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AVERAGING RESULTS FOR FUNCTIONAL
DIFFERENTIAL EQUATIONS
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Abstract: Under rather general assumptions, we present some improved averaging results for func-
tional differential equations. This is achieved with the help of nonstandard analysis and extends a similar
result by the first author for a delay differential equation of a particular form.
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1. Introduction

It is well known that the averaging method is a powerful tool for studying many perturbation prob-
lems in nonlinear oscillations, and some in celestial mechanics. There is a rich literature for ordinary
differential equations (see [1–7] and the references given therein). The method is also extended to func-
tional differential equations [8–13] of the form

ẋ(t) = εf(t, xt) (1.1)

where ε > 0 is a small parameter and xt(θ) = x(t + θ) for θ ∈ [−r, 0]. Assume that the limit

lim
T→∞

1
T

T∫
0

f(τ, u) dτ = fo(u) (1.2)

exists, and consider the associated averaged ordinary differential equation

ẏ(t) = εfo(ỹ) (1.3)

where ỹ(θ) = y for θ ∈ [−r, 0] and y ∈ Rd. Under suitable conditions, it is shown that, if ε is sufficiently
small then the difference between solutions x and y of (1.1) and (1.3), respectively, with the same initial
conditions, is small over time 1/ε.

Note that if we let t 7→ t/ε and x(t/ε) = z(t) then equation (1.1) becomes

ż(t) = f

(
t

ε
, zt,ε

)
(1.4)

where zt,ε(θ) = z(t + εθ) for θ ∈ [−r, 0], which is an equation with a small delay.
In this article, we give justification of the averaging method for functional differential equations which

can be brought into the form

ẋ(t) = f

(
t

ε
, xt

)
. (1.5)

That is, under rather general assumptions, we show that the solutions of (1.5) remain close to those of
the averaged equation

ẏ(t) = fo(yt) (1.6)
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where fo is given in (1.2). Note that (1.6) is a functional differential equation and not an ordinary
differential equation.

Among the articles justifying the averaging method for (1.5), we will cite the paper by Hale and
Verduyn Lunel [11]. In this work, the authors introduce an extension of the averaging method to abstract
evolutionary equations in Banach spaces. In particular, they rewrite (1.5) as an ordinary differential
equation in an infinite-dimensional Banach space and proceed formally from there. Our approach is
different since all analysis is kept in the associated natural phase space. Inspired with the work by the
second author [7] where, by means of nonstandard analysis, the averaging method for ordinary differential
equations is performed under weak assumptions, in [14] the first author presents a natural extension of
the averaging method to delay differential equations of the particular form

ẋ(t) = f

(
t

ε
, x(t− r)

)
.

Using the same technique, the main result here generalizes a similar result of [14] to functional differential
equations of the form (1.5) and then its proof is directly related to that proposed therein.

The rest of the paper is organized as follows: in Section 2, we present as Theorem 2.2 our main result
concerning the closeness of solutions of (1.5) and (1.6) on finite time intervals, and in Theorem 2.5 we
investigate the long time behavior of solutions of (1.5). This is done under the assumption that (1.6) has
an exponentially stable equilibrium. For this case, the idea of the proof is the same as used for ordinary
differential equations by Sanders and Verhulst [6]. The proofs of Theorems 2.2 and 2.5 are established
in the framework of Robinson’s nonstandard analysis [15] in its axiomatic approach, namely Internal Set
Theory , by Nelson [16]. For the convenience of the reader, in Subsection 3.1 we provide a short tutorial
on IST, and then in Subsection 3.2 we present the nonstandard translates in Theorems 3.6 and 3.7 of
Theorems 2.2 and 2.5, respectively. Finally, in Section 4 we first begin with some preparatory lemmas
and then give the proofs of Theorems 3.6 and 3.7.

2. Notations, Conditions, and Averaging Results

In this section, we introduce notations, state hypotheses and present our results on averaging for
functional differential equations.

Let r ≥ 0 be a given constant and Co = C ([−r, 0], Rd), the Banach space of all continuous functions
from [−r, 0] into Rd with the usual supremum norm

|φ| = sup
−r≤θ≤0

|φ(θ)|, φ ∈ Co.

Even though single bars are used for norms in different spaces, no confusion should arise. Let t0 ∈ R and
L > t0. If x : [t0 − r, L] → Rd is a continuous function and if t ∈ [t0, L] then xt ∈ Co is defined by

xt(θ) = x(t + θ), θ ∈ [−r, 0].

We make the following assumptions:
(H1) The functional f : R× Co → Rd in (1.5) is continuous and bounded.
(H2) The continuity of f = f(τ, u) in u ∈ Co is uniform with respect to τ ∈ R.
(H3) For all u ∈ Co there exists a limit

fo(u) := lim
T→∞

1
T

T∫
0

f(τ, u) dτ.

(H4) The averaged equation (1.6) enjoys uniqueness of solutions with the prescribed initial conditions.
For t0 ∈ R and φ ∈ C0, the solution of (1.6) such that yt0 = φ is denoted by y = y( · ; t0, φ). This

solution is defined on J = [t0 − r, +∞).
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Remark 2.1. In assumption (H4) we anticipate the existence of solutions of (1.6). We will justify
this a posteriori. Indeed, we will show in Lemma 4.1 below that fo is continuous so that existence is
guaranteed.

Under the above assumptions, we can establish the following main result on nearness of the solutions
of (1.5) and (1.6) with the same initial conditions.

Theorem 2.2. Assume that hypotheses (H1)–(H4) are satisfied. Let t0 ∈ R and φ ∈ C0. Let
y = y( · ; t0, φ) be the solution of (1.6). Then for any L > t0 and any δ > 0 there exists ε0 = ε0(L, δ) > 0
such that, for ε ∈ (0, ε0], each solution x of (1.5) with xt0 = φ is defined at least on [t0 − r, L] and the
inequality |x(t)− y(t)| < δ holds for t ∈ [t0, L].

It is possible to extend the validity of the averaging technique for all (future) time when the initial
function of the solution of (1.6) lies in the domain of exponential stability of an exponentially stable
equilibrium. For this, let us first recall the concept of exponential stability of equilibra.

Suppose that ye is an equilibrium of (1.6), that is, fo(ye) = 0.

Definition 2.3. The equilibrium ye is said to be exponentially stable if there exist b, K and λ > 0
such that, for any t0 ∈ R and φ ∈ Co, the solution y = y( · ; t0, φ) of (1.6) for which |φ− ye| < b is defined
on [t0 − r, +∞) and the inequality |y(t)− ye| ≤ Ke−λ(t−t0)|φ− ye| holds for t ≥ t0.

Remark 2.4. The ball B with center ye and radius b where the stability is exponential will be called
the domain of exponential stability of ye.

As a next result of this section, we will prove validity of the approximation of the solutions of (1.5)
and (1.6) with the same initial conditions, for all time.

Theorem 2.5. Assume that hypotheses (H1)–(H4) are satisfied. Let t0 ∈ R and φ ∈ C0. Let ye be
an equilibrium of (1.6). Assume further that

(H5) ye is exponentially stable.
(H6) φ lies in B.
Let y = y( · ; t0, φ) be the solution of (1.6). Then for any δ > 0 there exists ε0 = ε0(δ) > 0 such

that, for ε ∈ (0, ε0], each solution x of (1.5) with xt0 = φ is defined on [t0 − r, +∞) and the inequality
|x(t)− y(t)| < δ holds for t ≥ t0.

3. Nonstandard Averaging Results

3.1. Internal Set Theory: A short tutorial. In IST (Internal Set Theory) we adjoin to ordinary
mathematics (say ZFC) a new undefined unary predicate symbol “st” (read: “standard”). We call
internal the formulas of IST without any occurrence of the predicate “st”; otherwise, we call them
external . Thus, the internal formulas are formulas of ZFC. The axioms of IST are all axioms of ZFC
restricted to internal formulas (in other words, IST is an extension of ZFC), plus three others that govern
the use of the new predicate. Thus, all theorems of ZFC remain valid in IST. IST is a conservative
extension of ZFC; that is, each internal theorem of IST is a theorem of ZFC. Some of the theorems that
are proved in IST are external and can be reformulated so that they become internal. Indeed, there is
an algorithm (a well-known reduction algorithm) to reduce any external formula F (x1, . . . , xn) of IST
without other free variables than x1, . . . , xn to an internal formula F ′(x1, . . . , xn) with the same free
variables, such that F ≡ F ′, that is, F ⇐⇒ F ′ for all standard values of the free variables. In other
words, each result which may be formalized within IST by a formula F (x1, . . . , xn) is equivalent to the
classical property F ′(x1, . . . , xn), provided the parameters x1, . . . , xn are restricted to standard values.
We give the reduction of the frequently occurring formula ∀x (∀sty A =⇒ ∀stz B) where A and B are
internal formulas

∀x(∀sty A =⇒ ∀stzB) ≡ ∀z ∃finy′∀x(∀y ∈ y′A =⇒ B). (3.1)

The notations ∀stX and ∃finX stand for [∀X, st(X) =⇒ · · · ] and [∃X, X finite & . . . ], respectively.
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A real number x is called infinitesimal , denoted by x ' 0, if its absolute value |x| is smaller than
each standard strictly positive real number, limited if its absolute value |x| is smaller than some standard
real number, unlimited , denoted by x ' ±∞, if it is not limited, and appreciable if it is neither unlimited
nor infinitesimal. Two real numbers x and y are infinitely close, denoted by x ' y, if their difference
x− y is infinitesimal.

For x and y in a standard metric space E, the notation x ' y means that the distance from x to
y is infinitesimal. If there exists in that space a standard x0 such that x ' x0, the element x is called
nearstandard in E and the standard point x0 is called the standard part of x (it is unique) and is also
denoted by ox.

We must avoid external formulas in the axiom-schema of ZFC, in particular we must avoid external
formulas in defining subsets. The notations {x ∈ R : x is limited} or {x ∈ R : x ' 0} are not allowed.
Moreover we can prove that

Lemma 3.1. There do not exist subsets L and I of R such that, for all x ∈ R, x is in L if and
only if x is limited, or x is in I if and only if x is infinitesimal.

It happens sometimes in classical mathematics that a property is assumed, or proved, on a certain
domain, and that afterwards we notice that the character of the property and the nature of the domain
are incompatible. So actually the property must be valid on a larger domain. In the same manner, in
nonstandard analysis, the result of Lemma 3.1 is frequently used to prove that the validity of a property
exceeds the domain where it was established in a direct way. Suppose that we have shown that A
holds for every limited x, then we know that A holds for some unlimited x, for otherwise we could
let L = {x ∈ R : A}. This statement is called the Cauchy principle. It has the following frequently
used application.

Lemma 3.2 (Robinson’s lemma). If g is a real function such that g(t) ' 0 for all limited t ≥ 0, then
there exists ω ' +∞ such that g(t) ' 0 for all t ∈ [0, ω].

Proof. Indeed, the set of all l ∈ R such that |g(t)| < 1/l for all t ∈ [0, l] contains all limited l in R,
l ≥ 1. By the Cauchy principle it must contain some unlimited ω. �

We conclude this section with two other applications of Cauchy’s principle which will be used later.

Lemma 3.3. If P(.) is an internal property such that P(a) holds for all appreciable real numbers
a > 0, then there exists 0 < a0 ' 0 such that P(a0) holds.

Lemma 3.4. Let h : I → R be a function such that h(t) ' 0 for all t ∈ I. Then sup{h(t) : t ∈ I} ' 0.

Remark 3.5. For more information on the applications of nonstandard analysis to asymptotic theory
of differential equations, the reader is referred to [17–24] and the references therein.

3.2. Averaging results. We first give nonstandard formulations of Theorems 2.2 and 2.5. Then,
by use of the reduction algorithm, we show that the reduction of Theorems 3.6 and 3.7 below are
Theorems 2.2 and 2.5, respectively.

Theorem 3.6. Let f : R × Co → Rd be standard. Assume that all hypotheses in Theorem 2.2 are
satisfied. Let t0 ∈ R and φ ∈ Co be standard. Let y = y( · ; t0, φ) be the solution of (1.6). Let ε > 0 be
infinitesimal. Then for all standard L > t0, each solution x of (1.5) with xt0 = φ is defined at least on
[t0 − r, L] and satisfies x(t) ' y(t) for t ∈ [t0, L].

Theorem 3.7. Let f : R × Co → Rd be standard. Let t0 ∈ R and φ ∈ Co be standard. Let
ye be a standard equilibrium of (1.6). Assume that all hypotheses in Theorem 2.5 are satisfied. Let
y = y( · ; t0, φ) be the solution of (1.6). Let ε > 0 be infinitesimal. Then each solution x of (1.5) with
xt0 = φ is defined on [t0 − r, +∞) and satisfies x(t) ' y(t) for t ≥ t0.

The proofs of Theorems 3.6 and 3.7 are postponed to Section 4. Theorems 3.6 and 3.7 are exter-
nal statements, hereafter we show that the reduction of Theorem 3.6 (Theorem 3.7) is Theorem 2.2
(respectively, Theorem 2.5).
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Reduction of Theorem 3.6. Without loss of generality, let t0 = 0. Let L > 0 be standard. We
adopt the following abbreviation: B is the formula “If δ > 0 then each solution x of (1.5) with xt0 = φ
is defined at least on [−r, L] and the inequality |x(t) − y(t)| < δ holds for t ∈ [0, L].” Then to say that
“each solution x of (1.5) with xt0 = φ is defined at least on [−r, L] and satisfies x(t) ' y(t) for t ∈ [0, L]”
is the same as saying ∀stδB. By Theorem 3.6, we have

∀ε(∀stηε < η =⇒ ∀stδB). (3.2)

In this formula L is standard; and ε, η, and δ range over the strictly positive real numbers. By (3.1),
formula (3.2) is equivalent to

∀δ∃finη′ ∀ε(∀η ∈ η′ε < η =⇒ B). (3.3)

For η′ a finite set, ∀η ∈ η′ε < η is the same as ε < ε0 for ε0 = min η′, and so formula (3.3) becomes

∀δ∃ε0∀ε (ε < ε0 =⇒ B).

That is, the statement of Theorem 2.2 holds. By transfer, it holds for any L > 0. �
The reduction of Theorem 3.7 to Theorem 2.5 follows almost verbatim the reduction of Theorem 3.6

to Theorem 2.2 and is left to the reader.

4. Proofs of Theorems 3.6 and 3.7

4.1. Preliminaries. 1. In what follows we will prove some results we need for the proof of Theo-
rem 3.6.

Let ε > 0 be infinitesimal. Let f : R × Co → Rd be standard and assume that all assumptions in
Theorem 3.6 hold. The external formulations of conditions (H1), (H2), and (H3) are as follows:

(H1′) ∀stτ ∈ R ∀stu ∈ Co ∀τ ′ ∈ R ∀u′ ∈ Co (τ ′ ' τ, u′ ' u =⇒ f(τ, u′) ' f(τ, u)) and there exists
a standard constant M such that: |f(τ, u)| ≤ M , ∀stτ ∈ R, ∀stu ∈ Co (and by transfer the inequality
holds for all τ ∈ R and all u ∈ Co).

(H2′) ∀stu ∈ Co ∀u′ ∈ Co ∀τ ∈ R (u′ ' u =⇒ f(τ, u′) ' f(τ, u)).
(H3′) There exists a standard function fo : Co → Rd such that

fo(u) ' 1
T

T∫
0

f(τ, u) dτ, ∀stu ∈ Co, ∀T ' +∞.

The following lemmas are crucial in the proof of Theorem 3.6.

Lemma 4.1. The functional fo is continuous and satisfies

fo(u) ' 1
T

T∫
0

f(τ, u) dτ

for all u ∈ Co, u nearstandard, and all T ' +∞.

Proof. See [7, Lemma 4, p. 106].

Lemma 4.2. There exists µ > 0 with the property that for all limited t ≥ 0 and all nearstandard
u ∈ Co, there exists α > 0 such that µ < α ' 0 and

ε

α

t/ε+α/ε∫
t/ε

f(τ, u) dτ ' fo(u).

Proof. See [25, Lemma 4.2, p. 7] and [7, Lemma 5, p. 107]. �
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Lemma 4.3. Let φ ∈ Co be standard. Let x be a solution of (1.5) with x0 = φ, and let I be its
maximal interval of definition. Let L1 > 0 be standard such that [0, L1] ⊂ I. Then x is S-continuous and
nearstandard on [0, L1], and there exist No ∈ N and an infinitesimal partition {tn : n = 0, . . . , No + 1} of
[0, L1] such that t0 = 0, tNo < L1 ≤ tNo+1, and for n ∈ {0, . . . , No}, tn+1 = tn + αn ' tn and

ε

αn

tn/ε+αn/ε∫
tn/ε

f(τ, xtn) dτ ' fo(xtn). (4.1)

Proof. It will be done in two steps.
Step 1. Clearly, x is S-continuous on [0, L1]. Indeed, let M be a standard bound of f on R × Co,

and let t, t′ ∈ [0, L1] be such that t ' t′, then

|x(t)− x(t′)| ≤
t∫

t′

∣∣∣f (τ

ε
, xτ

)∣∣∣ dτ ≤ M |t− t′| ' 0.

Furthermore, taking into account that φ(0) is limited, it is easy to see that x(t) is nearstandard for all
t ∈ [0, L1].

Note that, from what precedes, it is not difficult to deduce that xt is nearstandard (in Co) for all
t ∈ [0, L1].

Step 2. Let µ > 0 be given as in Lemma 4.2, and let Sµ = {λ ∈ R/∀t ∈ [0, L1] ∃α ∈ R : Pµ(t, α, a)}
where

Pµ(t, α, a) ≡ µ < α < a,

∣∣∣∣ ε

α

t/ε+α/ε∫
t/ε

f(τ, xt) dτ − fo(xt)
∣∣∣∣ < a.

Observe, by Lemma 4.2, that a ∈ Sµ for all appreciable real numbers a > 0. Hence, by Lemma 3.3,
there exists 0 < a0 ' 0 such that a0 ∈ Sµ, i.e., a0 is such that for all t ∈ [0, L1] there exists α ∈ R
such that Pµ(t, α, a0) holds. By the axiom of choice there exists a function c : [0, L1] → R such that
c(t) = α, i.e., Pµ(t, c(t), a0) holds for all t ∈ [0, L1]. As c(t) > µ for all t ∈ [0, L1], it suffices to let
t0 = 0 < t1 < · · · < tNo ≤ L1 < tNo+1 with tn+1 = tn + c(tn) for n ∈ {0, . . . , No}, to complete the proof
of the lemma. �

Lemma 4.4. Let φ ∈ Co be standard. Let x be a solution of (1.5) with x0 = φ, and let I be its
maximal interval of definition. Let L1 > 0 be standard such that [0, L1] ⊂ I. Then for all t ∈ [0, L1]

t∫
0

f
(τ

ε
, xτ

)
dτ '

t∫
0

fo(xτ ) dτ.

Proof. By Lemma 4.3, there exists an infinitesimal partition {tn : n = 0, . . . , No +1} of [0, L1] such
that t0 = 0, tNo < L1 ≤ tNo+1, tn+1 = tn + αn ' tn and

ε

αn

tn/ε+αn/ε∫
tn/ε

f(τ, xtn) dτ ' fo(xtn). (4.2)

Let t ∈ [0, L1] and let N ∈ N be such that tN < t ≤ tN+1. We have
t∫

0

f
(τ

ε
, xτ

)
dτ −

t∫
0

fo(xτ ) dτ =

t∫
0

(
f
(τ

ε
, xτ

)
− fo(xτ )

)
dτ

=
N−1∑
n=0

tn+1∫
tn

(
f
(τ

ε
, xτ

)
− fo(xτ )

)
dτ +

t∫
tN

(
f
(τ

ε
, xτ

)
− fo(xτ )

)
dτ. (4.3)
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Let α = max{αn : 0 ≤ n ≤ N − 1}. By Lemma 3.4, we have α ' 0. Let M be a standard bound for f
and then for fo too. Then

∣∣∣∣
t∫

tN

(
f
(τ

ε
, xτ

)
− fo(xτ )

)
dτ

∣∣∣∣ ≤
t∫

tN

(∣∣∣f (τ

ε
, xτ

)∣∣∣+ |fo(xτ )|
)

dτ ≤ 2Mα ' 0.

Thus, from (4.3) we obtain the estimate

t∫
0

f
(τ

ε
, xτ

)
dτ −

t∫
0

fo(xτ ) dτ '
N−1∑
n=0

tn+1∫
tn

(
f
(τ

ε
, xτ

)
− fo(xτ )

)
dτ. (4.4)

By Lemma 4.3, we have xτ ' xtn for τ ∈ [tn, tn+1] and xtn is nearstandard so that by condition (H2′)
and Lemma 4.1 (the continuity of fo) it follows respectively that

f
(τ

ε
, xτ

)
= f

(τ

ε
, xtn

)
+ γn(τ), fo(xτ ) = fo(xtn) + δn(τ)

with γn(τ) ' 0 ' δn(τ). Hence, from (4.4) it follows that

t∫
0

f
(τ

ε
, xτ

)
dτ −

t∫
0

fo(xτ ) dτ '
N−1∑
n=0

tn+1∫
tn

(
f
(τ

ε
, xtn

)
− fo(xtn) + ηn(τ)

)
dτ

=
N−1∑
n=0

tn+1∫
tn

(
f
(τ

ε
, xtn

)
− fo(xtn)

)
dτ +

N−1∑
n=0

tn+1∫
tn

ηn(τ) dτ

where ηn(τ) = γn(τ) + δn(τ), and therefore

t∫
0

f
(τ

ε
, xτ

)
dτ −

t∫
0

fo(xτ ) dτ '
N−1∑
n=0

tn+1∫
tn

(
f
(τ

ε
, xtn

)
− fo(xtn)

)
dτ

since ∣∣∣∣N−1∑
n=0

tn+1∫
tn

ηn(τ) dτ

∣∣∣∣ ≤ η
N−1∑
n=0

tn+1∫
tn

dτ = η.tN

where η = max{sup{|ηn(τ)| : tn ≤ τ ≤ tn+1} : 0 ≤ n ≤ N − 1} is, by Lemma 3.4, infinitesimal and so
is η.tN .

Let n ∈ {0, . . . , N − 1}. By means of (4.2), we have

tn+1∫
tn

(
f
(τ

ε
, xtn

)
− fo(xtn)

)
dτ =

tn+αn∫
tn

f
(τ

ε
, xtn

)
dτ − αn.fo(xtn)

= ε

tn/ε+αn/ε∫
tn/ε

f(τ, xtn) dτ − αn.fo(xtn) = αn

(
ε

αn

tn/ε+αn/ε∫
tn/ε

f(τ, xtn) dτ − fo(xtn)
)

= αn.βn

with βn ' 0.
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Let β̄ = max{|βn| : 0 ≤ n ≤ N − 1}. By Lemma 3.4, β̄ ' 0 and then β̄.tN ' 0. It follows that∣∣∣∣∣
N−1∑
n=0

αn.βn

∣∣∣∣∣ ≤ β̄
N−1∑
n=0

αn = β̄
N−1∑
n=0

(tn+1 − tn) = β̄.tN ' 0.

This implies that
t∫

0

f
(τ

ε
, xτ

)
dτ −

t∫
0

fo(xτ ) dτ '
N−1∑
n=0

αn.βn ' 0

and completes the proof of Lemma 4.4. �

Lemma 4.5. Let φ ∈ Co be standard. Let x be a solution of (1.5) with x0 = φ, and let I be its
maximal interval of definition. Let L1 > 0 be standard such that [0, L1] ⊂ I. Then the shadow of x on
[0, L1] coincides with the solution y of (1.6) on this interval so that x(t) ' y(t) for all t ∈ [0, L1].

Proof. From Lemmas 4.3 and 4.4, we have that x is S-continuous and nearstandard on [0, L1], and
satisfies

x(t) ' φ(0) +

t∫
0

fo(xτ ) dτ, ∀t ∈ [0, L1].

Then, if ox is the shadow of x on [0, L1], it can easily be shown that the standard function z : [0, L1] → R
defined by

z(t) =
{ ox(t), t ∈ [0, L1]

φ(t), t ∈ [−r, 0]

is a solution of (1.6). From (H4) we deduce that z and y coincide on [−r, L1] so that x(t) ' ox(t) =
z(t) = y(t) for t ∈ [0, L1], which finishes the proof. �

Lemma 4.6. Let φ ∈ Co be standard. Let x be a solution of (1.5) with x0 = φ, and let I be its
maximal interval of definition. Let L1 > 0 be limited such that [0, L1] ⊂ I. Then x(t) ' y(t) for all
t ∈ [0, L1].

Proof. If L1 ' 0 there is nothing to prove. Suppose that L1 is not infinitesimal. By Lemma 4.5, we
have x(t) ' y(t) for all t ∈ [0, a] and all standard a such that 0 < a ≤ L1. By the permanence principle,
the approximation holds also for some a ' L1. Since x(t) ' x(a) and y(t) ' y(a) for all t ∈ [a, L1], we
have x(t) ' y(t) for all t ∈ [0, L1]. This completes the proof of the lemma. �

2. In this part, we give in Lemma 4.7 below the external formulation of an equilibrium exponential
stability definition. This result is needed for the proof of Theorem 3.7.

Lemma 4.7. The equilibrium ye of (1.6) is exponentially stable if and only if it admits a standard
domain of exponential stability, that is, there exist standard b, K and λ > 0 such that, for any standard
t0 ∈ R and φ ∈ Co, the solution y = y( · ; t0, φ) of (1.6) for which |φ − ye| < b is defined on [t0 − r, +∞)
and the inequality |y(t)− ye| ≤ Ke−λ(t−t0)|φ− ye| holds for t ≥ t0.

Proof. The conclusion of the lemma is obtained by successive use of the transfer principle. �

4.2. Proof of Theorem 3.6. Let L > t0 be standard and let K be a standard tubular neighborhood
around Γ = y([t0, L]). Let x be a solution of (1.5) with xt0 = φ and let I be its maximal interval of
definition. Define the set S = {L1 ∈ I ∩ [t0, L] /x([t0, L1]) ⊂ K}. Clearly, S is nonempty (t0 ∈ S) and
bounded above by L. Let L0 be a lower upper bound of S and let L1 ∈ S be such that L0− ε < L1 ≤ L0.
By continuation, there exists an appreciable L2, such that x remains defined on [t0, L1 + εL2]. By
Lemma 4.6 we have x(t) ' y(t) for t ∈ [t0, L1 + εL2]. Suppose L1 + εL2 ≤ L. Then [t0, L1 + εL2] ⊂ I
and x([t0, L1 + εL2]) ⊂ K imply that L1 + εL2 ∈ S, which is a contradiction with L1 + εL2 > L0. Thus,
L1 + εL2 > L, that is, we have x(t) ' y(t) for all t ∈ [t0, L] ⊂ [t0, L1 + εL2]. �
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4.3. Proof of Theorem 3.7. Let x be a solution of (1.5) with xt0 = φ. On [t0 − r, t0] we have
x(t) = y(t) = φ(t) and therefore the conclusion of the theorem holds. By Theorem 3.6, the approximation
x(t) ' y(t) is satisfied for all t ∈ [t0, L], L > t0, with L standard. Let t1 > t0, t1 standard. The instant
of time t1 will be chosen suitably later.

Now, for n ∈ N, let In = [t0 + nt1, t0 + (n + 1)t1]. The collection {In}n≥0 is a partition of the infinite
time interval [t0,+∞) so that [t0,+∞) =

⋃
n≥0 In. On each interval In, n ≥ 1, we define yn as the

solution of (1.6) with initial function yn(t) = x(t) for t ∈ [t0 + nt1 − r, t0 + nt1]. By Theorem 3.6, the
approximation x(t) ' yn(t) holds for all t ∈ In, n ≥ 1.

Let n ≥ 1 and t ≥ t0 + nt1. From the definition of exponential stability and its properties we have

|y(t)− yn(t)| ≤ Ke−λ(t−t0−nt1) sup
s∈[t0+nt1−r,t0+nt1]

|y(s)− yn(s)| (4.5)

where K ≥ 1 and λ > 0 are standard. Using the triangle inequality, we have for s ∈ [t0 +nt1− r, t0 +nt1]

|y(s)− yn(s)| ≤ |y(s)− yn−1(s)|+ |yn(s)− yn−1(s)|. (4.6)

However, by Theorem 3.6, we have yn(s) = x(s) ' yn−1(s) for all s ∈ [t0 + nt1 − r, t0 + nt1] and then,
by Lemma 4.6 α := maxn≥0 sups∈[t0+nt1−r,t0+nt1] |yn(s)− yn−1(s)| ' 0. Take t1 ≥ r − t0. From (4.5) and
(4.6), it follows that

|y(t)− yn(t)| ≤ Ke−λ(t−t0−nt1)

(
sup

s∈[t0+nt1−r,t0+nt1]
|y(s)− yn−1(s)|+ α

)
(4.7)

so that

sup
s∈[t0+(n+1)t1−r,t0+(n+1)t1]

|y(s)− yn(s)|

≤ K sup
s∈[t0+(n+1)t1−r,t0+(n+1)t1]

e−λ(s−t0−nt1)( sup
s∈[t0+nt1−r,t0+nt1]

|y(s)− yn−1(s)|+ α)

= Ke−λ(t0+t1−r)( sup
s∈[t0+nt1−r,t0+nt1]

|y(s)− yn−1(s)|+ α)

or equivalently
|y − yn|n ≤ Ke−λ(t0+t1−r) (|y − yn−1|n−1 + α) , n = 1, 2, . . . ,

where |y − yn|n := sups∈[t0+(n+1)t1−r,t0+(n+1)t1] |y(s) − yn(s)|. Choose t1 such that Ke−λ(t0+t1−r) < 1.
Since |y − y0|0 = 0 we deduce that

|y − yn|n ≤
Ke−λ(t0+t1−r)

1−Ke−λ(t0+t1−r)
α.

Return now to (4.7). The above inequality implies, for t ∈ In, n ≥ 0, that

|y(t)− yn(t)| ≤ Ke−λ(t−t0−nt1)

(
Ke−λ(t0+t1−r)

1−Ke−λ(t0+t1−r)
+ 1

)
α ≤ Kα

1−Ke−λ(t0+t1−r)
.

That is, y(t) ' yn(t) on In.
Thus, for t ∈ In, n ≥ 0,

(x(t) ' yn(t), y(t) ' yn(t)) =⇒ x(t) ' y(t).

As n is chosen arbitrarily, this completes the proof. �
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