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1. INTRODUCTION

The notion of B-stability was introduced and comprehensively studied in [1–3]. This notion can
be applied to analyzing the structure of a neighborhood of a compact invariant set M of a dynamical
system (X,R, π). For the case in which the phase space X is locally compact, it was shown that
B-stability is an intermediate property between stability and asymptotic stability. More precisely,
if M is B-stable, then it is stable; if M is asymptotically stable, then it is B-stable. An elementary
example of B-stability is given by the dynamical system described by the differential equation

dx

dt
=
{
x3 sin(1/x) if x 6= 0

0 if x = 0

on the interval X = [−1, 1] ⊂ R, where the equilibrium x = 0 is taken as M . An analysis of the
relationship between various notions of stability for compact invariant sets has shown that, under
certain conditions, the requirement of asymptotic stability of M can be replaced by the requirement
of B-stability with all desired results being preserved. In the present paper, we show that asymptotic
stability can be replaced by B-stability in the Tikhonov theorem on the passage to the limit [4] as
well as in the Malkin–Gorshin theorem on stability under permanent perturbations [5, 6]. To justify
these assertions, we first prove an equivalent definition of B-stability of a set M .

Let us introduce the relevant definitions and notation. Let (X,R, π) be a dynamical system
defined on a metric space (X, d) with distance d : X ×X → R+, where π : (x, t)→ xt is a mapping
of X ×R into X, referred to as the phase mapping. By L+(x) [respectively, L−(x)] we denote the
set of all ω-limit points (respectively, α-limit points) of a point x ∈ X. If I ⊂ R and Y ⊂ X, then
we write Y I = {x ∈ X : x = yt, y ∈ Y, t ∈ I}; next, Ȳ is the closure of Y in X, FrY is the
boundary of Y , and intY is the interior of Y .

For each compact set M , we consider the following sets:

A+(M) =
{
x ∈ X : L+(x) 6= ∅, L+(x) ⊂M

}
, A+

ω (M) =
{
x ∈ X : L+(M) ∩M 6= ∅

}
,

B(M,a) = {x ∈ X : d(M,x) < a}, a > 0.

By γ(x) = xR and γ±(x) = xR± we denote the trajectory and the positive and negative half-
trajectories, respectively, of an element x ∈ X. A set Y ⊂ X is said to be invariant (respectively,
positively or negatively invariant) if Y R = Y (respectively, Y R± = Y ).

Recall (see [7]) that a point x ∈ X is called a weakly elliptic point of a compact invariant set M
if L+(x) ∩M 6= ∅ and L−(x) ∩M 6= ∅. By Eω(M) we denote the set of all weakly elliptic points
of M .

Let X be a locally compact metric space and M a compact invariant subset of X. One says that
M is stable if each neighborhood of M contains a positively invariant neighborhood of M , weakly
attracting if A+

ω (M) is a neighborhood of M , attracting if A+(M) is a neighborhood of M , and
asymptotically stable if it is stable and attracting [8, p. 58].
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2. B-STABILITY

We recall the following definitions.

Definition 1 [1–3]. Let M be a nonempty compact invariant subset of a locally compact metric
space X. A neighborhood W of M is said to be repelling for t < 0 if, for each x ∈ FrW , there exists
a τ < 0 such that x(τ) 6∈ W̄ .

Definition 2 [1–3]. A nonempty compact invariant subset M of a locally compact space X is
said to be B-stable if every neighborhood of M contains a neighborhood that is repelling for t < 0.

The following property was studied in [9, 10]: a nonempty compact subset M ⊂ X is called
a quasiattractor if there exists a countable sequence (Mk) of compact invariant asymptotically
stable sets such that M =

⋂
Mk.

The equivalence of the definitions of B-stability and of a quasiattractor was proved in [3].
The following criterion for B-stability holds.

Theorem 1. A nonempty compact invariant subset M of a locally compact metric space X is
B-stable if and only if the following conditions are satisfied :

(1) M is stable;
(2) every neighborhood of M contains a compact attracting subset containing M .

Proof. Necessity. Let M be B-stable. Then [1–3] M is stable, and, by Theorem 1 in [3],
every neighborhood of M contains a compact asymptotically stable neighborhood W . Since W is,
in particular, attracting, we have the necessity of conditions (1) and (2).

Sufficiency. Let conditions (1) and (2) be satisfied. By Theorem 1 in [3], it suffices to show that
every neighborhood of M contains a compact asymptotically stable neighborhood of M . Indeed,
let ε > 0 be an arbitrary number such that the closure of B(M,ε) is compact. Since M is stable,
it follows that there exists a δ = δ(ε) > 0 such that B(M, δ)R+ ⊂ B(M,ε). Likewise, for δ > 0,
there exists an η = η(δ) such that B(M,η)R+ ⊂ B(M, δ). Moreover, it follows from condition (2)
that there exists a compact attracting set K such that M ⊂ K ⊂ B(M,η). This, together with
Theorem 1 in [3], implies that the set Eω(K) of all elliptic points of K is compactly invariant and
asymptotically stable and K ⊂ Eω(K); moreover, A+ (Eω(K)) ≡ A+(K). From the asymptotic
stability of M , we find that Eω(K) ⊂ B(M, δ), since otherwise there is a trajectory issuing from
the “ball” B(M,η) and reaching the “sphere” FrB(M, δ), which contradicts the stability of M .
We choose a number ∆ > 0 small enough to ensure that B (Eω(K),∆) ⊂ B(M, δ) and, at the
same time,

B (Eω(K),∆) ⊂ A+ (Eω(K)) ≡ A+(K)B(M, δ).

We set V = B (Eω(K),∆) ∪
(⋃

x∈FrB(Eω(K),∆) γ
+(x)

)
.

By definition, the set V is positively invariant, V is a neighborhood of M , and V ⊂ A+ (Eω(K)).
In this case, the closure W1 = V̄ is also positively invariant; moreover, W1 ⊂ A+(K) ≡ A+ (Eω(K)).
But W = W̄1 ⊂ B(M,ε); therefore, W is a compact set. This, together with Lemma 2 in [3], implies
that the set W is an asymptotically stable neighborhood of M .

In the same manner, taking the sequence εn = ε × 2−n, one can construct a sequence (Wn)
of compact asymptotically stable neighborhoods satisfying assumptions (1) and (2) of Theorem 1
in [3]. Consequently, M is B-stable, and the proof of the theorem is complete.

3. THE TIKHONOV THEOREM

Consider the system of differential equations

µdx/dt = F (z, y, t, µ), dy/dt = f(z, y, t, µ), (1)

where z, F ∈ Rn, y, f ∈ Rm, and µ > 0, with the initial conditions

z(0, µ) = z0(µ), y(0, µ) = y0(µ). (2)
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The well-known Tikhonov theorem on the passage to the limit [4, p. 25] deals with a solution
z(t, µ), y(t, µ) defined on an interval [0, T ] under the following assumptions.

I. The functions F (z, y, t, µ) and f(z, y, t, µ) are continuous and satisfy the Lipschitz condition
with respect to z and y in some open domain G of the variables (z, y, t, µ).

II. The equation F (z, y, t, µ) = 0 has a root z = ϕ(y, t) in some closed bounded domain D̄ of the
variables (y, t) such that (y0, 0) ∈ D̄ and the following assertions are valid:

(1) the function ϕ(y, t) is continuous in D̄;
(2) (ϕ(y, t), y, t, µ) ∈ G for all (y, t) ∈ D̄ and for sufficiently small µ > 0;
(3) the root z = ϕ(y, t) is isolated in D̄ in the sense that there exists a number η > 0 such that,

for all (y, t) ∈ D̄, one has F (z, y, t, µ) 6= 0 whenever 0 < ‖z − ϕ(y, t)‖ ≤ η.
III. The system dȳ/dt = f (ϕ (ȳ, t) , ȳ, t, 0), ȳ(0) = y0 has a unique solution ȳ(t) on the interval

[0, T ]; moreover, (ȳ(t), t) ∈ D for all t ∈ [0, T ], where D is the interior of D̄. We also assume that
the function f(ϕ(y, t), y, t) satisfies the Lipschitz condition with respect to the variable y in the
domain D̄.

IV. The equilibrium z̃ = ϕ(y, t) of the system of differential equations

dz̃/dτ = F (z̃, y, t, µ) , τ ≥ 0, (3)

where y and t are treated as parameters, is an asymptotically stable fixed point uniformly with
respect to (y, t) ∈ D̄. This means that, for any ε > 0, there exists a δ̄(ε) > 0 [independent
of (y, t) ∈ D̄] such that if ‖z̃(0) − ϕ(y, t)‖ < δ̄(ε), then ‖z̃(τ)− ϕ(y, t)‖ < ε̄ for all τ ≥ 0, and
moreover, z̃(τ)→ ϕ(y, t) as τ → +∞.

V. The initial condition z0 belongs to the domain of asymptotic stability of the fixed point
z̃0 = ϕ (y0, 0), i.e., the solution z̃(τ) of Eq. (3) with the initial condition z(0) = z0 satisfies the
condition (z̃(τ), y0, 0) ∈ G for all τ ≥ 0 and z̃(τ)→ ϕ (y0, 0) as τ → +∞.

Theorem 2 [4, p. 25]. If assumptions I–V are valid , then there exists a µ > 0 such that for
0 < µ ≤ µ0, the solution z(t, µ), y(t, µ) of problem (1), (2) exists on the interval [0, T ], is unique,
and satisfies the conditions

lim
µ→0

y(t, µ) = ȳ(t) if 0 ≤ t ≤ T, (4)

lim
µ→0

z(t, µ) = ϕ (ȳ(t), t) if 0 < t ≤ T. (5)

The proof of this theorem is based on the following auxiliary assertion.

Lemma 1 [4, p. 26]. Suppose that assumptions I–V are valid. Let ε > 0 be a number such that
Ū = {(z, y, t) : ‖z − ϕ(y, t)‖ ≤ ε, (y, t) ∈ D} ⊂ G. Then there exist δ = δ(ε) > 0 and µ0 = µ0(ε)
such that if 0 < µ < µ0, then the solution (z(t, µ), y(t, µ)) of system (1) with the initial condition
(z (t0, µ)) , y (t0, µ)) ∈ Uδ exists and does not leave Uε for all t ≥ t0 at least while (y(t, µ), t) ∈ D.

One can weaken condition IV of uniform asymptotic stability by replacing it by the following
condition.

IV′. The fixed point z̃ = ϕ(y, t) of system (3) is B-stable uniformly with respect to (y, t) ∈ D̄.
This means that, for every ε > 0, there exists a δ̄(ε) > 0 [independent of (y, t) ∈ D̄] such that,

for all (y, t) ∈ D̄, there exists a compact set K(y, t) satisfying the relations

ϕ(y, t) ∈ K(y, t) ⊂ B
(
ϕ(y, t), δ̄(ε)

)
and such that if ‖z̃(0) − ϕ(y, t)‖ < δ̄(ε), then

‖z̃(τ)− ϕ(y, t)‖ ≤ ε

for all τ ≥ 0 and L+ (z̃(τ)) ⊂ K(y, t).

DIFFERENTIAL EQUATIONS Vol. 37 No. 1 2001



14 KALITIN, SARI

By L+ (z̃(τ)) we denote the set of all ω-limit points of the solution z̃(τ).
Condition V can be replaced by one of the following conditions:
(1) z̃0 = ϕ (y0, 0) is asymptotically stable, and z0 belongs to its attraction domain;
(2) z0 = ϕ (y0, 0).
Let us show that Lemma 1 is valid under assumptions I–III, IV′, (1), and (2). Suppose that,

for ε > 0, there exists a δ̄(ε) > 0 satisfying condition IV′.
We set δ = δ̄(ε/2). The existence and uniqueness of solutions is provided by condition I.

Solutions can be continued with the preservation of uniqueness until they leave Uε. It remains to
prove the existence of a number µ0 = µ0(ε) > 0 such that if 0 < µ ≤ µ0, then the solution does not
leave Uε while (y(t, µ), t) ∈ D.

Suppose the contrary: there is no µ0 with this property. Then there exists a sequence (µn)
converging to zero and such that the corresponding sequence (z (t, µn) , y (t, µn)) of solutions with
the initial data (z (t0n, µn) , y (t0n, µn) , t0n) ∈ Uδ has the following property: there exists a t̄n > t0n
such that ‖z (t, µn)− ϕ (y (t, µn) , t)‖ < ε, (y (t, µn) , t) ∈ D if t0n ≤ t < t̄n, and moreover,

‖z (t̄n, µn)− ϕ (y (t̄n, µn) , t̄ )‖ = ε, (y (t̄n, µn) , t̄n) ∈ D. (6)

By tn we denote the maximum of numbers t ∈ [tn0 , t̄n] for which the solution (z (t, µn) , y (t, µn))
intersects the boundary of Ūδ, i.e., ‖z (tn, µn)− ϕ (y (tn, µn) , tn)‖ = δ. Then

δ < ‖z (t, µn)− ϕ (y (t, µn) , t)‖ < ε (7)

for tn < t < t̄n. From the sequence (z (tn, µn) , y (tn, µn) , tn) ∈ Ūδ, one can extract a convergent
subsequence. Suppose that the sequence itself is convergent. Then

(z (tn, µn) , y (tn, µn) , tn)→
(
z̆, y̆, t̆

)
as n→ +∞; moreover,

(
z̆, y̆, t̆

)
∈ Ūδ, i.e.,

∥∥z̆ − ϕ (y̆, t̆ )∥∥ = δ.
If µ = µn, then, in system (1), we perform the change of variables τ = (t− tn) /µn. Then we

obtain
dz/dτ = F (z, y, tn + µnτ) , dy/dτ = µnf (z, y, tn + µnτ) . (8)

The solutions z (t, µn) = z (tn + µnτ, µn), y (t, µn) = y (tn + µnτ, µn) treated as functions of the
variable τ satisfy system (8) with the initial data z(τ = 0) = z (tn, µn), y(τ = 0) = y (tn, µn).

By the theorem on the continuous dependence of solutions on parameters, on each compact set
0 ≤ τ ≤ τ0, the limit relations

lim
n→+∞

z (tn + µnτ, µn) = z̃(τ), lim
n→+∞

y (tn + µnτ, µn) = ỹ(τ) (9)

hold uniformly with respect to τ ∈ [0, τ0], where z̃(τ), ỹ(τ) is the solution of the problem

dz̃/dτ = F
(
z̃, ỹ, t̆

)
, dỹ/dτ = 0, z̃(0) = z̆, ỹ(0) = y̆.

Obviously, ỹ(τ) = y̆, z̃(τ) is a solution of this problem, which, at the same time, is a solution
of the problem dz̃/dτ = F

(
z̃, y̆, t̆

)
, z̃(0) = z̆. Since

∥∥z̆ − ϕ (y̆, t̆ )∥∥ = δ = δ̄(ε/2), it follows from
condition IV′ that

∥∥z̃(τ)− ϕ
(
y̆, t̆
)∥∥ < ε/2 and, at the same time, L+ (z̃(τ)) ⊂ K

(
y̆, t̆
)
.

Therefore,
∥∥z̃ (τ0)− ϕ

(
y̆, t̆
)∥∥ < δ for sufficiently large τ = τ0, since the ball B

(
ϕ
(
y̆, t̆
)
, δ
)

is an
open neighborhood of the compact set K

(
y̆, t̆
)
. Consequently, using the limits (9), we obtain

‖z (t, µn)− ϕ (y (t, µn) , t)‖ < ε/2 (10)

for a sufficiently large positive integer n0 provided that tn ≤ t ≤ tn + µnτ0 and n ≥ n0, and

‖z (t, µn)− ϕ (y (t, µn) , t)‖ < δ (11)
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for t = tn + µnτ0. If t̄n ≤ tn + µnτ0, then inequality (10) contradicts (6). But if t̄n > tn + µnτ0,
then inequality (11) contradicts the left inequality in (7). The proof of the lemma is complete.

In the proof of the lemma, we have used the same scheme as in the proof of Lemma 1 in [11].
One can readily see what modifications are needed to justify the Tikhonov theorem on the passage
to the limit [4, p. 25] with uniform asymptotic stability replaced by B-stability. Thus, we claim
that the following assertion is valid.

Theorem 3. Suppose that the right-hand sides of system (1) do not explicitly depend on t. If
conditions I–III, IV′, (1), and (2) are satisfied, then there exists a µ0 such that, for 0 < µ ≤ µ0,
problem (1), (2) has a unique solution z(t, µ), y(t, µ) defined on the interval [0, T ] and satisfying
the limit relations (4) and (5).

4. STABILITY UNDER PERMANENT PERTURBATIONS

Let us consider the system of differential equations

ẋ = f(x), (12)

where f is a continuous function such that the solution is unique in some domain D ⊂ Rn containing
the origin. Let f(0) = 0. We analyze the stability of the zero solution of system (12) not only under
perturbations of the initial conditions x(0) = x0, but also under perturbations of the right-hand
sides of the system. In other words, along with (12), we consider the system of equations

ẏ = f(y) + g(t, y), (13)

where g : R+×D → Rn is a continuous function. The function g is treated as a permanently acting
perturbation. Here we do not assume that g(t, 0) = 0 for all t ≥ 0, i.e., the origin is not necessarily
an equilibrium of system (13). We only assume the uniqueness of solutions of system (13) in the
domain Rn ×D.

Definition 3 [5, 6]. The solution x = 0 of system (12) is said to be stable under permanent
perturbations if, for every ε > 0, there exists a δ = δ(ε) > 0 such that the solution y (t, y0) of
system (13) has the property y (t, y0) ∈ Bε, t ≥ 0, for an arbitrary point y0 ∈ Bδ and for an
arbitrary function g satisfying the condition ‖g‖Bε ≤ δ.

Here the norm of a function g ensuring the above-mentioned properties of solutions of system (13)
is defined as ‖g‖Bε = supt≥0, y∈Bε ‖g(t, y)‖.

Theorem 4. If the zero solution of system (12) is B-stable, then it is also stable under perma-
nent perturbations.

Remark. This result generalizes the well-known Malkin–Gorshin theorem [5, 6], in which the
uniform asymptotic stability of the origin is assumed. Massera [12, 13] constructed examples
showing that the stability of the zero solution under permanent perturbations does not imply the
uniform asymptotic stability. We can readily see that the origin is B-stable in all of these examples
(we speak of the autonomous case). Note that the theorems in [5, 6] also pertain to systems of
nonautonomous differential equations. Unlike the original proof, which was based on the existence
of a Lyapunov function for system (12), our proof of Theorem 4 is performed by methods of
qualitative theory of dynamical systems.

Proof of Theorem 4. The proof is by contradiction. Suppose that the zero solution of
system (12) is not stable under permanent perturbations. Then there exists an ε > 0 such that,
for every δ > 0, there exists a point y0 ∈ Bδ and a function g such that ‖g‖Bε ≤ δ and the solution
of system (13) satisfies the condition y (t, y0) 6∈ Bε for some t > 0. By virtue of the B-stability
of the origin, there exists an η > 0 such that Bη ⊂ Bε and Bη is a repelling neighborhood of the
point x = 0 for t < 0. Since the solution y (t, y0) leaves Bε, we see that so much the more it
leaves Bη. Let t be the first positive instant of time for which y (t, y0) leaves Bη; thus, y (s, y0) ∈ Bη
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for all s ∈ [0, t[ and ‖y (t, y0)‖ = η. We set δ = 1/n. Then there exists a sequence (y(n)
0 ) of initial

states converging to zero as n → +∞, a sequence (gn) of functions such that ‖gn‖Bε ≤ 1/n, and

a sequence
(
t(n)
)

of nonnegative instants of time such that the points zn = y(t(n), y
(n)
0 ) satisfy the

condition ‖zn‖ = η. Obviously, the sequence (zn) contains a convergent subsequence. Therefore,
without loss of generality, we can assume that there exists a limit limn→+∞ zn = z̃. Obviously,
the limit point satisfies the relation ‖z̄‖ = η. By the theorem on the continuous dependence of
solutions on parameters and initial data, we have

lim
n→+∞

y
(
t(n) + s, y

(n)
0

)
= z(s), (14)

where z(s) is the unique solution of system (12). Furthermore, z(0) = z̄. More precisely, if the
solution z(s) is defined and does not leave the closure of the ball Bε for s ∈ [τ, 0], then, for a
sufficiently large positive integer n, the function y(t0 + s, y(n)

0 ) is also defined on the interval [τ, 0];
therefore, the limit (14) is uniform on the set [τ, 0]. By virtue of B-stability, the negative half-
trajectory of the point z̄ cannot entirely lie in the ball B̄η; consequently, there exists a τ0 < 0 such
that z (τ0) 6∈ B̄η. We take a τ0 < 0 such that z ([τ0, 0]) ⊂ B̄ε.

Let us show that (tn0 ) is an unbounded sequence. Indeed, otherwise it would follow from the
theorem on the continuous dependence of solutions that limn→+∞ y(t, y(n)

0 ) = 0 for t ∈
[
0, t(n)

]
,

which contradicts the identity ‖y(t0, y(n)
0 )‖ = η.

Therefore, we can claim that t0 + τ0 ≥ 0 for a sufficiently large positive integer n. By definition,
y(t(n) + τ0, y

(n)
0 ) ∈ Bη for a sufficiently large index n, and at the same time, z (τ0) 6∈ B̄η. We have

arrived at a contradiction; consequently, the zero solution of system (12) is stable under permanent
perturbations. The proof of the theorem is complete.
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