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Abstract

In this paper we study boundary value problems for perturbed second-order linear difference equa-
tions with a small parameter. The reduced problem obtained when the parameter is equal to zero is a
first-order linear difference equation. The solution is represented as a convergent series in the small
parameter, whose coefficients are given by means of solutions of the reduced problem.
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1. Introduction

This paper will focus on perturbations for linear difference equations. We are interested
in the following boundary value problem:
eVit2 + akyk+1+ by = fr, O<k<N -2,
Yo=«, YN = :3’ (l)

where(ay), (br), and(fr), 0< k < N — 2, are given finite sequences of real numbeis,
a small parameter, andandg are given constants. We study the existence and unigueness
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of its solution and derive the asymptotic behavior of the solution when 0. We show
how to represent the solution of problem (1) as a convergent series

+00
@)=Y ey 0<k<N. )
j=0

Our method consists simply in writing problem (1) as a matrix equation of the form

(Ao+eU)y=Ff, y=(o,....yn),

where Ag is a nonsingular matrix and the prime denotes the transpose (see the proof of
Theorem 1 for the details).

Problem (1) was considered by Comstock and Hsiao [1] in the homogeneous case
frx =0. These authors developediagular perturbation methofbr the study of the prob-
lem, by analogy with the case of ordinary differential equations. They wrote the solution
as the sum of anuter solutionanda boundary layer correctiofisee Section 2.4 for the
details). Their results were proposed again by Holmes in his book (see [5, pp. 98-104])
since the problem under study is considered by this author as a typical problem to illustrate
the subtle and interesting analogies between differential and difference equations.

Problem (1) has many great applications especially in the theory of discrete control
systems [3,7,8]. So, Naidu and Rao (see [8, Chapter 1]) gave a lot of interest to problem
(1) in the case of constant coefficient= a, by = b for all k, and extended the results of
[1] to higher-order (see Section 3.1 for the details).

The paper is organized as follows. In Section 2 we prove our main result related to the
existence and uniqueness of the solution of problem (1) as well as its representation as a
convergent series (2). We also examine the case where problem (1) is replaced by

aryk+2 +bkykr1+ ek = fr, O0<k<N -2

Yo=a, yN =8 3)
Problem (3) is called aight end perturbationin the literature [1,8]. In Section 3 we
compare our results to those obtained by the procedure given by Naidu and Rao [8]. In
particular, we show that the formal solution obtained by these authors is an asymptotic
expansion of the solution of orde¥ — 1. In Section 4, we discuss the connection be-
tween both problem (1) and (3) and the difference equation obtained by discretization of
a singularly perturbed boundary value problem associated with a second-order differential
equation.

2. Main result
2.1. Formal solution

First, we seek a straightforward expansion of the form (2). Substituting (2) into (1) and
equating coefficients term-wise then determines the coefficients of (2) successively. Thus,
for power zero ok we must have

0 0 ()
ay S+ by = fi, 0<k<N-2 ¥ =qa, (4)
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and
=g (5)

Notice that (4) is an initial value problem. It defines the sequeﬁméoé, ey yl(\(,)) ) ifand

only if ap 20 for 0< k < N — 2. The second boundary condition (5) defnjzt,%%.
For higher powers of, we must have

aylh+hy! =—yl5", 0<k<N-2 =0, (6)
and

w =0, @)
for eachj > 1. Notice that (6) is an initial value problem, which defines the sequence
(y(]) ...,yl(\{) ) ifand only if a; # 0 for 0< k < N — 2. The second boundary condition
(7) defme@(’).

We note that the termg,ﬁo) 0< k < N —1, can be computed without any knowledge

of the boundary conditioryy = 8. By analogy with the case of differential equations,

we say that there is a boundary layer at the right. Suzfébl, depends ory(o) B, the

higher-order terms,ﬁf), j =1, depend on the boundary conditipn = 8.

2.2. Existence and convergence of the solution

In this section we state conditions for problem (1) so it will have a unique solution and
that the series (2) converges. Consider the norm

Iyl =max(lyol. ... ywl)

in RN*1 and, for a matrixA = (a;;), the associated matrix norm

N
IAll = sup Ayl = max_ (Dalﬂ)

Iyi=1 =

We define

=——— and C:=|A7YI7I. (8)
AT |45

Theorem 1. Assume thai; # 0for 0< k < N — 2 and|e| < gg. Then the solutiofiyk (¢))
of (1) exists and is unique and satisfigy uniformly forO < k < N, Wherey(o) and y(])
are the solutions of4)(5) and (6)(7), respectively. More precisely, for aill > 0 and all
0< k<N, we have

n
w(e) =Y elyl| <
j=0

wheregg and C are given by(8).

(lel/e0)"+?
—lel/eo
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Proof. We can write problems (4)(5), (6)(7), and (1) in the matrix forms

0 0
Ay@=f YO=0P. W), 9)
Aoy(j) — —Uy(j_l), y(j) — (y(()f)’ o y](\;))” and (10)
Aé‘y:f’ yz(yOv--~ayN)/» (11)
respectively, where
1 0 0 -- 0
bo ap O
Ao=1| Ak
by-2 an-2 O
0 0 0 1
0 00 - 0
0 01
U= . . )
0 01
0 - 0 0 O

Ac=Ao+eU,  f=(a fo..... fn-2.8).
If matrix A, is nonsingular, then problem (11) has a unique solutien which is given
by

NOEF (12)

Let us compute the inverse of matri. Sinceay £ 0 for 0< k < N — 2, matrix Ag is
nonsingular. Sincg| < gg, we have||eUA51|| < 1. Thus

+00 .
A7t=AgM(1 +eUAGY) T = AgT Y (—eUAGY . (13)
j=0

From (12) and (13) we have
ye)=)Y elyY)  wherey) = Agt(-U A" £. (14)
j=0

Since Agy©@ = f and Agy) = —UyY =D, for j > 1 we deduce that© and y) are

the solutions of (9) and (10), respectively. Heng@ andy,ﬁ” are the solutions of (4)(5)
and (6)(7), respectively. This proves the first part of the theorem. Let us evaluate now the
reminder of the series. We have

n ) +0oo ,
A=At Y (—euagt) | <At X flevag)
j=0

j=n+1
A M lleU A
1—leUAGM

(lel/g0)"

. (15
1—Jel/eo (15)

<457
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From (14) and (15) we deduce that

n n
ye) =Y elyD I < AT = AGT > (—eUAGH (Il
j=0 j=0
1y oy (lE1/60)"
<l g0

This completes the proof of the theorenmt
2.3. Right end perturbation

Letzy = yy—k, for 0< k < N. Then Eg. (3) becomes

€2k+2 + bN—k—2Zk+1 + an—k—22k = fN—k—2,

which is of the form (1). From Theorem 1 we deduce that for right end perturbations the
boundary value problem has a unique solution if and onby i 0 for O< k < N —2. The
solution is the sum of a convergent series. The boundary layer is located at the left.

2.4. Comstock—Hsiao's approach

The homogeneous case

eyky2 +aryk+1+ by =0, 0<k<<N -2,
yo=a, yv =48 (16)

was considered by Comstock and Hsiao [1]. These authors develgegldar perturba-

tion methodfor the study of (16). They gave an asymptotic approximation of the solution
of (16) whene — 0. They did not study the problem of the existence and uniqueness of
this solution. Let;; be the solution of the initial value problem (theduced problem

akZk+1+bkzk =0, O0<k <N -2,
0= (7)

Let wy be the solution of the final value problem (theundary layer equatign

Wi2 +arwir+1=0, N—-22k=>0,

wy =B —zn. (18)
The main result of [1] is that the solution (¢) of (16) has the representation form
yi(e) = 2k + eV Fw + 0(e), (19)

ase — 0, uniformly for 0< k < N (see [1, Theorem 2]).

Notice that the reduced problem (17) defigg®nly for 0< k < N — 1. We do not have
the value ofzy to our disposal, so that problem (18) is not well-defined. The results of [1]
were discussed by Holmes (see [5, p. 98]). Also, this author did not clarified the problem
with the definition ofz .
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3. Theconstant coefficients case
The representation (19) of the solution was suggested by the special case of (16) where
ay andby are constant:
eykt2 +ayr+1+byr =0, O0<k<<N -2,
Yo=«, YN=,3 (20)

In this case problem (17) may be solved untid= N — 1, so thatzy is defined and the
boundary layer equation (18) is well-defined. The representation (19) of the solution was
extended to higher-order by Naidu and Rao [8].

3.1. Naidu—Rao’s expansion

In [8, Section 1.2], Naidu and Rao represented the solutigs), 0 < k < N, of (20),
as the sum of anuter seriesand acorrection series

+o00 o +o00 ) )
yk(s)zztejz,((]) +£N_k28]w,(€]). (21)
=0 j=0

The coefficienta,(co) andz,((j), Jj =1, of the outer series, are the solutions of the initial value
problems

azdy+b7” =0, ) =a, (22)
and
B R @)

respectively. The coefficients,go) andw,gj), J =1, of the correction series are the solutions
of the final value problems

0 0 0 0
0 +au =0, w®=p—z0, (24)
and
. ) - . o
iy ranly = bl =, @)

respectively. This formal procedure was not justified in [8]. We prove that the series (21) is
an asymptotic expansion of the solution of order 1 (see Proposition 3 below). It is not
an asymptotic expansion of ord&ras shown in the following proposition.

Proposition 2. The serieq21) is not an asymptotic expansion of the solutigiie) of
order N.

(©)

Proof. Sincezy” =a andzé)j) =0forj > 1, from (21) we get

too +o00 ‘ +00 ‘
yo(S):ZEJZé])+8N281wéj):a+281+1\]wé]). (26)

Sincein generabéj) # 0, (26) is not an asymptotic expansiongfs) = « of orderN. O
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3.2. There is no need of correction series

According to Theorem 1, the solution(e), 0< k < N, of (20) has the representation

(2) wherey,ﬁo) andy,ﬁj), j>1,0< k<N, are the solutions of problems

aydy +by =0. 0<k<N -2,

yW=a and yQ =8, 27)
and

s+ =, o<k<n-2

W=0 and yJ' =0, (28)

respectively. Notice that problems (27) and (28) differ from problems (22) and (23), re-
spectively, only by the fact that the first order difference equation is used to compute the
solution only for 0< k < N — 2. Let us compare the expansion (21) of Naidu and Rao and
our expansion (2). From (21) we see that

+00 )
(o)=Y el 5,
=0

where
o _ [ ifk+J

J
Y = . .. . (29)
Z,((j)+w,ij+k N), if k+j

Proposition 3. If 0< j < N —1and0< k < N, then we hav@,ﬁj) = y,ﬁj), that is to say,
the serieg21)is an asymptotic expansion ¢f(e) of order N — 1.

Proof. The proof is by induction ory. Let us prove the property foif = 0. From (29),
(22), and (24) we get

~(0 ~(0 0 0 .
aj D+ 650 =azQ +bz20 =0, if k<N -2,

~(0 0 ~(0 0 0
59 =9 =g, 59 =20 4,0 —p.
Thus(yéo), e, yf\?)) satisfies (27). By the uniqueness of the solution of (27), we conclude
thaty,fo) = y,ﬁo) forO<k < N.Letjbesuchthat X j <N —1and
5=y, foro<k<N. (30)
From (29) we get
az) + bz, if k+j<N-2,
~(j) b~(j) aZ]((j_.,:l‘f'bZ]({j) —i—aw,g(_):l, |f k“r] =N — 1,
Dt TONT =) () ) (j+k+1-N)

aziyy bz tawgy

+bwl TN, if k+j>N.
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In the first casek + j < N — 2, from (23) and (29) we get

) <) _ _G=-D_ _+(G-D
ayia +by ==l ==Vl
In the second casé,+ j = N — 1, from (23), (24), and (29) we get
~(J) ~(]) G- o _  ~(-D
ayis +by G2 T W2 = Vg2 -
In the third casek + j > N, from (23), (25), and (29) we get
0)) 0 _ _,G=D _ (+k+1-N) _ ~(J 1)
ayier by =z, k+2 ="Vij2 -
Thus, we have shown that
~ 1
aylgi-)l + by(]) _yl(ci-z ', k>0

Using the induction assumption (30), we get
ay,iﬂ_)l—l—bym yki_zl), O0<k<N-2 (32)

Sincej < N — 1, from (29), (23), and (25) we get

3 =z=0 Y= +uwi =0 (32)

From (31) and (32) we see thaﬁ(’) ...,yf\{)), satisfies (28). By the uniqueness of the
solution of (28), we conclude that” = y,ij) forOKk<N. O

4. Connection with differential equations

The connection between both Egs. (1) and (3) and the numerical solutions of the singu-
larly perturbed second-order boundary value problem

ey + px)y +qx)y=f(x), O<x<1,
y(0) =a, y(H =8 (33)

was clarified by Holmes [5]. It is well known (see [9, Section 3.A]) thap (k) < 0, the
solution of (33) is approximated d, 1) by the solution of the initial value problem

p(xX)z+qgx)z= f(x), z(0) = a,

and has a terminal layer neare 1. If, insteadp(x) > 0 for 0< x < 1, the solutiony (x, €)
would be approximated of®, 1] by the solution of the final value problem

p)z+qx)z= f(x), z(H =8,
and the boundary layer is near= 0. The location of the boundary layer depends on the
sign of the coefficient of the first derivative. If, insteadyx) has a zero in the intervi0, 1],
we have a turning-point problem, whose analysis is more delicate (see [9, Section 3.E]).
We solve numerically (33) on a uniform grid of size= 1/(N + 1). Letx, =nh, p, =
P(xn), qn = q(x), fn = f(xn), andy,(e) = y(x,, €). The standard centered difference
approximation

y_ Yn+l— 2y + yn-1
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will be used for the second derivative. Using the backward-difference approximation for
the first derivative

y;l _ Yn _hy;l—l , (34)

we get from (33) that

€Vnt1+ (an — 28)yn + (by + )yn_1=h%fn, 1<n<N -1,
Yo=«o, yN =5, (35)

wherea, = hp, + h?q, andb, = —hp,. This equation differs from (1) only in the depen-
dence ine of the coefficients. We have the following result whose proof is similar to the
proof of Theorem 1 and is left to the reader.

Theorem 4. Assume thati, # 0 for 1 <n < N — 1. There existgg > 0 such that for
all |e| < eo, the solution(yg(e), ..., yn(g)) of (35) exists, is unique, and is the sum of a
convergent series

400
Yale) = Zs’y,ﬁ”, 0<n <N,

(0) )

where(y,”, ..., yN)) is the solution of problem

any(o)'i'bny((? =h2fm 1<n<N -1,

yW=a and yY =8,

and, for eachj > 1, (y(/) ...,y](j)) is the solution of problem

-1 1 1
anyr(zj)+bny,5])l_2(] ) _ r(zjl) y;JH)’ 1<n<N-—1,

=0 and y(/) =0.

We note that the conditiom, # 0 is satisfied ifp,, # 0 andh £ 0 is small enough, that is,

if p(x) # 0 holds throughout the interv@, 1]. For turning point problems, it is possible
that the conditioru,, £ 0 be not satisfied, so that the solution of the difference equation
(35) does not exist.

We note that the coefﬁmen;éo) 0<n < N —1, can be computed without any knowl-
edge of the final boundary condition. Thus, the solution of (35), whei® kept fixed
ande — 0 has a boundary layer which is located at the right. Following Holmes (see [5,
p. 102]), we claim that this observation is a strong evidence that one should use (34) to
solve problem (33) only in the caggx) < 0, for which the boundary layer is located at
x = 1. In the casev(x) > 0 the boundary layer is located.at= 0 and one should use the
forward-difference approximation for the first derivative

n = Yn+1— Yn
n ]’l .
We get from (33) that
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(an + &) Ynt1+ (by —28)y, +€yp_1= hzfn, 1<n<N -1,
Yo=a, yn =8, (36)

wherea, = hp, andb, = —hp, + h?g,. This equation differs from (3) only in the de-
pendence ire of the coefficients. Now, the boundary layer is located at left, that is, in
the same location as the associated differential equation. Actually, the difference equation
(36) was considered by Farrell and Shishkin [2] to approximate problem (33). These au-
thors used the iterative Gauss Siedel process for (36) and obtained theoretical results on its
convergence.

We note that using the centered difference approximation of the first derivative

;_ Yn4+1— Yn-1
n 2/’1 ’
we get from (33) that

AnYn+1+ bpyn +Cnyn—1=h2fn, 1<n<N-1,
yo=a,  ynv=5, (37)

wherea, = hp,/2+ ¢, b, = hzqn — 2¢, andc, = —hp, /2 + €. This equation is not of the
form (1) or (3).

It is worthwhile to notice that Eqgs. (35)—(37) contain a second small parameter: the
step sizei. This parametek should be relatively small for Eq. (35), (36) or (37) to be an
accurate approximation of Eq. (33). Actually, we must keepO small and fixed and study
the asymptotic solutions of (35)—(37) whén— 0. We will not pursue this discussion,
but the interested readers should consult the literature concerning numerical schemes for
solving stiff differential equations [4,6].
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