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Abstract: We investigate the properties of the solutions of a class of piecewise-
linear differential equations. The equations are appropriate to model biological
systems (e.g., genetic networks) in which there are switch-like interactions be-
tween the elements. The analysis uses the concept of Filippov solutions of differ-
ential equations with a discontinuous righthand side. It gives an insight into the
so-called singular solutions which lie on the surfaces of discontinuity. We show
that this notion clarifies the study of several examples studied in the literature.

1 Introduction

Complex biological systems are often modelled by means of switch-like relations
between the variables, involving step functions. Such behaviour involving thresh-
olds has been shown experimentally in enzymatic or genetic networks: in the
model, the rate of production of the enzyme (or gene) is often described by a
sigmoid function, such as the Hill function X(¢,0,p) = &P/(&P + 6P), where the
threshold is 6. If p is large, the function is similar to a step function. The general
equations of the model can be written as (cf. [12]):

7, = fi(z) — vizs i=1---,n (1)
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where the relative degradation rate -; of the component z; is constant posi-
tive, and the production rate function f; depends on the n components z =
(z1,-++,2,). We assume that f; are piecewise constant positive functions whose
values change as a variable x; crosses a certain threshold 6/ (cf. the more precise
description below). This system has been widely studied in the literature, mainly
in the framework of genetic networks (cf. [6, 16]). In fact, it is a piecewise linear
(PL) differential system of a special kind. The dynamical behaviour of the vari-
ables in each of the boxes between thresholds is simple; therefore, the description
of the behaviour can be linked to Boolean automata, involving Boolean variables
(corresponding to the continuous variable below or above a threshold). Many
other problems arise and a lot of interesting work has been done in this domain
(for more details see [12, 16]).

From a mathematical point of view, these systems are differential systems
with discontinuous dynamics, and one of our goals in this paper is to show that
the concept of Filippov solutions [1] can clarify and facilitate the study of such
systems, in particular of the behaviour on the threshold planes.

Two different methods were developed for the study of the stationary points
located on threshold hyperplanes. The first method [15] uses logical variables,
while the second method [12, 13] uses a continuous homologous system of the
PL system (see Section 4 for details). For example, the Hill function X(&,0,p) =
&P /(&P + 6P) approaches the step function when p — +oo. It was often used to
define continuous homologues of the PL system [3, 4, 6]. Other functions may be
used, like the logoid function [12], that are easier to handle. The system becomes
then a system of ordinary differential equations with continuous right hand side,
and the steady points are defined in the usual way. But when one comes to the
limit of the step functions, it is not so simple to obtain rigorous results on the
steady points and their nature.

Moreover, a remaining problem is that of the behaviour of the system on
the threshold hyperplanes (and far from a steady state). First, we recall that
the original system is, a priori, not defined on these hyperplanes. In fact, the
literature on system (1) is mainly concerned with the non-singular solutions (we
call non-singular solutions z(t) of (1) solutions in which for each i, z;(t) = 6/
only at isolated values of t). The problem of the definition of the solution and
its behaviour on the threshold hyperplanes (called walls in [12]) is not clearly
elucidated.

The aim of this paper is to study system (1) and to describe its singular
solutions. Our approach will be to use the Filippov solutions of a discontinuous
differential equations. The definition of these solutions enables one to define
afterwards, in a clear and easy way, the singular steady points and solutions.

Let us motivate our approach: on the threshold hyperplanes, the PL system is
not defined, nor are the steady points on these hyperplanes. The concept of Fil-
ippov solutions provides a way to define (by extension) the differential equation
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and its solution on these threshold hyperplanes. It is, in general, a differential
inclusion, defined for every point. This new extended vector field enables the def-
inition of the notion of solution everywhere, and also to compute all the steady
points, either in the interior of the boxes (regular) or on the hyperplanes (singu-
lar). Moreover, their stability can be easily deduced. This concept clarifies the
notion of “sliding motion” of a solution moving along a wall, that was almost
completely ignored in previous work.

The paper is organized as follows. In Section 2 we specify the model and
define the concept of boxes. In Section 3 we define the PL system on the threshold
planes and we consider its solutions in the sense of Filippov. In Section 5, we
describe the transition graph associated with the PL system (1). In Section 4
we discuss the regular and singular stationary points and we clarify some results
in the literature. Section 6 illustrates our approach by means of some examples
that were considered by several authors; we show the applicability of the method
and its simplicity to deal completely with the problem.

2 The model and the boxes in the state space

Let us introduce some notations: we assume that, for each variable x;, i =

1,---,n, there are N; thresholds 6!, --- , 0 satisfying

00 <0 << <ot
where 60 := 0 and 6! := +00. These thresholds divide the positive cone
C ={x:x >0,0=1,---,n} into boxes of dimension n, separated by the

(n — 1)-dimensional hyperplanes x; = 05 . We assume that the f; are constant
positive in each box. The values of f; differ from box to box, so that system (1)
is a piecewise linear (PL) system.

In vector notations (1) can be rewritten as

¥ = f(z) — 7z, zeC, f:C—R, (2)

where f = (f1,---, f.) and v = diag(vy1,- - - ,7a), and diag is the diagonal matrix
corresponding to the vector.

In practice, (2) often involves step functions and is given by
o' = F(z(z)) — 7z, (3)
where F' : RVt+-+Na s R is of class C!, and

2w) = (2,2 a), A =S(@,0).
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Here S(&,0) is the step function

0 if €<,
5(5’0)_{1 if £>0.

In the interior of each box, the behaviour is linear and simple; the problems
arise on the hyperplanes separating the boxes, where the vector field is not de-
fined. In particular, a definition is needed for the singular steady points located
on the thresholds (cf. section 3).

Definition 1 Let ¢ : {1,--- ,n} = N, i — ¢; be a mapping satisfying 0 < ¢; <
N;. The n-box B defined by q is the subset of the positive cone C given by

B=B,:={z€C: 0% <z; <% i=1,--- n}, (4)
The value of f in this box is denoted by f5.

The total number of n-boxes is equal to

n

=1

In the box B, (2) reduces to the linear system z’ = f# — vx. Thus, the solutions
are given by
z(t) = ®F + (x(ty) — ®B)erlt0=t) (5)

where ®8 = y~1fB. When t — 400, z(t) — @7, until x(¢) encounters the
boundary of the box B. The solutions given by (5) are curves originated at z(ty)
and converging toward ®Z, called the focal point of box B [3, 4]. If ®% € B,
then z = ®% is a stable node of (2). This proves the following result.

Theorem 1 If ®8 € B then x = ®8 is an asymptotically stable stationary point

of (2).

We only consider throughout the paper the generic case where the focal point
®2 does not lie on the threshold hyperplanes which constitute the boundary of
B. The face separating two adjacent n-boxes will be called a (n—1)-box or a wall.
More precisely, let B; and B, be two n-boxes defined by the mappings ¢* and ¢2,
such that there exists an index j satisfying ¢ = ¢} if i # j and ¢j = ¢} + 1. The
(n — 1)-box W separating the n-boxes B; and B, is the subset of the positive
cone C given by

W={zeC: a=0"ifi=j0" <z <0 if i #£j}

where the mapping ¢ = ¢'. Notice that the PL system is not defined on the set
w.



Theorem 2 If f2 < 0%, all trajectories in B that are encountering the wall
z; = 0% are leaving the box B. Similarly, if fB > 'yﬂf"ﬂ, all trajectories in B that
are encountering the wall z; = 0%%" are leaving the box B. If 0% < fB/v; < 0%%
all trajectories in B that are encountering the walls z; = 0% or z; = 05T enter

the box B from these walls.

Proof Suppose that f? < ;0% and the trajectory z(t) encounters the wall
z; = 0F at time ty. Then z;(¢y) — ®? > 0 and, according to (5), the component
z;(t) of x(t) is decreasing. Thus z;(t) < 0F for t > to, that is, the solution z(t)
leaves the box. The proof is similar in the other cases. g

Following Plahte et al. [12], a wall separating two boxes will be called a black
wall (resp. a white wall) if trajectories leave (resp. enter) both boxes from the
wall. It will be called a transparent wall if trajectories enter one box from the
wall and leave the other box.

We have to consider also the (n — 2)-boxes which are the common faces of
four adjacent n-boxes. Let B, By, B3 and B, be four n-boxes defined by the
mappings q', ¢%, ¢* and ¢*, such that there exist two indices j and k satisfying
g =q¢/=¢ =q'ifi#jandi#kand

G=q¢=q¢+1=q¢+1, g=qg+l=qg+1=gq;

The (n — 2)-box P separating the n-boxes B, By, Bs and By is the subset of the
positive cone C given by

P={zeC:x=0Fifie{jk},0F <z, <08 ifid {jk}}

where the mapping ¢ = ¢'. Notice that the PL system is not defined on the set
P.

More generally we must consider the (n—k)-boxes which lie in the intersection
of k threshold hyperplanes.

Definition 2 Let k = 1,---,n be an integer. Let I be a subset of {1,---,n}
having k elements. Let q: {1,--- ,n} = N, i +— ¢; be a mapping satisfying

The (n — k)-box defined by (I,q) is the subset of the positive cone C given by
B=BYD ={zecC:a;=0" ific[0F <z, <0% ifi ¢ I}

The total number of (n — k)-boxes is equal to

m =y Y e M

i=1 1<ig <-<ip<n Niy +1 Ny +1
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The boundary of any k-box is the union of &’-boxes where 0 < k' < k — 1.
It is easy to see that the total number of boxes is equal to
i=1
Having described the partition of the state space, we will define the concept
of Filippov solution.

3 Filippov solutions of the PL system

To provide the existence and the possibility for solutions to be continued on all
boxes, it is necessary to define the right-hand side of system (2) at the points of
discontinuity of the function f. The simplest way to achieve this is the convex
definition of Filippov [1]. For each point x € C, a subset F(z) C R" is specified.
If at the point z the function f is continuous, the set F'(z) consists of one point
which coincides with the value f(z) of the function f at this point. If z is a point
of discontinuity of the function f, F(z) — vz is in general a set, given by the
convex hull of the regular vector fields surrounding x (see below). This set gives
a differential inclusion and enables to define the notion of solution everywhere.

Definition 3 A solution in the sense of Filippov of (2) is a solution of the dif-
ferential inclusion

' € F(z) — vz
that is, an absolutely continuous function x(t) for which z'(t) € F(x(t)) — yx(t)
almost everywhere.

In the remaining of this section we explain how to construct the set F(z) at
discontinuity points of f.

Let us first consider the case where x belongs to a wall W separating two
n-boxes By and Bs. Following [1], the set F'(x) is the convex set

F(z) = conv(f™, f)

where conv denotes the convex hull. Consider the linear segment F(z) — vz
joining the endpoints of the vectors f? — vz and fB2 — yz. If this segment
does not intersect the hyperplane containing the wall W, that is, the wall W
is transparent, the solutions pass from one side of the wall W to the other. If
this segment intersects the hyperplane containing the wall W (Fig. 1), that is,
the wall W is black or white, the intersection gives the vector f" — vz which
determines the velocity of motion

o' =" —yx (6)

on the wall W. Such a solution is called a sliding motion.
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Theorem 3 Assume that W is in the hyperplane Cf ={zeC:x; =0} and
W is black or white, that is, (f?> — v6?)(fP* —v6?) < 0. The constant vector
YV in (6) is given by

B .9
P=afte(-art a= Tl ™

The focal point ®V is the intersection of the linear segment ®P1®5> with the
hyperplane C : _
®" = C? N conv(®P, 072).

Proof The segment joining the endpoints of the vectors fB' — vz and 52 — vz
is expressed by
aff + (1 - a)f? — vz, 0<a<l.

The value of a in (7) is found from the condition af* + (1 — ) f* — v =
0 which means that the vector fW — 4z is in the hyperplane z; = #/. Since
(fP — 0 (fP* —4:6?) <0, one has that 0 < o < 1. From (7) one has that

" = ad®” + (1 — a)d™, 0<a<l.

Thus, ®" is the intersection of the linear segment ®81®5? with the hyperplane
C.y

If W is transparent, trajectories of (2) in B; and B can be joined into a
single continuous trajectory satisfying the PL system. In the other case, when
W is black or white, there is no indication of how a solution can be continued.
If we consider the solutions of the PL system in the sense of Filippov then it is
possible to continue a solution into black and white walls. First, assume that the
wall is black. A continuous function x(t) defined on the time interval I = [a, b],
which on a part [a, ] of I lies in the box By (or By) and there satisfies equation
(2), and on the rest [c, b] of I lies in the wall W and satisfies equation (6), is also
a solution of (2) in the sense of Definition 3. Now, assume that the wall is white.
A continuous function z(t) defined on the time interval I = [a,b], which on a
part [a, ¢] of I lies in the wall W and satisfies equation (6), and on the rest [c, b]
of I lies in the box By (or By) and there satisfies equation (2), is also a solution
of (2) in the sense of Definition 3.

If W is black, then near the wall all the solutions are approaching it from
both sides as t increases, and none of them can leave W. A solution which passes
through a point of the wall W at t = ¢y, will therefore remain on W for ¢ >
until it reaches the boundary of W. If W is white, then a solution which passes
through a point of the wall W at ¢ = t;, may either go off the wall W into the
box B; or By, or remain on W for ¢ > t;3. In the later case the solution may go
off W at any moment. On a white wall the motion is therefore unstable.



Let us now describe the velocity of motion along a (n — 2)-box P which is in
the intersection of two threshold hyperplanes. This box is the common face of
four n-boxes By, By, By and By (Fig. 2). Let x € P. Then F(z) is the smallest

convex set

F(z) = conv(f™, f%, %, o)
containing the vectors f%, 4 =1,--- 4. In general the intersection of F(z)—(x)
and the (n — 2)-hyperplane containing P does not consist of only one point. In
generic cases, this intersection is a linear segment or is empty. If it is empty then
there are no solutions lying on P. If it is nonempty then one obtains a differential

inclusion
1’ € ff -y, (8)

which determines the velocity of motion along P.
Theorem 4 Assume that P is in the (n— 2)-dimensional hyperplane C3} = {z €

C:z; = Qg,xk = 0L}, The set f¥ in (8) consists of all points ay fP* + ay fB2 +
asfB + o, fB, where the oy are the positive solutions of the linear system

L+ +ag+ag =1, .
ar P+ o f7 + as f + aufPt = 7.0, (9)
arfE 4+ aufP + asfP 4 aufPr = 6L

The focal set ®F = v~ fF is the intersection of the smallest convex containing
the focal points ®B1, ®B2 ®B3 gnd ®B+, with the hyperplane Cf,i

®F = 7' N conv(®F, @F2 dPB2 pB4).

Proof For x € P, the smallest convex set containing the vectors f% — vz,
1=1,---,4, is a set of all vectors of the form

a1 fB + o fP +asfP + agfP — vz, o >0, Zai =1 (10)

This vector belongs to the hyperplane ijl if and only if the a; are the positive
solutions of the linear system (9). From (10) one has that

oF = a1<I>Bl + a2¢B2 + a3<I>B3 + a4¢B4, a; > 0, Zai =1.

Thus, ®F is the intersection of C7; with conv(®P1, ®B2 B $B1).

This construction may be continued on all intersections of threshold planes.
Let k& be an integer 1 < k < n. Let B = BY'9 be a (n — k)-box. This box is in
the common boundary of 2¥ n-boxes B; = B? 1< j < 2* where ¢ is a mapping
satisfying ¢ = ¢; if i € I and ¢, = g; or ¢, = g; — 1 if i € I. The set F(x) is the
convex set

F(x) =conv(F% 1< j <2k
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containing the vectors f5, 1 < j < 2*. The (n — k)-hyperplanes C® containing
the box B is given by

CPl={zeC:x;=0"iel}

In general the intersection of F(x) — vy(x) and the (n — k)-hyperplane C? does
not consist of only one point. If it is empty then there are no solutions lying on
P. If it is nonempty then one obtains a differential inclusion

7€ fP—qx (11)
which determines the velocity of motion along B.

Theorem 5 The set fB in (11) consists of all points Z?il a; fB where the o
are the positive solutions of the linear system

2k
S (12)
S a® =0, el

The focal set ®8 = =1 of the box B is the intersection of the smallest convex
containing the focal points ®Bi, j =1,---, 28 with the hyperplane CB:

®F = conv(®Pi 1 < j<2YNCP (13)

The positive solutions of (12) depend on at most 2¥ — k — 1 arbitrary constants.
Thus ®7 is generically empty or a simplex of dimension

dim®® = min(n, 2" — 1) — k

The differential inclusion (8) or (11) means that the motion is not determined in
a unique way on the intersection of threshold hyperplanes by this concept of Fil-
ippov solutions. If we would need to choose between these different trajectories,
a more specific concept of solutions would be necessary (see the conclusion).

4 Regular and singular stationary points

We now show the utility of this concept of Filippov’s solutions in the study of
the singular steady states.

Snoussi and Thomas [15] introduced the concepts of regular stationary points
(RSP) and singular stationary points (SSP) in models comprising step functions.
A RSP is a stationary point where none of the variables has a threshold value.
A SSP is a stationary point where one or more variables has a threshold value.
The RSPs are simply defined by putting ' = 0 in (2), that is, by the equation
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vz = f(x). This equation has a solution, if an only if, for some box B, the focal
point ®# belongs to B. According to Theorem 1, z = ®% is an asymptotically
stable RSP. Since the PL system is not defined on the threshold planes, SSPs
cannot be defined by z’ = 0.

In the present paper, we use the concept of solutions of (2) in the sense of
Filippov, so we have no problem with the definition of stationary points. Indeed
the point x = c is called a stationary point for the PL system (2), if it is a
solution, that is, if z(¢) = c is a solution (in the sense of Filippov) of (2), that is

0€ F(e) — e

A SSP is a stationary point which belongs to some threshold plane. On a
wall, the behaviour and SSP are easy to describe: the solutions of (6) are curves
lying on the wall W and converging toward the focal point ®V = ~~1fW_ If
®W € W, then z = ®" is a stable node of (6). This proves the following result.

Theorem 6 Let ® € W. If W is a black wall, then x = ®V is an asymptot-
ically stable stationary point (in the sense of Filippov) of (2). If W is a white
wall, then x = ®Y is an unstable stationary point (in the sense of Filippov) of

(2).
Hence it follows easily:

Theorem 7 SSPs cannot be located in transparent walls. There is an SSP on
a black (or white) wall W if and only if ®V € W. If a SSP belongs to a black
(resp. white) wall, then it is an asymptotically stable (resp. unstable) solution of

(2).

Proof On a transparent wall there is no sliding motion. Hence SSPs cannot be
located in transparent walls. Let x = p be a SSP which belongs to a black or
white wall W. Then, one has p = ®". Hence ®"¥ € W and, by Theorem 6, it
is an asymptotically stable (resp. unstable) solution of (2), if W is black (resp.
White). 1

Our definition, compared to that of Snoussi and Thomas, is clearer (see [15],
p. 984) and makes the mathematical computation easy. To avoid the difficul-
ties of [15] in the definition of SSPs, Plahte et al. [12, 13] suggested to define
a stationary point of the PL system as the limit of stationary points of homolo-
gous continuous systems, when the steepness of the sigmoid functions increases
to infinity. The stationary point is said to be singular if this limit lies in some
threshold plane. With this definition, that is not so obvious to handle the concept
of SSP at the limit.
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Since the sliding motion on (n — k)-boxes, k > 1, is given by a differential
inclusion, the analysis of SSPs lying in the intersection of threshold hyperplanes
is more delicate.

Theorem 8 Let k be an integer, k =1,--- ,n. There is an SSP on the (n — k)-
box P if and only if @ N P # 0.

Proof Let p € P be a stationary point. Then z(¢) = p is a solution of the
differential inclusion (8). Thus p € ®” and ®" N P # (. y

If ®F does not consist of only one point p, which is the case in generic systems
if £ > 1, then p is not an isolated steady point, and the solution is not unique
(cf. conclusion). If ®F = {p}, then z = ®F is a stable node of (8). Hence it can
be an asymptotically stable SSP of (2), in the case where any solution of (2) in
the sense of Filippov, starting in a neighborhood of p, tends to a point in the box
P. Further analyses are needed to study the stability. Some indications can be
inferred from the transition graph.

5 The state transition graph

In this section, we define an “extended” transition graph showing the transition
between all the boxes of any dimension.

The state transition graph for system (2) is a directed graph representing
the passage of the trajectories from box to box. To each k-box, k = 0,--- | n,
is associated a vertex. Let us define the edges. Let B be an n-box and B’ an
n'-box, 0 < n’ < n — 1, included in the boundary of B.

1. If there is a solution of (2) lying in B and terminating in B’, then the state
transition graph contains the directed edge B — B'.

2. If there is a solution of (2) lying in B and beginning in B’, then the state
transition graph contains the directed edge B’ — B.

Let B be a k-box, 1 < k <n, and B’ a k’-box, 0 < k' < k — 1, included in the
boundary of B.

1. If the focal set ®5 defined by (13) is empty, then there is no edge B — B’
or B' — B in the state transition graph.

2. If ®% # () and there is a solution of the differential inclusion (11) lying in B
and terminating in B’, then the state transition graph contains the directed
edge B — B'.

3. If % = () and there is a solution of the differential inclusion (11) lying in B
and beginning in B’, then the state transition graph contains the directed
edge B’ — B.
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Notice that

e if I is a transparent wall separating two n-boxes B; and Bj, then the state
transition graph contains the edges

By - W — B, or B+ W<+ By

o if W is a black wall separating two n-boxes B; and B, then the state
transition graph contains the edges

Bl—)W<—B2

e if W is a white wall separating two n-boxes B; and B, then the state
transition graph contains the edges

B+~ W — B,

This state transition graph contains in some sense the state transition graph
defined in [3, 4]. These authors restricted their attention to the case where all
walls are transparent. They considered the graph whose vertices are the n-boxes.
A directed edge B; — By between two boxes means that B; and B, are two
adjacent boxes separated by a transparent wall W and that the solutions lying
in Bj leave the box B; from the wall W and the solutions lying in B, enter the
box B; from the wall W.

6 Examples

This section is intended to illustrate the applicability of our approach by some
typical examples which appeared in the literature. In the following examples, we
consider the form (3) of the PL system. If there is only one threshold value 6} for
the variable x;, we denote it simply 6; and we denote z; = S(;,6;). Whenever
necessary, we specify 2/ as z/7 and we denote 2/~ =1—2/*

i .

6.1 Example of Plahte, Mestl and Ombholt [12]

In this first example we have the case of an asymptotically stable SSP in a black
wall; we obtain the unstability of the other SSPs.

Consider a two dimensional system with one threshold value #; for each vari-
able z;. The equations are

o + .- — 5t
xh = koz; — T9.

(14)
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The positive cone is separated in four boxes B, B% B° and B! (Fig. 3).
Assume that k; > 0; and ky > 6,. The focal points are f% = (0,k,) € B%,
FOU= (ki ko) € BY, f19 = (k1,0) € B and f* = (0,0) € BY. By Theorem 1,
f1%is an asymptotlcally stable RSP. The wall W, is white, W is black, W; and
W, are transparent. By Theorem 3, the sliding motion on W is given by

.TI2 = k2 - Qlkg/kl — T2
and the sliding motion on W, is given by
1'12 = 91]€2/l€1 — T2

Let us assume that k; < 26, and ky/k; > 605/6; (other cases can be handled
similarly). The focal point f"* = (0, ky — 61ky/k1) belongs to Wi and the focal
point fW2 = (61, 0,ky/k;) belongs to Wy. By Theorem 7, f"* is is an unstable
SSP and f"? is an asymptotically stable SSP. Moreover, the point P = (6y,6-)
belongs to the convex set conv(f%, fOl f10 fi1) By Theorem 8, P is a SSP;
it is unstable. The behaviour is easy to read almost exhaustively on the state
transition graph (Fig. 3).

6.2 Example of Snoussi and Thomas [15]

Here we obtain the exact location (and not only the detection) of the SSP. This
example was proposed in [15] as an illustration of the method of detection of
SSPs. Consider a two-dimensional system with two threshold values 6} < 6? for
each variable z;. The equations are

zh = kizi + k3zi — 14, 15
T = ko2? + kyzi — 15. (15)

The positive cone is subdivided in nine boxes BY, i,j = 0,1,2 (Fig. 4). Let
us assume that 0] < k; < 07, 0] < k3 < 07 < ky + k3, and 0] < ky < 63,
0y < k4 < 02 < kg + ky. The focal points are

£ = (0,0) € BY. 10 = (ky,0) € B, [ = (ky ky) € B, % = (0,ky) €
BOl fll — (k1,k4) Bll f21 — (k17k2 + k‘4) B12 f02 — (k‘g,k4) = BH,
[ = (k1 + ks, ky) € BH and 2 = (ki + ks, ks + ks) € 322

By Theorem 1, fO0, f10 f0l £l and f?2 are asymptotically stable RSPs.
Let us determine the SSPs. A wall W separating the boxes B“ and B* is
denoted by W = (B, B*). The walls W, = (B, B, W, = (B%, B?),
Ws = (B, B'') and W, = (WO, W1!) are white. All other walls are transpar-
ent. By Theorem 3, the sliding motion on W; is given by z}| = —zy; its focal
point is f"* = (0,0%) € W,. By Theorem 3, the sliding motion on W, is given
by z, = —x; its focal point is f2 = (A},0) € W,. By Theorem 3, the sliding
motion on Wj is given by x} = k; — z,; its focal point is f2 = (k,0}) € Ws.
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By Theorem 3, the sliding motion on W is given by z/, = k4 — xs; its focal point
is fW+ = (0!, ky) € Wy. By Theorem 7, fW1, fW> fWs and f" are unstable SSPs.

Consider now the intersections of the threshold planes. One has

(01,03) € conv(f%, f, 19 f1), (61,63) € conv(fU, [, f2, £7%).

By Theorem 8, P, = (67,03) and P, = (07,03) are SSPs; they are unstable.
Moreover

(01, 63) & conv(f*, f1, f12, f%),  (6,0,) ¢ conv(f1°, f2°, f2, ).

By Theorem 8, P3 = (61,62) and P, = (6%,03) are not stationary points. Hence
(15) has eleven stationary points, five of them are regular, and six are singular.
Notice that in our approach, the SSPs belonging to white walls are not only
detected but also located in the corresponding wall (compare with [15], p. 981-
982). It is also interesting to see that much of the dynamical behaviour can be
read on the transition graph (Fig. 4).

6.3 Example of Thomas [12]

We consider a gene regulatory model investigated by Thomas [16] and studied by
Plahte et al. [12]. These authors use for their study a continuous approximation
of the system by logoids. We recall briefly their approach and results afterwards.
We obtain a complete analysis of the example. Consider the three dimensional
system with one threshold value 6; for each variable z;.

! -+

= k12 257 — iz,
I + 4

Ty = kozi 23 — Yoo, (16)
I - + -+

Ty = k3(2) + 23 — 2 25 ) — V373

The positive cone is separated in eight boxes BY* 4,4, k = 0,1. Assume that
0 < g; <1, where g; = v;0;/ki, i = 1,2,3. The focal points are

PO = OO = GOl = PII0 = (0,0, ky/7;) € BO!, ®0 = (0,0,0) € B,
QoL — (k1/71,0, kg/’)/g) S B101, o0l — (kl/’yl,kg/’)/Q,O) € BHO, and ! =
(0, k> /72, k3/vs) € B

Thus, (16) has no RSPs. Let us determine the SSPs. All walls are transpar-
ent. Hence there is no sliding motion on the walls. The SSPs must lie on the
intersection of two or more threshold planes. Let C;; = {z € C : z; = 0;,z; = 0;}.
LetPlz{xECQ?,:a:l>91}P2:{a:6013:0§332<92}andP3:{x6012:
x3 > 03}. By Theorem 4, the sliding motion on P; is given by the differential
inclusion

where
A; = [min(0, g» — g3), max(gq, 1 — g3)],
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Ay = [min(0, g1 — g3), max(g:, 1 — g3)],
A3 = [mln(l — g1, 1-— g?)a ma,x(l, 2 — g1 — 92)]

By Theorem 8, one has an SSP on P; if and only if the corresponding focal set
intersects P;, that is,
kiAi/7 0 P # 0 (17)

For ¢ = 1, condition (17) is equivalent to g; < max(gs,1 — g3). For i = 2
condition (17) is equivalent to g3 > g1 — g2. For i = 3, condition (17) is equivalent
to g3 < 2 — g1 — g». Hence the cube 0 < g; < 1,7 =1, 2,3, in parameter space is
separated into four different regions, in which one, two or three SSPs may exist
on P, i=1,2,3 (Fig. 6).

The line Py = {x € Cy3 : x5 > 6} is the common edge of the boxes B, B0
B and B™!. One has Cj3 N conv(®%0 @10 §01 §!l) = (). By Theorem 4,
there is no sliding motion on Pj. Also, one has

Ciy N conv(@ooo, P00 10 q)no) =0, Cun conv(@ooo, POI0_ oL @001) — 0.

Hence, there is no sliding motions on the segments Py = {z € C15 : 0 < z3 < 63}
and Pl ={r € Cy3: 0 <z < b1 }.

Let us now consider the intersection of the three threshold planes. By Theo-
rem 8, the point P = (61, 6,,05) is a SSP if and only if it belongs to the convex
set containing all focal points ®* 4 j, k = 0,1. This case arises if and only if
g1+ 93> g2, g2+ 93 > g1 and g1 + g2 + g3 < 2 (see Fig. 6 which represent the
domain in parameter space in which P is a SSP).

Let us now consider the continuous approach of [12]. When the step func-
tions z(x) in (3) are replaced by continuous approximations Z(z, d), the resulting

system
o' = F(Z(x,6)) — vz, (18)

is a continuous analogue of (3). Here

Z(z,0) = (Z},--- ,val,--- AR A0 77 — E(x,-,@f,d),

2

and X(§,0,9) is a sigmoid function, such that the steepness increases when § — 0,
that is,
lim £(£,6,0) = S(€,6).

Plahte et al. [12] considered the SSPs of (16) as the limits of the corresponding
continuous analogue

Ty =k Zy Z5 — ya,

vy = ko Z Z3 — s, (19)
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of (16). They detected a steady state (z3(8),z3(0),z3(d)) satisfying

lim2%(8) = 6y, limz5(0) = k2(1 — g3)g1/7, limz3(8) = 6,
6—0 6—0 5—0

This limit belongs to P, if and only if g3 > 1—g,/¢;. They also detected a steady
state (23(0),x3(8), 23(9)) satisfying

(lsin(l)x:f(é) = 0, %in(l):r;’(é) = 0,, llsirr(l)xg(é) =k3(1 — 9192)/7s-

This limit belongs to Ps if and only if g3 < 1 — g195. Notice that the domains of
existence in parameter space of these two SSPs are included in our domains (Fig.
6).

It is claimed in [12] that steady points may only exist on P, and P; which
correspond to circuits in the transition graph (Fig. 5): in fact, it is easily seen
that (19) also has a third steady state (z1(d),23(5),zi(0)) satisfying

lim 21(8) = ki (1 — g3)ga/71, limzy(8) =y, lim a3(8) = b5.
6—0 65—0 5—0

This limit belongs to P; if and only if g3 < 1 — g1/g2 and the corresponding
domain of existence is included in our domain (Fig. 6).

7 Conclusions

The concept of Filippov solutions enables a rigorous and clear treatment of the
problem of singular solutions. It can provide new tools for exploring the inter-
esting problems arising from these threshold biological models.

In particular, we are able to compute the location of all the singular steady
states. Theses steady states are important from a biological point of view be-
cause they give the possible distinct homeostatic behaviours of the genes network.
Computationally, this problem can be time-consuming (in high dimensions) and
it remains to study efficient algorithms.

In practice, the exact value of the parameters (such as the position of the
threshold and the value of the function in each box) is often not exactly known,
i.e. the parameter is only known to belong to some given interval. A very
interesting problem would be to study the robustness of the results (for example,
of the number and location of steady states) with respect to these intervals.

In this study, we only considered the generic case where the focal point does
not lie on the threshold hyperplane. If this occurred under variation of a param-
eter, it could lead to non-smooth bifurcations (e.g. [2]).

Of course, the problem of the ambiguity of the dynamical behaviour in the
case when the differential inclusion (8) is a set and not a single point remains
open: it can be solved by choosing a behaviour among all the behaviors given
by the differential inclusion, by some method of regularization ([17]), either by
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taking continuous homologous systems, or by the way of a stochastic process.
But, considering the bases and goals of the study of this kind of mathematical
genetic networks, one can also think that it is important to consider every possi-
ble behaviour, to be sure not to miss some trajectory. With such a point of view,
it is interesting to keep the differential inclusion and study all the compatible
behaviours: of course, corresponding algorithms and software have to be written,
and are the subject of current work [7, 8, 9]. Such computer tools, based on the
concepts developed in this paper, could facilitate the modelling, simulation and
study of large genetic networks, and the comparison with the huge amount of
experimental data available in genomics.
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Figure 1: The velocity of motion along a threshold hyperplane.
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Figure 2: The velocity of motion along the intersection of two threshold hyper-
planes.
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Figure 3: The flow and transition graph of (14). In the transition graph, the big

squares are the boxes, the rectangles the planes between, and the small square is
the point P.
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Figure 4: The flow and transition graph of (15). For the significance of the
elements of the graph, see the figure above.
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Figure 5: The transition graph of (16); all the walls are transparent and are not
represented on the graph.
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Figure 6: The domains of existence of SSP of (16 and 19), shown in the gs-g3
plane for an arbitrary value of g;; compare with [12].
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