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1 Introduction

The functioning and development of living organisms is controlled by large and complex net-
works of genes, proteins, small molecules, and their interactions, so-called genetic requlatory
networks. The concerted efforts of genetics, molecular biology, biochemistry, and physiology
have led to the accumulation of enormous amounts of data on the molecular components
of genetic regulatory networks and their interactions, reported in the literature or stored in
databases. Notwithstanding the advances in the mapping of the network structure, surpris-
ingly little is understood about how the behavior of the systems controlled by these networks
emerges from the interactions between the molecular components. This has incited an in-
creasingly large group of researchers to turn from the structure to the behavior of genetic
regulatory networks, against the background of a broader movement variously referred to as
functional genomics, systems biology, or integrative biology [12, 18, 49, 54].



In the last decade the toolbox of the molecular biologist has been extended with high-
throughput experimental techniques for transcriptomics, proteomics, and metabolomics allow-
ing the structure and behavior of genetic regulatory networks to be studied on a genome-wide
scale [36, 58, 69, 71, 80, 100]. In addition, techniques providing an in-depth characterization
of individual components and interactions of the network have been developed, such as tech-
niques for monitoring gene expression in a single cell and quantifying molecular interactions
[56, 68, 72, 81|. However, it is clear that, in addition to powerful experimental tools, the study
of the behavior of genetic regulatory networks also requires the support of mathematical and
computational tools. Since most networks of biological interest consist of a large number
of molecular components involved in complex feedback loops, predicting the behavior of the
system by intuition alone quickly becomes unfeasible or fraught by error. The use of mathe-
matical models in combination with computer tools allows for the precise and unambiguous
description of a network and the systematic and efficient prediction of its behavior.

A variety of methods for the modeling, analysis, and simulation of genetic regulatory net-
works have been proposed in the past forty years [21, 40, 62, 84]. However, most of the
work seems to have focused on two approaches, based on the use of differential equations and
stochastic master equations, respectively. The application of these classical approaches rests
on well-established theoretical frameworks for the modeling of the kinetics of biochemical re-
action systems, from either a deterministic or stochastic point of view [19, 34, 42, 96]. In
addition, a variety of mathematical methods and computer tools is available for transform-
ing the model equations into experimentally-testable predictions. Many excellent examples
exist to demonstrate the capability of the classical approaches to help gaining insight into
the functioning of genetic regulatory networks of biological importance, such as the networks
underlying the response of Escherichia coli to bacteriophage A infection [3, 63], the regulation
of the cell cycle in yeast and higher eukaryotes [94], and the control of circadian rhythms in
Drosophila [55].

The classical approaches allow precise numerical predictions of deterministic or stochastic
dynamic properties of genetic regulatory networks to be made. However, for most networks
of biological interest the application of differential equations and stochastic master equations
is far from straightforward. First, the biochemical reaction mechanisms underlying the in-
teractions are usually not or incompletely known, which complicates the formulation of the
models. Second, quantitative data on kinetic parameters and molecular concentrations is gen-
erally absent, even for extensively-studied systems, which makes standard numerical methods
difficult to apply. In practice, the modeler disposes of much weaker information on the net-
work components and their interactions. Instead of details on the mechanisms through which
a protein regulates a gene, she typically only knows whether the protein is an activator or an
inhibitor. And even if it had been shown, for example, that the protein binds to one or several
sites upstream of the coding region of the gene, numerical values of dissociation constants
and other parameters are rarely available. At best, it is possible to infer that the regulatory
protein strongly or weakly binds to the DNA, with a greater affinity for one site than for
another.

Although the classical approaches require precise, quantitative information on biochemical
reaction mechanisms and parameter values, one may pose the question whether this informa-
tion is really essential for understanding the functioning of genetic regulatory networks. In
fact, it is reasonable to assume that many important dynamic properties of living systems,
such as the response of a bacterial cell to an environmental perturbation or the differentiation
of an insect cell in the course of development, do not depend on precise numerical values or



a specific regulatory mechanism. While different individuals of the same species often display
the same response to a perturbation or follow the same developmental trajectory, the values of
the parameters describing the interactions are likely to differ from one individual to another,
due to genetic polymorphism and physiological fluctuations. Similarly, as a consequence of
evolutionary diversification, different species may implement the same regulatory function by
way of different biochemical reaction mechanisms [74|. In other words, qualitative dynamic
properties, that is, dynamic properties that are invariant for a range of parameter values and
reaction mechanisms, may be more important than quantitative dynamic properties. The
qualitative properties express the intimate connection between the behavior of the system and
the structure of the network of molecular interactions, independently from the quantitative
details of the latter.

For all of the above reasons, there is a growing interest in qualitative approaches for
the modeling, analysis, and simulation of genetic regulatory networks and other networks of
biological interactions. These approaches have in common that they are capable of inferring
qualitative properties of the system dynamics from currently-available incomplete and non-
quantitative data. However, the multiplication of formalisms being proposed betrays the
diverse origins of the qualitative approaches: Boolean networks [47, 92|, Petri nets [50, 76],
directed graphs [20, 51, 82|, process algebras [77], qualitative differential equations [41], hybrid
automata [33],... A comprehensive overview of the qualitative approaches is still missing,
although there recently appeared reviews motivating their use and comparing some of the
existing formalisms [25, 32].

The aim of this chapter is to give an overview of one particular method for the qualitative
modeling and simulation of genetic regulatory networks [26], based on a class of piecewise-
linear (PL) differential equations proposed by Glass and Kauffman some thirty years ago
[35]. While abstracting from the precise biochemical reaction mechanisms involved, the PL
models capture essential aspects of gene regulation. Moreover, their simple mathematical
form permits a qualitative analysis of the behavior of a genetic regulatory network to be
carried out. More precisely, the method presented in this chapter describes the qualitative
dynamics of a PL system by means of a so-called state transition graph consisting of qualitative
states and transitions between qualitative states. The qualitative states correspond to regions
in the phase space where the system behaves in a qualitatively-homogeneous way, whereas
the transitions correspond to solution trajectories that connect adjacent regions. We have
shown that the state transition graph is invariant for sets of parameter values defined by
inequality constraints that can be easily inferred from the experimental literature. Moreover,
the qualitative states and transitions between qualitative states can be computed from these
constraints by means of simple, symbolic rules. The qualitative modeling and simulation
method has been implemented in the computer tool Genetic Network Analyzer (GNA) [24],
and applied to the analysis of a number of bacterial regulatory networks [23, 78, 95].

In the next two sections, we introduce the PL models of genetic regulatory networks and
review some basic mathematical results concerning their dynamics. The results underlie the
discrete abstraction used in Section 4 to describe the qualitative dynamics of a network by
means of a state transition graph. The application of the qualitative modeling and simulation
method to the analysis of the complex regulatory network controlling the nutritional stress
response of the bacterium FEscherichia coli is the subject of Section 5. The chapter ends with
a discussion of the method in the context of related work and gives a tentative response to
the question of how increasingly-large networks could be handled by the method.



2 PL models of genetic regulatory networks

Figure 1(a) shows an example of a simple genetic regulatory network. The genes a and b,
transcribed from separate promoters, encode the proteins A and B, each of which controls the
expression of both genes.! Proteins A and B repress genes a and b at different concentrations.
Repression of the genes is achieved by binding of the proteins to regulatory sites overlapping
with the promoters. Simple as it is, this mutual-inhibition network is a basic component of
more complex, real networks and allows the analysis of some characteristic aspects of cellular
differentiation [70, 92].
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Figure 1: (a) Example of a genetic regulatory network of two genes (a and b) coding for a
regulatory protein (A and B). For the notation, see Figure 8. (b) State equations for the
network in (a).

The dynamics of genetic regulatory networks can be modeled by a class of piecewise-linear
(PL) differential equations of the following general form [35, 67, 92]:

& = h(z) = f(z) - g(z)z, (1)

where & = (z1,...,2,) € Q is a vector of cellular protein concentrations, f = (f1,..., fn)’,
g = diag(g1,...,9n), and Q C RZ; is a bounded n-dimensional phase space box. The rate of
change of each protein concentration z;, i € [1,...,n], is thus defined as the difference of the
rate of synthesis f;(x) and the rate of degradation g;(x) x; of the protein. The PL models can
be easily extended to take into account input variables u = (uq, ..., uy)’, representing the
concentration of proteins and small molecules whose synthesis and degradation are regulated
outside the system [26].

The function f; : Q — R>( expresses how the rate of synthesis of the protein encoded
by gene ¢ depends on the concentrations & of the proteins in the cell. More specifically, the
function f; is defined as

fil@) =Y ribh(=), (2)

leL;

where /ﬁé > 0 is a rate parameter, bé : © — {0,1} a piecewise-continuous regulation function,
and L; a possibly empty set of indices of regulation functions. The function g; expresses the

! As a notational convention, names of genes are printed in italic and names of proteins start with a capital.



regulation of protein degradation. It is defined analogously to f;, except that we demand that
gi is strictly positive. In addition, in order to formally distinguish degradation rate parameters
from synthesis rate parameters, we will denote the former by <y instead of k. Notice that with
the above definitions, h is a piecewise-linear (PL) vector-valued function.

A regulation function bﬁ- describes the conditions under which the protein encoded by
gene i is synthesized (degraded) at a rate ! (y! ;). It is defined in terms of step functions
and is the arithmetic equivalent of a Boolean function expressing the logic of gene regulation
[35, 67, 92]. More precisely, the conditions for synthesis or degradation are expressed using
the step functions s*,s™:

1,ifz; > 0;, _
s+(xj,9j) = { 0 if th < 9;’ and s~ (z;,0;) =1 — s+(xj,9j), (3)

where z; is an element of the state vector £ and 0; a constant denoting a threshold concen-
tration.

In Figure 1(b) the state equations for the example network are shown. Gene a is expressed
at a rate r,, if the concentration of protein A is below its threshold §2 and the concentration
of protein B below its threshold 6}, that is, if s™(z4,602) s~ (z, 0;) evaluates to 1. Analogously,
gene b is expressed at a rate Ky, if the concentration of protein A is below the threshold 6.
and the concentration of protein B below the threshold §7. The degradation of the proteins
is not regulated in this case and therefore proportional to the concentration of the proteins
(with degradation parameters 7y, or 7).

The use of step functions s*(z;,6;) in (1) gives rise to complications, because the step
functions are discontinuous at x; = 6;, and therefore h might be discontinuous on the union
of the threshold hyperplanes

0= U {z € Q|z; =04}, (4)
1€[1,...,n],l;€[1,...,pi]
where p; denotes the number of threshold concentrations of the protein encoded by gene
1. In order to deal with this problem, we can follow an approach widely used in control
theory, originally proposed by Filippov [31]. It consists in extending the differential equation
& = h(z), z € Q\ O, to the differential inclusion

€ K ith K(x) =7co li h Q 5

& € K(@), with K(o) =(( _lm__h(y)}), @ €2 5)
where ¢o(P) denotes the smallest closed convex set containing the set P and {limy_,z, ygo h(y)},
the set of all limit values of h(y), for y € ©® and y — . This approach has been applied in
the context of genetic regulatory network modeling by Gouzé and Sari [37].

In practice, K(x) may be difficult to compute because the smallest closed convex set can
be a complex polyhedron in 2. We therefore employ an alternative extension of the differential
equation:

r € H ith H(xz) = rect li h Q 6
& € H(a), with H(2) = recl({ lim k@), @ e (6)
where rect(P) denotes the smallest closed hyperrectangular set containing the set P [26]. The
advantage of using rect is that we can rewrite H(x) as a system of differential inclusions
z; € Hi(x), 1 € [1,...,n]. Notice that H(x) is an overapproximation of K (), for all € Q.

Formally, we define the PL system X as the triple (2, ©, H), that is, the set-valued function

H given by (6), defined on the n-dimensional phase space 2, with © the union of the threshold



hyperplanes. A solution of the PL system ¥ on a time interval I is a solution of the differential
inclusion (6) on I, that is, an absolutely-continuous vector-valued function £(t) such that
£(t) € H(£(t)) holds almost everywhere on I [31].

For all zy € Q and 7 € Ry, E¢(x0, 7) will denote the set of solutions £€(t) of the PL system
¥, for the initial condition £(0) = xo and ¢ € [0,7]. The existence of at least one solution &
on some time interval [0, 7], 7 > 0, with initial condition £(0) = @ is guaranteed for all &g in
2 [31]. However, there is, in general, not a unique solution. Z¢ = Umer,T>O,T finite 25 (x0, T)
denotes the set of all solutions of ¥ on a finite time interval [0, 7]. We restrict our analysis to
the set Ey; of solutions in =5 that reach and leave a threshold hyperplane finitely-many times.

3 Mathematical analysis of PL systems

The dynamic properties of 3 can be analyzed in the n-dimensional phase space box = 1 x
oo X Qp, where Q; = {z; € R |0 < z; < maz;}, i € [1,...,n], and maz; denotes a maximum
concentration of the protein encoded by gene i. The (n — 1)-dimensional threshold hyperplanes
{x e |z = 05"}, l; €[1,...,pi], 1 € [1,...,n], partition 2 into (hyper)rectangular regions
that are called domains. Within each such region, the concentration of a protein equals
a threshold or is bounded by thresholds. More precisely, a domain D C 2 is defined by
D =D x ... x Dy, with every D;, i € [1,...,n], given by one of the following equations:

D, ={z; |0< z; < 01-1},
D; ={z; | z; = 6;},
D; ={z; | Hil <z < 9Z~2},
D; ={z; | z; = 67},

D, ={z; | z; = 0:;”},
D; ={z; | 0¥ < z; < maz;}. (7)

D denotes the set of all domains in Q. Figure 2(a) shows the partitioning into domains of
the two-dimensional phase space of the example network. We distinguish between domains
like D? and D7, which are located on (intersections of) threshold hyperplanes, and domains
like D' and D3, which are not. The former domains are called singular domains and the
latter reqular domains. We denote by D, and D, the sets of singular and regular domains,
respectively.

As a preliminary step for the analysis of the dynamic properties of (1) in regular and
singular domains, we define some simple topological concepts. For every domain, D C €,
of dimension k € [0,...,n], we define the supporting hyperplane of D, supp(D) C Q, as the
k-dimensional hyperplane containing D. The boundary of D in supp(D) is denoted by 9D.
Suppose that D is a singular domain, i.e. D € Dy. Then R(D) is defined as the set of regular
domains D’ having D in their boundary, i.e. R(D) ={D' € D, | D C dD'}.

Using the definition of the differential inclusion (6), it can be shown that in a regular
domain D, H(zx) reduces to the singleton set {u? —v? x}, for all z € D, where u? is a vector
of (sums of) synthesis rate constants and v? a diagonal matrix of (sums of) degradation rate
constants. This yields the classical result that all solutions & in D monotonically converge
towards the focal set



Tp 1 Tp

Ka/Ya
mazy 3 3\1!(191)
D DO pis 20 p2s \I}(D ) 4»/////:/ /‘Cb/’}/b
6? pi—pepu plo p (DY ®
D3 D8 DB D8 p23 \ \ // ,/i
9;} D2 pl pl2 pi7 p2 &
¥(D7) :
e -
D' ps D' piep* Vi \\ |
/
0 o* 92 m(m:ax \I,(D5,13,15,21,23,25) \I/(Dw) \I,(Du)x
a a

Figure 2: (a) Domain partition of the phase space corresponding to the model of Figure 1(b).
(b) Vector field and focal sets for the (persistent) domains in (a). The circled focal sets are
equilibrium points of the system. The following parameter values have been assumed: 0} = 4,
02 =28, 0} =4,02 =8, kg =20, kp =20, 7, =2, and 7, = 2.

U(D) = {4(D)}, (8)

where (D) is called the focal point, defined as 9 (D) = (vP) 1 uP [35, 73, 85]. We make the
generic assumption that the focal sets U(D), for all D € D,, are not located in the threshold
hyperplanes ©. If ¥(D) € D, then for ¢ — oo all solutions in D approach the focal set, which
is then an asymptotically stable equilibrium point of the system. If ¢(D) ¢ D, all solutions
will leave D at some point.

Figure 2(b) shows the focal sets of the regular domains in the phase space of the example
system. For instance, in D! the PL model in Figure 1(b) reduces to Z, = k4 — Y4 T, and
@y = Ky — 7 Tp, so that the focal set U(D') equals {(kq/Va,ks/7)}. Because ¥(D!) lies
outside D!, the trajectories in D' will leave the domain at some point. Different regular
domains generally have different focal sets. For instance, the focal set of D? is given by
U(D?) = {(0, p/7) }-

In a singular domain, the right-hand side of the differential inclusion (6) reduces to H (x) =
rect({u” —v”'x | D' € R(D)}), for all & € D [26, 37]. The focal set associated with the
domain now becomes

¥(D) = supp(D) Nrect({s(D') | D' € R(D)}), (9)

which is generally not a single point in higher-dimensional domains [26, 37]. Two different cases
can be distinguished. If U(D) is empty, then every solution passes through D instantaneously
and D is called an instantaneous domain. If not, then some (but not necessarily all) solutions
arriving at D will remain in D for some time, sliding along the supporting hyperplane of
D. The domain is then called persistent. If ¥(D) is a single point, then all solutions in D
monotonically converge towards this point. In the case that ¥(D) is not a single point, a



weaker monotonicity property holds [26, 37].

If ¥(D)ND = ( all solutions will leave D at some point. On the other hand, if ¥(D)ND #
(), there exist solutions in D that asymptotically approach or reach the focal set ¥(D) as t —
oo. Using (6), it can be shown that for every ¢ € ¥(D)N D it holds that 0 € H(#), and hence
that there exists a solution £€(t), such that &£(¢) = 4 for all ¢ > 0. Consequently, ¥'(D)ND is a
set of equilibrium points of the system, called equilibrium set. The occurrence of equilibrium
sets, as well as the non-uniqueness of solutions of differential inclusions (Section 2), require
extended definitions of stability [13]. For simple cases, in particular when the equilibrium set
consists of a single point, these definitions reproduce the intuitive notion of stability suggested
by the direction of the vector field around an equilibrium point.

The singular domain D? in the example is instantaneous (¥(D?) = @), because the inter-
section of rect({¢(D'),4(D?)}) and supp(D?) is empty (Figure 2(b)). On the other hand, D*
is a persistent domain in which solutions slide along the threshold plane and converge towards
the focal set W(D*) = supp(D*) N rect({4(D3),v(D%)}) = {(0,ks/75)}. Since this focal set
is a single point included in D?*, it is an equilibrium point of the system. The equilibrium
point is asymptotically stable, according to the definitions in [13], because it is reached or
asymptotically approached by all solutions in the neighborhood of ¥(D*), as a consequence
of the direction of the vector field in the regular domains D® and D%. The figure also shows
the focal sets of the persistent singular domains, D7 and D'6. The focal set of D7 coincides
with the domain itself, which is a point in Q. (D7) is an unstable equilibrium point, because
solutions starting in a neighborhood of ¥(D*) tend to escape, as suggested by the vector field
in D', D3, D' and D'3. Like ¥(D*), ¥(D') is an asymptotically stable equilibrium point.

In summary, the use of differential inclusions makes it possible to extend the definition
of the PL models (1) to the whole of the phase space in a systematic and mathematically
proper way. In particular, the above results show that the local dynamics of PL systems
3 are relatively straightforward: in every domain of the phase space, the system converges
monotonically — in the usual sense for regular domains, in a weaker sense for singular domains
— towards a focal set. This does not imply that the global dynamics of the PL systems are
equally simple. On the contrary, because the focal set usually changes when going from one
domain to another, the global dynamics of the PL systems may be quite complex [29, 57, 66].
However, the fact that in every domain the system behaves in a qualitatively-homogeneous
way suggests a discrete abstraction of the dynamics that will turn out to be quite useful for
studying qualitative properties of the behavior of genetic regulatory networks.

4 Qualitative simulation using PL models

As a preparatory step to the definition of a discrete or qualitative abstraction of the dynamics
of PL systems, we first introduce a continuous transition system having the same reachability
properties as the original PL system Y. Consider £ € D and =’ € D', where D,D" € D
are domains. If there exists a solution & of X passing through x at time 7 and reaching z’
at time 7/, without leaving D U D’ in the time interval [7,7], then the absolute continuity
of & implies that D and D' are either equal or contiguous. More precisely, one of the three
following cases holds: D = D', D € dD', or D' € 0D. We consequently distinguish three types
of continuous transition that correspond to these three cases: internal, denoted by it ! ,
dimension increasing, denoted by @ dM x’, and dimension decreasing, denoted by x dm g
The latter two terms refer to the increase or decrease in dimension when going from D to



D'. The continuous PL transition system of a PL system 3 = (2,0, H) is then given by
¥-TS = (,L,—), where L = {int,dim™,dim™} is the set of labels denoting the types of
transition, and —C 2 x L x ) is the transition relation describing the continuous evolution
of the system. More precisely, « 4 2’ if and only if there exist &€ € Ey and 7,7', such that
0<7<7,€(1)=2, &(7") =<', and

1. if [ = int, then for all ¢ € [r,7'] it holds that &£(¢t) € D and D = D',

2. if | = dim™, then for all ¢ € (,7'] it holds that £(t) € D' and D' # D,

3. if { = dim™, then for all ¢ € [, 7') it holds that &(¢t) € D and D # D'.

We define any sequence of points (2°,...,2™) in Q, m > 0, as a path of -TS if and
only if one can reach ™ from x° by a sequence of transitions, that is, if and only if for all
i €10,...,m-1], there exists some [ € L such that 1 2+l Tt is not difficult to show that
a PL system Y. and its corresponding continuous PL transition system »-TS have equivalent
reachability properties, in the sense that for all &,z € Q, there exists a path in X-TS leading
from « to &’ if and only if there exists a solution & of ¥ on a time interval [r,7'] that passes
through  at 7 and =’ at 7'.

Tp
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Figure 3: Trajectory of a solution & of the PL system ¥ starting in D!, reaching D', and
passing through the points 2%, ..., z*. (b) Partial description of the continuous PL transition
system X-TS, illustrating its relation with the PL system 3.

As an illustration, consider a solution £ of the PL system X for our two-gene example,
as shown in Figure 3(a). & passes through the points °,...,z* at time instants 7°,...7%,
respectively. Using the definition of the continuous transition system, and the fact that a°
and ! belong to the same domain D', we infer the existence of an int transition from x° to

Lin ®-TS. Again, following the definition of -TS, since ! € D!, 2 € Db and &(t) € D!
for all t € [11,72), there exists a transition of type dim™ from z! to 2. Similarly, there exists
a dim~ tran51t10n from 2 to x?. Also, there exists a dim™ transition from z? to 3, since
x?2 € DS, 23 € DY and €(t) € D11 for all t € (72, 73]. Note that the transition labels dim*
and dim~ are consistent with the dimension of the domains, which equals 2 for D' and D!,

and 1 for D8. The sequence of points (z°, 2!, 22, 3, 2*) is a path of X-TS.



Using the partition D of the phase space {2, introduced in Section 3, a discrete or qualitative
abstraction of the continuous transition system can be formulated. The abstraction is based
on the equivalence relation ~q, stating that two points are equivalent when they belong to the
same domain, i.e. z~qx’, if and only if £ € D and £’ € D. The discrete description of the PL
system Y, called the qualitative PL transition system, is now defined as the quotient transition
system of 3-TS with the equivalence relation ~gq |2, 16]. More precisely, given that X-TS =
(2, L,—), we have £-QTS = (/~q, L, =~ ), where Q/_., =D and —., C D x L X D, such
that D —l>NQ D' if and only if there exist & € Ex and 7,7, 0 < 7 < 7/, such that £(7) € D,
&(7') e D', and

1. if [ = int, then for all ¢ € [r,7'] it holds that &£(¢t) € D and D = D/,
2. if | = dim™, then for all ¢ € (7,7] it holds that &(t) € D" and D' # D,
3. if { = dim™, then for all ¢ € [,7') it holds that &(¢) € D and D # D'.

In words, there is a transition from a domain D to another domain D’ if and only if there
exists a solution of ¥ which on a time interval I reaches D' from D, without leaving D U D’.
The main difference with 3-TS is that 3¥-QTS is a finite rather than an nfinite transition
system, due to the fact that the state space of ¥-QTS equals the finite set D. This is a key
property, since it makes it possible to actually compute and represent 3-QTS, as well as to
conveniently analyze its dynamics.

The domains in a qualitative PL transition system are also called qualitative states. As
for ¥-TS, we define any sequence of domains (D°,...,D™), m > 0, as a path of ¥-QTS if

and only if for all 4 € [0,...,m-1], there exists [ € L such that D* —l>NQ D' A path in
3-QTS corresponds to a possible qualitative evolution of the protein concentrations over time.
If a domain D contains an equilibrium set, that is, if ¥(D) N D # @, the domain is called an
qualitative equilibrium state of the transition system. The qualitative states and transitions
between qualitative states of X-QTS are often represented in the form of a state transition
graph, defined as G = (D, —.,).

Consider again the situation illustrated in Figure 3. Following the above definition of a
qualitative transition system, the existence of the transitions from z° to 2!, from ! to 2, and
from x2 to 3 in ©-TS, leads to an int transition from D! to D', a dim™ transition from D' to
D6 and a dim™ transition from D® to D11, respectively. The qualitative transition system and
corresponding state transition graph for the two-gene example are represented in Figure 4.
The temporal evolution of the protein concentrations along the path (D!, D® D! D16) of
3-QTS is shown in Figure 5.

Using standard results from hybrid systems theory [2, 16], it directly follows from the
definition of the qualitative PL transition system 3-QTS as a quotient transition system of
the continuous PL transition system Y-TS that the former is a conservative approximation of
the latter. That is, if there exists a path (z°,...,2™) in 3-TS, then there also exists a path
(DY, ...,D™) in -QTS, such that ¢ € D for all i € [0,...,m]. Note that the converse does
not necessarily hold.? Using the reachability equivalence between the continuous PL transition
system X-TS and the PL system X, it follows that X-QTS is a conservative approximation

2In the hybrid systems terminology, £-QTS is a simulation, but not a bisimulation of X-TS. Another way
to phrase this, using qualitative reasoning terminology, is that any algorithm for constructing ¥-QTS is sound,
but incomplete [26].
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of 3. This means that we can safely use the former to study the qualitative dynamics of the
latter.
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Figure 5: Temporal evolution of the protein concentrations along the path (D!, D8, D', D'6)
of the qualitative transition system 3-QTS in Figure 4.

The continuous dynamics of a PL system depends on the values of the model parameters,
that is, the synthesis and degradation rate parameters, and the threshold concentrations. Nev-
ertheless, two PL systems differing by their parameter values often yield the same qualitative
PL transition system, and thus satisfy the same qualitative dynamic properties. We introduce
a second equivalence relation ~p C I" x I, defined on the parameter space I' of the PL system
¥, such that two parameter vectors p and p’ are equivalent, if their corresponding qualitative
PL transition systems, or state transition graphs, are isomorphic. I'/.. denotes the quotient
parameter space, given the equivalence relation ~p. We have shown that a certain class of
parameter inequality constraints define regions P C T, such that for every p,p’ € P, it holds
that p ~pr p’. More precisely, there exists some @ € '/, such that P C Q [26]. As a
consequence, for all parameter values satisfying the inequality constraints, the system has the
same qualitative dynamic properties.

The regions are defined by two types of inequality constraints that can usually be inferred
from the available experimental data. The first type are the so-called threshold inequalities,
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which are obtained by ordering the threshold concentrations Ozl-i of each protein. The second
type are the focal inequalities, which are obtained by ordering the coefficients of the focal
points, 9;(D), D € D,, with respect to the threshold concentrations of the protein. Figure 4(c)
shows the inequality constraints for our example network. The constraints state that protein A
inhibits the expression of gene b at a lower concentration than that required for the expression
of its own gene (61 < 62). Moreover, when gene a is active, the concentration of protein A tends
towards a level above which autoinhibition occurs (kg /7 > 62). The inequality constraints for
protein B are interpreted analogously. The state transition graph in Figure 4(b) is invariant
for all parameter values satisfying the inequality constraints in Figure 4(c).

The inequality constraints also play an important role in the actual computation of the
qualitative PL transition system [26]. This computation is greatly simplified by the fact that
the domains D and the focal sets ¥(D) are hyperrectangular sets, which allows the sets to
be expressed as product, i.e. D = Dy X ... X Dy, and ¥(D) = ¥1(D) x ... x ¥,(D). As
a consequence, the computation can be carried out for each dimension separately, using the
inequality constraints. For instance, in order to determine the transitions from domain D', it
is sufficient to know the ordering of k4 /7, and 6} in the z,-dimension, as well as the ordering
of K/ and 6} in the z,-dimension. Given the inequality constraints in Figure 4(c), and the
monotonic convergence of the solutions in D! towards ¥(D!), it can be inferred that there are
solutions starting in D' and arriving at D?, D8, or D7. Simple symbolic rules for performing
these computations are given in [26].

The symbolic rules for computing a qualitative PL transition system from a PL model and
inequality constraints have been implemented in Java, giving rise to the computer tool Genetic
Network Analyzer (GNA) [24] (Figure 6). In order to facilitate its use, the program is equiped
with a graphical user interface, called VisualGNA. In practice, since the number of domains
in the phase space grows exponentially with the number of genes in the network, it is not
possible to compute the complete qualitative PL transition system or state transition graph.
GNA is therefore mostly used to perform what is called a qualitative simulation, that is, the
determination of the subgraph of the state transition graph that is reachable from a specified
set of initial domains. GNA has been used for the analysis of several genetic regulatory
networks, such as the initiation of sporulation in the soil bacterium Bacillus subtilis [23] and
quorum sensing in the pathogenic bacterium Pseudomonas aeruginosa [95].

5 Qualitative simulation of nutritional stress response in E. coli

In their natural environment, bacteria like FEscherichia coli rarely encounter conditions al-
lowing continuous, balanced growth. While nutrients are available, E. coli cells grow quickly,
leading to an exponential increase of their biomass, a state called exponential phase. However,
upon depletion of an essential nutrient, the bacteria are no longer able to maintain fast growth
rates, and the population consequently enters a non- or slow-growth state, called stationary
phase (Figure 7(a)). During the transition from exponential to stationary phase, each indi-
vidual E. coli bacterium undergoes numerous physiological changes, concerning among other
things the morphology and the metabolism of the cell, as well as gene expression (Figure 7(b))
[44]. These changes enable the cell to survive prolonged periods of starvation and resistant
to multiple stresses. This nutritional stress response can be reversed and growth resumed, as
soon as nutrients become available again.

3GNA is available for non-profit academic research purposes at http://www-helix.inrialpes.fr/gna.
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Figure 6: Screenshot of the graphical user interface of GNA, for the simulation of the two-gene
network in Figure 1: (a) Tree of concentration variables and initial conditions, (b) interaction
graph, (c) specification of differential equation and inequality constraints for a variable, (d)
specification of initial domains, (e) summary of simulation results, (f) state transition graph
produced by simulation, and (g) qualitative temporal evolution of the concentration variables.

On the molecular level, the transition from exponential phase to stationary phase is con-
trolled by a complex genetic regulatory network integrating various environmental signals
[43, 61, 98]. The molecular basis of the adaptation of the growth of E. coli to nutritional
stress conditions has been the focus of extensive studies for decades [43]. However, notwith-
standing the enormous amount of information accumulated on the genes, proteins, and other
molecules known to be involved in the stress adaptation process, there is currently no global
understanding of how the response of the cell emerges from the network of molecular inter-
actions. Moreover, with some exceptions [11, 38, 97|, numerical values for the parameters
characterizing the interactions and the molecular concentrations are absent, which makes it
difficult to apply traditional methods for the dynamic modeling of genetic regulatory networks.

The above circumstances have motivated the qualitative analysis of the nutritional stress
response network in E. coli by means of the method presented in the previous sections [78].
The objective of the study was to simulate the response of an E. coli bacterium to the absence
or presence of nutrients in the growth medium. To this end, an initial, simple model of the
nutritional stress response network has been built on the basis of literature data. It includes
six genes that are believed to play a key role in the nutritional stress response (Figure 8).
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(b) Nutrient-stress response of bacteria during the transition from exponential to stationary
phase.
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Figure 8: Network of key genes, proteins, and regulatory interactions involved in the nutri-
tional stress network in E. coli. The notation follows, in a somewhat simplified form, the
graphical conventions proposed by Kohn [52]. The contents of the boxes labeled ‘Activation
and ‘Supercoiling’ are detailed in [78].
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More specifically, the network includes genes encoding proteins whose activity depends on
the transduction of the nutritional stress signal (the global regulator crp and the adenylate
cyclase cya), genes involved in the metabolism (the global regulator fis), cellular growth (the
rrn genes coding for stable RNAs), and DNA supercoiling, an important modulator of gene
expression (the topoisomerase topA and the gyrase gyrAB).

The graphical representation of the network has been translated into a PL model supple-
mented with parameter inequality constraints. The resulting model consists of seven variables,
one concentration variable for the product of each of the six genes and one input variable rep-
resenting the presence or absence of a nutritional stress signal [78|. The 38 parameters are
constrained by 54 parameters inequalities, the choice of which is largely determined by exper-
imental data. As an illustration, the piecewise-linear differential equation and the inequality
constraints for the state variable z;,,4 are given here.

. _ 1 2 + 3 — 1 + 4
TtopA = Kiopa t+ Kiopa S (xgyTABaegyrAB) S (-’13topAa0tapA) S (-’13ﬁsa0ﬁs) — YtopA TtopA,

1 2

0< gtopA < etopA < ggopA < maz topAs
1 1

0< K‘topA/’YtOPA < etopA’

3 1 2
etopA < (K’topA + HtopA)/’ytOPA < MATtopA-

The equation and inequalities state that the basal expression of topA is low (H%opA/ Yiopa <
O%Op 4), whereas in the presence of a high concentration of Fis (s+(:vﬁs,9]‘%is) = 1) and of a
high level of DNA supercoiling (sT (zgyraB, 0Z’yr ap) S (ZTiopa, thop 4) = 1), the concentration of
TopA increases, converging towards a high value ((kj,p4 + K7opa)/Viopa > 035, 4)-

The computer tool GNA has been used to simulate the response of an E. coli cell to nutrient
depletion [78]. Starting from initial conditions representing exponential growth, the system is
perturbed with a nutritional stress signal that makes the adenylate cyclase active. Simulation
of the network takes less than one second to complete on a PC (2.4 GHz, 512 Mb) and gives
rise to a transition graph of 128 qualitative states. Many of these states are associated with
singular domains that the system traverses instantaneously. Since the biological relevance of
the latter states is limited, they can be eliminated. This leads to a reduced transition graph
of 39 qualitative states.

In all qualitative behaviors in the state transition graph, the system starts from a quali-
tative state corresponding to exponential-phase conditions, to reach a qualitative equilibrium
state corresponding to the physiological conditions found in stationary phase [78]. A sequence
of qualitative states typical for this behavior is shown in Figure 9. The first event after re-
ceiving the nutritional stress signal is the decrease of the Fis concentration, followed by the
decrease of the stable RNA concentration. The next event concerns the increase of the level
of CRP. In parallel, the concentration of GyrAB increases, whereas the concentration of TopA
remains constant.

The level of the stable RNAs is a reliable indicator of cellular growth. Since the level of
RNAs is low in the qualitative equilibrium state reached by the system after a nutritional
stress signal, we conclude that this state is representative for a stationary-phase cell. The pro-
cess driving the cell’s growth arrest can be explained by relating the qualitative behavior to
the nutritional stress response network in Figure 8. During exponential phase, the adenylate
cyclase is present, but inactive. When the nutritional stress signal is switched on, it activates
the protein and thus enables it to produce a metabolite, cAMP. The small molecule binds to
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CRP, which is not yet abundant, thus giving rise to a low concentration of the cAMP-CRP
complex. The level of cAMP-CRP is nevertheless high enough to start repressing the ex-
pression of fis. This stimulates further accumulation of CRP, and thus further repression of
Fis, through the derepression of the Fis-controlled promoters of ¢rp. The decrease of the Fis
concentration causes the downregulation of the expression of the rrn genes. As a consequence,
the level of the stable RNAs decreases and the cell enters stationary phase.

We conclude from our model of the nutritional stress response network that a positive
feedback mechanism, the mutual inhibition of fis and crp, plays a key role in the transition
from exponential phase to stationary phase. This kind of control mechanism is known to play
a key role in developmental processes [92]. In the presence of a nutritional stress signal, it
causes a switch from a state with a high Fis concentration and a low CRP concentration to
a state with a low Fis concentration and a high CRP concentration. The positive feedback
circuit thus enables the cell to abandon the exponential phase in the absence of nutrients and
enter stationary phase, while also making it possible for the cell to reenter exponential phase
in case of nutrient recovery.

The proteins GyrAB and TopA control the DNA supercoiling level, which constrains the
topological structure of DNA and thus influences gene expression [28]. Depending on the
relative concentration of the two enzymes, DNA supercoiling can reach different levels in the
cell. In the presence of high amounts of GyrAB, many negative supercoils are introduced
into the DNA, whereas these are relaxed when the TopA concentration is high. The predicted
qualitative evolution of the concentrations of the proteins GyrAB and TopA in Figure 9 implies
that the DNA supercoiling level increases at the onset of stationary phase. However, this is not
what has been observed experimentally. On the contrary, the DNA supercoiling level has been
shown to decrease when E. coli cells enter stationary phase [5]. The inconsistency between the
predicted and observed level of supercoiling suggests that our picture of the nutritional stress
response network is incomplete, in the sense that interactions between the global regulators
in Figure 8, or additional regulators not shown in the figure, are missing. Carrying out
experiments and extending the model may help to further investigate these possibilities.

In addition to the increased understanding of the transition from exponential to stationary
phase, the model has also yielded predictions on the occurrence of damped oscillations in
some of the protein concentrations after a nutrient upshift [78|. These predictions, as well
as other model predictions on the expression of key genes in the network, have never been
observed experimentally. This has motivated us to start experiments aiming at the validation
of the model predictions, in particular experiments for measuring the temporal evolution of the
expression of key genes in the network by means of reporter genes. Comparison of the observed
and predicted expression profiles might lead to refinements of the model, thus initiating a new
cycle of prediction and experimental verification.

6 Discussion

In order to understand how the functioning and development of living organisms are con-
trolled by the networks of interactions between genes, proteins, and small molecules in and
between cells we need mathematical methods and computer tools. In particular, we have
insisted on the demand for qualitative approaches for the modeling, analysis, and simulation
of genetic regulatory networks, that is, approaches capable of inferring properties of the dy-
namics of genetic regulatory networks that are invariant for a range of parameter values and
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reaction mechanisms. The interest of these qualitative approaches derives from the fact that,
for most networks of biological interest, we do not dispose of precise numerical values for the
parameters and detailed information on the reaction mechanisms [45]. Moreover, it is reason-
able to assume that many dynamic properties of living organisms are robust to at least some
changes in parameter values and variations of reaction mechanisms [6, 30, 87]. This does not
mean that qualitative approaches always impose themselves: there are biological questions
for which quantitative precision is required, and there do exist systems for which detailed,
quantitative information is available. Quantitative and qualitative approaches should be seen
as complementary rather than mutually exclusive.

In this chapter, we have reviewed our work on a method for the qualitative modeling,
analysis, and simulation of genetic regulatory networks that is well-adapted to currently-
available experimental data and many interesting biological questions [26]. The method is
based on a class of piecewise-linear differential equation models, originally introduced by
Glass and Kauffman [35], that capture essential aspects of gene regulation and have favorable
mathematical properties. We have shown that the qualitative dynamics of PL systems can be
represented by a state transition graph, consisting of qualitative states and transitions between
qualitative states. The major result underlying our method is that this graph is invariant for
large sets of parameter values, defined by inequality constraints that can be easily inferred from
the experimental literature. Moreover, the state transition graph can be computed from the
inequality constraints by means of simple, symbolic rules. In order to support its application
to large and complex genetic regulatory networks, the method has been implemented in the
computer tool Genetic Network Analyzer (GNA).

The use of PL models is justified by the intuition that, to a first approximation, genes
can be considered logical switches that transform continuous inputs — i.e., the concentration
of regulatory proteins — into discrete outputs — i.e., the activation state of the genes [88,
99]. Instead of developing this intuition for models with continuous time and concentration
variables, one could also decide to employ discrete models. The major example of this approach
is the Boolean network formalism developed by Kauffman, Thomas, and others [46, 47, 86, 91,
92]. The application of Boolean networks rests on the assumption that a gene is either active
or inactive, and that genes change their activation state synchronously. For the purpose
of modeling actual genetic regulatory networks, these assumptions are usually too strong.
In response to this problem, generalized formalisms with multivalued activation states and
asynchronic transitions have been proposed and successfully applied to the analysis of complex
developmental regulatory networks [65, 79]. The advantage of Boolean networks and their
generalizations is that they provide a convenient way to express the logic of gene expression
regulation. However, they have difficulty in treating dynamic properties of genetic regulatory
networks taking place at the threshold of activation or inactivation of a gene. The analysis
of the dynamics of PL models in Section 3 shows that these phenomena are critical, since
equilibrium points of the system may be located at the thresholds.

The method presented in this chapter preserves the ability of continuous models to charac-
terize the dynamics of the system at the thresholds, while at the same time employing discrete
abstractions to facilitate the analysis of qualitative dynamic properties. The use of discrete
abstractions to study qualitative properties of dynamic systems has been proposed before, in
the context of the qualitative reasoning about physical systems [22, 53, 93| and the analysis
of hybrid systems [2, 16, 59]. The methods have been applied to a variety of prokaryotic and
eukaryotic model systems [1, 33, 41], some applications using the same PL models as in this
chapter. Our method borrows ideas and terminology from both qualitative reasoning and the
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analysis of hybrid systems, but differs from the latter work in an important respect. Instead
of analyzing a broad class of models using general-purpose algorithms, we have developed a
method that is tailored to a class of PL models particularly appropriate for genetic regula-
tory networks. In addition, the method employs algorithms that have been adapted to the
favorable mathematical properties of the PL models, thus promoting the upscalability of the
analysis to large and complex networks.

In the end, there is only one criterion for evaluating the usefulness of a method for the
analysis of the dynamics of genetic regulatory networks: which biologically-interesting results
have been obtained through its application? Thus far, our method has been applied to a num-
ber of bacterial regulatory networks, such as the initiation of sporulation in Bacillus subtilis
[23], quorum sensing in Pseudomonas aeruginosa [95], and the nutritional stress response in
FEscherichia coli [78]. The description of the latter application in Section 5 has shown that the
qualitative simulation method can be used to obtain predictions of the behavior of networks
that are currently not yet well understood by biologists. While some of the predictions help
clarifying the role of particular regulatory mechanisms (the mutual inhibition of fis and crp),
others contradict measurements reported in the literature (the increase of the DNA supercoil-
ing level upon the entry into stationary phase) or concern phenomena that have not yet been
experimentally investigated (the occurrence of damped oscillations after a nutrient upshift).
The latter two predictions are particularly interesting from a biological point of view, because
they generate new questions and suggest further experiments.

The currently-available data suggest that the network of global regulators of transcription
involved in the nutritional stress response is probably an order of magnitude larger than the
network presented in Figure 8, while the complete genetic regulatory network of E. coli is
even several orders of magnitude larger [4, 15, 43, 60, 61, 64, 82, 89]. This raises the question
whether the method presented in this chapter, and qualitative approaches more generally, are
upscalable to larger networks than those treated thus far. The relevance of this question is
confirmed by our experience that the state transition graphs for networks with more than
fifteen genes usually consist of several hundreds or even thousands of states, which make them
too large to be analyzed by visual inspection alone. Several directions can be chosen to address
the problems posed by the size of actual genetic regulatory networks. A promising alternative
to the visual inspection of state transition graphs would be to couple the qualitative simulator
with model-checking tools for the automatic verification of dynamic properties expressed in
temporal logic [17, 83]. We have started to explore this direction and other groups have
proposed similar ideas [7, 8, 9, 14]. Another way to deal with large networks would be to
avoid the generation of state transition graphs altogether and focus on equilibrium sets and
other phase-space attractors, which are usually of special significance for understanding the
dynamics of a system [13, 27].

In parallel to the development of computer tools for analyzing and interpreting qualitative
simulation results, the upscalability challenge also requires a reflection on the utility of build-
ing ever larger and ever-more complex models of cellular systems [75]. For many biological
questions, it is not obvious that the prediction of the temporal evolution of the concentration
of all proteins in an E. coli cell will be the surest road to gaining a better comprehension of the
stress response of the bacterium. In many cases, it seems more appropriate and informative
to distinguish subnetworks of the network of interest, describe the dynamics of these subnet-
works individually — using more abstract models than those presented here —, and couple the
abstract models in order to analyze the interactions between subnetworks [10, 48]. This mod-
ular approach can be justified by what we know or suspect about the structure of biological
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regulatory networks [39, 90]. For instance, the interactions between the ten to twenty global
regulators of transcription of E. coli seem to be the backbone of the genetic regulatory network
of this organism, hierarchically connecting and coordinating the functioning of modules for
specific cellular functions.

Qualitative approaches towards the modeling, analysis, and simulation of genetic regula-
tory networks are promising extensions of the modeler’s toolbox, as testified by the results
obtained by means of the method presented in this chapter and other, similar methods. Their
widespread adoption necessarily passes through the experimental verification of the predic-
tions of qualitative properties of the network dynamics.
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