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Glossary

e continuous: the value taken by the time belongs to R, the set of real numbers



e discrete: the value taken by the time are isolated: 0, h, 2h, ...

e cigenvalues: roots of the characteristic equation det(AId— A) = 0, they are complex numbers
A such that Az = Az

e eigenvectors: associated with the eigenvalues, they are vectors z such that Ax = A\x
e equilibrium point: a point at which the dynamical system remains at rest
e Jacobian matrix: matrix of the partial derivatives of the system

e linear: the dynamics of the system is described by a function which is linear in the state,
e.g. the multiplication by a matrix

e matrix: a rectangular array of numbers; represents a linear system

¢ periodic solution (cyclic behavior): a solution that reproduces identically after some period
T.

e phase space: the same as state space

e state variables: variable describing the state of the system, that is the quantities required to
describe the motion (in time) to the next step

e stability: describes the behavior near an equilibrium point

Summary We study the main classical mathematical methods for the study of discrete recurrence
equations or continuous differential equations, arising in mathematical modeling.

1 Discrete time models

We will see in this section the basic tools for the development and analysis of such mathematical
models. We will restrict ourselves to a rather general framework, because more specialized models
are described in the following sections 6.3.2, and after. As often in mathematics, the study of
linear systems will give the grounds on which the study of more complex nonlinear models is
based. The exposition will be at an elementary level.

1.1 Making a model

The first steps of the modeling of a dynamical real system has been discussed already (see Math-
ematical Models, Basic Principles of Mathematical Modeling); without entering into details, it
consists of isolating the system to be modeled from the rest of the world, and selecting inside this
system some variables, called state variables, that will give a good description of the state of the
system at time k. The time will be considered as discrete, i.e. we consider only the sequence of
instants 0,1, ..., k, ..., and describe the system for these instants only.

It remains to write the equations giving the state at the instant (k + 1) in function of the state
x(k). In general, the state x(k) at time k will be a vector of n variables (z1(k), z2(k),...,2zn(k)),
and the general system will be (if there is no input):

1’1(k+1) = fl(l‘l(k)7.%'2(k),...7.7,'”(]6))
: : : (1)
an(k+1) = fo(zi(k),22(k), ... 2n(k))



Each domain has its own methodology for building models; in general, there is some laws
giving part of the dynamics; moreover, a complex model is done often of more elementary parts,
describing the interactions inside some subsystems of the system, and involving a limited number
of variables. These parts or subsystems are often added with some weights describing the impor-
tance of the dynamic of the subsystem in the whole dynamic. The model can be linear (cf. the
example below) or not.

The discrete model can be also the result of the discretisation of some continuous model,
with the goal of making it simpler or more easily implementable on a computer. For example, a
dynamical model written as an ordinary differential equation with continuous time needs to be
discretised in some way to be simulated on a computer; a numerical integration method (Euler,
Runge-Kutta, ...) is needed to do that in the most accurate way. Partial differential equations,
having continuous variables in time and space, for example, need also to be discretised in time
and space to be implemented on a computer. The model obtained after discretization is often of
large dimension, and the solutions should be compared to the solutions of the original continuous
model: the aim being that, for, in general, a small step size for the discretization, the two kind of
solutions are very similar. We enter here the large domain of numerical analysis.

1.2 The state space; basic vocabulary

Consider the general system (1); it can be written in the more concise form

z(k +1) = f(z(k)) ()
where f is some function associating an m-vector to another. Given an initial vector condition
z(0) = zg, the solution will be some vector (z1(k),z2(k),...,z,(k)) evolving with time k. The

usual graphical representation of this vector is the representation with respect to time : the time
is on the X-axis, and the n variables on the Y-axis. The state space is another way of seeing
the system, very efficient, particularly for the low dimensions. The state space for the dimen-
sion 2 (two variables z;(k), z2(k)) is the representation in the plane of the point of coordinates
x1(k), z2(k): the time does not appear explicitly. The dynamical is clear from this figure: starting
from a point (initial condition xg), the dynamical system ‘“jumps” to another point, and so on.
This representation enables to see (with the help of a computer) a more geometrical vision of the
behavior; moreover, as will be seen in the next section, a classification is possible in this space.
This space is also named the phase space.

A point that does not move is called an equilibrium; it verifies * = f(z*); a sequence of points
jumping from one to the next (given by the equation of the system) is a solution. The initial point
o at time ¢t = 0 is called the initial condition.

In some cases, the system can be submitted to the action of external variables, that do not
belong to the state variables: it could be, for example, the external temperature that will change
the survival and reproduction rates in the Leslie models; these external variables are called inputs
in the language of control theory (see Basic Principles of Mathematical Modelling). If there is
some input u(k) depending on the time k, the new system is

z(k +1) = f(z(k), u(k))

1.3 Linear discrete equations

Let us consider the simple example of the geometric growth (see Classification of models). The
model is
z(k +1) = az(k)

In particular, we wish to know if the population will decline or increase, and how it behaves
for large times. This formalism and study is in fact at the basis of all the models we will write
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Figure 1: Time (left) and phase (right) representation in dimension two

in the following. The model describes how the variables determining the state of the system at
time k will evolve at next time (k + 1). The initial condition gives the value of the state variables
at time 0. We wish to study the behaviour of a solution starting from the initial condition, and
describe it for any time.

For the above example, the answer is simple, because the solution is

z(k) = a*z(0)
and therefore:
e if @ > 1, then the solution grows without limits (if 2(0) is not zero)
e if ¢ =1, then the state stays always at the initial value z(0)
e if ¢ < 1, then the solution goes to zero: the population goes to extinction.

Even in this very simple discussion, we have used our knowledge of the physical meaning of the
parameter a: we know that a is positive because it represents a number of cells.

Now we can consider the more general case (several variables) of a linear discrete system,
also called difference equations. It plays a prominent role in the study of mathematical dynamic
discrete models (similarly to its continuous analog: the linear differential equation).

The system is supposed to be described by n state variables x1(k), z2(k), ..., z,(k) at instant
k. We list first the variations around linear models. The simplest case is the case of a linear square
constant matrix A with n rows and n columns.

1.3.1 The homogeneous constant linear system

It is written
z(k+1) = Ax(k)

The matrix A is given by

a1 a2 a3 ...Q1n

a21 Qa2 G23 ...Q2n
A=

an1 an?2 an3 co . Qnn



To define a solution, we must give us an initial condition z(0) = zy. As an example, consider
the Leslie model (see Classification of Models):

x(k+1) = Ax(k)

with
0 F, I3
A=| P 0 O
0 P O

1.3.2 The homogeneous time-varying linear system

It is written

a(k + 1) = A(k)a(k)

The matrix A(k) depends on the time k. Of course, it is a generalization of the above constant
case.

As an example, let us imagine that the parameter of survival and reproduction and the Leslie
model vary with the time (let us say the year) because of the variation of climate.

1.3.3 The non-homogeneous linear system

It is written

w(k +1) = A(k)a(k) + b(k)

where b(k) is some forcing vector of dimension n depending (possibly) on time.
As an example, in the Leslie model, the vector

0
b=1| b
0

could represent the immigration of individuals coming from outside in the second age class.

1.3.4 The controlled linear system

The above vector b(k) can be seen as an input, and can be written to make explicit the connection
between the actual inputs of the system wu(k) of dimension m, and the evolution equation. Thus
we define a matrix B(k) of n lines and m columns, and write:

z(k+1) = A(k)x(k) + B(k)u(k)

This system is now relevant for Control Theory (see Basic Principles of Mathematical Modelling,
Controllability, Observability, Sensitivity and Stability of mathematical models); we may also add
outputs, describing the available measurements:

1.3.5 Conversion to matrix linear form

The model can sometimes be described by an equation involving the state variable at different
times k. Let us take the example of the linear difference equation:

y(k+n) + anay(k+n—1)+...+aoy(k) = u(k)

The model depend on the variable y taken at times between k and k + n, n is a given integer.



Define the new state variable z(k) of dimension n by:
1 Y
z2(k) = y(k+ 1)

Zn(k) =y(k+n—1)
then the system is a linear homogeneous system

z(k + 1) = Az(k) + Bu(k)

with
0 1 0 0 0
0 0 1 0 0
A= : B=
0 0 0 1 0
—Qayp —a; —Aaz ...—0ap-1 1

1.4 Basic study of the homogeneous constant linear system

This case is the simplest one, but also the most important as a basis for the study of dynami-
cal systems, either linear or nonlinear (the linear system being obtained by linearisation of the
nonlinear one, see below).
The considered system is
z(k + 1) = Ax(k)

with an initial condition x(0) = zy. The explicit solution is easily written as:
z(k) = A xg

We suppose that the matrix A — I is bijective for simplicity, then the origin is the only equilibrium,
because the equation x = Ax has only one solution.

The following theorems give the basic behaviors of such systems: they are based on the notions
of eigenvalue and eigenvectors.

Theorem 1 Case 1 (asymptotic stability): if all the eigenvalues of the matriz A are strictly less
than 1 in modulus, then the solution goes to zero.

Case 2 (instability): if one eigenvalue of the matrix is greater that one (in modulus), then the
solution is not bounded for almost any initial condition.

Tt is possible also to classify the behaviour in the phase space (the space of the state variables)
into some cases giving a good and intuitive view of the situation. In the case of two variables, we
obtain (we have concentrated on generic cases for simplicity):

Proposition 1 Classification of behaviour in the plane:

o stable node: if the two eigenvalues are real of modulus lower than one, the solution converge
toward the origin with two principal directions (the two eigenvectors).

e stable focus: if the two eigenvalues are compler and conjugated with a real part lower than
one, the solution converges along a kind of spiral towards the origin.

o unstable node: if the two eigenvalues are real and of modulus greater than one, the solution
becomes unbounded with two principal directions (the two eigenvectors).



e stable focus: if the two eigenvalues are complex and conjugated with a real part greater than
one, the solution converges along a kind of spiral towards the origin.

e saddle : if one eigenvalue is real and greater than one in modulus, and the other real and lower
than one in modulus, then the phase space has one attractive direction, and one repulsive,
along two lines (the two eigenvectors).

There exists algebraic tests to study the location of the eigenvalues, and conclude concerning
the stability. In dimension two, they are simple:

Proposition 2 The second order matriz A is asymptotically stable if

[trace(A)| < 1+ determinant(A), determinant(A) <1

1.5 Basic study of the non homogeneous constant linear system

The basic equation is:
z(k+1)=Az(k) +b

where the vector b is constant also. In fact, the study of this system amounts to the study of a
translated linear homogeneous system.

Proposition 3 Consider the unique equilibrium x* such that
" =Ax* +b
then the new variable y = x — x* is solution of the system:
y(k+1) = Ay(k)

This system is studied as above.

1.6 Basic study of the homogeneous time-varying linear system

We consider again the system
x(k+1) = A(k)x(k) (3)

It is easy to solve recursively
z(k+1) = A(k)x(k)

to obtain the solution
z(k) = A(k — 1)A(k — 2) ... A(0)xo

but is is often of little utility because we are more interested in obtaining qualitative results such
as the limit behaviour for large k.

Except the fact that the solution belongs to a linear space, it is difficult to obtain specific
results for this kind of systems: the difficulties coming from the fact that we do not know how the
matrices A(k) are varying.

One pertinent hypothesis can be that the matrices A(k) are varying periodically, with period ¢,
i.e. A(k+q) = A(k) for all time. In fact , if we consider the variable z(0), z(q), (2¢) (each period
of time), we obtain a constant matrix C = A(qg — 1)A(¢ — 2) ... A(0) and a new time-invariant
system

z((p+1)q) = Cx(pq)

that we studied above.



1.7 Positive linear systems

The class of positive linear systems constitutes an important subclass of the linear systems. Its
importance comes from the fact that, very often, the variables of the model are constrained to be
positive, or nonnegative, because they represent numbers, or concentrations (numbers per volume
unit for example). Therefore one desirable property of the model is to contain such a property
in its dynamical formulation, i.e. “if the initial condition of a variable is nonnegative, it will stay
nonnegative”. It is easy to see that an equivalent property (in the linear case) is that the matrix
A(k) (of dimension n) is nonnegative for all k.

Proposition 4 If the matriz A(k) is nonnegative for all k, for all nonnegative initial conditions,
the variables x(k) of
z(k+1) = A(k)z(k) (4)

stay nonnegative for all k.

1.7.1 Basic properties of positive linear constant systems

As before, it is simpler to take the matrix A constant. The system is of course a particular case
of linear system, and the properties above apply. But the positivity of the matrix implies some
important characteristics of the dominant eigenvalue. These properties are the consequences of
the theorem of Perron-Froebenius, that has many subtleties. We give here the main lines.

The simplest case is for a positive matrix A, i.e. each term of the matrix is strictly positive.

Theorem 2 If the matriz A is positive, then the system (4) has a positive real eigenvalue A
(called the dominant eigenvalue) strictly greater in modulus than the others, and a unique positive
etgenvector vy associated to this eigenvalue.

This theorem enables to deduce the limit behaviour of the system, which is very similar to a
geometrical law along the dominant eigenvector.

Proposition 5 For large times (large k), the solution x(k) of the system (4) behaves as A\*v,.

If the matrix is nonnegative only (some of the elements can be zero), the results are more
involved. They use often the graph associated to the matrix, offering a very visual way to illustrate
the interactions between the variables of the model. This graph is constituted with n points (or
vertices) linked with (oriented) edges between point i and j if the element aj; is positive. The
figure shows the graph associated with the matrix:

0
A= *
0

* O %
O O *

The matrix is irreducible if there is a path joining two arbitrary points. This property can
easily be seen on the graph.

Proposition 6 The matriz A is irreducible if and only if the graph is strongly connected.

Proposition 7 If the matriz A is irreducible, then the system (4) has a positive real eigenvalue
A (called the dominant eigenvalue) greater in modulus than the others, and a unique positive
eigenvector vy associated to this eigenvalue.

Let us remark that the dominant eigenvalue can be non unique ; in this case, the h dominant
eigenvalues are of the same modulus, and the system is said to be cyclic of index h. This index of
cyclicity can also be read on the influence graph.



Figure 2: Graph associated with the matrix A; compare with the graph for the Leslie matrix in
Classification of models

Figure 3: Graph associated with a non irreducible matrix; the graph is not strongly connected
because it is not possible to go from the node 2 to another node.



Proposition 8 Let A be an irreducible matriz, then the index of cyclicity h is the greatest common
divisor of all the lengths of the circuits (closed loops) in the graph.

If this index of cyclicity is greater than one, the system is said to be cyclic, and the behaviour
can be periodical. If the index h is equal to one, the system is said primitive. Let us remark that
these properties depend only on the structure of the matrix A, and not upon the exact values of
the elements.

Proposition 9 Let A be an irreducible and primitive matriz, then its limiting behaviour is similar
to a positive matriz, i.e. for large k, vaA*. There is no periodic behaviour.

If the matrix is not primitive, the behaviour can be periodic; as an example, we take the Leslie
matrix (see Classification of models) with only three elements.

Figure 4: Graph associated with a non primitive matrix; the index of cyclicity is three

The Leslie matrix models (see Classification of models) can be studied with this theory, and
the result has a nice interpretation : the final population structure is fixed (it is he eigenvector
v)), and the final growth rate is a geometrical law with parameter .

1.7.2 Basic properties of non-homogeneous positive linear systems

We consider the forced system:

z(k+1) = Ax(k) +b (5)

Because the variables are assumed to be positive, we take a positive vector b. But one question
arises: does there exist a positive equilibrium to the system (5) ? The following property exhibits
an intriguing connection between equilibrium and stability, under a slight hypothesis of excitability.

Definition 1 Let us consider the graph of the system (5) (the influence of b is represented by the

node 0); the system is said excitable if there exists at least one path from the node 0 to any other
node.

Proposition 10 For an ezcitable system (5), there exists a positive equilibrium if and only if it
is asymptotically stable.

We can apply this theorem to Leslie models with immigration (cf. figure).

10



Figure 5: Graph associated with a forced excitable system; there is an input in the second variable.

1.7.3 Various properties of positive linear systems

The first interesting property is a property of comparison between systems. When modelling a
real system, it happens often that some parameters are not well known, so that we obtain for
examples two systems with to matrices A~ and AT such that we know the actual matrix A is
(term by term) between the two:

A< A<AT

It is very interesting that, for positive systems, the dominant eigenvalues, characterizing the asymp-
totic behaviour, are also ranked:

Proposition 11 If for positive matrices A~ < A < At, then the dominant eigenvalues verify
A(A7T) < A(4) < A(AF).

For example, if the upper matrix A is stable, we deduce the stability of all the matrices A
lower than A™.

The second property states the intuitive fact that A is the dominant eigenvalue

Proposition 12 If ax < Az < Bz, with x positive, then a < X < [.

1.8 Nonlinear discrete systems

As stated in the introduction, a general discrete dynamical systems is expressed as:

z(k+1) = f(x(k))

Given an initial condition 2(0) = xo, we want to study the behaviour of the solution starting
at zo. The behaviour of such a system can be very complex, even for low dimension: it can have
periodic behaviour, limit cycles, or even chaotic motion. There are a few general methods of
study, but it is often necessary to take advantage from the specificities of the system. One general
but local method is the linearisation around some point or trajectory. The Liapunov functionals

11



are often of great utility if you are able to find one; the monotonicity of the system can also be
used. Endly, it is also interesting to study the qualitative variations of stability of the system with
respect to one important parameter, and to draw, if possible, the bifurcation diagram.

1.8.1 Useful elements of the study
An equilibrium is described by the equation
o = f(a")
it is a nonlinear algebraic equation (called a fixed point equation) that can be itself very difficult

to solve.

An invariant region is a domain of the space with the property that, if the initial condition
starts in this region, it will stay in the region for all times. Such regions are very useful to separate
the state into several parts.

A solution may converge towards an equilibrium z*, but also towards a periodic solution of
period T such that z(k + T) = x(k) for all k. It could also have a more complicated behaviour
(e.g. chaos....).

1.8.2 Stability

Concerning the behaviour with respect to an equilibrium, one can define the notions of stability,
or a stronger notion of asymptotic stability. Intuitively, it says that a solution starting near an
equilibrium point will stay near in the future. The precise definition use the concept of neighbor-
hood - and is also called Liapunov stability. These notions can be local (in a neighborhood of an
equilibrium for example) or more global (in the whole state space for example).

Definition 2 An equilibrium point x* is stable if, for a neighborhood Va of x*, there exist a smaller
neighborhood Vi such that, if x(0) belongs to Vi, then the solution x(k) belongs to Vs for all k.

Definition 3 An equilibrium point x* is attractive if the solution initiated at x(0) converges to-
wards T*.

Definition 4 An equilibrium point x* is asymptotically stable if it is stable and attractive.

As an important example, we can give the two theorems on linear systems of a preceding
section. We consider again the linear system

x(k+1) = Ax(k)

Theorem 3 Case 1 (asymptotic stability): if all the eigenvalues of the matriz A are lower than
1 in modulus, then the zero equilibrium is asymptotically stable.

Case 2 (instability): if one eigenvalue of the matriz in greater that one (in modulus), then the
equilibrium is unstable.
1.8.3 Local study around an equilibrium

A very general and useful method giving local indications on the behaviour around an equilibrium
consists in linearizing the system. Of course, there can be several different equilibria for the
nonlinear system, leading to several different linearizations.

12



Proposition 13 The linearized system associated to x(k + 1) = f(x(k)) around one of the equi-
libria x* = f(z*) is the linear system:

y(k+1) = A*y(k)
with
and
A* = Df(z*)
(A* is the Jacobian matriz of the partial derivatives of f evaluated at the point z*)

Recall the expression of the Jacobian matrix:

ofi 0f1 9f1
oz oo e Oy
Ofs  Of2 Of2
Az Oz s Oxn
Df(z)=1| . :
Ofn  Ofn Ofn
Az Oxo o or,

In general, the nonlinear system and this linear system behaves locally in a similar way. The
study of the linearized system gives us (roughly) the local behaviour around the equilibrium of
the nonlinear system, and, in particular, the classification of linear systems given above applies.
One can obtain also theorems on the local stability:

Theorem 4 If the Jacobian matriz around x* has aoll its eigenvalues with moduli strictly lower
than one, then the equilibrium of the nonlinear system is locally asymptotically stable.

Theorem 5 If one eigenvalue (at least) has a modulus greater than one, the equilibrium around
x* is unstable.

As an example, we take the Nicholson-Bailey model (see Classification of models).

zi(k+1) = Az (k)eox2(k)
zo(k +1) cxy(k)(1 — e—ee2(k))

We can analyze this model by determining first its steady states. We solve the system:

T = Arie 272
T2 = Cl'l(]. — e_‘””) (6)
and obtain two solutions : the trivial solution (0,0) and the positive equilibrium:
« _  Aln(y)
1 T Oi—Dac (7)
x5 = In(N)/a

We observe that we have to suppose A > 1 in the model so that the second coordinate is positive.
To study the local behavior around the positive equilibrium, we write the linearized system
around the second equilibrium, obtaining the matrix

1 —axy
(c(l—l/)\) ca;?/)\) (8)

Because the conditions for the stability of the system are violated (the determinant is greater than
one) , we conclude that the nonlinear system is locally unstable.

13



1.8.4 Liapunov functionals

There is a more global, more powerful, and yet very clear, method for computing the stability of
an equilibrium z*. It consists in finding a scalar function V(z), positive for x # z* and equal
to zero only for x = z*; intuitively, this function should be similar to a cone smoothed at the
extremity (cf figure 6). Moreover, this function V(z(k) for x(k) verifying z(k + 1) = f(z(k))
should decrease for each iteration, i.e. V(z(k + 1)) < V(x(k)). Such a function will be called a
Liapunov function. Then, intuitively, the solution goes towards the bottom of the cone, to the
equilibrium point. This method is powerful and global, but there is no indication on how to find
a Liapunov function; some classes are known (for linear system, one knows it is possible to take
quadratic Liapunov functions V(z) = zPz), but in general it is an open problem.

V(X1,X9)

Xy

Y

Figure 7: Level curves of V illustrating Liapunov stability.
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1.8.5 The one-dimensional example

The general problem in the discrete case is rather well illustrated by the case of a real variable
z(k) with a real function f(z); one famous example being given by the logistic function rz(1 — z),
r being a positive parameter (see Complexity, pattern recognition and neural models).
The system is

z(k+1) =rz(k)(1 — z(k))

and the behaviour is well seen on a graph. Now, depending on the precise value of the parameter
r, it can be seen that the solution can converge towards the equilibrium or towards a periodic
solution of period 2 , or 4, 8, .... This cascade of bifurcation by period doubling leads to a chaotic
behaviour, where there are simultaneously solutions of any period, and where the behaviour is
complicated and very sensitive to the initial conditions: a very small initial difference in the initial
conditions will lead to two very different solutions; for example, the successive iterates computed
simultaneously by two different computers, starting at the same initial conditions, will give two
solutions very dissimilar after some time.

1.8.6 Bifurcation with respect to a parameter

Consider the geometric growth in one dimension z(k + 1) = rz(k). When r increases from below
one to above one, the qualitative behaviour of the equations changes totally: before r = 1, the
solution goes to zero, and after it goes to infinity. The value 7 = 1 plays a special role; this a one of
the simplest (and rudimentary) example of a bifurcation value for the parameter . More generally,
one can study the behaviour (local or global) of a nonlinear system with respect to a parameter;
we have seen already the bifurcation of the solution of the logistic equation with respect to a
parameter, leading to chaotic behaviour. A classification of the types of the bifurcations is useful,
and give normalized answers for the possible cases. A famous case of the classification is called
the Hopf bifurcation, and gives the standard conditions for the apparition of a small attractive
periodic solution when an equilibrium loses its stability.

2 Continuous time models

2.1 The concept of differential system

We consider in this section the continuous models which describe a phenomenon varying in time.
Assume that we have selected the state variables z(t) at time ¢.

&(t) = f(t, x(t)) (9)

In general x(t) is a vector of n real variables z(t) = (z1(¢), - , z,(t)), so that, the above equation
is a set of differential equations or a differential system

-'j:l(t) = fl(taxl(t)v T 7$n(t))
(10)
-’En(t) = fn(taxl(t)v T 7-’En(t))

where f1(t,x(t)), - , fa(t,z(t)) are the components of the vector f(¢,x(t)). The functions f; are
defined on some open subset D of R x R™ and are assumed to be continuously differentiable in all
variables.

2.1.1 Solutions of differential equations

A solution of the differential system (9) or (10) is a map

t=a(t) = (21(t), -, 2a(t))
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from some interval I into R™ such that z(t) is differentiable and satisfy, for all t € I, (t,z(t)) € D

and
&(t) = f(t 2(t))

The domain D is called the extended phase space. The subspace of variables (x1,--- ,x,) is called
the phase space. Equation (9) determines a vector field on D defined in the following way : at
every point (¢,z) of the domain D is attached a vector (1, f(¢,z)). The graph of a solution x(#)
may be interpreted geometrically as a curve in D which is tangent to this vector field at every one
of its points (¢, z(t)). The graph of a solution is called an integral curve (or a trajectory). A phase
curve (or orbit) is the projection of an integral curve on the phase space along the t-axis.

An initial condition is the specification of the position at some given time. The Cauchy problem
consists in determining the solutions of system (9) satisfying the initial condition

x(to) =29 (11)

where to is the initial value of time, z( is a given initial value of the unknown function z(t) and
(to, o) belongs to D. We can find in every textbook on differential equations the theorem of the
existence and uniqueness of solutions, which states that under local Lipschitz condition, for every
ingtial condition there exists a unique solution to the Cauchy Problem (9,11). The corresponding
solution will usually be denoted by x(t, to, zo). Let us note that a solution need not be defined for
all times as it is shown in the following example.

Example 1 If z is scalar and f(¢,2) = 22 then the solution are given by the formula

0
a(t, to, v0) = ——2 12
(tv to, %o ) 1 0 (tO t) ( )

Notice that the solution (12) is defined on interval —oo < t < to + x5 ' if y > 0; it is defined on
interval —oco < t < +00 if £y = 0; it is defined on interval ¢y + xal <t<+4ooif g < 0.

Example 2 Consider the Cauchy problem
i=3lz*%,  z(0)=0 (13)

There exists an infinite number of solutions of (13) which are defined on R. For any o < 0 and
B > 0, the function z, s defined by

(t—a)® ift<a
ZTap(t)y=1¢ 0 ifa<t<p
t—-p8)32 ift>p

is a solution of problem (13).

This example shows that something more than the continuity of the vector field f is required
in order to guarantee that a solution passing through a given point is unique. The Lipschitz
condition imply uniqueness. The function f is said to be locally Lipschitzian in z on the domain
D if for every point (tg,xo) € D there exists a cylinder R of type

R={(t,x) e R™ : |t —to| < s, ||z — x| < 7}
such that R C D, and a constant k& > 0 such that for every (¢,z1) and (¢,22) in R
£t 21) = f(t,z2)|| < Kllw1 — 2o

The constant k is called the Lipschitz constant. If f has continuous partial derivatives on D with
respect to x, then it is locally Lipschitzian in D.
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2.1.2 Continuous dependence of solutions, stability

The solution x(t,tg,xo) depends continuously (and even differentiably) on all its arguments.
Roughly speaking, this means that if x(t,tg, o) is restricted to a closed interval I = [a,b], then
for t; close to tp, and z; close to xg, the solution x(¢,t;,x1) exists at least on the interval I and
remains close to x(t, g, x¢) on this interval. In general, nothing can be said about the proximity of
the solutions z(t,tq, zo) and z(t, 1, z1) when ¢ tends to the extremities of the interval of definition
of the solution x(t,tp,%o). An even more important concept is the concept of stability which is
the continuous dependence on initial conditions on infinite intervals of time.

A solution p(t) of system (9) which is defined for all ¢ > 0 is said to be stable (in the sense of
Liapunov) if, given any € > 0, there exists a § > 0 such that ||zg — p(0)|| < 6 implies ||z(t,0,zq) —
p(t)|| < e for all ¢ > 0. Intuitively this property means that any solution which passes infinitely
close to p(0) at time ¢ = 0 will remain infinitely close to p(t) at any time ¢ > 0. The solution
p(t) is said to be asymptotically stable if, in addition to being stable, there is b > 0 such that
lzo — p(0)|| < b implies ||z(¢,0,z0) — p(t)|| — 0 as t — +oo. Intuitively this property means that
any solution which starts in a suitable neighborhood of p(0) becomes infinitely close to p(0) for
any infinitely large time ¢ > 0.

2.2 Linearisation
2.2.1 Linear systems
The basic characteristic property of linear systems of the form
= A(t)y + b(t) yeR® (14)

is the principle of superposition: If y;(t) is a solution of (14) corresponding to the forcing term (or
input) by(t) and y=(t) is a solution corresponding to the forcing term bo(t) then Ay () + A2ya2(t)
is a solution corresponding to the forcing term A\1by(t) + A2b2(t). This property implies that if
yo(t) is a particular solution of (14), then any solution y(¢) of (14) is of the form

y(#) = =(t) + yo(?)
where z(t) is a solution of the homogeneous system
T =A(t)x (15)

If the functions A(t) and b(¢) are defined on an interval I, then the solutions of (14) and (15) exist
on all the interval I.

Except in the autonomous case, there is no general method to compute the solutions of the
linear homogeneous system (15). Let X (¢) be a matrix solution, that is, X (¢) is a square matrix of
order n, and each column of X (t) is a solution. Then the determinant W (t) = det X (¢) satisfies the
scalar equation w = [trA(t)]Jw where the trace trA(t) of A(t) is the sum of its diagonal elements.
Hence we have the Liouville formula

W(t) = W (to )exp ( / t trA(s)ds) (16)

to

For homogeneous systems with constant coefficients
T = Ax (17)
the solution x(t,zq) of (17) passing through xo at time 0 is given by
z(t, o) = ey (18)

where the exponential matrix e*4 is given by

1, . 1
etA=I+tA+§t2A2+---+Et"A"+~-- (19)
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A complex number A is said to be an eigenvalue of the matrix A if and only if A is a solution of

the characteristic equation
det(A—AI)=0

The characteristic equation is a polynomial equation of order n in A and, therefore, has s distinct
solutions Ay, - -, s with algebraic multiplicities m(\;) satisfying m(A1) + -+ + m(Xs) = n. The
eigenvalues of A can be real or complex: in the later case, they occur in conjugate pairs. The
coefficients z;(t) of the solution (18) are linear combinations, with constant coefficients, of the
following functions:

1. e"* where ) is a real eigenvalue of A;

2. et®cosbt and e®sinbt, i.e. the real and the imaginary part of e®*, where p = a +ib is a
complex eigenvalue of A.

3. tlet*, tiet® cos bt or t/e® sin bt, with 0 < j < m, if the eigenvalue A or p occurs with multiplicy
m.

The origin is obviously an equilibrium of (17). It is asymptotically stable if and only if all eigen-
values of A have real parts < 0. The solution y(¢, o, zo) the non-homogeneous system

g = Ay + b(?) (20)

passing through z( at time %, is given by the so called variation of constant formula

t
y(t,to, ) = eli=10) 4 +/ et =) 4p(s)ds

to
2.2.2 Stability in the linear approximation
In this section we consider perturbations of linear systems of the form
Tz =A(t)x + f(t,z)

where the nonlinear terms f(¢,z) are assumed to be small. Assume that f(¢,0) = 0, so that x =0
is an equilibrium.

Theorem 1 Let A be a constant matriz with all eigenvalues having negative real parts. Let f(t,x)
be continuous and

lim f(t,z)/|z[| = O
Then the solution © =0 of & = Az + f(t,x) is asymptotically stable.
Suppose that the autonomous system
&= f(x) (21)
has the origin as an equilibrium. According to Taylor’s formula we have © = Az + g(x) where

A =0f/0x(0) and g(x) = o(||z]]). The following result is an immediate consequence of Theorem
1.

Theorem 2 If all the eigenvalues of Of/0x(0) have negative real parts then the origin of (21) is
asymptotically stable.
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2.2.3 The Chemostat with two competing species

The Chemostat was described in Classification of Models. The system of two competing microor-
ganism in a Chemostat is

: S moxeS
&= S(g)_SD_mlﬂcl _ M3
( >S a + 85 a2-|-S7
1 =21 (Zi"j_ls _D), (22)
. 72m25_
xg—xg(a2+5 D),

For the mathematical study of this system it is more convenient to use the non-dimensional

variables g :
G — - r. — wl’Yi F— _
S=so =g T

We obtain the differential equations

B -3-DnS_mnS

dt a1+ S az+ S

dZ, _ ( m1.S >

— = — -1, 23
di Z1 a +_S ( )
b 5

I
&

- 2(%_—1)
dt T+ S

where ; = m;/5) and @; = a;/S(®). Dropping the bars we obtain the system

- mlxlS mgng

S=(1-
(1-5) Sa1+5 as + S’
mi
r1 =21 a1—|—S -1 s (24)
XTo = I mQS —
2o as + S

Let £(t) =1 — S(t) — 21(t) — z2(t) and rewrite the system as

Y=-3%
A ml(l—E—xl—xg) 1
1= a1 +1—-—YX—21 — 29 (25)
By = 1 m2(1—2—$1—$2) 1
2T ar+1—Y—21 — 29
One has that
tlim X(t) = 0.
On the set ¥ = 0, the system reduces to
1 =11 — 1
.@1 =21 —ml( 11 sz) -1
a1 +1—mz1 — o (26)
. mao(l —z1 — 22)
o= | ————= —1

az+1—1x; — 29

The first step of the analysis is to compute the stability of the equilibria of (26) by finding the
eigenvalues of the Jacobian matrix evaluated at each of these equilibria. Suppose that m; > 1,
i =1 and 2, and that 0 < A\; < Ay < 1, where A\; = a;/(m; — 1). Then any solution of (24) with
x;(0) > 0 satisfies

tlir{)lo z1(t) =1— Mg, tlir{.lo 22(t) =0 (27)
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The system (26) has three equilibria
Ey =(0,0), E,=(1-)\,0), E, =(0,1—)2)

At E, the Jacobian matrix takes the form

(m1—1)(1=Xq)
14aq 0
0 (ma2—=1)(1—X2
14az

Both eigenvalues are positive since A\; < 1 and A2 < 1. The origin is unstable. At E; the Jacobian
matrix

A4aq)? A4aq)?
S T
A1taz
Both eigenvalues are negative since A\; < Ay < 1 and ms > 1. Thus F; is locally asymptotically

stable. At E3 the Jacobian matrix is

l (ai=1)(a1m1)  (A1=1)(e1m1)

mi1—1 !)\2—)\1
A2tar 0
(A2=1)(azmz)  (Aa=1)(azm2)
(A2+a2)? (A2+a2)?

One eigenvalue is negative since Ay < 1 and one is positive since A; < A2. Thus E; cannot be a
global attractor. Since E; is a local attractor, to prove (27) it remains only to show that it is a
global attractor. The proof of this last result is more delicate and make use of sophisticated tools
of dynamical systems theory. We will not give it there.

2.3 Autonomous Systems

Of particular interest are the autonomous or time-independent differential systems
= X(x) (28)

Here, the right-hand side, does not depend on ¢. If x(¢) is a solution of (28) on an interval (a, b),
then for any number 7, z(t — 7) is a solution of (28) on the interval (a + 7,b + 7). For any point
initial condition z¢, there is a unique solution x(¢,0, zo) of (28) passing through z( at t = 0. This
solution is simply denoted by x(t,zo) or by X;(zo).

Example 3: Verhulst or Logistic growth. The logistic equation is
z=rz(l —z/K)

then

rt

x(t,xp) = To®
T T hag (et — 1) /K

For 2y = 0 or 2o = K, the population number z(t,z¢) does not change. For 0 < zp < K, it
increases, and for zyp > K, it decreases.

The phase curve or orbit of a point x € Q is the set

V(@) = {Xi(2) : t € I(2)}

Where I(x) is the maximal open interval for which the solution X;(z) exists. The positive semi-
orbit v+ (z) is obtained by taking ¢ > 0 in this definition. There is a unique orbit through a given
z in Q. This property does not hold for non-autonomous systems.

In an important case, the solution is defined for all times ¢ : if there is some compact set in
the domain of definition of the vector field X that X;(z) does not leave, then I(z) = (—o0, +00).

If there exists a set D in the domain of definition of X such that for allz € D and all t € R, the
solution Xy(z) is defined and lies in D, then the differential system (28) determines a continuous
dynamical system on D.
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An equilibrium point or (singular point) of a vector field X (z) is a point p such that X (p) = 0.
The trajectory of a singular point p is the straight line in R x Q given by z(¢) = p and the orbit
of p is the set {p}. A regular point is a point which is not singular.

An orbit v is said to be closed (or to be a cycle) if it is a Jordan curve, that is to say, a
homeomorphic image of a circle. An orbit is closed if and only if it corresponds to a nonconstant
periodic orbit. This property does not hold for non-autonomous systems.

If t — =z(t,z0) is injective, then the orbit never intersects itself: topologically it looks like a
line.

2.3.1 Lotka-Volterra Equations for Predator-Prey Systems
The Lotka Volterra equations for predators and preys (see Classification of Models) are

z = x(a — by)

9y =y(—c+dz) (29)

Since populations densities have to be nonnegative, we shall only consider the restriction of this
system to the positive cone
R: ={(z,y) e R :3>0,y >0}

We may write four solutions :

L z(t) =y(t) =0,

2. 2(t) =0, y(t) = y(0)e~* (for any y(0) > 0),
3. y(t) = 0, z(t) = 2(0)e (for any z(0) > 0),
4. 2(t) = ¢/d, y(t) = a/b.

To these solutions correspond four orbits : (1) the origin (0,0), which is a rest point, (2) the
positive y-axis, (3) the positive z-axis, (4) the equilibrium S = (¢/d,a/b). Together, the three
orbits (1), (2) and (3) form the boundary of the positive cone C. This set is invariant. Indeed,
as we have seen, the boundary of C is an union of orbits. Since no orbit can cross another, the
interior

int R} = {(z,y) e B : 2 >0,y > 0}

is also invariant. The orbit S is the unique equilibrium in int C. This equilibrium is surrounded
by periodic orbits. Indeed from system (29) we obtain

(c/z— )i + (afy - b)j =0
Thus V(x(t),y(t)) = const where
V(z,y) =clnx —dz + alny — by

The constant level sets
{(z,y) € C: V(z,y) = const}

are closed curves around S. The orbits, therefore, are periodic. The densities of predator and
prey will oscillate periodically, with both amplitude and period of the oscillations depending on
the initial conditions.

Let (z(t),y(t)) be a periodic solution of period T'. From (29) we deduce that

T

Inz(T) — Inz(0) = oT — b/ y(t)dt
0

Iny(T) — Iny(0) = =T + d/T x(t)dt
0
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Since z(T') = x(0) and y(T') = y(0), this implies that

L[ 0=2 [ ve=t

Thus, the time average of the densities will remain constant and equal to their values corresponding
to the equilibrium S.
Taking into account the competition within the prey and within the predator, system (29) is
replaced by
z = z(a — bx — cy)
y=y(—d+ex— fy)

with positive constants a to f. The positive orthant ]Ri is invariant. Its boundary consists of five
orbits: two equilibria (0,0) and (a/b,0), the two intervals (0, a/b) and (a/b, +o0) of the z-axis and
the positive y axis. The lines

(30)

bxr + cy = a, ex — fy=d

eventually intersect in intR% . Let S = (Z,7) be the intersection. The Jacobian matrix at S is

=

The determinant detA = (ec + bf)Zy is positive and the trace trA = —bT — f7 is negative.
Thus both eigenvalues are of negative real part and the equilibrium S is locally asymptotically
stable. Actually, all the solutions are attracted by S and not only the solutions starting in a small
neighborhood of S.

2.3.2 Limit sets

A set M is called an invariant set of (28) if for any x in M, the orbit v(z) lies in M. A set M
is called positively invariant if for each z in M, the positive semi-orbit y*(x) lies in M. If M is
a positively invariant set of (28) and M is homeomorphic to the closed n-ball, there is at least
one equilibrium point in M. This result is a consequence of Brouwer’s fixed point theorem. As a
consequence we obtain the following result

Theorem 3 In a two dimensional system any closed orbit must surround o singular point.

An invariant set M is said to be stable if for any ¢ > 0, there is a 6 > 0 such that dist(z¢, M) < 6,
implies dist(x (¢, zo), M) < €. An invariant set M is said to be is asymptotically stable if in addition
of being stable there is b > 0 such that dist(z¢, M) < b, implies dist(x(¢,x0), M) — 0 as t — +oo.

A nonconstant periodic solution can never be asymptotically stable. To see this, note that for
any periodic solution p(t) of (28), p(t + 7) is also a solution of (28). By taking 7 small enough
p(0) and p(7) can be made arbitrarily close. Nevertheless, ||p(t + 7) — p(t)|| does not tend to 0 as
t — +00, so that asymptotic stability does not prevail. Another concept of stability is of great
importance in this case. A periodic solution is said to be orbitally stable if the corresponding orbit
is stable. A periodic solution is said to be asymptotically orbitally stable if the corresponding orbit
is asymptotically stable.

A point ¢ belongs to the w-limit set (or positive limit set) w(y) of an orbit v(p) if there is a
sequence a real number (t), tx — +00 as k — +oo such that X;, (p) — ¢ as k — +oc. Similarly a
point ¢ belongs to the a-limit set (or negative limit set) a(vy) of an orbit y(p) if there is a sequence
a real number (¢ ), ty — —oo as k — +oo such that Xy, (p) — q as k — +oc.

Intuitively the positive limit set is the set of points in  which are approached along v with
increasing time. A limit set is invariant, that is, if it contains a point x, it contains also its orbit
v(z). If an orbit v is positively bounded, that is 4+ remains in a compact subset of 2, then its
positive limit set w(y1) is nonempty compact and connected.
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2.3.3 Poincaré-Bendixon theory
For two dimensional systems the limit sets are well described.

Theorem 4 (Poincaré-Bendixon Theorem) If v* is a bounded positive semi orbit and w(y1) does
not contain a critical point, then w(~™) is a periodic orbit.

If w(y*) #~1, 4t actually spirals around w(y1) in a certain sense and the periodic orbit w(y1) is
called a limit cycle. This result is often used to prove the existence of periodic solutions. Indeed,
a closed region which is free from singular points and contains a semi-orbit contains also a closed
orbit. Suppose that +; and 7- are closed orbits bounding an annular region free from singular
points or other closed orbits. We say then that vy, and ~- are adjacent.

Theorem 5 Two adjacent closed orbits cannot both be asymptotically stable in the region between
the two orbits.

The nonexistence of cycles is guaranteed by the following criterion.

Theorem 6 (Criterion of Dulac-Bendixon) If divX = 0X1/0z1 + 0X2/0z2 has a fized sign (zero
excluded) in a region Q of the plane, then Q contains no periodic orbits.

For suppose that there is a cycle v in © and let it bound a region S C Q. Applying Green’s
formula we have

// (BXl/c‘)a:l + 8X2/8m2) dridrs = f (del'g — XQd.’I?l) =0
S v

Hence divX cannot have a fixed sign in S, nor a fortiori in 2.

As a corollary, one obtains: if there is a positive function B on €2 such that divBX has fixed
sign on , then £ = X (x) admits no periodic orbit in Q. Indeed X differs from BX only by
a change in velocity, which does not affect the orbits. Such a function B is said to be a Dulac
function. We have also the following sufficient condition for orbital stability.

Theorem 7 If the Poincaré index
T
/ div X (p(t))dt
0
of the T -periodic orbit p(t) is negative then p(t) is orbitally asymptotically stable.

The difficulty in applying this result is to localize the periodic orbit C corresponding to the periodic
solution and evaluate its Poincaré index.

2.3.4 The Gause predator prey model with Holling-type interaction

The predator prey model of Gause with logistic growth and Holling-type interaction is (see Clas-
sification of Models)
t=rz(l —z/K)—azxy/(b+ ),

j = cay/(b+ ) — dy, (31)

where all parameters are positive. If either ¢ < d or K < 2% then all solutions of (31) in the
positive orthant Ri converge to the steady state (K,0), that is, the predator tends to extinction
and the prey converges to the carrying capacity K.
If c>dand K > 24 then (31) admits a steady state S = (Z,7) with
bd r
r=—-7, y=—(K—-7)(b+7).
" J= (K -D)+7)
If K < b+ 2%, then all solutions of (31) in the positive orthant Ri converge to the steady state
S. For the proof consider the Dulac function

y*~!, where a = ! (1—£>

b+x ,_
c—d K

B(z,y) =
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Denoting the right hand side of (31) by X and Y we obtain

OBX OBY  y>! b b+2z\ 2r K—b\?
+ = r{l—— 1-— . - = \|lz-—
ox oy x K K K 2

Hence periodic orbits are excluded.

If K > b+ 2%, then the point S is a repellor and there must be a limit cycle around S.
The attractivity of this limit cycle follows from the computation of its Poincaré index. This is a
formidable task since it is very difficult to localize this cycle in the plane. Thus all the solutions
of (31) in the positive orthant R% converge to a periodic solution.

<0
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