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When populations are in competition, it often happens that one of them disap-
pears. Harvesting may be used for the control and management of competing
species to stabilize the populations at a persistent equilibrium. A three-dimensional
model, where the harvesting effort is a dynamic variable, is studied in the case
where the growth rate of the harvesting effort is very slow. The analysis shows that
the system can have relaxation oscillations. Dynamic bifurcation theory is used to
determine the maximal and minimal values of harvesting effort along this cycle of
oscillations. � 1999 Academic Press
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1. INTRODUCTION

Stability loss delay in dynamical bifurcations is an important and newly
discovered phenomenon. Consider a system of differential equations x$=
f (x, y), x # D/Rn, depending on a real parameter y. Suppose that for each
fixed value of the parameter, the system has an equilibrium point x=!( y),
continuously depending on y. Suppose also that there exists a bifurcational
value y= y

*
for the parameter, at which the equilibrium loses stability,

that is, x=!( y) is a stable equilibrium for y< y
*

, and unstable for y> y
*

.
Suppose now that the parameter y is a slowly varying dynamical variable,
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that is, y$==g(x, y), where =>0 is small, and that y passes through the
bifurcational value y

*
. The solution of system

x$= f (x, y)
(1)

y$==g(x, y)

starting at initial point x(0)=x0, y(0)= y0< y
*

, will go quickly near the
equilibrium x=!( y0) and then remains close to the curve x=!( y), until y
reaches some value y1> y

*
, that is, the loss of stability which must occur

at y= y
*

is delayed until y= y1.
This phonemenon was first described in 1973 by Shishkova [19] in a

model example. The general theory due to Neishtadt [15] appeared only
in 1985. Independently, Lobry and Wallet [13], motivated by numerical
experiments and the theory of canard solutions (see the appendix of this
paper), insisted on the problem of dynamical bifurcation in 1986 and were
among the first to recognize its importance for applications. The reader
may consult [1, p. 179] and [10, 12] for more references and information
on the subject. In this paper, we study the delayed loss of stability in
harvesting competing populations. We note that the general theory of
Neishtadt does not apply in our problem. This theory requires that a pair
of eigenvalues crosses the imaginary axis, when in our case a real eigen-
value crosses zero.

Consider two competing populations x and y. An external resource is
assumed to exist that support the two populations. However, each popu-
lation interferes with the use of resource by the other population. We
suppose that the competition leads to the extinction of one of the two
populations, say y. This is not a desired but an extremely frequent situa-
tion. It appears already in Volterra's original study which was inspired by
observing fish populations in the Upper Adriatic. If we are interested by
the control and management of competing species we may think that
harvesting on the surviving population could stabilize the system at a
persistent equilibrium at which both species survive.

Clark (see [3, p. 323]) studied harvesting on one of the populations in
the Gause's model of interspecific competition. He observed that there is
no value of the harvesting effort that leads to persistent equilibria. Thus
he suggested to consider the harvesting effort as a dynamic variable. He
obtained a three dimensional system, that he analyzed in the case where
the dynamics of the harvesting effort is very slow, compared to the dynamics
of the two populations. He detected a ``pseudo-limit cycle'' behavior and he
noticed that the system does not necessarily undergo precise limit-cycle
oscillations. However his discussion uses only a static bifurcation analysis,
in a problem which requires a dynamic bifurcation analysis. In particular,
the important phenomenon of the delayed loss of stability of equilibria is
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not examined, so the minimal and maximal values of the harvesting effort
along the cycle, proposed by Clark, are false. The delayed loss of stability
had not been always fully understood in the literature. It led some authors
to errors and confusion (see [2, 11] for details and references).

In this paper, the equations of growth of the two populations are more
general than Gause's model. We consider the model problem

x$=xM(x, y, E) ,

y$=yN(x, y) , (2)

E$==EP(x) ,

where x and y are two competing populations and E is a harvesting effort.
We show that, under suitable hypotheses, the system exhibits an ``exact cycle''
of oscillations, not only a ``pseudo-limit cycle'' behavior. We approximate
the size of this cycle. This paper is organized as follows. In Section 2, we
give particular attention to the Gause's model. In Section 3, we describe the
two competing species model and we analyze the effect of harvesting on
one of the two populations. In Section 4, we consider the effort of harvest-
ing as a dynamic variable and we analyze the three dimensional differential
system using Tikhonov's theory. In Section 5, we study the dynamical
bifurcations occurring in the system and the delayed loss of stability of
equilibria and we describe the cycle of oscillations. In the Appendix, we
carry out numerical experiments, we recall the main result of Tikhonov's
theory, and we give some comments on canard solutions.

2. CLARK'S ANALYSIS OF GAUSE'S MODEL

Hereafter we consider the Gause's model of interspecific competition,
based on the equations

x$=rx(1&x�K)&:xy,
(3)

y$=sy(1& y�L)&;xy,

where r, s, K, L, :, and ; denote positive constant and the prime $ denotes
the derivative with respect to time. We restrict our study to the positive
values of x and y. Each population, in absence of the other population,
grows following a logistic growth law. Let + be the graph of the function
y=(r�:)(1&x�K), 0�x�K. This curve is a component of the isocline
x$=0. Let & be the graph of the function x=(s�;)(1& y�L), 0� y�L. This
curve is a component of the isocline y$=0. We suppose that the coefficients
in equation (3) satisfy the condition 1>:L�r>s�;K. The only stable
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equilibrium is at (K, 0). Thus, competition leads to the extinction of the y
population. Now, let the x population be subject to harvesting. System (3)
becomes

x$=rx(1&x�K)&:xy&qEx,
(4)

y$=sy(1& y�L)&;xy,

Let +E be the graph of the function y=(r�:)(1&x�K)&(q�:)E, 0�x�xE ,
where xE=K(1&qE�r) and 0�E�c, c=r�q. This curve is a component of
the isocline x$=0. It moves downwards, parallel to itself, as the value of E
increases. Let a<b be defined by

a=
r
q \1&

:L
r + , b=

r
q \1&

s
;K+ .

Apart from the equilibria (0, 0) and (0, L), an equilibrium exists at (xE , 0).
For 0�E<a, all orbits except those lying on the y-axis (see Fig. 1.a) tend
to the asymptotically stable equilibrium (xE , 0). Hence competition together
with harvesting lead to the extinction of the y population. For a<E<b,
the two stable equilibria (xE , 0) and (0, L) are separated by a saddle point
equilibrium SE , and the outcome depends on the initial populations level:
Orbits tend to (xE , 0) or (0, L), except for orbits lying on the stable
separatrix of SE (see Fig. 1.b). Thus the equilibrium point SE makes it
mathematically possible, but extremely unlikely, for both populations to
survive. Hence competition together with harvesting lead to the extinction
of one of the two populations. For E>b all orbits except those lying on the
x-axis (see Fig. 1.c) tend to the asymptotically stable equilibrium (0, L).
Hence competition together with harvesting lead to the extinction of the x
population. There are two bifurcational values. The first bifurcation occurs
at E=a, for which the stable equilibrium point (0, L) loses stability (for
decreasing values of E). The second bifurcation occurs at E=b, for which

FIG. 1. Competing species in the Gause's model (4) with E= constant. All the values of
E lead to the extinction of one of the two populations.
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the stable equilibrium point (xE , 0) loses stability (for increasing values
of E).

Since competition together with harvesting lead always to the extinction
of one of the two populations, Clark suggested to consider effort E itself as
a dynamic variable that satisfies

E$==E(x&x�), (5)

where = is small, that is, the E reaction occurs much more slowly than the
x and y reactions. The component x=x� of the isocline E4 =0 is an
horizontal plane. Let us assume (see Fig. 2.a) that 0<x�<xb , where
xb=s�;. Let E�=(r�q)(1&x��K). In a heuristic analysis of system (4�5),
Clark detected a ``pseudo limit-cycle'' behavior (see [3, Fig. 10.6]). A slow
transition AB develops near the slowly moving equilibrium (xE , 0), with
increasing effort E, until the b bifurcational value, where the equilibrium
(xE , 0) loses its stability. Near b, a fast transition BC leads the x and y
populations near the stable equilibrium (0, L). Then a slow transition CD
develops near the stable equilibrium (0, L), with decreasing effort E, until
the a bifurcational value, where the equilibrium (0, L) loses stability. Near
a, a fast transition DA leads the x and y populations near the stable equi-
librium (xE , 0), closing the ``pseudo-cycle'' ABCD. This heuristic analysis
does not give a good understanding of the phenomenon. In fact we prove
that the system has an exact cycle of oscillations A$B$C$D$, not only a
``pseudo limit-cycle'' behavior. Moreover the actual fast transitions B$C$
and D$A$ occur near values Emin and Emax and the slow transitions A$B$
and C$D$ along equilibria (xE , 0) and (0, L) develop for Emin�E�Emax ,

FIG. 2. The cycle of oscillations in the model (4�5) or (6), when the harveting effort E
is a slow dynamic variable. The slow transition BB$ (resp. DD$) develops near the repelling
component of the slow curve (xE , 0) (resp. (0, L)).
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but Emin<a<b<Emax . This is due to the phenomenon of delayed loss of
stability in dynamical bifurcations: A delay occurs because the actual depar-
ture of an orbit from the equilibrium that has lost stability takes place not
immediately afterwards, but rather after a time during which the effort E
changes by a finite amount. Let us explain this behavior in our more general
context of system (2).

3. HARVESTING COMPETING SPECIES

Consider system (2). We assume that the functions M N and P are con-
tinuous and that system (2) has a unique solution with prescribed initial
conditions.We assume, following Clark, that = is small. Let us denote by {
the time in system (2). We look at the behavior of system (2) for large
values of time of order 1�=. If we go to the time t={�=, we obtain the
system

=x* =xM(x, y, E),

=y* =yN(x, y), (6)

E4 =EP(x),

where the dot denotes the derivative with respect to the new time t. System
(6) can be analyzed with Tikhonov's theorem [20] which is the fundamen-
tal result in Singular Perturbation Theory (for the convenience of the
reader, we recall this result in the Appendix). Let us apply this theorem
to system (6). We restrict our attention to the positive octant. The fast
equations are

x$=xM(x, y, E),
(7)

y$=yN(x, y) ,

where the harvesting effort is considered as a parameter. The following
assumptions are made.

1. The component &=[(x, y): N(x, y)=0] of the isocline y$=0 is
the graph of a nonnegative continuous map x=n( y) such that n: [0, L]
� R and n(L)=0. The function N is positive to the left of the curve & and
negative to the right.

2. There exists a nonnegative continuous function E [ xE defined on
[0, c], c>0, such that xc=0. Moreover, the component +E=[(x, y):
M(x, y, E)=0] of the isocline x$=0 is the graph of a nonnegative conti-
nuous map y=mE (x) such that mE : [0, xE] � R and m(xE)=0. The function
M is positive below the curve +E and negative above it.
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3. There exists a # ]0, c[ such that for all 0�E<a, the curve &
remains above the curve +E . There exists b # ]a, c[ such the for a�E�b
the curves +E and & intersect at point SE only and Sa=(0, L), Sb=(xb , 0).
Moreover, for b<E�c, the curve +E remains to the left of &.

From the above hypothesis we deduce that

M(0, L, a)=N(xb , 0)=0. (8)

Apart from the equilibria (0, 0) and (0, L), an equilibrium exists at (xE , 0).
We can easily prove as in Gause's model that all values of effort E, except
when a<E<b and for a small set of initial conditions, lead to the extinc-
tion of one of the two populations (see Fig. 3). Thus we have the following
result.

Theorem 1. All values of the harvesting effort lead to the extinction of
one of the two populations (except for a small set of initial conditions).

We denote by #E the particular trajectory of the fast equation that goes
from the singular point (0, L) to the singular point (xE , 0) (resp. from
(xE , 0) to (0, L)) in case E<a (resp E>b). There are two bifurcation
values. The first bifurcation occurs at E=a, for which the stable equi-
librium point (0, L) loses stability (for decreasing values of E). The second
bifurcation occurs at E=b, for which the stable equilibrium point (xE , 0)
loses stability (for increasing values of E). Hence the slow manifold
xM(x, y, E)=0= yN(x, y) consists of many components (see Fig. 2.a) :

1. The E axis which is the set of the unstable equilibria (0, 0). This
component is repelling.

2. The line LF which is the set of the equilibria (0, L). The arc LD
is repelling and the arc DF is attracting.

3. The arc Kc which is the set of the moving equilibria (xE , 0). The
arc KB is attracting and the arc Bc is repelling.

FIG. 3. The fast dynamics (7) for various values of the harvesting effort.
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4. The arc BD which is the set of the unstable equilibria SE . This
component is repelling.

Let us assume that there exists x� , such that 0<x�<xb , P(x�)=0,
P>0 for x>x� , and P<0 for x<x� . Let E� be the value of E for which
x�=xE . In Fig. 2.a, we see that the slow transition AB ends at point B
where the equilibrium of the fast dynamics loses stability. At this point one
can think, following Clark, that a new fast transition may develop until
point C of the attracting component LF of the slow manifold. Owing to
stability loss delay, the actual fast transition takes place at point B$, that
is, the slow transition continues to develop along the repelling component
BB$ of the slow manifold.

4. DELAYED LOSS OF STABILITY

Let us consider a trajectory (see Fig. 2.b which represents the projection
of the trajectory on the plane (E, x)) of system (6) that arrives near the
equilibrium near the equilibrium (xE , 0) (resp. (0, L)) at entry point E0<b
(resp. E1>a). We have already mentioned that the actual departure of this
trajectory from the equilibrium takes place not immediately after b (resp.
after a) but rather after a time during which the effort E changes by a finite
amount. Let E1>b (resp. E2<a) be the exit point. The main problem is to
compute E1 from E0 (resp. E2 from E1), that is, to calculate the entrance-
exit function along the slow curve [(xE , 0, E): 0<E<E�] (resp. the
slow curve [(0, L, E): 0<E]) of system (6). More precisely, let T$ be a
tube of axis x=xE , y=0, (resp. x=0, y=L) and radius $ where $>0 is
not too big. We consider the integral curve of (6) that starts at (x0, y0, E0),
where E0<b and (x0, y0, E0) # T$ (resp. at (x0, y0, E1), where E1>a and
(x0, y0, E1) # T$). If = is small enough, according to Tikhonov's theorem,
this curve remains inside the tube T$ and goes towards the curve x=xE ,
y=0 (resp. the curve x=0, y=L), with increasing (resp. decreasing) E as
long as E<b (resp. E>a). Denote the next intersection of this curve with
the tube T$ by (x1 , y1 , p1(E0 , =, x0, y0)) (resp. (x2 , y2 , p2(E1 , =, x0, y0))).
Of course x1 and y1 (resp. x2 and y2) depend also on = and on the initial
conditions. We are interested in lim= � 0 p1(E0 , =, x0, y0) and lim= � 0p2(E1 ,
=, x0, y0). We show that these limits exist and are independent of the initial
density populations for $ sufficiently small. Let E1 (resp. E2) such that
E1>b (resp. E2<a) and

|
E1

E0

N(xE , 0)
EP(xE)

dE=0 \resp. |
E2

E1

M(0, L, E)
E

dE=0 + .
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Theorem 2. lim= � 0 p1(E0 , =, x0, y0)=E1 and lim= � 0 p2(E1 , =, x0, y0)
=E2 .

Proof. Let us consider the change of variable

Y== ln y (resp. X== ln x) , (9)

which maps the strip 0< y<1 (resp. 0<x<1) into the half space Y<0
(resp. X<0). This change of variable transforms system (6) into

=x* =xM(x, exp Y�=, E), X4 =M(exp X�=, y, E),

Y4 =N(x, exp Y�=), = resp. {=y* =yN(exp X�=, y), (10)

E4 =EP(x), E4 =EP(exp X�=),

when Y<0, lim= � 0 exp Y�==0 (resp. when X<0, lim= � 0 exp X�==0).
The initial condition becomes (x0, = ln y0, E0) (resp. (= ln x0, y0, E1)).
System (10) is a slow-fast system. Its slow surface is given by equation
M(x, 0, E)=0, that is, x=xE (resp. by equation N(0, y)=0, that is, y=L).
According to Tikhonov's theory, x (resp. y) varies quickly towards the
stable equilibrium x=xE (resp. y=L). Then a slow transition develops
near the surface x=xE (resp. y=L). This slow transition is approximated
by the solution of the slow equations

Y4 =N(xE , 0), \resp.
X4 =M(0, L, E),+E4 =EP(xE), E4 =EP(0) ,

with initial condition (0, E0) (resp. (0, E1)). Hence

Y(E)=|
E

E0

N(xE , 0)
EP(xE)

dE \resp. X(E)=|
E

E1

M(0, L, E)
EP(0)

dE + .

The solution of the slow equations reaches again the axis Y=0 (resp.
X=0) at value E1 (resp. E2). Returning to the original variables we see
that the solution (x(t, =), y(t, =), E(t, =)) crosses again the tube T$ when E
is asymptotically equal to E1 (resp. E2). K

Let g (resp. f ) be defined by

g(E)=|
N(xE , 0)
EP(xE)

dE \resp. f (E)=|
M(0, L, E)

E
dE + .

The function g (resp. f ) is defined on ]0, E�[ (resp. ]0, +�[). According
to (8), it has a minimum at b (resp. a) (see Fig. 4). It is strictly decreasing
on ]0, b] (resp. ]0, a]) and strictly increasing on [b, E�[ (resp. on
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FIG. 4. The entrance�exit functions g and f along the slow curves (xE , 0) and (0, L). The
attracting fixed point E* of h= f &1

& b f+ b g&1
+ b g& gives rise to a cycle of oscillations.

[a, +�[). Let g& and g+ (resp. f& and f+) be the restrictions of g (resp.
f ) to ]0, b] and [b, E�[ (resp. ]0, a[ and [a, +�[). The entrance-exit
function E0 [ E1 along the slow curve x=xE , y=0 is given by
g(E1)= g(E0), that is, E1=G(E0) where G= g&1

+ b g&. The entrance�exit
function E1 [ E2 along the slow curve x=0, y=L is given by
f (E2)= f (E1), that is, E2=F(E1) where F= f &1

& b f+.
Let #(t, =)=(x(t, =), y(t, =), E(t, =)) be a trajectory of system (6) with

initial condition (x0, y0, E0). We assume that E 0�b and (x0, y0) lies in the
basin of attraction of the equilibrium (xE 0 , 0) of system (7). Let En be the
sequence defined by E0=E 0 and

E2n+1=G(E2n) E2n+2=F(E2n+1) for n�0.

We define recursively the sequences tn and zn(t) by t0=0 and for n�0,

1. z2n(t) is the solution of the slow equation

E4 =EP(xE) E(t2n)=E2n .

Then z2n(t) is an increasing function which reaches the value E2n+1 at time
t2n+1 .

2. z2n+1(t)=E2n+1exp P(0)(t&t2n+1) is the solution of the slow
equation

E4 =EP(0) E(t2n+1)=E2n+1.

Then z2n+1(t) is a decreasing function which reaches the value E2n+2 at
time t2n+2 .
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Let E� (t) be defined on [0, +�[ by

E� (t)={z2n(t)
z2n+1(t)

if t2n�t�t2n+1 ,
if t2n+1�t�t2n+2 .

Let I=]0, t1[ _ ]t1 , t2[ _ ]t2 , t3[ _ } } } and let x� (t) and y� (t) be defined on
I by

x� (t)={xE� (t)

0
if t2n<t<t2n+1 ,
if t2n+1<t<t2n+2 ,

and

y� (t)={0
L

if t2n<t<t2n+1 ,
if t2n+1<t<t2n+2 .

As a consequence of Tikhonov's theorem and Theorem 2 above we have
the following result.

Theorem 3. We have lim= � 0 E(t, =)=E(t) uniformly on any compact
interval [0, T]. We have also lim= � 0 x(t, =)=x� (t) and lim= � 0 y(t, =)= y� (t)
uniformly on any compact subset of I.

The sequence E2n satisfies the recurrence formula E2n+2=h(E2n) where
h: ]0, b] � ]0, a] be the mapping defined by h=F b G. The mapping h is
strictly increasing and maps the interval ]0, b] into the interval ]u, v]
where u= f &1

& b f+(E�)>0, and v= f &1
& b f+(b)<a (see Fig. 4). Then

equation E=h(E) has at least one attracting fixed point E
*

, such that the
sequence E2n , starting near E

*
, converges to E

*
. Let E

**
=G(E

*
). Let

1=A$B$C$D$ be the closed curve consisting of the arcs A$B$=[(xE , 0, E):
E

*
�E�E

**
] and C$D$=[(0, L, E): E*�E�E

**
] and the orbits B$C$

=#E
**

and D$A$=#E
*

of the fast dynamics (see Fig. 2). Thus we have the
following result.

Theorem 4. There exists $>0 such that for any tubular neighborhood
V around 1 , there exist =0>0 and T0>0 with the property that for
0<=<=0 , any solution of system (6), whose initial condition (x0, y0, E 0)
satisfies |E0&E

*
|<$, will arrive, for t�T0 inside V and never leave it.

Proof. Let $>0 be such that the sequence E2n defined by E2n+2=
h(E2n) and |E0&E

*
|<$ converges to E

*
. Let V be a tubular neighbor-

hood of diameter ' around 1. There exists n0 such that |E2n&E
*

|<'�2 for
all n�n0 . Let T0=t2n0

and let T>T0 . According to Theorem 3, there
exists =0>0 such that |E(t, =)&E� (t)|<'�2 for all t # [T0 , T] and =<=0 .
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We have also |x(t, =)&x� (t)|<'�2 and | y(t, =)&y� (t)|<'�2 for all t #
[T0 , T]&J where J=� Jn is a reunion of small intervals Jn centered at tn .
On each interval Jn , the trajectory is approximated by #En

with an error of
order '�2. Thus, the trajectory is inside V for all t # [T0 , T]. It remains to
prove that it never leaves it for t>T. Assume that this is false. Let t>T
be the smallest value such that the trajectory lies on the boundary of V.
This must happen only along the arcs B$C$ or D$A$, since along the arcs
A$B$ or C$D$, the trajectories are exponentialy close to these arcs. Applying
Theorem 3 we see that the trajectory was already outside V for some time
before t, which contradicts the choice of time t. K

Using Brouwer fixed point theorem we conclude that system (6) has an
exact cycle which lies in a small tube around 1. Along this cycle the mini-
mal and maximal values Emin and Emax of the harvesting effort satisfy
Emin rE

*
and Emax rE

**
. This cycle is not necessarily a limit cycle. In

Gause's model (3), the functions f and g are

f (E)=eqEE:L&r, g(E)=E s&;K (E�&E);x�&s ,

and the function h is strictly convex, so it has a unique fixed point which
is globaly attracting. In this model all trajectories starting in the positive
octant will approach 1.

A. APPENDIX

A.1. Remarks and Numerical Experiments

Strictly speaking we did not prove that the cycle near 1 is an attractor
but only that all the solutions in a neighborhood of the cycle will arrive
when t is large enough in a small tube around that cycle and that the
radius of the tube goes to zero with =. From a practical point of view this
is perhaps the same as saying that the cycle is an attractor, but it is well
known that three dimensional systems may present very complex and
fascinating behavior with a mixture of periodic behavior, strange attractors
and chaos. So there is no reason to exclude the possible existence of a lot
of distinct periodic orbits that lie in the small tube around the cycle. The
description of trajectories agrees perfectly with numerical experiments (see
Fig. 5). This figure is obtained in case of model (4�5) with the following
values of parameters : ==0.05, r=2, K=10, :=0.2, q=0.2, s=1, L=7,
;=0.25, x�=2. This figure shows the cycle of oscillation in three dimen-
sional space and its projection in xE-space.
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FIG. 5. The cycle of oscillations for the parameter values reported in the text.

A.2. Tikhonov's Theory

Let us consider an initial value problem of the form

{=x* =F(x, y, =)
y* =G(x, y, =)

x(0)=:= ,
y(0)=;= ,

(11)

where =d�dt, x # Rn, y # Rm and = is a positive real parameter. We look at
the solutions behavior when = is small. The small parameter = is multiplying
the derivative, and so the usual theory of continuous dependence of the
solutions with respect to the parameters cannot be applied. According to
Tikhonov's theory, first x varies very quickly and is approximated by the
solution of the boundary layer equation

x$=F(x, ;0 , 0) x(0)=:0 , (12)

and y remains close to its initial value ;0 . The system of differential equations

x$=F(x, y, 0), (13)

in which y is a parameter, is called the fast equation. Assume that the solu-
tions of (13) tend towards an equilibrium !( y), where x=!( y) is a root of
equation

F(x, y, 0)=0. (14)

The manifold L of equation (14) is called the slow manifold : It is the set of
equilibrium points of the fast equation (13). The surface of equation x=!( y)
is a component of the slow manifold. The solution of (12) is defined for all
{�0 and tends to (!(;0), ;0), namely to a point of the slow manifold L.
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Hence a fast transition brings the solution of problem (11) near the slow
manifold. Then, a slow motion takes place near the slow manifold, and is
approximated by the solution of the reduced problem (or slow equation)

y* =G(!( y), y, 0) y(0)=;0 . (15)

The preceding description is definitely heuristic and imprecise. In a more
rigorous description we usually consider = as a parameter that tends to 0 and
we assume that problem (11) has a unique solution x(t, =), y(t, =). Let y0(t)
be the solution of the reduced problem (15), which is assumed to be defined
for 0�t�T, then we have

lim
= � 0

y(t, =)= y0(t), for 0�t�T.

We have also lim= � 0 x(t, =)=!( y0(t)), but the limit holds only for 0<t�T,
since there is a boundary layer at t=0, for the x-component. Indeed, let x0({)
be the solution of the boundary layer equation (12), then lim= � 0 x(={, =)=
x0({) for 0�{<+�. This description of the solution of problem (11) was
given by Tikhonov [20], under the hypothesis that the equilibrium point
!( y) of equation (13) is asymptotically stable for all y and that the
asymptotic stability is uniform with respect to y. See also [6, 8, 9, 16, 21].

A.3. Canards

System (1) is a fast-slow system and its trajectories are described by the
Tikhonov theory as long as the bifurcational value y

*
is not reached. The

stability loss delay phenomenon fits the theory of canards which are trajec-
tories of fast and slow systems that moves for a long time along the unstable
part of the slow manifold f (x, y)=0, after having moved for a long time
along the stable part of the slow manifold. Canards solutions were first
rigorously studied in 1978 by a group of French mathematicians, namely E.
Beno@̂t, J. L. Callot, F. Diener, and M. Diener (see [4, 17, 22] for complete
references), using Nonstandard Analysis. We have also to our disposal
standard studies of the French canards [5, 7, 14]. Rigorous proofs (using
standard analysis) in a two dimensional system were given also by Schecter
[18] in 1985. The logarithmic change of variables (9), which is the funda-
mental tool in our study, appeared first in the nonstandard literature on the
subject.
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