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Abstract

In this paper we study boundary value problems for perturbed second-order linear differenc
tions with a small parameter. The reduced problem obtained when the parameter is equal to
first-order linear difference equation. The solution is represented as a convergent series in th
parameter, whose coefficients are given by means of solutions of the reduced problem.
 2004 Elsevier Inc. All rights reserved.

Keywords:Difference equation; Perturbations

1. Introduction

This paper will focus on perturbations for linear difference equations. We are inter
in the following boundary value problem:

εyk+2 + akyk+1 + bkyk = fk, 0� k � N − 2,

y0 = α, yN = β, (1)

where(ak), (bk), and(fk), 0� k � N − 2, are given finite sequences of real numbers,ε is
a small parameter, andα andβ are given constants. We study the existence and unique
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of its solution and derive the asymptotic behavior of the solution whenε → 0. We show
how to represent the solution of problem (1) as a convergent series

yk(ε) =
+∞∑
j=0

εjy
(j)
k , 0� k � N. (2)

Our method consists simply in writing problem (1) as a matrix equation of the form

(A0 + εU)y = f, y = (y0, . . . , yN)′,
whereA0 is a nonsingular matrix and the prime denotes the transpose (see the pr
Theorem 1 for the details).

Problem (1) was considered by Comstock and Hsiao [1] in the homogeneou
fk = 0. These authors developed asingular perturbation methodfor the study of the prob
lem, by analogy with the case of ordinary differential equations. They wrote the so
as the sum of anouter solutionanda boundary layer correction(see Section 2.4 for th
details). Their results were proposed again by Holmes in his book (see [5, pp. 98
since the problem under study is considered by this author as a typical problem to illu
the subtle and interesting analogies between differential and difference equations.

Problem (1) has many great applications especially in the theory of discrete c
systems [3,7,8]. So, Naidu and Rao (see [8, Chapter 1]) gave a lot of interest to pr
(1) in the case of constant coefficientak = a, bk = b for all k, and extended the results
[1] to higher-order (see Section 3.1 for the details).

The paper is organized as follows. In Section 2 we prove our main result related
existence and uniqueness of the solution of problem (1) as well as its representati
convergent series (2). We also examine the case where problem (1) is replaced by

akyk+2 + bkyk+1 + εyk = fk, 0� k � N − 2,

y0 = α, yN = β. (3)

Problem (3) is called aright end perturbationin the literature [1,8]. In Section 3 w
compare our results to those obtained by the procedure given by Naidu and Rao
particular, we show that the formal solution obtained by these authors is an asym
expansion of the solution of orderN − 1. In Section 4, we discuss the connection
tween both problem (1) and (3) and the difference equation obtained by discretiza
a singularly perturbed boundary value problem associated with a second-order diffe
equation.

2. Main result

2.1. Formal solution

First, we seek a straightforward expansion of the form (2). Substituting (2) into (1
equating coefficients term-wise then determines the coefficients of (2) successively
for power zero ofε we must have
aky
(0)
k+1 + bky

(0)
k = fk, 0� k � N − 2, y

(0)
0 = α, (4)
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N = β. (5)

Notice that (4) is an initial value problem. It defines the sequence(y
(0)
0 , . . . , y

(0)
N−1) if and

only if ak �= 0 for 0� k � N − 2. The second boundary condition (5) definesy
(0)
N .

For higher powers ofε, we must have

aky
(j)

k+1 + bky
(j)
k = −y

(j−1)

k+2 , 0� k � N − 2, y
(j)

0 = 0, (6)

and

y
(j)
N = 0, (7)

for eachj � 1. Notice that (6) is an initial value problem, which defines the sequ
(y

(j)

0 , . . . , y
(j)

N−1) if and only if ak �= 0 for 0� k � N − 2. The second boundary conditio

(7) definesy(j)
N .

We note that the termsy(0)
k , 0� k � N − 1, can be computed without any knowled

of the boundary conditionyN = β. By analogy with the case of differential equation
we say that there is a boundary layer at the right. Sincey

(1)
N−1, depends ony(0)

N = β, the

higher-order termsy(j)
k , j � 1, depend on the boundary conditionyN = β.

2.2. Existence and convergence of the solution

In this section we state conditions for problem (1) so it will have a unique solution
that the series (2) converges. Consider the norm

‖y‖ = max
(|y0|, . . . , |yN |)

in R
N+1 and, for a matrixA = (aij ), the associated matrix norm

‖A‖ = sup
‖y‖=1

‖Ay‖ = max
i=0,...,N

(
N∑

j=0

|aij |
)

.

We define

ε0 := 1

‖UA−1
0 ‖ and C := ∥∥A−1

0

∥∥‖f ‖. (8)

Theorem 1. Assume thatak �= 0 for 0� k � N − 2 and|ε| < ε0. Then the solution(yk(ε))

of (1) exists and is unique and satisfies(2) uniformly for0 � k � N , wherey
(0)
k andy

(j)
k

are the solutions of(4)(5) and (6)(7), respectively. More precisely, for alln � 0 and all
0� k � N , we have∣∣∣∣∣yk(ε) −

n∑
j=0

εj y
(j)
k

∣∣∣∣∣ � C
(|ε|/ε0)

n+1

1− |ε|/ε0
,

whereε0 andC are given by(8).
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)
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Proof. We can write problems (4)(5), (6)(7), and (1) in the matrix forms

A0y
(0) = f, y(0) = (

y
(0)
0 , . . . , y

(0)
N

)′
, (9)

A0y
(j) = −Uy(j−1), y(j) = (

y
(j)

0 , . . . , y
(j)
N

)′
, and (10)

Aεy = f, y = (y0, . . . , yN)′, (11)

respectively, where

A0 =




1 0 0 · · · 0
b0 a0 0
...

. . .
...

bN−2 aN−2 0
0 · · · 0 0 1


 ,

U =




0 0 0 · · · 0
0 0 1
...

. . .
...

0 0 1
0 · · · 0 0 0


 ,

Aε = A0 + εU, f = (α,f0, . . . , fN−2, β)′.

If matrix Aε is nonsingular, then problem (11) has a unique solutiony(ε) which is given
by

y(ε) = A−1
ε f. (12)

Let us compute the inverse of matrixAε. Sinceak �= 0 for 0� k � N − 2, matrixA0 is
nonsingular. Since|ε| < ε0, we have‖εUA−1

0 ‖ < 1. Thus

A−1
ε = A−1

0

(
I + εUA−1

0

)−1 = A−1
0

+∞∑
j=0

(−εUA−1
0

)j
. (13)

From (12) and (13) we have

y(ε) =
+∞∑
j=0

εj y(j), wherey(j) = A−1
0

(−UA−1
0

)j
f. (14)

SinceA0y
(0) = f andA0y

(j) = −Uy(j−1), for j � 1 we deduce thaty(0) andy(j) are
the solutions of (9) and (10), respectively. Hence,y

(0)
k andy

(j)
k are the solutions of (4)(5

and (6)(7), respectively. This proves the first part of the theorem. Let us evaluate no
reminder of the series. We have∥∥∥∥∥A−1

ε − A−1
0

n∑
j=0

(−εUA−1
0

)j

∥∥∥∥∥ �
∥∥A−1

0

∥∥ +∞∑
j=n+1

∥∥εUA−1
0

∥∥j

= ‖A−1
0 ‖‖εUA−1

0 ‖n+1

�
∥∥A−1∥∥ (|ε|/ε0)

n+1

. (15)

1− ‖εUA−1

0 ‖ 0 1− |ε|/ε0
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From (14) and (15) we deduce that∥∥∥∥∥y(ε) −
n∑

j=0

εjy(j)

∥∥∥∥∥ �
∥∥∥∥∥A−1

ε − A−1
0

n∑
j=0

(−εUA−1
0

)j

∥∥∥∥∥‖f ‖

�
∥∥A−1

0

∥∥‖f ‖ (|ε|/ε0)
n+1

1− |ε|/ε0
.

This completes the proof of the theorem.�
2.3. Right end perturbation

Let zk = yN−k , for 0� k � N . Then Eq. (3) becomes

εzk+2 + bN−k−2zk+1 + aN−k−2zk = fN−k−2,

which is of the form (1). From Theorem 1 we deduce that for right end perturbation
boundary value problem has a unique solution if and only ifbk �= 0 for 0� k � N −2. The
solution is the sum of a convergent series. The boundary layer is located at the left.

2.4. Comstock–Hsiao’s approach

The homogeneous case

εyk+2 + akyk+1 + bkyk = 0, 0� k � N − 2,

y0 = α, yN = β (16)

was considered by Comstock and Hsiao [1]. These authors developed asingular perturba-
tion methodfor the study of (16). They gave an asymptotic approximation of the solu
of (16) whenε → 0. They did not study the problem of the existence and uniquene
this solution. Letzk be the solution of the initial value problem (thereduced problem)

akzk+1 + bkzk = 0, 0� k � N − 2,

z0 = α. (17)

Let wk be the solution of the final value problem (theboundary layer equation)

wk+2 + akwk+1 = 0, N − 2� k � 0,

wN = β − zN . (18)

The main result of [1] is that the solutionyk(ε) of (16) has the representation form

yk(ε) = zk + εN−kwk + O(ε), (19)

asε → 0, uniformly for 0� k � N (see [1, Theorem 2]).
Notice that the reduced problem (17) defineszk only for 0� k � N −1. We do not have

the value ofzN to our disposal, so that problem (18) is not well-defined. The results o
were discussed by Holmes (see [5, p. 98]). Also, this author did not clarified the pro

with the definition ofzN .
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The representation (19) of the solution was suggested by the special case of (16
ak andbk are constant:

εyk+2 + ayk+1 + byk = 0, 0� k � N − 2,

y0 = α, yN = β. (20)

In this case problem (17) may be solved untilk = N − 1, so thatzN is defined and the
boundary layer equation (18) is well-defined. The representation (19) of the solutio
extended to higher-order by Naidu and Rao [8].

3.1. Naidu–Rao’s expansion

In [8, Section 1.2], Naidu and Rao represented the solutionyk(ε), 0� k � N , of (20),
as the sum of anouter seriesand acorrection series:

yk(ε) =
+∞∑
j=0

εj z
(j)
k + εN−k

+∞∑
j=0

εjw
(j)
k . (21)

The coefficientsz(0)
k andz

(j)
k , j � 1, of the outer series, are the solutions of the initial va

problems

az
(0)
k+1 + bz

(0)
k = 0, z

(0)
0 = α, (22)

and

az
(j)

k+1 + bz
(j)
k = −z

(j−1)

k+2 , z
(j)

0 = 0, (23)

respectively. The coefficientsw(0)
k andw

(j)
k , j � 1, of the correction series are the solutio

of the final value problems

w
(0)
k+2 + aw

(0)
k+1 = 0, w

(0)
N = β − z

(0)
N , (24)

and

w
(j)

k+2 + aw
(j)

k+1 = −bw
(j−1)
k , w

(j)
N = −z

(j)
N , (25)

respectively. This formal procedure was not justified in [8]. We prove that the series (
an asymptotic expansion of the solution of orderN − 1 (see Proposition 3 below). It is n
an asymptotic expansion of orderN as shown in the following proposition.

Proposition 2. The series(21) is not an asymptotic expansion of the solutionyk(ε) of
orderN .

Proof. Sincez
(0)
0 = α andz

(j)

0 = 0 for j � 1, from (21) we get

y0(ε) =
+∞∑
j=0

εj z
(j)

0 + εN
+∞∑
j=0

εjw
(j)

0 = α +
+∞∑
j=0

εj+Nw
(j)

0 . (26)

(j)
Since in generalw0 �= 0, (26) is not an asymptotic expansion ofy0(ε) = α of orderN . �
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According to Theorem 1, the solutionyk(ε), 0� k � N , of (20) has the representatio
(2) wherey(0)

k andy
(j)
k , j � 1, 0� k � N , are the solutions of problems

ay
(0)
k+1 + by

(0)
k = 0, 0� k � N − 2,

y
(0)
0 = α and y

(0)
N = β, (27)

and

ay
(j)

k+1 + by
(j)
k = −y

(j−1)

k+2 , 0� k � N − 2,

y
(j)

0 = 0 and y
(j)
N = 0, (28)

respectively. Notice that problems (27) and (28) differ from problems (22) and (23
spectively, only by the fact that the first order difference equation is used to compu
solution only for 0� k � N − 2. Let us compare the expansion (21) of Naidu and Rao
our expansion (2). From (21) we see that

yk(ε) =
+∞∑
j=0

εj ỹ
(j)
k ,

where

ỹ
(j)
k =

{
z
(j)
k , if k + j � N − 1,

z
(j)
k + w

(j+k−N)
k , if k + j � N .

(29)

Proposition 3. If 0 � j � N − 1 and0 � k � N , then we havẽy(j)
k = y

(j)
k , that is to say,

the series(21) is an asymptotic expansion ofyk(ε) of orderN − 1.

Proof. The proof is by induction onj . Let us prove the property forj = 0. From (29),
(22), and (24) we get

aỹ
(0)
k+1 + bỹ

(0)
k = az

(0)
k+1 + bz

(0)
k = 0, if k � N − 2,

ỹ
(0)
0 = z

(0)
0 = α, ỹ

(0)
N = z

(0)
N + w

(0)
N = β.

Thus(ỹ
(0)
0 , . . . , ỹ

(0)
N ) satisfies (27). By the uniqueness of the solution of (27), we conc

that ỹ(0)
k = y

(0)
k for 0� k � N . Let j be such that 1� j � N − 1 and

ỹ
(j−1)
k = y

(j−1)
k , for 0� k � N. (30)

From (29) we get

aỹ
(j)

k+1 + bỹ
(j)
k =




az
(j)

k+1 + bz
(j)
k , if k + j � N − 2,

az
(j)

k+1 + bz
(j)
k + aw

(0)
k+1, if k + j = N − 1,

az
(j)

k+1 + bz
(j)
k + aw

(j+k+1−N)

k+1
 + bw
(j+k−N)
k , if k + j � N .
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In the first case,k + j � N − 2, from (23) and (29) we get

aỹ
(j)

k+1 + bỹ
(j)
k = −z

(j−1)

k+2 = −ỹ
(j−1)

k+2 .

In the second case,k + j = N − 1, from (23), (24), and (29) we get

aỹ
(j)

k+1 + bỹ
(j)
k = −z

(j−1)

k+2 − w
(0)
k+2 = −ỹ

(j−1)

k+2 .

In the third case,k + j � N , from (23), (25), and (29) we get

aỹ
(j)

k+1 + bỹ
(j)
k = −z

(j−1)

k+2 − w
(j+k+1−N)

k+2 = −ỹ
(j−1)

k+2 .

Thus, we have shown that

aỹ
(j)

k+1 + bỹ
(j)
k = −ỹ

(j−1)

k+2 , k � 0.

Using the induction assumption (30), we get

aỹ
(j)

k+1 + bỹ
(j)
k = −y

(j−1)

k+2 , 0� k � N − 2. (31)

Sincej � N − 1, from (29), (23), and (25) we get

ỹ
(j)

0 = z
(j)

0 = 0, ỹ
(j)
N = z

(j)
N + w

(j)
N = 0. (32)

From (31) and (32) we see that(ỹ
(j)

0 , . . . , ỹ
(j)
N ), satisfies (28). By the uniqueness of t

solution of (28), we conclude thatỹ
(j)
k = y

(j)
k for 0� k � N . �

4. Connection with differential equations

The connection between both Eqs. (1) and (3) and the numerical solutions of the
larly perturbed second-order boundary value problem

εy′′ + p(x)y′ + q(x)y = f (x), 0< x < 1,

y(0) = α, y(1) = β (33)

was clarified by Holmes [5]. It is well known (see [9, Section 3.A]) that ifp(x) < 0, the
solution of (33) is approximated on[0,1) by the solution of the initial value problem

p(x)ż + q(x)z = f (x), z(0) = α,

and has a terminal layer nearx = 1. If, instead,p(x) > 0 for 0� x � 1, the solutiony(x, ε)

would be approximated on(0,1] by the solution of the final value problem

p(x)ż + q(x)z = f (x), z(1) = β,

and the boundary layer is nearx = 0. The location of the boundary layer depends on
sign of the coefficient of the first derivative. If, instead,p(x) has a zero in the interval[0,1],
we have a turning-point problem, whose analysis is more delicate (see [9, Section 3

We solve numerically (33) on a uniform grid of sizeh = 1/(N + 1). Let xn = nh, pn =
p(xn), qn = q(xn), fn = f (xn), andyn(ε) = y(xn, ε). The standard centered differen
approximation

yn+1 − 2yn + yn−1

y′′
n =

h2
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will be used for the second derivative. Using the backward-difference approximatio
the first derivative

y′
n = yn − yn−1

h
, (34)

we get from (33) that

εyn+1 + (an − 2ε)yn + (bn + ε)yn−1 = h2fn, 1� n � N − 1,

y0 = α, yN = β, (35)

wherean = hpn + h2qn andbn = −hpn. This equation differs from (1) only in the depe
dence inε of the coefficients. We have the following result whose proof is similar to
proof of Theorem 1 and is left to the reader.

Theorem 4. Assume thatan �= 0 for 1 � n � N − 1. There existsε0 > 0 such that for
all |ε| < ε0, the solution(y0(ε), . . . , yN(ε)) of (35) exists, is unique, and is the sum o
convergent series

yn(ε) =
+∞∑
j=0

εjy
(j)
n , 0� n � N,

where(y
(0)
0 , . . . , y

(0)
N ) is the solution of problem

any
(0)
n + bny

(0)
n−1 = h2fn, 1� n � N − 1,

y
(0)
0 = α and y

(0)
N = β,

and, for eachj � 1, (y
(j)

0 , . . . , y
(j)
N ) is the solution of problem

any
(j)
n + bny

(j)

n−1 = 2y
(j−1)
n − y

(j−1)

n−1 − y
(j−1)

n+1 , 1� n � N − 1,

y
(j)

0 = 0 and y
(j)
N = 0.

We note that the conditionan �= 0 is satisfied ifpn �= 0 andh �= 0 is small enough, that is
if p(x) �= 0 holds throughout the interval[0,1]. For turning point problems, it is possib
that the conditionan �= 0 be not satisfied, so that the solution of the difference equa
(35) does not exist.

We note that the coefficientsy(0)
n , 0� n � N − 1, can be computed without any know

edge of the final boundary condition. Thus, the solution of (35), whereh is kept fixed
andε → 0 has a boundary layer which is located at the right. Following Holmes (se
p. 102]), we claim that this observation is a strong evidence that one should use
solve problem (33) only in the casep(x) < 0, for which the boundary layer is located
x = 1. In the casep(x) > 0 the boundary layer is located atx = 0 and one should use th
forward-difference approximation for the first derivative

ẏn = yn+1 − yn

h
.

We get from (33) that
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, New
(an + ε)yn+1 + (bn − 2ε)yn + εyn−1 = h2fn, 1� n � N − 1,

y0 = α, yN = β, (36)

wherean = hpn andbn = −hpn + h2qn. This equation differs from (3) only in the de
pendence inε of the coefficients. Now, the boundary layer is located at left, that is
the same location as the associated differential equation. Actually, the difference eq
(36) was considered by Farrell and Shishkin [2] to approximate problem (33). Thes
thors used the iterative Gauss Siedel process for (36) and obtained theoretical resul
convergence.

We note that using the centered difference approximation of the first derivative

y′
n = yn+1 − yn−1

2h
,

we get from (33) that

anyn+1 + bnyn + cnyn−1 = h2fn, 1� n � N − 1,

y0 = α, yN = β, (37)

wherean = hpn/2+ ε, bn = h2qn − 2ε, andcn = −hpn/2+ ε. This equation is not of th
form (1) or (3).

It is worthwhile to notice that Eqs. (35)–(37) contain a second small paramete
step sizeh. This parameterh should be relatively small for Eq. (35), (36) or (37) to be
accurate approximation of Eq. (33). Actually, we must keepε > 0 small and fixed and stud
the asymptotic solutions of (35)–(37) whenh → 0. We will not pursue this discussio
but the interested readers should consult the literature concerning numerical sche
solving stiff differential equations [4,6].
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