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Abstract

A nonstandard approach to averaging theory for ordinary differential
equations and functional differential equations is developed. We define a
notion of perturbation and we obtain averaging results under weaker con-
ditions than the results in the literature. The classical averaging theorems
approximate the solutions of the system by the solutions of the averaged
system, for Lipschitz continuous vector fields, and when the solutions exist
on the same interval as the solutions of the averaged system. We extend
these results to perturbations of vector fields which are uniformly contin-
uous in the spatial variable with respect to the time variable and without
any restriction on the interval of existence of the solution.
Keywords Ordinary Differential Equation, Functional differential equa-
tions, averaging, stroboscopic method, nonstandard analysis.
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1 Introduction

In the early seventies, Georges Reeb, who learned about Abraham Robinson’s
Nonstandard Analysis (NSA) [29], was convinced that NSA gives a language
which is well adapted to the study of perturbation theory of differential equa-
tions (see [6] p. 374 or [25]). The axiomatic presentation Internal Set Theory
(IST) [26] of NSA given by E. Nelson corresponded more to the Reeb’s dream
and was in agreement with his conviction “Les entiers näıfs ne remplissent pas
N”. Indeed, no formalism can recover exactly all the actual phenomena, and
nonstandard objects which may be considered as a formalization of non-näıve
objects are already elements of our usual (standard) sets. We do not need any
use of stars and enlargements. Thus, the Reebian school adopted IST. For more
informations about Reeb’s dream and convictions see the Reeb’s preface of Lutz
and Goze’s book [25], Stewart’s book [40] p. 72, or Lobry’s book [23].

The Reebian school of nonstandard perturbation theory of differential equa-
tions produced various and numerous studies and new results as attested by a
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lot of books and proceedings (see [2, 3, 4, 7, 8, 9, 10, 12, 23, 25, 30, 37, 42] and
their references). It has become today a well-established tool in asymptotic the-
ory, see, for instance, [17, 18, 20, 24, 39] and the five-digits classification 34E18
of the 2000 Mathematical Subject Classification. Canards and rivers (or Ducks
and Streams [7]) are the most famous discoveries of the Reebian school. The
classical perturbation theory of differential equations studies deformations, in-
stead of perturbations, of differential equations (see Section 2.1). Classically the
phenomena are described asymptotically, when the parameter of the deforma-
tion tends to some fixed value. The first benefit of NSA is a natural and useful
notion of perturbation. A perturbed equation becomes a simple nonstandard
object, whose properties can be investigated directly. This aspect of NSA was
clearly described by E. Nelson in his paper Mathematical Mythologies [30], p.
159, when he said “For me, the most exciting aspect of nonstandard analysis is
that concrete phenomena, such as ducks and streams, that classically can only be
described awkwardly as asymptotic phenomena, become mythologized as simple
nonstandard objects.”

The aim of this paper is to present some of the basic nonstandard techniques
for averaging in Ordinary Differential Equations (ODEs), that I obtained in [32,
36], and their extensions, obtained by M. Lakrib [19], to Functional Differential
Equations (FDEs). This paper is organized as follows. In Section 2 we define
the notion of perturbation of a vector field. The main problem of perturbation
theory of differential equations is to describe the behavior of trajectories of
perturbed vector fields. We define a standard topology on the set of vector
fields, with the property that f is a perturbation of a standard vector field f0 if
and only if f is infinitely close to f0 for this topology. In Section 3 we present
the Stroboscopic Method for ODEs and we show how to use it in the proof of the
averaging theorem for ODEs. In Section 4 we present the Stroboscopic Method
for FDEs and we show how to use it in the proofs of the averaging theorem for
FDEs. The nonstandard approaches of averaging are rather similar in structure
both in ODEs and FDEs. It should be noticed that the usual approaches of
averaging make use of different concepts for ODEs and for FDEs: compare with
[5, 31] for averaging in ODEs and [13, 14, 15, 22] for averaging in FDEs.

2 Deformations and Perturbations

2.1 Deformations

The classical perturbation theory of differential equations studies families of dif-
ferential equations

ẋ = F (x, ε), (1)

where x belongs to an open subset U of Rn, called phase space, and ε belongs
to a subset B of Rk, called space of parameters.

The family (1) of differential equations is said to be a k-parameters defor-
mation of the vector field F0(x) = F (x, ε0), where ε0 is some fixed value of
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ε. The main problem of the perturbation theory of differential equations is to
investigate the behavior of the vector fields F (x, ε) when ε tends to ε0.

The intuitive notion of a perturbation of the vector field F0 which would
mean any vector field which is close to F0 does not appear in the theory. The
situation is similar in the theory of almost periodic functions which, classically,
do not have almost periods. The nonstandard approach permits to give a very
natural notion of almost period (see [16, 28, 33, 41]). The classical perturbation
theory of differential equations considers deformations instead of perturbations
and would be better called deformation theory of differential equations. Actually
the vector field F (x, ε) when ε is sufficiently close to ε0 is called a perturbation
of the vector field F0(x). In other words, the differential equation

ẋ = F0(x) (2)

is said to be the unperturbed equation and equation (1), for a fixed value of ε,
is called the perturbed equation. This notion of perturbation is not very sat-
isfactory since many of the results obtained for the family (1) of differential
equations take place in all systems that are close to the unperturbed equation
(2). Noticing this fact, V. I. Arnold (see [1], footnote page 157) suggested to
study a neighborhood of the unperturbed vector field F0(x) in a suitable func-
tion space. For the sake of mathematical convenience, instead of neighborhoods,
one considers deformations. According to V. I. Arnold, the situation is similar
with the historical development of variational concepts, where the directional
derivative (Gateaux differential) preceded the derivative of a mapping (Frechet
differential). Nonstandard analysis permits to define a notion of perturbation.
To say that a vector f is a perturbation of a standard vector field f0 is equivalent
to say that f is infinitely close to f0 is a suitable function space, that is f is in
any standard neighborhood of f0. Thus, studying perturbations in our sense is
nothing than studying neighborhoods, as suggested by V. I. Arnold.

2.2 Perturbations

Let X be a standard topological space. A point x ∈ X is said to be infinitely
close to a standard point x0 ∈ X, which is denoted by x ' x0, if x is in any
standard neighborhood of x0. Let A be a subset of X. A point x ∈ X is said
to be nearstandard in A if there is a standard x0 ∈ A such that x ' x0. Let us
denote by

NSA = {x ∈ X : ∃stx0 ∈ A x ' x0},

the external-set of nearstandard points in A [34]. Let E be a standard uniform
space. The points x ∈ E and y ∈ E are said to be infinitely close, which is
denoted by x ' y, if (x, y) lies in every standard entourage. If E is a standard
metric space, with metric d, then x ' y is equivalent to d(x, y) infinitesimal.

Definition 1 Let X be a standard topological space X. Let E be a standard
uniform space. Let D and D0 be open subsets of X, D0 standard. Let f : D → E
and f0 : D0 → E be mappings, f0 standard. The mapping f is said to be a
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perturbation of the mapping f0, which is denoted by f ' f0, if NSD0 ⊂ D and
f(x) ' f0(x) for all x ∈ NSD0.

Let FX,E be the set of mappings defined on open subsets of X to E :

FX,E = {(f,D) : D open subset of X and f : D → E}.

Let us consider the topology on this set defined as follows. Let (f0, D0) ∈ FX,E .
The family of sets of the form

{(f,D) ∈ FX,E : K ⊂ D ∀x ∈ K (f(x), f0(x)) ∈ U},

where K is a compact subset of D0, and U is an entourage of the uniform
space E, is a basis of the system of neighborhoods of (f0, D0). Let us call this
topology the topology of uniform convergence on compacta. If all the mappings
are defined on the same open set D, this topology is the usual topology of
uniform convergence on compacta on the set of functions on D to E.

Proposition 1 Assume X is locally compact. The mapping f is a perturbation
of the standard mapping f0 if and only if f is infinitely close to f0 for the
topology of uniform convergence on compacta.

Proof. Let f : D → E be a perturbation of f0 : D0 → E. Let K be a
standard compact subset of D0. Let U be a standard entourage. Then K ⊂ D
and f(x) ' f0(x) for all x ∈ K. Hence (f(x), f0(x)) ∈ U . Thus f ' f0 for the
topology of uniform convergence on compacta. Conversely, let f be infinitely
close to f0 for the topology of uniform convergence on compacta. Let x ∈ NSD0.
There exists a standard x0 ∈ D0 such that x ' x0. LetK be a standard compact
neighborhood of x0, such that K ⊂ D0 (such a neighborhood exists since X is
locally compact). Then x ∈ K ⊂ D and (f(x), f0(x)) ∈ U for all standard
entourages U , that is NSD0 ⊂ D and f(x) ' f0(x) on NSD0. Hence f is a
perturbation of f0. �

The notion of perturbation can be used to formulate Tikhonov’s theorem
on slow and fast systems whose fast dynamics has asymptotically stable equi-
librium points [24], and Pontryagin and Rodygin’s theorem on slow and fast
systems whose fast dynamics has asymptotically stable cycles [39]. In the fol-
lowing section we use it to formulate the theorem of Krilov, Bogolyubov and
Mitropolski of averaging for ODEs. All these theorems belong to the singular
perturbation theory. In this paper, by a solution of an Initial Value Problem
(IVP) associated to an ODE we mean a maximal (i.e. noncontinuable) solu-
tion. The fundamental nonstandard result of the regular perturbation theory of
ODEs is called the Short Shadow Lemma. It can be stated as follows [36, 37] :

Let g : D → Rd and g0 : D0 → Rd be continuous vector fields, D,D0 ⊂
R+ × Rd. Let a0

0 and a0 be initial conditions. Assume that g0 and a0
0 are

standard. The IVP
dX/dT = g(T,X), X(0) = a0 (3)

is said to be a perturbation of the standard IVP

dX/dT = g0(T,X), X(0) = a0
0, (4)
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if g ' g0 and a0 ' a0
0. To avoid inessential complications we assume that

equation dX/dT = g0(T,X) has the uniqueness of the solutions. Let φ0 be the
solution of the IVP (4). Let I be its maximal interval of definition. Then, by the
following theorem any solution of problem (3) also exist on I and is infinitely
close to φ0.

Theorem 1 (Short Shadow Lemma) Let problem (3) be a perturbation of
problem (4). Every solution φ of problem (3) is a perturbation of the solution
φ0 of problem (4), that is, for all nearstandard t in I, φ(t) is defined and satisfies
φ(t) ' φ0(t).

Let us consider the restriction ψ of φ to NSI. By the Short Shadow Lemma,
for standard t ∈ I, it takes nearstandard values ψ(t) ' φ0(t). Thus its shadow,
which is the unique standard mapping which associate to each standard t the
standard part of ψ(t), is equal to φ0. In general the shadow of φ is not equal to
φ0. Thus, the Short Shadow Lemma describes only the “short time behaviour”
of the solutions.

3 Averaging in Ordinary Differential Equations

The method of averaging is well-known for ODEs. The fundamental result of
this theory asserts that, for small ε > 0, the solutions of a nonautonomous
system

ẋ = f (t/ε, x, ε) , where ẋ = dx/dt, (5)

are approximated by the solutions of the averaged autonomous system

ẏ = F (y) , where F (x) = lim
T→∞

1
T

∫ T

0

f(t, x, 0)dt. (6)

The approximation of the solutions of (5) by the solutions of (6) means that if
x(t, ε) is a solution of (5) and y(t) is the solution of the averaged equation (6)
with the same initial condition, which is assumed to be defined on some interval
[0, T ], then for ε ' 0 and for all t ∈ [0, T ], we have x(t, ε) ' y(t).

The change of variable z(τ) = x(ετ) transforms equation (5) into equation

z′ = εf (τ, z, ε) , where z′ = dz/dτ . (7)

Thus, the method of averaging can be stated for equation (7), that is, if ε is
infinitesimal and 0 ≤ τ ≤ T/ε then z(τ, ε) ' y(ετ).

Classical results were obtained by Krilov, Bogolyubov, Mitropolski, Eckhaus,
Sanders, Verhulst (see [5, 31] and the references therein). The theory is very
delicate. The dependence of f(t, x, ε) in ε introduces many complications in the
formulations of the conditions under which averaging is justified. In the classical
approach, averaging is justified for systems (5) for which the vector field f is
Lipschitz continuous in x. Our aim in this section is first to formulate this
problem with the concept of perturbations of vector fields and then to give a
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theorem of averaging under hypothesis less restrictive than the usual hypothesis.
In our approach, averaging is justified for all perturbations of a continuous vector
field which is continuous in x uniformly with respect to t. This assumption is
of course less restrictive than Lipschitz continuity with respect to x.

3.1 KBM vector fields

Definition 2 Let U0 be an open subset of Rd. The continuous vector field
f0 : R+ ×U0 → Rd is said to be a Krilov-Bogolyubov-Mitropolski (KBM) vector
field if it satisfies the following conditions

1. The function x→ f0(t, x) is continuous in x uniformly with respect to the
variable t.

2. For all x ∈ U0 the limit F (x) = limT→∞
1
T

∫ T

0
f0(t, x)dt exists.

3. The averaged equation ẏ(t) = F (y(t)) has the uniqueness of the solution
with prescribed initial condition.

Notice that, in the previous definition, conditions (1) and (2) imply that the
function F is continuous, so that the averaged equation considered in condition
(3) is well defined. In the case of non autonomous ODEs, the definition of a
perturbation given in Section 2 must be stated as follows.

Definition 3 Let U0 and U be open subsets of Rd. A continuous vector field
f : R+ × U → Rd is said to be a perturbation of the standard continuous vector
field f0 : R+ × U0 → Rd if U contains all the nearstandard points in U0, and
f(s, x) ' f0(s, x) for all s ∈ R+ and all nearstandard x in U0.

Theorem 2 Let f0 : R+ × U0 → Rd be a standard KBM vector field and let
a0 ∈ U0 be standard. Let y(t) be the solution of the IVP

ẏ(t) = F (y(t)), y(0) = a0, (8)

defined on the interval [0, ω[, 0 < ω ≤ ∞. Let f : R+×U → Rd be a perturbation
of f0. Let ε > 0 be infinitesimal and a ' a0. Then every solution x(t) of the
IVP

ẋ(t) = f (t/ε, x(t)) , x(0) = a, (9)

is a perturbation of y(t), that is, for all nearstandard t in [0, ω[, x(t) is defined
and satisfies x(t) ' y(t).

The proof, in the particular case of almost periodic vector fields, is given in
Section 3.4. The proof in the general case is given in Section 3.5.
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3.2 Almost solutions

The notion of almost solution of an ODE is related to the classical notion of
ε-almost solution.

Definition 4 A function x(t) is said to be an almost solution of the standard
differential equation ẋ = G(t, x) on the standard interval [0, L] if there exists a
finite sequence 0 = t0 < · · · < tN+1 = L such that for n = 0, · · · , N we have

tn+1 ' tn, x(t) ' x(tn) for t ∈ [tn, tn+1], and
x(tn+1)− x(tn)

tn+1 − tn
' G(tn, x(tn)).

The aim of the following result is to show that an almost solution of a standard
ODE is infinitely close to a solution of the equation. This result which was
first established by J. L. Callot (see [11, 27]) is a direct consequence of the
nonstandard proof of the existence of solutions of continuous ODEs [26].

Theorem 3 If x(t) is an almost solution of the standard differential equation
ẋ = G(t, x) on the standard interval [0, L], x(0) ' y0, with y0 standard, and the
IVP ẏ = G(t, y), y(0) = y0, has a unique solution y(t), then y(t) is defined at
least on [0, L] and we have x(t) ' y(t), for all t ∈ [0, L].

Proof. See [11, 36] �
Let us apply this theorem to obtain an averaging result for an ODE which

does not satisfy all the hypothesis of Theorem 2. Consider the ODE (see [11,
27, 36])

ẋ(t) = sin
tx

ε
. (10)

The conditions (2) and (3) in Definition 2 are satisfied with F (x) = 0. Thus,
the solutions of the averaged equation are constant. But condition (1) of the
definition is not satisfied, since the function f(t, x) = sin (tx) is not continuous
in x uniformly with respect to t. Hence Theorem 2 does not apply. In fact the
solutions of (10) are not nearly constant and we have the following result :

Proposition 2 If ε > 0 is infinitesimal then, in the region t ≥ x > 0 the
solutions of (10) are infinitely close to hyperbolas tx = constant. In the region
x > t ≥ 0, they are infinitely close to the solutions of the ODE

ẋ = G(t, x), where G(t, x) =
√
x2 − t2 − x

t
. (11)

Proof. The isocline curves Ik = {(t, x) : tx = 2kπε} and I ′k = {(t, x) : tx =(
2k + 3

2

)
πε} define, in the region t ≥ x > 0, tubes in which the trajectories are

trapped. Thus for t ≥ x > 0 the solutions are infinitely close to the hyperbolas
tx = constant. This argument does not work for x > t ≥ 0. In this region, we
consider the microscope

T =
t− tk
ε

, X =
x− xk

ε
,
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where (tk, xk) are the points where a solution x(t) of (10) crosses the curve Ik.
Then we have

dX

dT
= sin (xkT + tkX + εTX) , X(0) = 0.

By the Short Shadow Lemma (Theorem 1), X(T ) is infinitely close to a solution
of dX/dT = sin (xkT + tkX). By straightforward computations we have

xk+1 − xk

tk+1 − tk
' G(tk, xk).

Hence, in the region x > t ≥ 0, the function x(t) is an almost solution of
the ODE (11). By Theorem 3, the solutions of (10) are infinitely close to the
solutions of (11). �

3.3 The Stroboscopic Method for ODEs

In this section we denote by G : R+ ×D → Rd a standard continuous function,
where D is a standard open subset of Rd. Let x : I → Rd be a function such
that 0 ∈ I ⊂ R+.

Definition 5 We say that x satisfies the Strong Stroboscopic Property with
respect to G if there exists µ > 0 such that for every positive limited t0 ∈ I
with x(t0) nearstandard in D, there exists t1 ∈ I such that µ < t1 − t0 ' 0,
[t0, t1] ⊂ I, x(t) ' x(t0) for all t ∈ [t0, t1], and

x(t1)− x(t0)
t1 − t0

' G(t0, x(t0)).

The real numbers t0 and t1 are called successive instants of observation of the
stroboscopic method.

Theorem 4 (Stroboscopic Lemma for ODEs) Let a0 ∈ D be standard. As-
sume that the IVP ẏ(t) = G (t, y(t)), y(0) = a0, has a unique solution y de-
fined on some standard interval [0, L]. Assume that x(0) ' a0 and x satisfies
the Strong Stroboscopic Property with respect to G. Then x is defined at least
on [0, L] and satisfies x(t) ' y(t) for all t ∈ [0, L].

Proof. Since x satisfies the Strong Stroboscopic Property with respect to G, it
is an almost solution of the ODE ẋ = G(t, x). By Theorem 3 we have x(t) ' y(t)
for all t ∈ [0, L]. The details of the proof can be found in [36]. �

The Stroboscopic Lemma has many applications in the perturbation theory
of differential equations (see [11, 32, 35, 36, 38, 39]). Let us use this lemma to
obtain a proof of Theorem 2.
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3.4 Proof of Theorem 2 for almost periodic vector fields

Suppose that f0 is almost periodic in t then any of its translates f0(s+ ·, x0) is
a nearstandard function, and f0 has an average F which satisfies [16, 28, 33, 41]

F (x) = lim
T→∞

1
T

∫ s+T

s

f0(t, x)dt,

uniformly with respect to s ∈ R+. Since F is standard and continuous, we have

F (x) ' 1
T

∫ s+T

s

f0(t, x)dt, (12)

for all s ∈ R+, all T ' ∞ and all nearstandard x in U0. Let x : I → U be a
solution of problem (9). Let t0 be an instant of observation : t0 is limited in I,
and x0 = x(t0) is nearstandard in U0. The change of variables

X =
x (t0 + εT )− x0

ε
,

transforms (9) into

dX/dT = f(s+ T, x0 + εX), where s = t0/ε.

By the Short Shadow Lemma (Theorem 1), applied to g(T,X) = f(s+ T, x0 +
εX) and g0(T,X) = f0(s + T, x0), for all limited T > 0, we have X(T ) '∫ T

0
f0(s+ r, x0)dr. By Robinson’s Lemma this property is true for some unlim-

ited T which can be chosen such that εT ' 0. Define t1 = t0 + εT . Then we
have

x(t1)− x(t0)
t1 − t0

=
X(T )
T

' 1
T

∫ T

0

f0(s+ r, x0)dr =
1
T

∫ s+T

s

f0(t, x0)dt ' F (x0).

Thus x satisfies the Strong Stroboscopic Property with respect to F . Using the
Stroboscopic Lemma for ODEs (Theorem 4) we conclude that x(t) is infinitely
close to a solution of the averaged ODE (8).

3.5 Proof of Theorem 2 for KBM vector fields

Let f0 be a KBM vector field. From condition (2) of Definition 2 we deduce that
for all s ∈ R+, we have F (x) = limT→∞

1
T

∫ s+T

s
f0(t, x)dt, but the limit is not

uniform on s. Thus for unlimited positive s, the property (12) does not hold for
all unlimited T , as it was the case for almost periodic vector fields. However,
using also the uniform continuity of f0 in x with respect to t we can show that
(12) holds for some unlimited T which are not very large. This result is stated
in the following technical lemma [36]

Lemma 1 Let g : R+ ×M→ Rd be a standard continuous function where M
is a standard metric space. We assume that g is continuous in m ∈M uniformly

9



with respect to t ∈ R+ and that g has an average G(m) = limT→∞
1
T

∫ T

0
g(t,m)dt.

Let ε > 0 be infinitesimal. Let t ∈ R+ be limited. Let m be nearstandard in M.
Then there exists α > ε, α ' 0 such that, for all limited T ≥ 0 we have

1
S

∫ s+TS

s

g(r,m)dr ' TG(m), where s = t/ε, S = α/ε.

The proof of Theorem 2 needs another technical lemma whose proof can be
found also in [36].

Lemma 2 Let g : R+ × Rd → Rd and h : R+ → Rd be continuous functions.
Suppose that g(T,X) ' h(T ) holds for all limited T ∈ R+ and all limited X ∈
Rd, and

∫ T

0
h(r)dr is limited for all limited T ∈ R+. Then, any solution X(T )

of the IVP dX/dT = g(T,X), X(0) = 0, is defined for all limited T ∈ R+ and
satisfies X(T ) '

∫ T

0
h(r)dr.

Proof of Theorem 2. Let x : I → U be a solution of problem (9). Let t0 ∈ I
be limited, such that x0 = x(t0) is nearstandard in U0. By Lemma 1, applied
to g = f0, G = F and m = x(t0), there is α > 0, α ' 0 such that for all limited
T ≥ 0 we have

1
S

∫ s+TS

s

f0(r, x0)dr ' TF (x0), where s = t0/ε, S = α/ε. (13)

The change of variables

X(T ) =
x (t0 + αT )− x0

α

transforms (9) into
dX/dT = f(s+ ST, x0 + αX).

By Lemma 2, applied to g(T,X) = f(s+ST, x0+αX) and h(T ) = f0(s+ST, x0),
and (13), for all limited T > 0, we have

X(T ) '
∫ T

0

f0(s+ Sr, x0)dr =
1
S

∫ s+TS

s

f0(r, x0)dr ' TF (x0).

Define the successive instant of observation of the stroboscopic method t1 by
t1 = t0 + α. Then we have

x(t1)− x(t0)
t1 − t0

= X(1) ' F (x0).

Since t1 − t0 = α > ε and x(t) − x(t0) = αX(T ) ' 0 for all t ∈ [t0, t1], we
have proved that the function x satisfies the Strong Stroboscopic Property with
respect to F . By the Stroboscopic Lemma, for any nearstandard t ∈ [0, ω[, x(t)
is defined and satisfies x(t) ' y(t). �
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4 Functional Differential Equations

Let C = C([−r, 0],Rd), where r > 0, denote the Banach space of continuous
functions with the norm ‖φ‖ = sup{‖φ(θ)‖ : θ ∈ [−r, 0]}, where ‖ · ‖ is a norm
of Rd. Let L ≥ t0. If x : [−r, L] → Rd is continuous, we define xt ∈ C by
setting xt(θ) = x(t + θ), θ ∈ [−r, 0] for each t ∈ [0, L]. Let g : R+ × C → Rd,
(t, u) 7→ g(t, u), be a continuous function. Let φ ∈ C be an initial condition. A
Functional Differential Equation (FDE) is an equation of the form

ẋ(t) = g (t, xt) , x0 = φ.

This type of equation includes differential equations with delays of the form

ẋ(t) = G(t, x(t), x(t− r)),

where G : R+ × Rd × Rd → Rd. Here we have g(t, u) = G(t, u(0), u(−r)).
The method of averaging was extended [13, 22] to the case of FDEs of the

form
z′(τ) = εf (τ, zτ ) , (14)

where ε is a small parameter. In that case the averaged equation is the ODE

y′(τ) = εF (y(τ)), (15)

where F is the average of f . It was also extended [14] to the case of FDEs of
the form

ẋ(t) = f (t/ε, xt) . (16)

In that case the averaged equation is the FDE

ẏ(t) = F (yt) . (17)

Notice that the change of variables x(t) = z(t/ε) does not transform equation
(14) into equation (16), as it was the case for ODEs (7) and (5), so that the
results obtained for (14) cannot be applied to (16). In the case of FDEs of the
form (14) or (16), the classical averaging theorems require that the vector field
f is Lipschitz continuous in x uniformly with respect to t. In our approach, this
condition is weakened and we only assume that the vector field f is continuous
in x uniformly with respect to t. Also in the classical averaging theorems it
is assumed that the solutions z(τ, ε) of (14) and y(τ) of (15) exist in the same
interval [0, T/ε] or that the solutions x(t, ε) of (16) and y(t) of (17) exist in the
same interval [0, T ]. In our approach, we assume only that the solution of the
averaged equation is defined on some interval and we give conditions on the
vector field f so that, for ε sufficiently small, the solution x(t, ε) of the system
exists at least on the same interval.
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4.1 Averaging for FDEs in the form z′(τ) = εf (τ, zτ )

We consider the IVP, where ε is a small parameter

z′(τ) = εf (τ, zτ ) , z0 = φ.

The change of variable x(t) = z(t/ε) transforms this equation in

ẋ(t) = f (t/ε, xt,ε) , x(t) = φ(t/ε), t ∈ [−εr, 0], (18)

where xt,ε ∈ C is defined by xt,ε(θ) = x(t+ εθ) for θ ∈ [−r, 0].
Let f : R+ × C → Rd be a standard continuous function. We assume that

(H1) The function f : u 7→ f(t, u) is continuous in u uniformly with respect to
the variable t.

(H2) For all u ∈ C the limit F (u) = limT→∞
1
T

∫ T

0
f(t, u)dt exists.

We identify Rd to the subset of constant functions in C, and for any vector
c ∈ Rd, we denote by the same letter, the constant function u ∈ C defined by
u(θ) = c, θ ∈ [−r, 0]. Averaging consists in approximating the solutions x(t, ε)
of (18) by the solution y(t) of the averaged ODE

ẏ(t) = F (y(t)) , y(0) = φ(0). (19)

According to our convention, y(t), in the right-hand side of this equation, is
the constant function ut ∈ C defined by ut(θ) = y(t), θ ∈ [−r, 0]. Since F is
continuous, this equation is well defined. We assume that

(H3) The averaged ODE (19) has the uniqueness of the solution with prescribed
initial condition.

(H4) The function f is quasi-bounded in the variable u uniformly with respect
to the variable t, that is, for every t ∈ R+ and every limited u ∈ C, f(t, u)
is limited in Rd.

Notice that conditions (H1), (H2) and (H3) are similar to conditions (1), (2)
and (3) of Definition 2. In the case of FDEs we need also condition (H4). In
classical words, the uniform quasi boundedness means that for every bounded
subset B of C, f(R+ ×B) is a bounded subset of Rd. This property is strongly
related to the continuation properties of the solutions of FDEs (see Sections 2.3
and 3.1 of [15]).

Theorem 5 Let f : R+ ×C → Rd be a standard continuous function satisfying
the conditions (H1)-(H4). Let φ be standard in C. Let L > 0 be standard and let
y : [0, L] → Rd be the solution of (19). Let ε > 0 be infinitesimal. Then every
solution x(t) of the problem (18) is defined at least on [−εr, L] and satisfies
x(t) ' y(t) for all t ∈ [0, L].
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4.2 The Stroboscopic Method for ODEs revisited

In this section we give another formulation of the stroboscopic method for ODEs
which is well adapted to the proof of Theorem 5. Moreover, this formulation of
the Stroboscopic Method will be easily extended to FDEs (see Section 4.4). We
denote by G : R+ × Rd → Rd, a standard continuous function. Let x : I → Rd

be a function such that 0 ∈ I ⊂ R+.

Definition 6 We say that x satisfies the Stroboscopic Property with respect to
G if there exists µ > 0 such that for every positive limited t0 ∈ I, satisfying
[0, t0] ⊂ I and x(t) is limited for all t ∈ [0, t0], there exists t1 ∈ I such that
µ < t1 − t0 ' 0, [t0, t1] ⊂ I, x(t) ' x(t0) for all t ∈ [t0, t1], and

x(t1)− x(t0)
t1 − t0

' G (t0, x(t0)) .

The difference with the Strong Stroboscopic Property with respect to G con-
sidered in Section 3.3 is that now we assume that the successive instant of
observation t1 exists only for those values t0 for which x(t) is limited for all
t ∈ [0, t0]. In Definition 5, in which we take D = Rd, we assumed the stronger
hypothesis that t1 exists for all limited t0 for which x(t0) is limited.

Theorem 6 (Second Stroboscopic Lemma for ODEs) Let a0 ∈ D be stan-
dard. Assume that the IVP ẏ(t) = G (t, y(t)), y(0) = a0, has a unique solution y
defined on some standard interval [0, L]. Assume that x(0) ' a0 and x satisfies
the Stroboscopic Property with respect to G. Then x is defined at least on [0, L]
and satisfies x(t) ' y(t) for all t ∈ [0, L].

Proof. Since x satisfies the Stroboscopic Property with respect to G, it is an
almost solution of the ODE ẋ = G(t, x). By Theorem 3 we have x(t) ' y(t) for
all t ∈ [0, L]. The details of the proof can found in [19] or [21]. �

Proof of Theorem 5. Let x : I → Rd be a solution of problem (18). Let
t0 ∈ I be limited, such that x(t) is limited for all t ∈ [0, t0]. By Lemma 1,
applied to g = f , G = F and the constant function m = x(t0), there is α > 0,
α ' 0 such that for all limited T ≥ 0 we have

1
S

∫ s+TS

s

f(r, x(t0))dr ' TF (x(t0)), where s = t0/ε, S = α/ε. (20)

Using the uniform quasi boundedness of f we can show (for the details see [19]
or [21]) that x(t) is defined and limited for all t ' t0. Hence the function

X(θ, T ) =
x(t0 + αT + εθ)− x(t0)

α
, θ ∈ [−r, 0], T ∈ [0, 1],

is well defined. In the variable X(·, T ) system (18) becomes

∂X

∂T
(0, T ) = f(s+ ST, x(t0) + αX(·, T )).
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Using assumptions (H1) and (H4) together with (20), we obtain after some
computations that for all T ∈ [0, 1], we have

X(0, T ) '
∫ T

0

f(s+ Sr, x(t0))dr =
1
S

∫ s+TS

s

f(r, x(t0))dr ' TF (x(t0)).

Define the successive instant of observation of the stroboscopic method t1 by
t1 = t0 + α. Then we have

x(t1)− x(t0)
t1 − t0

= X(0, 1) ' F (x(t0)).

Since t1 − t0 = α > ε and x(t) − x(t0) = αX(0, T ) ' 0 for all t ∈ [t0, t1], we
have proved that the function x satisfies the Stroboscopic Property with respect
to F . By the Second Stroboscopic Lemma for ODEs, for any t ∈ [0, L], x(t) is
defined and satisfies x(t) ' y(t). �

4.3 Averaging for FDEs in the form ẋ(t) = f (t/ε, xt)

We consider the IVP, where ε is a small parameter

ẋ(t) = f (t/ε, xt) , x0 = φ, (21)

We assume that f satisfies conditions (H1), (H2) and (H4) of Section 4.1. Now,
the averaged equation is not the ODE (19), but the FDE

ẏ(t) = F (yt) , y0 = φ. (22)

Averaging consists in approximating the solutions x(t, ε) of (21) by the solution
y(t) of the averaged FDE (22). Condition (H3) in Section 4.1 must be restated
as follows

(H3) The averaged FDE (22) has the uniqueness of the solution with prescribed
initial condition.

Theorem 7 Let f : R+ ×C → Rd be a standard continuous function satisfying
the conditions (H1)-(H4). Let φ be standard in C. Let L > 0 be standard and
let y : [0, L] → Rd be the solution of problem (22). Let ε > 0 be infinitesimal.
Then every solution x(t) of the problem (21) is defined at least on [−r, L] and
satisfies x(t) ' y(t) for all t ∈ [−r, L].

4.4 The Stroboscopic Method for FDEs

Since the averaged equation (22) is an FDE, we need an extension of the stro-
boscopic method for ODEs given in Section 4.2. In this section we denote by
G : R+×C → Rd, a standard continuous function. Let x : I → Rd be a function
such that [−r, 0] ⊂ I ⊂ R+.

14



Definition 7 We say that x satisfies the Stroboscopic Property with respect to
G if there exists µ > 0 such that for every positive limited t0 ∈ I, satisfying
[0, t0] ⊂ I and x(t) and G(t, xt) are limited for all t ∈ [0, t0], there exists t1 ∈ I
such that µ < t1 − t0 ' 0, [t0, t1] ⊂ I, x(t) ' x(t0) for all t ∈ [t0, t1], and

x(t1)− x(t0)
t1 − t0

' G (t0, xt0) .

Notice that now we assume that the successive instant of observation t1 exists for
those values t0 for which both x(t) and G(t, xt) are limited for all t ∈ [0, t0]. In
the limit case r = 0, the Banach space C is identified with Rd and the function xt

is identified with x(t) so that, G(t, xt) is limited, for all limited x(t). Hence the
“Stroboscopic Property with respect to G” considered in the previous definition
is a natural extension to FDEs of the “Stroboscopic Property with respect to
G” considered in Definition 6.

Theorem 8 (Stroboscopic Lemma for FDEs) Let φ ∈ C be standard. As-
sume that the IVP ẏ(t) = G (t, yt), y0 = φ, has a unique solution y defined on
some standard interval [−r, L]. Assume that the function x satisfies the Stro-
boscopic Property with respect to G and x0 ' φ. Then x is defined at least on
[−r, L] and satisfies x(t) ' y(t) for all t ∈ [−r, L].

Proof. Since x satisfies the Stroboscopic Property with respect to G, it is an
almost solution of the FDE ẋ = G(t, xt). For FDEs, we have to our disposal
an analog of Theorem 3. Thus x(t) ' y(t) for all t ∈ [0, L]. The details of the
proof can found in [19] or [21]. �

Proof of Theorem 7. Let x : I → Rd be a solution of problem (21). Let
t0 ∈ I be limited, such that both x(t) and F (xt) are limited for all t ∈ [0, t0].
¿From the uniform quasi boundedness of f we deduce that x(t) is S-continuous
on [0, t0]. Thus xt is nearstandard for all t ∈ [0, t0]. By Lemma 1, applied to
g = f , G = F and m = xt0 , there is α > 0, α ' 0 such that for all limited T ≥ 0
we have

1
S

∫ s+TS

s

f(r, xt0)dr ' TF (xt0) , where s = t0/ε, S = α/ε. (23)

Using the uniform quasi boundedness of f we can show (for the details see [19]
or [21]) that x(t) is defined and limited for all t ' t0. Hence the function

X(θ, T ) =
x(t0 + αT + θ)− x(t0 + θ)

α
, θ ∈ [−r, 0], T ∈ [0, 1],

is well defined. In the variable X(·, T ) system (21) becomes

∂X

∂T
(0, T ) = f(s+ ST, xt0 + αX(·, T )).

Using assumptions (H1) and (H4) together with (23), we obtain that for all
T ∈ [0, 1], we have

X(0, T ) '
∫ T

0

f (s+ Sr, xt0) dr =
1
S

∫ s+TS

s

f (r, xt0) dr ' TF (xt0) .
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Define the successive instant of observation of the stroboscopic method t1 by
t1 = t0 + α. Then we have

x(t1)− x(t0)
t1 − t0

= X(0, 1) ' F (xt0)

Since t1− t0 = α > ε and x(t)−x(t0) = αX(0, T ) ' 0 for all t ∈ [t0, t1], we have
proved that the function x satisfies the Stroboscopic Property with respect to
F . By the Stroboscopic Lemma for FDEs, for any t ∈ [0, L], x(t) is defined and
satisfies x(t) ' y(t). �

References

[1] V.I. Arnold (Ed.), Dynamical Systems V, Encyclopedia of Mathematical
Sciences, Vol. 5, Springer-Verlag, 1994.

[2] H. Barreau et J. Harthong (éditeurs), La mathématique Non Standard,
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du réel, OPU (Alger), CNRS (Paris), 1985.

[10] M. Diener et G. Wallet (éditeurs), Mathématiques finitaires et analyse non
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l’Université de Haute Alsace, Mulhouse, 2004.

[20] M. Lakrib and T. Sari, Averaging results for functional differential equa-
tions, Sibirsk. Mat. Zh. 45 (2004), No. 2, 375-386; translation in Siberian
Math. J. 45 (2004), No. 2, 311-320.

[21] M. Lakrib and T. Sari, Averaging Theorems for Ordinary Dif-
ferential Equations and Retarded Functional Differential Equations,
http://www.math.uha.fr/ps/200501lakrib.pdf.

[22] B. Lehman and S. P. Weibel, Fundamental theorems of averaging for func-
tional differential equations, J. Differential Equations 152 (1999), No. 1,
160-190.

[23] C. Lobry, Et pourtant... ils ne remplissent pas N!, Aleas Editeur, Lyon,
1989.

[24] C. Lobry, T. Sari and S. Touhami, On Tykhonov’s theorem for convergence
of solutions of slow and fast systems. Electron. J. Differential Equations
(1998), No. 19, 1-22

[25] R. Lutz and M. Goze, Nonstandard Analysis: a practical guide with appli-
cations. Lectures Notes in Math. 881, Springer-Verlag, 1982.

17



[26] E. Nelson, Internal Set Theory. Bull. Amer. Math. Soc. 83 (1977), 1165-
1198.

[27] G. Reeb, Equations diffrentielles et analyse non classique (d’aprs J. L. Cal-
lot), in Proceedings of the 4th International Colloquium on Differential Ge-
ometry (1978), Publicaciones de la Universidad de Santiago de Compostella
(1979), 240-245.

[28] A. Robinson, Compactification of Groups and Rings and Nonstandard
Analysis, Journ. Symbolic Logic, 34 (1969), No. 4, 576-588.

[29] A. Robinson, Nonstandard Analysis, American Elsevier, New York, 1974.

[30] J.-M. Salanskis et H. Sinaceur (Eds.), Le Labyrinthe du Continu, Colloque
de Cerisy, Springer-Verlag, Paris, 1992.

[31] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical
Systems, Applied Mathematical Sciences 59, Springer-Verlag, New York,
1985.
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