPOSITION 4.2. Let QS = 〈D, V (D,�(D))〉 be a qualitative state. D
contains an equilibrium point, iff 0 ∈ V (D,�(D)).

Proof. If D is a regulatory domain, then �(D) = {φ(D)}. φ(D) is an
equilibrium point, iff φ(D) ∈ D, that is, iff v(D,φ(D)) = 0. If D is a switching
domain, then �(D) = C ∩co({φ(D′) | D′ ∈ R(D)}). φ ∈ �(D) is an equilibrium
point, iff φ ∈ D, that is, iff v(D,φ) = 0. �

A qualitative state such that 0 ∈ V (D,�(D)) will be called a qualitative
equilibrium state. Examples of qualitative equilibrium states in the state transition
graph of Fig. 8 are QS4 = 〈D4, {(0, 0)}〉, QS7 = 〈D7, {(0, 0)}〉, and QS16 =
〈D16, {(0, 0)}〉. The qualitative equilibrium states QS4 and QS16 correspond to
stable equilibria of the system, located at (0, θ2

b )
′ and (θ2

a , 0)′, respectively. The
qualitative equilibrium state QS7 corresponds to an unstable equilibrium located
at (θ1

a , θ
1
b )

′. The stable equilibria present the two functional states of the system:
(1) gene a on and gene b off, (2) gene a off and gene b on. This confirms the results
of earlier mathematical studies of genetic regulatory networks with the same or a
similar structure [e.g., Cherry and Adler (2000), Goodwin (1963), Keller (1994),
Keller (1995), Thomas and d’Ari (1990), Wolf and Eeckman (1998)].

The qualitative states from which a qualitative equilibrium state is reachable
together form the attraction set of that state. Fig. 8 shows the attraction set of the
qualitative equilibrium state QS4. Notice that a qualitative state may be a member
of several attraction sets, like QS1 in Fig. 8, which is in the attraction sets of all
three qualitative equilibrium states.
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Figure 9. Detailed description of the qualitative behavior (QS1, QS2, QS3, QS4) in
Fig. 8.

A path in the state transition graph will be called a qualitative behavior of the sys-
tem. For instance, (QS1, QS2, QS3, QS4), (QS1, QS6, QS11, QS16), and (QS1,

QS7) are qualitative behaviors of the system. Each of these behaviors leads from
QS1 to one of the qualitative equilibrium states. The qualitative behaviors in a
state transition graph describe how the bounds on protein concentrations evolve
over time, according to the sequence of transitions between qualitative states. In
Fig. 9, one of the qualitative behaviors of the example system is explored in more
detail. A cyclic qualitative behavior will be called a qualitative cycle. Like for
qualitative equilibrium states, we can define an attraction set for qualitative cycles.
The relation between limit cycles and qualitative cycles has been studied for some
special cases (Glass and Pasternack, 1978a,b; Snoussi, 1989; Mestl et al., 1995b;
Edwards, 2000). Fig. 8 does not contain any qualitative cycles.

There exists an important relation between the qualitative behaviors in the state
transition graph and the solutions of a PL model. Let ξ(t, x0, θ, κ, γ ) be a solution
of a PL model on a finite time-interval [0, τ ]. We assume that x0 ∈ �, so that ξ(t)
remains in � on [0, τ ] (Section 3.1).

PROPOSITION 4.3. If ξ(t) is a solution passing through the finite sequence of
domains (D0, . . . , Dm) on the finite time-interval [0, τ ], then

(QS0 = 〈D0, V (D0,�(D0))〉, . . . , QSm = 〈Dm, V (Dm,�(Dm))〉)

is a qualitative behavior in the state transition graph.

Proof. Because ξ(t) passes through the sequence of domains (D0, . . . , Dm) on
the finite time-interval [0, τ ], there exist transitions between qualitative states QSk

and QSk+1, 0 ≤ k < m. As a consequence, (QS0, . . . , QSm) is a qualitative
behavior in the state transition graph. �

Informally speaking, the proposition means that the set of solutions passing
through a finite sequence of domains on a finite time-interval of the PL model
is covered by the state transition graph. It allows us to infer that, if a qualitative
behavior (QS0, . . . , QSm) is absent from the state transition graph, then there does
not exist any solution of the PL model passing through the sequence of domains
(D0, . . . , Dm).
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State equation for gene a:

Threshold inequalities:

Equilibrium inequalities:

State equation for gene b:

Threshold inequalities:

Equilibrium inequalities:

Figure 10. State equations, threshold inequalities, and equilibrium inequalities forming the
qualitative PL model of the network of Fig. 1.

5. QUALITATIVE PIECEWISE-LINEAR MODELS

Most of the time, precise numerical values for the threshold and rate parameters
in a PL model are not available. However, instead of specifying precise numerical
values, it is often possible to supplement the state equations with inequality
constraints on the parameter values. The inequality constraints express weak,
but reliable information on the regulatory interactions that can be inferred from
biological data. The resulting, so-called qualitative PL model subsumes a set of
quantitative PL models, the qualitative dynamics of each of which can be described
by means of a state transition graph. In the next section, we will show that,
under some conditions to be spelled out, all quantitative PL models subsumed by a
qualitative PL model yield the same state transition graph.

The first type of inequality constraints in a qualitative PL model are the so-
called threshold inequalities. They are obtained by ordering the pi threshold
concentrations of gene i , that is,

0 < θ1
i < · · · < θ

pi
i < maxi . (23)

In the case of protein A, there are two threshold concentrations: θ1
a is the

threshold for the repression of gene b, while θ2
a is the threshold for the repression

of gene a. Assuming the first to be lower than the second, we obtain the threshold
inequalities 0 < θ1

a < θ2
a < maxa. The ordering of the thresholds of protein B

can be determined likewise, giving rise to 0 < θ1
b < θ2

b < maxb, with θ1
b being

the threshold for gene a repression and θ2
b the threshold for gene b autorepression

(Fig. 10).
Second, the possible target equilibrium levels of xi in different regulatory

domains D ∈ Dr can be ordered with respect to the threshold concentrations.
The resulting equilibrium inequalities define the strength of gene expression in
the domain in a qualitative way, on the scale of ordered threshold concentrations.
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More precisely, for every µi ∈ Mi , νi ∈ Ni , and µi , νi �= 0, we specify one of the
following pairs of inequalities:

0 < µi/νi < θ1
i ,

θ1
i < µi/νi < θ2

i ,

· · ·
θ

pi
i < µi/νi < maxi .

(24)

The equilibrium inequalities for the example model are shown in Fig. 10. In
the absence of protein B (s−(xb, θ

1
b ) = 1), while protein A has not yet reached its

highest level (s−(xa, θ
2
a ) = 1), gene a is expressed at a rate κa. The corresponding

target equilibrium value κa/γa of xa must be above the second threshold θ2
a ,

otherwise the concentration of the protein would not be able to reach or maintain
a level at which the observed negative autoregulation of gene a occurs (i.e.,
(θ2

a < κa/γa < maxa). In a similar way, the target equilibrium value κb/γb is
positioned above θ2

b , again to ensure that the negative autoregulation of gene b at
high concentrations of protein B can occur.

6. QUALITATIVE SIMULATION

In order to study the qualitative dynamics of a genetic regulatory system, we
would like to know the possible state transition graphs for all quantitative PL
models subsumed by the qualitative PL model. This requires the computation
of qualitative states and transitions between qualitative states, which is a difficult
problem in general, because �(D) may be a complex polyhedron in �. In this
section, we therefore propose a hyperrectangular overapproximation of�(D). The
approximation has the property that in the region of the parameter space defined
by the inequalities in the qualitative PL model, all quantitative PL models yield the
same state transition graph. We will derive rules to efficiently compute this graph
from the inequality constraints by symbolic instead of numerical means.

A state transition graph may become exceedingly large, as the number of
domains, and hence qualitative states, grows exponentially with the dimension
of the system (Section 3.1). For many purposes, it is sufficient to know which
qualitative states are reachable from a given initial qualitative state, that is, which
qualitative behaviors the system can exhibit when initially being in this state. We
outline an algorithm for what will be called qualitative simulation, the generation
of the reachable part of a state transition graph from a qualitative PL model and an
initial domain.

6.1. Computation of qualitative states. In order to determine the qualitative
state associated with a domain D, we need to compute V (D,�(D)). Because
�(D) may be a complex polyhedron in �, we will compute V (D,�(D)) instead
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of V (D,�(D)), where �(D) ⊆ � is the smallest closed hyperrectangle including
�(D). Like �(D), �(D) is a convex set, but it has a much simpler shape. More
specifically, if D is a regulatory domain, then �(D) = �(D) = {φ(D)}. For a
switching domain D of order k we have

�(D) = C ∩ rect({φ(D′) | D′ ∈ R(D)}), (25)

where C is the (n − k)-dimensional threshold hyperplane containing D. The set
rect(E) denotes the smallest closed hyperrectangle containing the set E . If D is a
switching domain, then in general �(D) will be an overapproximation of �(D).
In Section 7, we discuss the consequences of choosing this overapproximation.

The use of V (D,�(D)) rather than V (D,�(D)) much facilitates the computa-
tion of qualitative states, as demonstrated by the following rules.

PROPOSITION 6.1. Let D be a regulatory domain. v ∈ V (D,�(D)), iff for all i ,
1 ≤ i ≤ n,

vi =



1, if for all d ∈ Di : φi (D) > d,
0, if for some d ∈ Di : φi (D) = d,
−1, if for all d ∈ Di : φi (D) < d.

(26)

Proof. The result is a direct consequence of �(D) = {φ(D)}, for D ∈ Dr , and
the definition of V (D,�(D)). �

PROPOSITION 6.2. Let D be a switching domain of order k contained in the
(n − k)-dimensional threshold hyperplane C. V (D,�(D)) �= { }, iff for all i ,
1 ≤ i ≤ n, such that xi is a switching variable and Di = {d},

min
D′∈R(D)

φi(D
′) < d < max

D′∈R(D)
φi (D

′). (27)

Proof. V (D,�(D)) �= { }, iff �(D) �= { }. For D ∈ Ds , �(D) is defined
by (25). �(D) can be decomposed into �1(D) × · · · × �n(D), because of its
hyperrectangular shape. For every i , 1 ≤ i ≤ n,

�i(D) = Ci ∩ {xi ∈ �i | min
D′∈R(D)

φi(D
′) ≤ xi ≤ max

D′∈R(D)
φi (D

′)}. (28)

If xi is a switching variable, then Ci = Di = {d}, where d equals some threshold
θ

ki
i , 1 ≤ ki ≤ pi . Condition (27) now follows with the observation that the

inequalities are strict, because the models that interest us satisfy (24). That is,
φi (D′) is not equal to a threshold.

PROPOSITION 6.3. Let D be a switching domain of order k contained in the
(n − k)-dimensional threshold hyperplane C, and V (D,�(D)) �= { }. v ∈ V (D,
�(D)), iff for all i , 1 ≤ i ≤ n, if xi is a switching variable, then

vi = 0,
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and, if xi is a nonswitching variable, then

vi ∈




{1}, if for all d ∈ Di : minD′∈R(D) φi(D′) > d,
{0}, if for some d, d ′ ∈ Di : minD′∈R(D) φi (D′) = d and

maxD′∈R(D) φi (D′) = d ′,
{−1}, if for all d ∈ Di : maxD′∈R(D) φi (D′) < d,
{0, 1}, if for all d ∈ Di : maxD′∈R(D) φi (D′) > d and for some

d ′ ∈ Di : minD′∈R(D) φi (D′) = d ′,
{−1, 0}, if for all d ∈ Di : minD′∈R(D) φi(D′) < d and for some

d ′ ∈ Di : maxD′∈R(D) φi (D′) = d ′,
{−1, 0, 1}, if for all d ∈ Di : minD′∈R(D) φi(D′) < d

and maxD′∈R(D) φi (D′) > d.
(29)

Proof. �(D) can be decomposed into �1(D)× · · · ×�n(D), as in the proof of
the previous proposition. If xi is a switching variable, then Ci = Di = {d} and
vi = 0 by definition of V . If xi is a nonswitching variable, then �i(D) is defined
as in (28) and the conditions on vi follow from the definition of V . �

The approximation of �(D) by �(D) has an important consequence. In
principle, for different combinations of parameter values θ, κ, γ consistent with
the inequality constraints in the qualitative PL model, we could obtain a different
relative position of a domain and its target equilibrium, and hence a different
qualitative state. However, under the approximation it can be shown that every
domain D ∈ D is associated with a unique qualitative state. As will be illustrated
in Section 7.2, this is not generally true for qualitative states 〈D, V (D,�(D))〉.
LEMMA 6.1. For all quantitative PL models subsumed by a qualitative PL
model, every domain D ∈ D is associated with a unique qualitative state
〈D, V (D,�(D))〉.

Proof. The qualitative state 〈D, V (D,�(D))〉 associated with D is determined
by the order relations specified in Propositions 6.1–6.3. In particular, for every i ,
1 ≤ i ≤ n, we need to determine the ordering of the target equilibrium value φi (D)
and Di (if D is a regulatory domain), or the ordering of the target equilibrium
values φi(D′), D′ ∈ R(D), and Di (if D is a switching domain). These order
relations are uniquely determined by the threshold and equilibrium inequalities
(23) and (24) specified in a qualitative PL model. �

Given a qualitative PL model, Propositions 6.1–6.3 can be used to compute the
qualitative state associated with a domain, as suggested in the proof of Lemma 6.1.
The check of the order relation between thresholds and target equilibrium values
can be performed separately for every dimension i , while bearing in mind that
|R(D)| = 2n in the worst case (compare D7 in the example).

As an example, consider the computation of V (D1,�(D1)) in the case of the
qualitative PL model of Fig. 10. D1 is a regulatory domain defined by
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D1 = {(xa, xb)
′ ∈ � | 0 ≤ xa < θ1

a , 0 ≤ xb < θ1
b },

while φ(D1) = (κa/γa, κb/γb)
′ (Fig. 6). From the equilibrium inequalities we

infer that κa/γa > θ1
a and κb/γb > θ1

b . As a consequence, it follows with
Proposition 6.1 that V (D1,�(D1)) = {(1, 1)}. The resulting qualitative state is
QS1 = 〈D1, {(1, 1)}〉. Another example is the computation of V (D2,�(D2)),
where D2 is a switching domain, with switching variable xb. More precisely,

D2 = {(xa, xb)
′ ∈ � | 0 ≤ xa < θ1

a , xb = θ1
b }.

R(D2) = {D1, D3} and φ(D1) = (κa/γa, κb/γb)
′ and φ(D3) = (0, κb/γb)

′.
Because κb/γb > θ1

b , and hence φb(D1) > θ1
b and φb(D3) > θ1

b , it can be inferred
from Proposition 6.2 that V (D2,�(D2)) = { }, and hence QS2 = 〈D2, { }〉.
A third example concerns the computation of V (D4,�(D4)), where D4 is a
switching domain with switching variable xb. We have

D4 = {(xa, xb)
′ ∈ � | 0 ≤ xa < θ1

a , xb = θ2
b }.

Using R(D4) = {D3, D5}, we find by means of Proposition 6.2 that
V (D4,�(D4)) �= { }. Given that φ(D3) = (0, κb/γb)

′ and φ(D5) = (0, 0)′,
the parameter values imply 0 < θ2

b < κb/γb. Application of Proposition 6.3
yields V (D4,�(D4)) = {(0, 0)}, so that the qualitative state associated with D4 is
QS4 = 〈D4, {(0, 0)}〉.

6.2. Computation of transitions between qualitative states. Let QS and QS′
be qualitative states associated with domains D and D′, such that D′ ∈ A(D). In
Section 4.2, the conditions for a transition from QS to QS′ to occur were discussed,
consisting of the existence of a solution trajectory starting in D and remaining in
this domain on some finite time-interval until reaching D′. Like in Section 6.1,
we will approximate �(D) by �(D). In order for this approximation to make
sense, we would like the crucial property of �(D), that every φ ∈ �(D) ∩ D is
an equilibrium point of the system, to hold for �(D) as well. This presupposes
that we also formulate a hyperrectangular approximation for H(x), thus redefining
the dynamics of the system according to (14). More specifically, we set for every
x ∈ D,

H(x) = {µD − νDx}, if D is a regulatory domain, (30)

and

H(x) = rect({µD′ − νD′
x | D′ ∈ R(D)}), if D is a switching domain. (31)

It now follows that every ψ ∈ �(D)∩ D is an equilibrium point of the system. The
hyperrectangular approximations of �(D) and H(x) underlie the following rules
for computing the possible transitions from a qualitative state.
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PROPOSITION 6.4. Given domains D and D′, let V (D, D′) = {w} denote their
relative position. Furthermore, let D′ ∈ A(D). There is a transition from
QS = 〈D, V (D,�(D))〉 to QS′ = 〈D′, V (D′,�(D′))〉, iff

(1) V (D,�(D)) �= { }, and
(2) there is some v ∈ V (D,�(D)), such that viwi = 1 for every xi , 1 ≤ i ≤ n,

that is a switching variable in D′, but not in D.

Proof. We first prove sufficiency of the conditions 1 and 2 to yield a transition.
Let xi be a switching variable in D′, but not in D, which means that D′

i = {θ ki
i },

for some ki , 1 ≤ ki ≤ pi . Let wi = 1. The conditions imply that there is
some ψ ∈ �(D), such that, for all d ∈ Di , d < θ

ki
i < ψi . For wi = −1, we

have ψi < θ
ki
i < d. For every x0 ∈ D and ψ ∈ �(D), there exist solutions

ξ(t, x0, θ, κ, γ ) in D monotonically converging towards ψ (Appendix A). As a
consequence, the solutions will reach one or more hyperplanes xi = θ

ki
i , where

xi is a switching variable in D′, but not in D. We now choose x0, such that
the corresponding solutions ξ(t) pass through the intersection of the threshold
hyperplanes xi = θ

ki
i . This implies that the trajectories reach D′ from D. Because

(24) holds for the models that interest us, the condition at the end of Section 4.2
is satisfied for �(D), and at least some solutions reach D′ from D in finite time.
This results in a transition from QS to QS′.

Necessity is proven by contraposition, that is, by showing that, if the conditions 1
and 2 are not satisfied, then we cannot have a transition. If condition 1 is false, then
a transition is certainly not possible. Suppose that condition 2 is false. That is, for
some i , such that xi is a switching variable in D′, but not in D, viwi �= 1, for all
v ∈ V (D,�(D)). We have D′

i = {θ ki
i }, for some ki , 1 ≤ ki ≤ pi . If wi = 1,

then ψi < θ
ki
i , for all ψ ∈ �(D), whereas if wi = −1, then θ ki

i < ψi . For all
solutions ξ(t, x0, θ, κ, γ ) in D, it holds that ξi(t)monotonically converges towards
the projection of �(D) on �i (Appendix A). As a consequence, no solution can
reach the threshold hyperplane xi = θ

ki
i , and hence there does not exist a transition

from QS to QS′. �
PROPOSITION 6.5. Given domains D and D′, let V (D, D′) = {w} denote their
relative position. Furthermore, let D ∈ A(D′). There is a transition from
QS = 〈D, V (D,�(D))〉 to QS′ = 〈D′, V (D′,�(D′))〉, iff

(1) V (D′,�(D′)) �= { }, and
(2) there is some v ∈ V (D′,�(D′)), such that viwi �= −1 for every xi , 1 ≤ i ≤

n, that is a switching variable in D, but not in D′.

The proof is similar to that of Proposition 6.4 and will be omitted.
Using qualitative states 〈D, V (D,�(D))〉 instead of 〈D, V (D,�(D))〉 has the

consequence that, for all combinations of parameter values consistent with the
inequality constraints in the qualitative PL model, the set of transitions from a
qualitative state to other qualitative states is unique. Again, this is not guaranteed
for qualitative states 〈D, V (D,�(D))〉.
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LEMMA 6.2. For all quantitative PL models subsumed by a qualitative PL model,
every qualitative state QS = 〈D, V (D,�(D))〉 has a unique set of outgoing
transitions {T ∈ T | T = 〈QS, QS′〉, QS′ ∈ QS}.

Proof. Lemma 6.1 states that under the conditions of the proposition, every
domain D is associated with a unique qualitative state QS = 〈D, V (D,�(D))〉.
As a consequence of Propositions 6.4 and 6.5, the set of transitions from QS is
unique. �

Given a qualitative state QS = 〈D, V (D,�(D))〉 obtained from a qualitative
PL model, Propositions 6.4 and 6.5 allow the transitions from this state to be
computed symbolically, by checking the two conditions in the rule that applies.
In the worst case, a domain is in the boundary of 3n − 1 other domains (compare
D7 in the example). The maximum difference in the number of switching variables
between two domains is n (compare D1 and D7 in the example). The computation
of transition from a qualitative state is therefore exponential in the number of
variables.

We will illustrate the transition rules by means of the two examples in
Fig. 11, again obtained from the qualitative PL model in Fig. 10. Consider
the possible transitions from the qualitative state QS3 associated with regu-
latory domain D3 to qualitative states associated with the boundary domains
A(D3) = {D2, D4, D7, D8, D9} in (a). We have to verify whether the conditions 1
and 2 of Proposition 6.4 are verified. V (D3,�(D3)) is calculated to be {(0, 1)},
while V (D3, D4) equals {(0, 1)}. With xb a switching variable in D4, but not in
D3, we find that conditions 1 and 2 are satisfied. Consequently, a transition from
QS3 to QS4 is generated. Transitions from QS3 to the other candidate successor
states are ruled out, because they violate condition 2. Because D3 is not in the
boundary of any domain, Proposition 6.5 cannot be applied.

In Fig. 11(b), the transitions from the qualitative state QS4 = 〈D4, {(0, 0)}〉
to the states associated with the boundary domain A(D4) = {D9} are inves-
tigated. The transition to QS9 = 〈D9, { }〉 is excluded, because condition 2
of Proposition 6.4 is not satisfied. In addition, we consider transitions from
QS4 to qualitative states associated with domains that have D4 in their bound-
ary. Proposition 6.5 is valid for these cases. As can be verified in the figure,
D4 ∈ A(D3) and D4 ∈ A(D5). D3 and D5 are regulatory domains, so condition 1
is trivially satisfied. However, with xb being a switching variable in D4, but not
in D3 and D5, condition 2 is satisfied in neither case. We therefore conclude that
there are no transitions from QS4.

6.3. Computation of state transition graph. Given a qualitative PL model, we
can generate the qualitative states and transitions between qualitative states by
means of the Propositions 6.1–6.5. This results in a state transition graph with
the following important property.
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(a)

(b)

Figure 11. Possible and impossible (×) transitions from the qualitative states (a) QS3 and
(b) QS4, as determined by the transition rules in Propositions 6.4 and 6.5.

THEOREM 6.1. Under the approximation of �(D) by �(D), all quantitative PL
models subsumed by a qualitative PL model have the same state transition graph.

The theorem, a direct consequence of Lemmas 6.1 and 6.2, implies that, under
the approximation of �(D) by �(D), the entire set of quantitative PL models
subsumed by the qualitative PL model can be analyzed in one stroke. The
state transition graph generated from the qualitative PL model summarizes the
qualitative dynamics of every quantitative PL model having parameter values
consistent with the inequality constraints. In the case of the example network,
using the model in Fig. 10, the state transition graph in Fig. 8 is obtained.

The number of qualitative states in a state transition graph exponentially grows
with the dimension n of the system. As a consequence, the graph may become
forbiddingly large for genetic regulatory networks with more than a few genes. For
many purposes, it is not necessary to generate the complete state transition graph
though. In fact, it often is sufficient to know which qualitative states are reachable
from a given initial qualitative state, that is, which qualitative behaviors the system
can exhibit when starting from the initial qualitative state. The generation of the
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Figure 12. Phase space and state transition graph obtained by qualitative simulation using
the model in Fig. 10. The state transition graph contains the qualitative states reachable
from the initial qualitative state QS1.

reachable part of the state transition graph will be called qualitative simulation,
by analogy with Kuipers (1994). If no misunderstanding is possible, we often
refer to this reachable part of the state transition graph as the state transition
graph.

The qualitative simulation algorithm can be summarized as follows. Given an
initial domain D0, the simulation algorithm computes the initial qualitative state
QS0 from the qualitative PL model, and then determines all possible transitions
from QS0 to successor qualitative states by means of the rules of the previous
subsection. The generation of successor states is repeated in a recursive manner
until all qualitative states reachable from the initial qualitative state have been
found. A formal description of the simulation algorithm can be found in de Jong
et al. (2002). An example of a state transition graph obtained through qualitative
simulation is given in Fig. 12, showing the qualitative states reachable from the
qualitative state QS1.

The simulation method has been implemented in Java 1.3, in a program called
GNA (de Jong et al., 2003b)‖. The program reads and parses input files specifying
the model of the system (state equations, threshold and equilibrium inequalities)
and the initial domain. From this information it produces a state transition graph.
GNA is accessible through a graphical user-interface, which allows the network
of interactions between genes to be displayed, as well as the state transition graph
resulting from the simulation. In addition, the user can analyze the qualitative
equilibrium states and qualitative cycles with their attraction sets, and focus on
selected qualitative behaviors in order to study the temporal evolution of protein
concentrations in more detail.

‖GNA is available for nonprofit academic research purposes at
http://www-helix.inrialpes.fr/gna.

http://www-helix.inrialpes.fr/gna
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7. PROPERTIES OF QUALITATIVE SIMULATION

Given a qualitative PL model and an initial regulatory domain D0, qualitative
simulation generates a state transition graph which, under the approximation
of �(D) by �(D), describes the qualitative dynamics of the system for all
quantitative PL models subsumed by the qualitative PL model. In this section, we
investigate the consequences of the use of this approximation, by comparing the
state transition graph obtained through qualitative simulation, using �(D) instead
of �(D), with the state transition graphs that would be obtained using �(D).

7.1. Qualitative simulation is sound. In order to clarify the discussion below,
we will explicitly distinguish between two sets of state transition graphs. On the
one hand, we will be interested in G�, the set of state transition graphs obtained for
quantitative PL models subsumed by the qualitative PL model, using�(D). On the
other hand, we consider the set of state transition graphs G� obtained by means of
the approximation �(D) of �(D). From Theorem 6.1 it follows that the latter set
has a single element. More particularly, we will focus on G0

� and G0
� , which contain

the state transition graphs comprising all qualitative states reachable from initial
qualitative states QS0

� = 〈D0, V (D0,�(D0))〉 and QS0
� = 〈D0, V (D0,�(D0))〉,

respectively. The following theorem allows us to evaluate the consequences of
using �(D) rather than �(D).

THEOREM 7.1. Let G0
� = 〈QS�, T�〉 ∈ G0

� be the state transition graph obt-
ained through qualitative simulation. Every G0

� = 〈QS�, T�〉 ∈ G0
� is contained

in G0
� , that is,

(1) If QS� = 〈D, V (D,�(D))〉 ∈ QS�, then QS� = 〈D, V (D,�(D))〉 ∈
QS� , and

(2) If T� = 〈QS�, QS′
�〉 ∈ T�, then T� = 〈QS�, QS′

�〉 ∈ T� .

Proof. The theorem is a consequence of the redefinition of H(x), presupposed
by the approximation of �(D) by �(D) (Section 6.2). Every QS� ∈ QS� is
reachable from QS0

� through one or more transitions, by definition of G0
�. By

comparing (16) with (31), we see that the set of solutions of the approximate system
includes the set of solutions of the original system. It directly follows that there is
also a qualitative behavior leading from QS0

� to QS� , and hence QS� ∈ QS� . If
T� ∈ T�, then T� ∈ T� , as a consequence of 1 and the observation that the set
of solutions of the approximate system includes the set of solutions of the original
system. �

The theorem expresses that the approximation of�(D) by�(D) is conservative.
Formulated in a different way, it means that qualitative simulation does not
miss any of the qualitative behaviors permitted by some quantitative PL model
subsumed by the qualitative PL model. This means that the propositions in
Section 4.3 can be used to relate the state transition graph obtained through
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a b

A B
A B

Figure 13. Example of a genetic regulatory network of two genes (a and b) coding for a
regulatory protein (A and B). The regulatory proteins form a heterodimer A · B.

State equation for gene a:

Threshold inequalities:

Equilibrium inequalities:

State equation for gene b:

Threshold inequalities:

Equilibrium inequalities:

Figure 14. State equations, threshold inequalities, and equilibrium inequalities for the
proteins in the network of Fig. 13.

qualitative simulation to the solutions of quantitative PL models. In particular,
Proposition 4.3 and Theorem 7.1 imply that for all parameter values satisfying
the inequality constraints in the qualitative PL model, the set of solutions passing
through a finite sequence of domains on a finite time-interval is covered by the
state transition graph. By analogy with Kuipers (1994), the qualitative simulation
method is said to be sound.

7.2. Qualitative simulation is incomplete. The converse of Theorem 7.1 is not
true: there may be some G0

� ∈ G0
�, such that G0

� ∈ G0
� is not contained in G0

�.
This will be illustrated by means of a counterexample.

The network in Fig. 13 consists of two genes, a and b, which encode the
proteins A and B, respectively. The proteins form a heterodimer A · B repressing
the expression of both genes. The qualitative PL model is shown in Fig. 14. It
is assumed that the heterodimer represses the two genes at the same threshold
concentration. The phase space associated with the model consists of four
regulatory domains and five switching domains [ Fig. 15 (a)]. When simulating
the network from the initial qualitative state associated with the regulatory domain
D1, in which both xa and xb are below their threshold concentration, we obtain the
state transition graph shown in Fig. 15(b).
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(a) (b) (c)

Figure 15. (a) Phase space box for the genetic regulatory network described by the
qualitative PL model in Fig. 14. (b) State transition graph resulting from a qualitative
simulation of the system starting in D1. (c) Determination of the relative position of D6

and �(D6). The shaded area represents rect({φ(D3), φ(D9)}).

(a) (b) (c)

(d) (e) (f)

Figure 16. (a)–(c) State transition graphs obtained for the qualitative PL model in
Fig. 14, containing qualitative states reachable from QS1. �(D) instead of its
approximation �(D) has been used. The state transition graphs correspond to the
following additional constraints on the parameter values: (a) (κb/γb)/(κa/γa) > θ1

b /θ
1
a ;

(b) (κb/γb)/(κa/γa) = θ1
b /θ

1
a ; and (c) (κb/γb)/(κa/γa) < θ1

b /θ
1
a . (d)–(f) Different

constraints lead to different relative positions of D6 and �(D6), and hence to different
qualitative states QS6.

The results that would be obtained if �(D) instead of its approximation �(D)
were used are shown in Fig. 16. In this case, the quantitative PL models subsumed
by the qualitative PL model are associated with one of three different state
transition graphs, depending on the precise parameter values chosen. As can be
directly verified, the state transition graph obtained through qualitative simulation
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contains all three state transition graphs in Fig. 16, as was to be expected on the
basis of Theorem 7.1. However, it is contained in none of these graphs. In this
example, the approximation leads to the faulty prediction that the system has three
qualitative equilibrium states, whereas in fact it has only one, whose identity varies
with the parameter values chosen.

In order to explain this result, consider the computation of the qualitative state
associated with the switching domain D6. R(D6) = {D3, D9}, while φ(D3) =
(κa/γa, κb/γb)

′ and φ(D9) = (0, 0)′. Using the equilibrium inequalities in Fig. 14,
we find V (D6,�(D6)) = {(0,−1), (0, 0)}, where �(D6) is the intersection of
the smallest rectangle including φ(D3) and φ(D9), and the threshold boundary
xa = θ1

a [Fig. 15(c)]. QS6 is predicted to be a qualitative equilibrium state, because
(0, 0) ∈ V (D6,�(D6)). However, (0,−1) ∈ V (D6,�(D6)) allows a transition
to QS5, associated with D5 ∈ A(D6), to occur as well.

Fig. 16 shows that �(D6) is actually an overapproximation of �(D6). The
smallest closed convex set co({φ(D3),φ(D9)}) is not rect({φ(D3),φ(D9)}), but
rather the linear segment connecting the two target equilibria. As a consequence,
�(D6) is a single point in �, located at the intersection of the linear segment
connecting φ(D3) and φ(D9), and the threshold boundary xa = θ1

a . Depending on
the exact position of φ(D3) in D9, the linear segment crosses (a) D6, (b) D5, or
(c) D4. Each configuration in Fig. 16(a)–16(c) implies an additional constraint on
the parameter values. In particular, we have

(a)
γa

κa

κb

γb
>
θ1

b

θ1
a

, (b)
γa

κa

κb

γb
= θ1

b

θ1
a

, and (c)
γa

κa

κb

γb
<
θ1

b

θ1
a

.

For (a) we have V (D6,�(D6)) = {(0, 0)}, for (b) V (D6,�(D6)) = {(0,−1)},
and for (c) V (D6,�(D6)) = {(0,−1)}. In (b) and (c), QS6 is not a qualitative
equilibrium state, while in (a) and (b) there is no transition to QS5. [In (b),
trajectories starting in D6 reach D5 only in infinite time, so there is no transition
from QS6 to QS5.] For each of the three cases, we obtain a different state transition
graph, as shown in Fig. 16.

The example illustrates that the approximation of �(D) by �(D) may be
overly conservative, in the sense that the resulting state transition graph contains
qualitative behaviors that are not permitted by any of the quantitative PL models
subsumed by the qualitative PL model. Some of the qualitative behaviors in
Fig. 15(b) do not occur in any of the state transition graphs in Fig. 16(a)–16(c),
such as (QS1, QS4, QS7, QS8, QS5, QS8). This implies that an absolutely
continuous function passing through the corresponding sequence of domains on
a finite time-interval is not a solution for any parameter values satisfying the
inequality constraints in the qualitative PL model (Proposition 4.3). Qualitative
simulation is incomplete, in the terminology of Kuipers (1994).
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8. DISCUSSION

We have presented a method for the qualitative simulation of genetic regulatory
networks described by a class of PL differential equations that has been well-
studied in mathematical biology. The method allows the behavior emerging from
large and complex networks of genetic regulatory interactions to be predicted in a
qualitative manner. In the accompanying paper, we describe a model of the network
underlying the initiation of sporulation in B. subtilis, and we compare predictions
obtained through simulation with observations of the behavior of wild-type and
mutant bacteria (de Jong et al., 2003a). The application of the qualitative simula-
tion method is supported by a computer tool, called GNA (de Jong et al., 2003b).

The PL models employed in this paper are based on step function approximations
of the regulatory interactions involved in the synthesis and degradation of proteins.
The step functions provide a succinct description of the regulatory logic, while
abstracting from the details of molecular interactions. The biological validity
of the step function expressions derives from experimental evidence that the
activation of a gene, as a function of the concentration of a regulatory protein,
often follows a steep sigmoidal curve (Yagil and Yagil, 1971; Ptashne, 1992).
That is, below a certain threshold concentration of the protein, the gene will
be hardly expressed at all, whereas above this threshold its expression rapidly
saturates. Recent experimental studies have shown that some aspects of the
qualitative dynamics of genetic regulatory networks synthesized in vivo correspond
well with the predictions obtained from mathematical models based on switch-like
approximations of regulatory interactions (Becskei and Serrano, 2000; Elowitz and
Leibler, 2000; Gardner et al., 2000).

The use of step functions gives rise to discontinuities in the right-hand side of
the differential equations, which may lead to nontrivial mathematical problems, as
illustrated in Fig. 4. Several ways to deal with the step function discontinuities
have been proposed in the literature. The application of the PL models can be
restricted to systems without autoregulation, which excludes situations of the type
described in Fig. 4(b) (Glass, 1975b). Alternatively, when a trajectory arrives at a
switching domain from which it cannot be continued, it may simply be stipulated
to come to a dead stop (Plahte et al., 1994). Another solution, based on an idea
of Plahte and colleagues (Plahte et al., 1994; Mestl et al., 1995a), consists of
avoiding the discontinuities altogether, by replacing the step functions s+(x j , θ j )

by so-called logoid functions l+(x j , θ j , δ) that monotonically increase from 0 to 1
in a δ-interval around the threshold θ j . The logoid functions approach their step
function homologs as δ → 0.

Each of the above solutions is unsatisfactory in some way. In the first place,
autoregulation is a ubiquitous feature in genetic regulatory networks (Thieffry
et al., 1998)∗∗. Ignoring trajectories that cannot be continued in a switching domain

∗∗In fact, the network shown in Fig. 1 is a simplified version of the molecular switch determining
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will cause important behavioral properties of regulatory systems to be missed, like
the equilibrium points located in threshold boundaries in the example. The use of
logoid functions instead of step functions is attractive at first sight, but leads to
nonlinear differential equation models that are difficult to treat in a qualitative way.
Here, we have adopted another solution, based on an approach to deal with differ-
ential equations with discontinuous right-hand sides originally proposed by Filip-
pov (1988). This approach, recently applied to PL models of the form (2), has the
advantage of putting no restrictions on the class of genetic regulatory networks that
can be handled, while explicitly defining the behavior of the system in the threshold
hyperplanes by means of simple-to-analyze PL models (Gouzé and Sari, 2003).

The qualitative dynamics of genetic regulatory networks described by the PL
models (2) can be summarized by means of a state transition graph. Each
qualitative state in the graph corresponds to a domain in the phase space where
the system behaves in a qualitatively distinct manner, while a transition between
two qualitative states corresponds to solution trajectories that start in one domain
and reach the other, without passing through an intermediate domain. Qualitative
equilibrium states and qualitative cycles in a state transition graph point at
equilibrium points and limit cycles of the system, while a qualitative behavior
represents the qualitative shape of solutions. The qualitative nature of the state
transition graph is well-adapted to measurement techniques in genomics, which
currently have limited quantitative precision, but are able to detect qualitative
changes in gene expression over time.

Instead of precise numerical values, we use inequality constraints on the values of
threshold and rate parameters. The resulting qualitative PL model corresponds to a
set of quantitative PL models. Whereas precise numerical values for the parameters
are usually not available, the choice of appropriate threshold and equilibrium
inequalities can be based on biological data, or is at least strongly constrained by
the latter. If the choice of inequality constraints is not unambiguously determined
by the data, the consequences of opting for one combination of constraints
rather than another can be explored by simulating the system for each of the
alternatives.

The aim of qualitative simulation is to generate the possible state transition
graphs for the quantitative PL models subsumed by a qualitative PL model. The
state transition graphs contain all qualitative states reachable from a given initial
state through one or more transitions. We have used the hyperrectangular approx-
imation �(D) of �(D), which guarantees that in the region of the parameter
space defined by the inequalities in the qualitative PL model, all quantitative PL
models yield the same state transition graph. This graph can be obtained through
symbolic computation instead of numerical simulation. Qualitative simulation has
been shown to be sound, in that to every solution of a quantitative PL model sub-
sumed by the qualitative PL model corresponds a qualitative behavior in the state

the response of E. coli to phage λ infection (Ptashne, 1992).
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transition graph. The soundness of qualitative simulation may help in checking
the robustness of simulation results to changes in parameter values (Barkai and
Leibler, 1997; Alves and Savageau, 2000a,b; von Dassow et al., 2000; Morohashi
et al., 2002). If a certain behavior is not covered by the state transition graph, one
can be sure that it will not occur for any of the parameter values consistent with
the threshold and equilibrium inequalities. Although the simulation algorithm
is sound, it is not complete. This implies that the transition graph may contain
qualitative behaviors that do not correspond to any solution of a quantitative PL
model satisfying the inequality constraints in the qualitative PL model.

The lack of quantitative information on kinetic parameters and molecular con-
centrations has stimulated an interest in methods for modeling and simulation
developed in the field of qualitative reasoning (QR), most notably QSIM (Kuipers,
1994) and QPT (Forbus, 1984). Methods similar in spirit have been proposed in
the hybrid systems community (Alur et al., 2001; Ghosh and Tomlin, 2001; Ghosh
et al., 2003). QR methods have been applied to the regulation of tryptophan syn-
thesis (Karp, 1993) and λ phage growth (Heidtke and Schulze-Kremer, 1998) in
E. coli, and to the regulation of the transcription factor families AP-1 and NF-κB
in different classes of animals (Trelease et al., 1999). A major problem with exist-
ing QR methods is their lack of upscalability, which causes the applicability of
the methods to be limited to small regulatory systems of modest complexity. As
its application to the sporulation example in the accompanying paper shows, the
qualitative simulation method presented here is able to deal with large and com-
plex networks. Upscaling of the method is achieved by the use of PL models that
strongly constrain the local dynamics of the system. Moreover, the representation
of qualitative states and the transition rules are tailored to this class of models, in
order to maximally exploit their favorable mathematical properties.

Qualitative methods for the analysis of genetic regulatory systems have been
developed in mathematical biology as well, the best-known example being Boolean
networks (Kauffman, 1993; Somogyi and Sniegoski, 1996). Simulation of Boolean
networks rests on the assumption that a gene is either active or inactive, and that
genes change their activation state synchronously. For the purpose of modeling
actual genetic regulatory networks, these assumptions are usually too strong.
Thomas and colleagues (Thomas and d’Ari, 1990; Thomas et al., 1995) have
proposed a generalized logical method that permits multivalued activation states
and asynchronic transitions. On the formal level, the method of Thomas and
colleagues is related to the approach presented in this paper. In fact, Snoussi has
demonstrated that the logical equations can be interpreted as an abstraction of a
special case of (1), where in the production term fi(x) = ∑

l∈L κil bil(x) it holds
that either bil (x) = s+(x j , θ j ) or bil(x) = s−(x j , θ j ), while in the degradation
term gi(x) = ∑

l∈L γil bil(x) it holds that bil(x) = 1. In addition, no two genes are
regulated at the same threshold (Snoussi, 1989).

Although some ideas of the generalized logical method have been retained in
the method presented here, in particular the inequality constraints of Section 5,



Qualitative Simulation of Genetic Regulatory Networks 335

which are related to the logical parameters in Thomas and d’Ari (1990) and
Thomas et al. (1995), we have opted for differential equation models. We
believe that the latter formalism is intuitively clear and of large generality. In
particular, it allows for a transparent description of the behavior of the system
in the threshold hyperplanes. Although for the class of PL models covered by
the generalized logical method, certain patterns of logical states can be interpreted
as indicating singular steady states of the system (Snoussi and Thomas, 1993),
a general description of the behavior of the system in the threshold hyperplanes
is currently missing. The differential equation formalism has the additional
advantage of facilitating the integration of quantitative data becoming available
through improvements of current measurement techniques.

Qualitative simulation results in predictions of the possible qualitative behaviors
of a genetic regulatory network. The interest of these predictions is that they can be
directly compared with gene expression profiles obtained by means of quantitative
RT-PCR or DNA microarrays. The use of predicted qualitative behaviors in
combination with observed gene expression profiles allows hypothesized models
of regulatory networks to be rapidly tested, even when only imprecise data is
available. Along these lines, we are currently working on extensions of the
method to validate and identify models of genetic regulatory networks using
gene expression data. Incorporation of these extensions in the computer tool
mentioned in Section 6.3 would allow the simulation method to evolve into a more
general approach towards the computer-supported analysis of genetic regulatory
networks.

ACKNOWLEDGEMENTS

The authors would like to thank Grégory Batt, Vlastimil Krivan, Erik Plahte,
Alessandro Usseglio Viretta, and an anonymous referee for their helpful comments
on earlier versions of this paper. The authors acknowledge financial support from
the Programme Bioinformatique inter-EPST (Ministère de la Recherche, France)
and the Actions de Recherche Coopératives of INRIA.

APPENDIX A: MONOTONICITY PROPERTIES OF PIECEWISE-LINEAR

MODELS

This appendix describes monotonicity properties of PL models of the form (2).
For regulatory domains D, all solutions ξ(t, x0, θ , κ, γ ) in D monotonically

converge towards �(D). If D is a switching domain and �(D) �= { }, all solutions
in D converge towards �(D). However, they do not necessarily converge in a
monotonic way. A weaker monotonicity property can be shown to hold for the
components ξi(t), 1 ≤ i ≤ n, of solutions ξ(t, x0, θ, κ, γ ) in D. In fact, ξi(t)
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monotonically converges towards the projection of �(D) on �i ,

πi(�(D)) = {φi ∈ �i | φ ∈ �(D)},

given that ξi (t) starts outside the projection (i.e., ξi(0) /∈ πi(�(D))).
Let ξi(t) < minπi(�(D)), on [0, τ ], τ ≤ 0. From the definition of �(D) in

(18), it follows that ξi(t) < φi (D′) = µD′
i /ν

D′
i , for all D′ ∈ R(D). By (16),

H(ξ(t)) = {∑D′∈R(D) αD′(µD′ − νD′
ξ(t))}, with

∑
D′∈R(D) αD′ = 1 and αD′ ≥ 0.

Because ξ̇(t) ∈ H(ξ(t)), ξ̇i(t) > 0. As a consequence, ξi(t) monotonically
converges towards πi(�(D)) while being in D. A similar argument can be given
for the case ξi(t) > maxπi(�(D)).

Although not all solutions in D monotonically converge towards �(D), some
can be shown to do so. Let �(D) �= { }. For every x0 ∈ D and φ ∈ �(D), there
exist solutions ξ(t, x0, θ , κ, γ ) in D monotonically converging towards φ.

By (18), φ = ∑
D′∈R(D) αD′φ(D′), with every αD′ ≥ 0 and

∑
D′∈R(D) αD′ = 1.

Consider the absolutely continuous function ξ(t) that, while being in D, satisfies

ξ̇(t)=
∑

D′∈R(D)

αD′(νD′
)−1∑

D′′∈R(D) αD′′ (νD′′
)−1

(µD′ − νD′
ξ(t)) (A.1)

=
∑

D′∈R(D)

αD′∑
D′′∈R(D) αD′′ (νD′′

)−1
φ(D′)− 1∑

D′′∈R(D) αD′′ (νD′′
)−1

ξ(t).

(A.2)

From (A.1) it follows that ξ(t) is a solution, because ξ̇(t) ∈ H(ξ(t)) according
to (14) (the coefficients αD′(νD′

)−1/
∑

D′′ ∈R(D) αD′′ (νD
′′
)−1 are nonnegative and

sum to 1). Moreover, (A.2) is a system of linear and uncoupled differential
equations of the form (11), monotonically converging towards

∑
D′∈R(D) αD′φ(D′)

= φ.
We state without proof that the above monotonicity properties also hold for

the approximation �(D) of �(D), given the corresponding redefinition of
H(x) (Section 6.2). These monotonicity properties are used in the proof of
Proposition 6.4.
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