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Abstract. Most systems are characterized by uncertainties that cause
throughput to be highly variable, for example, many modern produc-
tion processes and services are substantially affected by random yields.
When yield is random, not only is the usable quantity uncertain, but
the random yield reduces usable capacity and throughput in the sys-
tem. For these reasons, strategies are needed that incorporate random
yield. This paper presents the analysis of the newsvendor model with
a general random yield distribution, including the derivation of the
optimal order quantity. Results are shown to converge to the basic
newsvendor model for the case of perfect yield, and are further demon-
strated using the case of general multiplicative random yield. Results
have significant impact on both manufacturing and service sectors since
the newsvendor model applies to many real-world situations.
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1. Introduction and literature review

Many modern production processes and services are substantially affected by
random yields. Semiconductor manufacturers, for instance, often have yields below
50% and plastics producers often run at around 75% (see, for example, Gilbert
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and Emmons [4], Bohn and Terwiesch [1], and Grasman et al. [6]). Many of these
processes are new and production yields are well below the ideal. As more is
learned, yield increases, but will never reach 100 percent – or even come close
in some cases. Rapidly changing technologies may become obsolete before the
process is well understood, or it may not be financially justifiable to correct the
yield problem; therefore, in these situations, methods are needed to cope with
uncertainty. Yano and Lee [12] points out that while the ultimate goal is to make
yields perfect, random yield models are valuable for many reasons. First, results
can be used in the short term to help an operation run more efficiently so that
efforts can be focused on yield improvement. Second, process improvement and
supplier decisions can be assessed more accurately and effectively if system effects
of these decisions are modeled accurately and optimized. Third, models can assist
in capacity planning decisions when random yield is expected to be a long run
concern.

Random yields are not confined to manufacturing industries. Service industries,
for example, hotels, airlines, and healthcare facilities, incur large costs due to
the random nature of confirmed no-shows not meeting appointments. Consider a
hotel, which has a given number of rooms available on a specific date, an airline,
which has a given number of seats available for a specific flight, or a healthcare
facility, which has a given number of available appointments. Some customers will
not show up and also not cancel their reservations/appointments. The question
is how many reservations to take - on one hand there is a penalty associated
with underbooking, and, on the other hand, there is a penalty associated with
overbooking. These types of problems may be considered newsvendor problems
with random yield.

The subject of process yields has received considerable attention, which is not
surprising considering its significance across manufacturing and service industries.
Numerous papers have been written regarding production/inventory models with
random yield; however, few deal with the generalized system presented here. Yano
and Lee [12] provides a comprehensive review of the literature on quantitatively-
oriented approaches for determining lot sizes when production or procurement
yields are random. Issues discussed relate to the modeling of costs, yield uncer-
tainty, and performance. Grosfeld-Nir and Gerchak [7] provides a review of re-
cent advances in models, analytic results, and insights pertaining to random yield
production environments. Khouja [10] builds a taxonomy of newsvendor-related
literature including extensions to random yields.

Although many classical models, including newsvendor models, provide optimal
results for a wide variety of problems, they cannot be directly applied to systems
with random yield. Existing classical production approaches may be modified to
consider average yield rates by simply adjusting the production rates and nor-
malizing the production costs per unit to account for average yield losses, but
this approach is insufficient. Such approaches do not capture the fact that, in
the presence of random yield, if the inventory level falls below a critical level, the
amount produced depends on yield variability (see, Henig and Gerchak [8]); thus
these approximations yield optimal results only if the yield is deterministic. If the
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quantity started is determined simply by allowing for average yield rate, demand
will only be met a fraction of the time and large shortage costs will generally be
incurred. Bollapragada and Morton [2] discuss these approaches at length.

In the authors opinion, the most closely related paper is Gerchak, Vickson and
Parlar [3], which presents a dynamic version of the problem and proves certain
structural results. The main difference is that yield is represented using a mul-
tiplicative factor, YQ = QU , where U is a nonnegative random variable. This
assumption is a special case of the results presented in this paper and is high-
lighed in Section Four. Although Gerchak, Vickson and Parlar extend their model
to allow for the initial inventory to be positive in a multiperiod model, they again
do not consider general random yield. It should be noted that allowing for initial
inventory does not allow the conditions for myopic solutions to be satisfied; there-
fore, a challenging extension to this paper would be to address this issue in the
context of general random yield.

Thus, this paper presents the analysis of the newsvendor model with a general
random yield distribution, and is organized as follows. Section Two provides an
overview of random yield distributions, Section 3 provides the formulation of the
newsvendor model with general random yield and demonstrates the convergence
to the basic newvendor solution for the case of perfect yield. Section Four further
demonstrates the model for general multiplicative yield. Finally, Section Five
provides conclusions and extensions.

2. Overview of random yield distributions

The most important aspect of random yield production models is the distri-
bution of the yield. Yield distributions may or may not be independent of the
production quantity. It is important to note that the yield rate may be indepen-
dent of the production quantity, however, the number of defects produced (or the
actual yield) is almost certainly dependent on the production quantity. Various
random yield distributions are now detailed.

Deterministic: A known fraction of the production quantity is defective.
Heyman and Sobel [9](p. 79) have shown that problems with deterministic
yield may be modeled as perfect yield systems.

Multiplicative: A random multiple, m, of the production quantity, Q, is
defective. Thus,

Y = Qm where, m follows a given random distribution.

Also called stochastically proportional common-cause yield, the distribu-
tion of the fraction of good items produced is specified (and multiplied
by Q to get the number of good units). This approach allows for specifi-
cation of both the mean and variance of the fraction of good items, but
forces the yield rate to be independent of the number produced. This
modeling approach applies when large batches are produced. Thus, for a
uniform multiplier where m ∼ Uniform[0,1], Y = Qm, E[Y ] = 1

2Q and
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E[Y 2] = 1
3Q2. Note that the most common multiplier is distributed uni-

formly, but should not be confused with uniformly distributed yield, where
the number of good items is equally distributed.

Uniform: The number of good items is equally distributed between 0 and
Q. Thus,

P (YQ = j) =
1

Q + 1
for j = 0, 1, 2, ..., Q.

Binomial: Each item produced has a Bernoulli distributed probability of
being defective, i.e., occurrences of defects during a production run are
independent and identically distributed. The creation of good units is a
Bernoulli process, hence the number of good units in a batch of size Q is
binomially distributed with parameters Q and p, where p is the probability
of producing a good unit. One advantage of this model is that only the
value of p needs to be specified. One disadvantage is that is does not allow
for specification of variance. The expected value of the fraction of good
units produced remains constant (p), but the variance of the fraction of
good units, p(1−p)

Q , decreases with Q. This modeling approach is appro-
priate for systems that are in control for long periods of time since each
unit produced may be considered independent of the previous unit. Thus,

P (YQ = j) =
(

Q

j

)
pj(1 − p)Q−j for j = 1, 2, ..., Q.

A significant contrast between binomial and multiplicative yield is inde-
pendence of the individual yields exhibited by the binomial model, versus
perfect correlation as implied by the multiplicative model. Accordingly, in
the binomial model, the variance of the yield rate (fraction nondefective)
diminishes as batch size increases, while in the proportional model it is
not affected by the batch size.

Lot size dependent: The most common form of lot size dependent yield is
when the yield decreases due to deteriorating production processes. If no
defects are produced when the process is in control, the shift to out of con-
trol is immediately signaled by the presence of a defect. The distribution
of the fraction of good items produced is dependent on the number of items
produced, and requires the distribution of the time until the process goes
out of control (usually exponential) or the probability that the process will
go out of control after each unit has been produced (leading to a geomet-
ric distribution). Let β denote the probability that the process remains
in control after the completion of each unit. If the time until the process
goes out of control is exponential, then β = e−

λ
µ where µ is the production

rate and 1
λ is the mean time that the process remains in control. Then the

number of units produced until the next failure is distributed according to
the geometric distribution. The distribution of the fraction of good items
may also increase with the number of units produced. This may occur
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due to setup, start up and learning, and may be modeled in the opposite
manner to a deteriorating process, by assuming that the process is out of
control until the first (or first n) good units are produced.

3. Model formulation

This section presents the model formulation for the newsvendor model with
generalized random yield. Notation used throughout the paper is presented first,
followed by derivation of the expected total cost and optimal order quantity.
The section concludes by demonstrating that the results simplify to the standard
newsvendor model for the case of perfect yield.

3.1. Notation

The following notation will be used throughout the paper.
X = Random Demand

F (x) = CDF of X
f(x) = d

dxF (x) = PDF of X
Q = Order quantity
Y = Random Yield variable

gQ(y) = PDF of Y
P = Random Percentage of Defects

πQ(p) = PDF of P
Co = Penalty Cost for Overage
Cs = Penalty Cost for Shortage

C(Q) = Expected Total Cost

3.2. Total cost and optimal order quantity

In order to define the function for expected total cost, define sets O ={(x, y) :
x ≤ y} and U ={(x, y) : x ≥ y}. Figure 1 graphically displays the outcome space
for realized yield and demand.

The expected overage and underage can be calculated by integrating over the
sets O and U , respectively, thus

C(Q) =
∫

O

Co(y − x)f(x)dxgQ(y)dy +
∫

U

Cs(x − y)f(x)dxgQ(y)dy

=
∫ Q

y=0

[
Co

∫ y

x=0

(y − x)f(x)dxgQ(y) + Cs

∫ ∞

x=y

(x − y)f(x)dxgQ(y)
]

dy

=
∫ Q

y=0

gQ(y)
[
Co

∫ y

x=0

(y − x)f(x)dx + Cs

∫ ∞

x=y

(x − y)f(x)dx

]
dy. (1)
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Figure 1. Realization of yield and demand.

Taking the derivative of Equation (1) with respect to Q, we have

d
dQ

C(Q) =
∫ Q

y=0

d
dQ

gQ(y)L(y)dy + gQ(Q)L(Q), where (2)

L(y) = Co

∫ y

x=0

(y − x)f(x)dx + Cs

∫ ∞

x=y

(x − y)f(x)dx.

Finally, since
∫ Q

y=0 gQ(y)dy = 1 ⇒ ∫ Q

y=0
d

dQgQ(y)dy + gQ(Q) = 0,

d
dQ

C(Q) =
∫ Q

y=0

d
dQ

gQ(y) [L(y) − L(Q)] dy. (3)

C(Q) is a convex function, and an expression for the optimal order quantity may
be obtained by setting Equation (3) equal to zero and solving for Q∗; thus the
equation for Q∗ is

∫ Q∗

y=0

d
dQ

gQ∗(y)
[
Co

∫ y

x=0

(y − x)f(x)dx + Cs

∫ ∞

x=y

(x − y)f(x)dx

− Co

∫ Q∗

x=0

(Q∗ − x)f(x)dx − Cs

∫ ∞

x=Q∗
(x − Q∗)f(x)dx

]
dy = 0.
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Rearranging, the equation for Q∗ becomes

(Co + Cs)
∫ Q∗

y=0

d
dQ

gQ∗(y)
∫ Q∗

x=y

(x − y)f(x)dxdy

=
∫ Q∗

y=0

(Q∗ − y)
d

dQ
gQ∗(y)dy

(
(Co + Cs)

∫ Q∗

0

f(x)dx − Cs

)
. (4)

3.3. Case of perfect yield

For the case of perfect yield, the PDF gQ(y) for Y is the delta function δQ.
Thus ∫ Q∗

y=0

d
dQ

gQ∗(y)
∫ Q∗

x=y

(x − y)f(x)dxdy = 0,

and ∫ Q∗

y=0

(Q∗ − y)
d

dQ
gQ∗(y)dy = 1.

Therefore, Equation (4) reduces to

(Co + Cs)
∫ Q∗

0

f(x)dx − Cs = 0,

which corresponds to the well-known optimal order for the basic newsvendor
model.

4. Newsvendor solutions for multiplicative yield

The previous section presents results for general random yield distributions. To
demonstrate the applicability, the analysis is continued in this section for the case
of multiplicative random yield, which is commonly found in literature and practice
(including Gerchak et al. [3]). While this sections assumes multiplicative random
yield, no assumption is made regarding the independence of the multiplicative
factor, p, from the quantity, Q.

Let y = (1 − p)Q, then

C(Q) =
∫ 1

p=0

QgQ((1 − p)Q)

[
Co

∫ (1−p)Q

x=0

[(1 − p)Q − x]f(x)dx

+ Cs

∫ ∞

x=(1−p)Q

[x − (1 − p)Q]f(x)dx

]
dp. (5)

Notice that QgQ((1 − p)Q) = πQ(p). Indeed, since Y = (1 − P )Q, we have

P(Y ≤ y) = P(P ≥ 1 − y/Q) =
∫ 1

1−y/Q

πQ(α)dα =
∫ y

1

1
Q

πQ(1 − β/Q)dβ,



462 S.E. GRASMAN ET AL.

thus,

gQ(y) =
1
Q

πQ

(
1 − y

Q

)
⇒ QgQ((1 − p)Q) = πQ(p).

Finally, the expected total cost may be given by

C(Q) =
∫ 1

p=0

πQ(p)

[
Co

∫ (1−p)Q

x=0

[(1 − p)Q − x]f(x)dx

+ Cs

∫ ∞

x=(1−p)Q

[x − (1 − p)Q]f(x)dx

]
dp. (6)

4.1. Optimal order quantity expression

Since C(Q) is a convex function, we may find an expression for the optimal
order quantity by setting d

dQC(Q) = 0. From (6) we obtain

d
dQ

C(Q) = R(Q) + S(Q), where (7)

R(Q) =
∫ 1

p=0

d
dQ

πQ(p)

[
Co

∫ (1−p)Q

x=0

[(1 − p)Q − x]f(x)dx

+ Cs

∫ ∞

x=(1−p)Q

[x − (1 − p)Q]f(x)dx

]
dp, and

S(Q) =
∫ 1

p=0

πQ(p)

[
Co

∫ (1−p)Q

x=0

(1 − p)f(x)dx − Cs

∫ ∞

x=(1−p)Q

(1 − p)f(x)dx

]
dp.

Notice that S(Q) can be rewritten as

S(Q) = (Co + Cs)
∫ 1

p=0

πQ(p)
∫ (1−p)Q

x=0

(1 − p)f(x)dxdp − Cs

(
1 −

∫ 1

0

pπQ(p)dp

)
.

Setting d
dQC(Q∗) = 0 leads to the following equation from which the optimal order

quantity Q∗ can be determined.

R(Q∗) + (Co + Cs)
∫ 1

p=0

πQ∗(p)
∫ (1−p)Q∗

x=0

(1 − p)f(x)dxdp

− Cs

(
1 −

∫ 1

0

pπQ∗(p)dp

)
= 0 (8)

4.1.1. Special cases

Special cases of (1) independent yield and (2) perfect yield are now presented.
Since perfect yield is a special case of independent yield, it is presented last.
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Case 1. πQ(p) = π(p)
If the PDF πQ(p) = π(p) of P is independent of the order quantity Q we have
R(Q) = 0 and Equation (8) reduces to

∫ 1

p=0

π(p)
∫ (1−p)Q∗

x=0

(1 − p)f(x)dxdp =
(

1 −
∫ 1

0

pπ(p)dp

)
Cs

Co + Cs
.

Integrating first with respect to p, then with respect to x we have

∫ Q∗

x=0

f(x)
∫ 1−x/Q∗

p=0

(1 − p)π(p)dpdx =
(

1 −
∫ 1

0

pπ(p)dp

)
Cs

Co + Cs
· (9)

This result corresponds to previous results (Shih [11], Eq. (19)).
Case 2. Y = Q
The case of perfect yield can be obtained as a particular case of Equation (9). In
this case, π(p) is a Dirac Function, and

∫ 1−x/Q∗

p=0

(1 − p)π(p)dp = 1, and

∫ 1

0

pπ(p)dp = 0.

Thus, Equation (9) reduces to

∫ Q∗

x=0

f(x)dx =
Cs

Co + Cs
(10)

⇔ Q∗ = F−1

(
Cs

Co + Cs

)
.

Again, it can be seen that Equation (10) corresponds to the well-known optimal
order quantity for the basic newsvendor model.

5. Conclusions

This paper presents the analysis of the newsvendor model with a general ran-
dom yield distribution, including the derivation of the optimal order quantity.
Results are shown to converge to the basic newsvendor model for the case of per-
fect yield, and are further demonstrated using the case of general multiplicative
random yield. Results have significant impact on both manufacturing and service
sectors since the newsvendor model applies to many real-world situations, thus
improving the decision making capabilities of complex system environments. Ad-
ditionally, the integration and implementation of this work in the form of common
elements which may be applied to a variety of applications with consistent man-
agerial implications will lead to cost reductions, increased profits, and improved
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quality. The results will have application in the areas of manufacturing, as well
as service industries, such as hotels, airlines, and healthcare. Extensions of the
model include constrained multiple products (see, Grasman [5]), multi-echelon sys-
tems, and others. As previously mentioned, a challenging extension relates to the
inclusion of initial inventory.
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