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1 Introduction

Very often one encounters dynamical systems in which the derivatives of some of the
states are multiplied by a small positive parameter; that is, the scales for the dynam-
ics of the states are very diversified. When the small parame®emultipying the
derivative as in system

&= f(t,x,z,€), x(to) = E£(e)
{ ez =g(t,x,2,€), 2(to) =¢(e) 1)

the usual theory of continuous dependance of the solutions with respect to the param-
eters cannot be applied. The analysis of such systems is achieved with the aid of the
Singular Perturbation TheoryThe purpose of Singular Perturbation Theory is to in-
vestigate the behaviour of solutions of (1)as— 0 for 0 < ¢t < T and also for
0<t< +oo.

This chapter is organized as follows. In Section 2 we recall Tikhonov's theorem on
fast and slow systems, its extension to infinite time intervals, and Khalil's theorem on
exponential stability of the origin of a fast and slow system. In Section 2.4 we define
the notion of practical stability in a system depending on a parameter and we show
that the extension of Tikhonov'’s theorem to infinite time intervals can be reformulated
as a result of practical stability of the origin. In Section 3 we use the results of the
preceeding section to reduce the dimension of systems in the problem of feedback
stabilization. In Section 4 we discuss the peaking phenomenon in triangular systems
of the form

xzf(xvy)7 y:G(y,a) (2

Some states of the second equation may peak to very large values, before they rapidly
decay to zero. Such peaking solutions can destabilize the first equation. In Section 4.2
we introduce the concept ofstantaneous stabilitfo measure the fast decay to zero of

the solutions of the second equation, and the concaptidrm infinitesimal bounded-
nessto measure the effects of peaking on the first equation. In Section 4.3 we motivate
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the case where the mappiggn the second equation depends also onathariable.
This case arises in control problems where the feedback is computed, not on the state,
but on an estimation of the state given by an observer.

The singular perturbation model of a dynamical system is a state-space model (1) in
which the derivatives of some of the states are multiplied yallpositive parameter
€. What means “small” for a scientist is usually well understood. For instance, in
population dynamics, the characteristic time of reproduction is small compare to the
effect of demographic pressure on natality rate. As another example we can say that the
dayly activity of a predator eating its prey is fast compare to its annual reproduction
[17]. What means “small” for a mathematician is somewhat different. In order to
guaranty the widely spread standard of mathematical rigor, mathematics have to be
written with respect to some formal langage in which proofs are unambigously written.

Classical analysis prohibits the use of a sentence likés “a small parameter”.

This is the reason why, in order to capture the idea ¢hata “small” parameter one
considers the whole family of differential equations (1) where the parameterges
over an interval0, £9], €9 > 0. The aim ofSingular Perturbation Theoris to use the
limiting behaviour of the system, whengoes to 0, to get an idea of what the system
looks like where is “small”.

The problem with classical singular perturbation theory [8, 14, 15, 32] lies in the
fact that its results are expressed in a rather abstract and sophisticated way. For this
reason the use of its results is not easy for non mathematically trained people and may
be subject to misinterpretations, even for mathematicians (see Lobry [18]).

Recently, Robinson [28] developped a new mathematical formalism, called Non
Standard Analysis (NSA) which is proved to be equivalent to the classical one — in the
sense that everything you formulate in the new formalism can be translated in the old
one and vice versa — in which the senteneés‘an infinitesimal real number strictly
greater than 0" makes perfect sense. As a consequence the mathematical statement, in
the new formalism: “Let us consider system (1) witkan infinitesimal real number
strictly greater than 0” have the very natural interpretation: “withsmall parameter”,
where “small” has the intuitive meaning that every scientist understand.

The idea of using NSA in perturbation theory of differential equation goes back to
the seventies with the Reebian scholl (cf [23, 24, 26, 27] and the references therein).
It gave birth to the nonstandard perturbation theory of differential equations which has
become today a well-established tool in asymptotic theory (see the five-digits classifi-
cation 34E18 of the AMS 2000 Mathematics Subject Classification). To have an idea
of the rich literature on the subject, the reader is referred to [1, 5, 6, 7, 23, 29, 33]. In
this chapter we use the langage of NSA. For the convenience of the reader the results
are formulated in both classical terms and nonstandard terms. In the Appendix we give
a short description of NSA and we discuss the classical concepts in this context.

In this chapter we do not provide proofs of the presented results. For each result
we send the reader to a reference in the literature. For the sake of clarity we prefer
to discuss the “geometrical” meaning of the results and to illustrate them by simple
examples.
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2 Fast and slow systems

2.1 Tikhonov theory

System (1) is called &ast and slow systenThe vectorst € R™ andz € R™ are its
slow and fast components. The mathematical tool used to deal with this different time
scales is Tikhonov's theorem which permits to reduce the complexity of the system
through suitable approximations. If we go to flast time 7 = (¢t — ¢o) /e, system (1)

becomes
{ a' =cef(to+eT,2,2,¢), x(0)=¢E(e)
Z/:g(t0+5T71‘7Z,E), Z(O):C(é‘)

where the primé denotes the derivative with respect to timeThis system is a regular
perturbation of system

{ z' =0, (0) = £(0)
Z/:g(t07x7250)7 Z(O) :C(O)

Hence the: component of any solution of system (1) varies very quickly according to
the equation

2= g(t07£(0)’z70)’ Z(O) = C(O) ©))

This equation is called thegoundary layer equatiant consists simply in equation
2 =g(t,z,2,0), (4)

wheret = ¢, andz = £(0) are frozen at their initial values. A solution of (4) may
behave in one of several ways : it may be unbounded-asoc, it may tend toward an
equilibrium point, or it may approach a more complex attractor. Obviously, if the fast
equation has multiple stable equilibria, the asymptotic behaviour of a solution is deter-
mined by its initial value. Assume that the second case occurs, that is, the solutions of
(4) tend toward an equilibriurh(t, ), wherez = h(t, z) is a root of equation

g(t,z,2,0) = 0. (5)

The manifold£ defined by equation (5) is called tisbow manifold The solutions
of (1) have a fast transition (boundary layer) fr¢g{0), ¢(0)) to (£(0), h(to,£(0))),
namely to a point of the slow manifold. Then a slow motion takes place on the slow
manifold, according to the equation

& = f(t,z, h(t,x),0). (6)

This equation is callethe reduced problenit is obtained by taking the first equation
of (1) subject to the constraint (5).

This description of system (1) was given by Tikhonov [31], under suitable hy-
pothesies (see also [8, 14, 15, 20, 21, 32]). The crucial stability property we need
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for the boundary layer system (4) is the asymptotic stability of its equilibrium point
z = h(t, z), uniformly in the parametersandx. The following definition states this
property precisely.

Definition 1 The equilibriumz = h(t, x) of system (4) is

1. stable(in the sense of Liapunov) if for every> 0 there existg; > 0 (depending
on (t,z)), with the property that any solution:(r) of (4) for which
|[z(0) — h(t, x)|| < n, can be continued for alt > 0 and satisfies the inequality
[2(7) = h(t, z)|| < p.

2. attractiveif it admits a basin of attraction, that is, a neighborhobddepending
on (t, z)), with the property that any solution(r) of (4) for whichz(0) € V,
can be continued for alt > 0 and satisfie$im, . z(7) = h(t, z).

3. asymptotically stablé it is stable and attractive.

4. asymptotically stableuniformly in (¢, z) € [to,t1] x X, if for everyu > 0 there
existsy > 0 with the property that for anyt, z) € [tg,t1] x X any solution
z(7) of (4) for which||z(0) — h(t, z)|| < n, can be continued for alt > 0 and
satisfies the inequalityz(7) — h(t, z)|| < pandlim, .1 z(7) = h(t, x).

We say that the basin of attraction of the equilibrium paint A(¢, x) is uniform in
(t,x) € [to,t1] x X, if there exists: > 0, such that for all(, z) € [to,t1] x X, the
ball of centeri(t, z) and radiusa

B={zeR™:|z—h(t2)| <a}
is a basin of attraction ok(t, x).

If z = h(t, z) is asymptotically stable, uniformly ift, z) € [to, 1] x X, then the
basin of attraction is uniform. Conversely, Xf is compact, then the asymptotic sta-
blility of z = h(t, z) together with the existence of a uniform basin of attraction imply
that the asymptotic stability is uniform ift, z) € [to,t1] x X (see [11, 20]). Hence,
to formulate Tikhonov's theorem under the hypothesis that the basin of attraction is
uniform as done in the present lecture or in [8, 10] is the same as formulating it under
the hypothesis that the asymptotic stability is uniform as done in [15, 31, 32]. There
are other versions of this theorem which use slightly different technical assumptions,
for example [14].

Verification of uniform asymptotic stability of the equilibrium point may be done
either by linearization or via search of a Lyapunov function. Eosystems, let

A= %(ta €, z, 0)|z:h(t,m)
be the Jacobian matrix evaluated at the equilibrium poiath(t, ). It can be shown
that if there exists a positive constansuch that for all(t,z) € [to,t1] x X, any



SINGULAR PERTURBATION METHODS 155

eigenvalue) of the Jacobian matri¥l satisfiesReA < —¢, then the equilibrium is
asymptotically stable uniformly i(t, z) € [to,t1] x X.
The discussion of asymptotic stability in NSA goes as follows.

Proposition 1 Assume thay and i are standard. The equilibrium = h(t, z) of
system (4) is

1. stable (in the sense of Liapunov) if any solution(7) of (4) for which
z(0) ~ h(t,z), can be continued for alt > 0 and satisfies(7) ~ h(t, z).

2. attractiveif for all standard (¢, z) it admits a standard basin of attraction, that
is, a standard neighborhood (depending orit, x)), with the property that any
solutionz(7) of (4) for whichz(0) € V is standard, can be continued for all
7 > 0 and satisfieg () ~ h(t,z) for all 7 ~ +oo.

3. asymptotically stablef for all standard(¢, ) there exists a standard neighbor-
hoodV (depending orft, 2)), with the property that any solutior(r) of (4) for
whichz(0) € V, can be continued for alt > 0 and satisfies() ~ h(t, ) for
all 7 ~ +cc.

4. asymptotically stableuniformlyin (¢, z) € [to,t1] x X, if there exists a standard
a > 0 such that for all(t, z) € [to,?1] x X any solutionz(7) of (4) for which
z(0) is in the ball of centel.(¢, «) and radiusa, can be continued for att > 0
and satisfieg (1) ~ h(t,z) for all 7 ~ +oo0.

Notice that if we only require that for all standatd0) € V, z(r) ~ h(t,x) for

all 7 ~ 400, then we obtain the attractivity of the equilibriusm= h(¢,z). The
asymptotic stability of this equilibrium is obtained if we require that forzall) € V,

standard or not standargl,r) ~ h(t,z) for all 7 ~ +oo. In fact a timeT'(z(0)) such
thatz(7) ~ h(t,z) for all = > T(z(0)) can grow unboundedly even if0) ranges
over a compact neighborhood®ft, «). This occurs for instance if(¢, ) is attractive
but not stable as in the classical example of Vinograd (see [9] Section 40).

Theorem 1 [20] Consider the singular perturbation problem (1) and let= h(t, x)
be an isolated root of (5). Assume that there exist positive constants, » andeg,
and a compact domaiX C R™ such that the following conditions are satisfied for all

to <t <ty reX, |z — h(t,z)|| <, 0<e<eg

e The functions' (¢, z, z, €), g(t, x, z,£) andh(t, x) are continuous, and the initial
data(e) and((e) are continuous.

e The reduced problem (6) has a unique solutieg(¢) with initial condition
x(to) = £(0), defined orjto, t1] andzo(t) € X forall t € [to, t1].

e The boundary layer equation (4) has the uniqueness of the solutions with pre-
scribed initial conditions. Lef(7) be the solution of equation (3).
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e The equilibrium point = A(¢, x) of this boundary layer equation is asymptoti-
cally stable uniformly in(t, z) € [to,t1] x X.

e The initial condition¢(0) belongs to the basin of attraction bft, £(0)).

Then for every) > 0 there exists a positive constait such that for all0 < ¢ < &*,
every solution(z(t), z(¢)) of the singular perturbation problem (1) is defined at least
on [to, t1], and satisfies

() — zo(t)]| < 6

=) — 2 (t - tO) = h(t@0(0) + hlto, EO)]| < 8

€

for all to <t <tq.

When the singular perturbation problem (1) has a unique solution, we denote it as
(z(t,e),z(t,€)). We have

1111(1) x(t,e) = xo(t), fortg <t < ty. 7)
£—

We have also
lim 2(t,) = h(t, 2o (t)), forto <t <t, (8)

but the limit holds only fort > t,, since there is a boundary layertat ¢, for the
z-component. Indeed, we have

lim (z(t7s) _ (t - to)) — h(t, 20(1)) — h(to, £(0)), for to <t < .

£— 3

2.2 Singular perturbations on the infinite interval

Theorem 1 is valid only over compact time intervals. The estimates (7) and (8) do
not hold in general for alt > t,. This can be done if some additional conditions
are added to ensure asymptotic stability of the solutions of the reduced problem (see
[10, 14, 15, 20]). The following theorem extends Theorem 1 to the infinite-time interval
(see also [10, 14, 15]).

Theorem 2 [20] Consider the singular perturbation problem (1) and let= h(t, x)
be an isolated root of (5). Assume that there exist positive constaans ¢, and a
compact domaitX C R"™ such that the following conditions are satisfied for all

to <t < o0, z e X, llz — h(t,z)|| <, 0<e<eg

e The functions' (¢, z, z, €), g(t, x, z,£) andh(t, ) are continuous, and the initial
data(e) and((e) are continuous.

e £(£,0,0,0) =0, g(t,0,0,0) = 0 andh(t,0) = 0
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e the origin of the reduced problem (6) is asymptotically stable and the initial
condition&(0) belongs to its basin of attraction. Let(t) be the solution of
the reduced system (6) with initial condition(to) = £(0). It is defined for all
to <t < 400 and we havéim;_, . zo(t) =0

e The boundary layer equation (4) has the uniqueness of the solutions with pre-
scribed initial conditions. Lef(7) be the solution of equation (3).

e The equilibrium point = h(¢, x) of this boundary layer equation is asymptoti-
cally stable uniformly in(¢, z) € [to, t1] x X.

e The initial condition¢(0) belongs to the basin of attraction bfty, £(0)).

Then for every) > 0 there exists a positive constagit such that for all0 < ¢ < €%,
every solution(z(t), z(t)) of the singular perturbation problem (1) is defined for all
t > to, and satisfies

[z(t) = zo(t)]| <6

=) — 2 (t - to) = h(t.wo(0) + hlto, EO)]| < 8

e
forall ¢t > t,.

Assume that the singular perturbation problem (1) has a unique solution, denoted by
(x(t,€),2(t,€)). Sincexy(t) is defined for alty <t < +o0 and satisfief,ligl zo(t)=0

we have
lim  z(t,e) =0, lim  z(t,e) =0.

e—0,t—+o0 e—0,t—-+o00

This last property does not mean that the origin of the full system (1) is asymptotically

stable. It means only that it jgractically asymptotically stablésee Section 2.4). If

we want to use the Singular Perturbation Theory for the purpose of stabilization then
we need a stronger result. This is done, in the following section, if some additional

conditions are added to ensure exponential stability of the solutions of the reduced
problem and the fast equation.

2.3 Stability

Definition 2 The equilibriumz = h(t,z) of the boundary layer system (4) is expo-
nentially stable, uniformly int,z) € [to,?1] x X, if there exist positive constants
k, -, and r such that for all(¢,x) € [to,t1] x X, any solution of (4) for which
|2(0) — h(t, )| < r satisfies

llz(7)]] < k||z(0)|le™" forall 7 > 0.

We have the following result of conceptual importance, whose proof can be found
in [14], Section 9.4 or [15], Section 7.5. Similar results can also be obtained using the
Geometric Theory of Singular Perturbations (see [12], Section B.3).
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Theorem 3 Consider the singular perturbation problem (1). Assume that
f(t,0,0,¢) = 0andg(¢,0,0,e) = 0.

Letz = h(t, z) be an isolated root of (5) such thaf¢,0) = 0. Assume that there exist
positive constants and ey, and a compact domaiX’ C R™ such that the following
conditions are satisfied for all

to <t < o0, z € X, |z — h(t,z)|| <, 0<e<ep

e The functionsf(t,z, z,€), g(t,z, z,€) and h(t,x), are C*, and the initial data
&(e) and((e) are continuous.

e The origin of the reduced problem (6) is exponentially stable.

e The equilibrium pointz = h(t, «) of the boundary layer equation is exponen-
tially stable uniformly in(¢, z) € [to, 1] x X.

Then there exists* > 0 such that for all0 < ¢ < &*, the origin of (1) is exponentially
stable.

Notice that exponential stability is necessary for this kind of result. Indeed it is well
known that asymptotic stability is not robust to arbitrary small perturbations (see [13],
Section 10.2). This point is illustrated by the following example.

Example 1 Consider the singularly perturbed system

= —a3+ex
€2 = —z

The reduced system is = —23. Its origin is asymptotically stable but not exponen-
tially stable. The origin of the full system is unstable despite the fact that the origin of
the boundary layer equatiari = —z is exponentially stable

It is important to notice that the origin of the full system is asymptotically stable
only for small values of. This point is illustrated by the following example.

Example 2 Consider the singularly perturbed system

T = —2Z9
€1 = —xn+tzw 9)
€29 = —zZo+ 2z

The boundary layer equation is

/ /
2z = —21t+x, 2o = —29 + 21
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It has(z; = z,22 = z) as an exponentially stable equilibrium uniformlyzn The
corresponding reduced problemiis= —x. According to Theoren8 the origin of
system 9) is exponentially stable for small values of Since this system is linear,
elementary computations of the eigenvalues show that the origin is exponentially stable
if £ < 2 and unstable if > 2.

It is important to notice that the origin of the full system is not in general globally
asymptotically stable (GAS) even if the exponential stability of the boundary layer
equation and the reduced problem are global, aig small enough. This point is
illustrated by the following example.

Example 3 Consider the system
&= —x+ 22z, €z = —z. (20)

The origin of the boundary layer equatioh= —z is globally exponentially stable and
the origin of the corresponding reduced problem —z is also globally exponentially
stable. According to Theore®ithe origin of systemX0) is exponentially stable for
small values ot. In fact the origin is exponentially stable for albut the stability is

not global. Since
d
%(xz) =az(xzz —1—1/e),
we see that the hyperbola = 1 + 1/e consists of two trajectories. Thus the origin
of (10) is not GAS. Tikhonov'’s theorem asserts that theomponent of the solution

x(t, ) of (10) with initial condition (zo, zo) is such that, for alt > 0
HH(I) x(t,e) = zo(t) == zpe ™" (11)
wherez () is the solution of the reduced modaelith initial conditionz. By explicit

computations, it is easy to show that the basin of attraction of the origibGpig the
set{zz <1+ 1/e}.

2.4 Practical stability

In this section we do not assume th4t,0,0,¢) = 0 andg(¢,0,0,e) = 0, for all ¢,
so that the origin is not an equilibrium of system (1). We begin with the definition of
practical stability in a system

= f(z,e) (12)

depending on a parameterwithout explicitly asking for the separation of variables
into fast and slow variables as in system (1).

Definition 3 The originz = 0 of system (12) is practically asymptotically stable when
e — 0 if there exists4 > 0 such that for allr > 0 there exist; > 0 andT > 0
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satisfying that for all0 < ¢ < ¢, any solution of (12) starting in the ball of radiu$

is at timeT in the ball of radiusr and never leave this ball. If this property holds for
all A > 0 then the origin is said to be practically semiglobally asymptotically stable
(PSGAS) when — 0.

Example 4 In the following systems, wherds real, the origin is PSGAS when— 0.
e i = x(ex — 1). The origin is stable but not GAS.
e & =¢ — x. The origin is not an equilibrium.
e i = 2%(e — x). The origin is unstable.

The notion of practical stability has a long history in the theory of differential equa-
tions [16]. Our notion of practical stability in a system depending on a parameter
is strongly related to the notion of practical stabilizability introduced by Byrnes and
Isidori [2]. There is a beautiful nonstandard characterization of practical stability for
standard systems:

Proposition 2 If f is standard then the origin of (12) is PSGAS when 0 if and only
if for any infinitesimalk;, any solution of (12) with limited initial condition is infinitely
close to the origin for all unlimited time.

Let us formulate a new practical stability result derived from Tikhonov theory.
Theorem 4 [20, 21] Consider the singularly perturbed system (1). Assume that
f(t,0,0,0) = 0 andg(t,0,0,0) = 0.
Letz = h(t, z) be an isolated root of (5) such thatt,0) = 0. We assume that

1. the equilibriumz = h(t, ) of the boundary layer equation (4) is asymptotically
stable uniformly in(¢, z).

2. the origin of the corresponding reduced model (6) is asymptotically stable

The the origin of system (1) is practically asymptotically stable wher 0. If in
addition the equilibriumz = h(t,z) of the boundary layer equation is GAS and the
origin of the corresponding reduced model is GAS then the origin of system (1) is
PSGAS.

3 Feedback Stabilization
3.1 Stabilization

Consider the feedback stabilization of the system on Figure 1

S f(.CE,Z),
= gl )
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&= f(z,2) =

ez =g(z,u) —u

Figure 1: The system has an open-loop equilibrium point at the origin. The control
task is to design a state feedback control law to stabilize the origin.zTdymamics
are much faster than thedynamics.

where f(0,0) = 0 andg(0,0) = 0. The z dynamics is much faster than thedy-
namics. Suppose that equatigfx,u) = 0 has an isolated roat = h(u), such that
h(0) = 0, which is an exponentially stable equilibrium of the boundary-layer equation

2 = g(z,u), (14)

uniformly in . A procedure to design a state feedback control law to stabilize the ori-
gin is given below. We can simplify the design problem, by neglecting tthgnamics
and substituting = h(u) in thex equation. The reduced-order model is

&= f(x, h(u))

We use this model to design a state feedback controldawy(y) such that the origin
of the closed-loop model

&= f(z,h(~(x))) (15)

is exponentially stable (see Figure 2). We shall refer to this model as the reduced
closed-loop system. Suppose we have designed such a control law. Will this control
stabilize the actual system with thelynamics included ? When the control is applied

to the actual system, the closed-loop system is

T = f(amz),
i = g(z()) (16)

We have the singular perturbation problem of Figure 2, where the full singularly per-
turbed model is the actual closed-loop system and the reduced model is the reduced
closed-loop system. By design, the origin of the reduced model is exponentially sta-
ble. Since the equilibrium = h(y(z)) is an exponentially stable equilibrium of the

boundary-layer equation
/

2 = g(z,7(2)),
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&= f(z,2) @

Z u=(z)
i = f(z,2) x

Z ez =g(zu) f—u=1(z)

Figure 2: The control = +(x) which stabilizes the reduced problem will stabilize the
full problem for smalke

uniformly in x, by Theorem 3, the origin of the actual closed-loop system is exponen-
tially stable for sufficiently smalt. This result legitimizes the procedure of simplifi-
cation which consists in neglecting the fast dynamics. This result is summarized in the
following theorem.

Theorem 5 Assume thaf (0,0) = 0 andg(0,0) = 0. Letz = h(u) be an isolated root
of equationg(z, u) = 0 such thath(0) = 0. Assume that = h(u) is an exponentially
stable equilibrium of the boundary-layer equation (14) uniformly.ifssume that we
can design a control law. = ~(y) such that the origin of the reduced model (15) is
exponentially stable. Then there exists> 0 such that for alld < ¢ < ¢*, the origin

of the dynamical feedback system (16) is exponentially stable.

Now, we do not assume that= h(u) is an exponentially stable equilibrium uni-
formly in « of the boundary layer equation (14). Since we have a contrtol our
disposal, we can design it so that this root becomes exponentially stable. A procedure
to design a composite state feedback control law to stabilize the origin is given below.

Step 1 Design a controt, = ~(y) such that the origin of the reduced system (15) is
exponentially stable uniformly im.

Step 2 With the knowledge ofy design a control lawu = T'(z,z), such that
I'(x, h(y(z))) = 0, which stabilizises the fast equation

2 =g(z(@) +u)
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atz = h(y(z)), that is to say the equilibrium point= h(y(z)) of the closed-
loop system

7 =g(z,7(x) + I(z,2)) (17)

is exponentially stable uniformly im (see Figure 3).

Step 3 Then the composite feedback control
u="(zx) +I(z,2))

will stabilizise (13), that is, for smalt, the origin is an exponentially stable
equilibrium of the closed-loop system

x = f(x,z2),
ez = g(z,v(x) +T(x,2)) (18)

This result is summarized in the following theorem.

Theorem 6 Assume thajf(0,0) = 0 andg(0,0) = 0. Letz = h(u) be an isolated
root of equatiory(z, ) = 0 such thath(0) = 0. Assume that we can design a control
law u = ~(y) such that the origin of the reduced model (15) is exponentially stable.
Assume that we can design a control law such that the equilibsium h(y(x)) of
system (17) is exponentially stable uniformlyrinThen there exists* > 0 such that
forall 0 < € < £*, the origin of the dynamical feedback system (18) is exponentially
stable.

3.2 Practical Stabilization

Asymptotic stability alone, instead of exponential stability, may not be enough and
stronger technical conditions are needed (see [15], Section 7.6). Asymptotic stability
is enough to guarantee practical stability. Consider again the system (13). Suppose that
z = h(u) is an asymptotically stable equilibrium of the boundary-layer equation (14)
uniformly in ». Suppose that we can design a contret (y) such that the origin of

the closed-loop model (15) is asymptotically stable. By Theorem 4, the origin of the
actual closed-loop system (16) is practically asymptotically stable wiges to 0.

This result is summarized in the following theorem.

Theorem 7 Assume thaf (0,0) = 0andg(0,0) = 0. Letz = h(u) be an isolated root

of equatiory(z,u) = 0 such that:(0) = 0. Assume that = h(u) is an asymptotically
stable equilibrium of the boundary-layer equation (14) uniformly.ifssume that we

can design a control law: = ~(y) such that the origin of the reduced model (15)

is asymptotically stable. Then the origin of the dynamical feedback system (16) is
practically asymptotically stable whengoes to 0.
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L;/ = g(z,7(z) + U)J u="T(z,2)

ez =g(z,u) u="(x)+TI(z,2)

Figure 3: The composite contral= ~(x) + I'(x, z) will stabilize the full problem for
smalle

Now, we do not assume that= h(u) is an asymptotically stable equilibrium uni-
formly in » of the boundary layer equation (14). Design a condret ~(y) such that
the origin of the reduced system (15) is asymptotically stable. With the knowledge of
~ design a control law. = I'(z, z) such that the equilibrium point = h(v(z)) of the
closed-loop system (17) is asymptotically stable uniformly.inThen the composite
feedback control
u=(z) +T(z,2))

will stabilizise practically (13) for smal. This result is summarized in the following
theorem.

Theorem 8 Assume thajf(0,0) = 0 andg(0,0) = 0. Letz = h(u) be an isolated
root of equatiory(z, «) = 0 such thath(0) = 0. Assume that we can design a control
law u = ~(y) such that the origin of the reduced model (15) is asymptotically stable.
Assume that we can design a control law such that the equilibeug h(y(z)) of
system (17) is asymptotically stable uniformlyrinThen the origin of the dynamical
feedback system (18) is practically asymptotically stable vetgmes to 0.

4 The Peaking Phenomenon

4.1 The limitations of Tikhonov’s theory

In this section, we are concerned with the asymptotic behavior, when the parameter
e — 0, of the nonlinear triangular system (2), whére d/dt, = € R", y € R™,
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¢ € (0,e0] and the mappings
f:R"xR™ —=R" and G : R™ x (0,g9] — R™

are of clas€®. Notice that the limit of is not assumed to be defined whenr- 0, so
that system (2) is a singular perturbation. We can think of the first equation in system
(2) as a controlled system taking its inputs from the second equation in system (2). The
zero-input systerns the system

z = f(z,0). (29)

We assume that
H1 : system (19) has 0 as a GAS equilibrium.

The condition H1 implies that the solutions of (19) tend to @ as +oco. Our aim is
to state conditions oy andG such that the solutions of system (2) tend to zero when
e — 0andt — +oo.

Intuitively, if we require that the solutions gf= G(y, ) tend to 0 arbitrarily fast
in t whene — 0, then, the idea that the solutions of system (2) ought to tend to zero
appears plausible for the following heuristics. The second equation in system (2) drives
any initial condition very fast im near the manifolg = 0, where the zero-input system
takes over and drives to zero. Due to the peaking phenomenon, this idea fails. Of
course, some solutions of the second equation in system (2) may peak to very large
values before they decay to zero. The interaction of this peaking with the nonlinear
growth in the first equation in system (2) could destabilize system (2). In general the
origin of system (2) is not GAS, even if there is no peaking. The best result one can
expect for system (2) is that its origin is PSGAS whe#» 0.

Our first objective is to give a precise meaning to the hypothesis that the solution
of the second equation in (2) tend to O arbitrarily fast whene — +o0. For this
purpose we shall udaternal Set TheoryIST).

In NSA, instead of considering a family of systems (2) depending on the param-
etere and dealing with its asymptotic propreties when- 0, we consider just one
(nonstandard) system

i=f(z,y), 9=g), (20)

whereg(y) plays the role of7(y, ¢) with e > 0 afixed infinitesimal real numbeand
we look to the (external) properties of system (20).

We introduce the concepts ofstantaneous stabilitywhich quantify the fast de-
cay to zero of the solutions of the second equation in system (2) or (20) as well as the
concepts ofuniform infinitesimal boundednesshich measure the effects of the solu-
tions of the second equation in system (2) or (20) on the first equation in this system.
All these concepts are defined in both standard and nonstandard terms. The notion of
instantaneous stabilizabiltyas previously defined (see [4]) for linear systems within
the IST framework. Our concept of instantaneous stability for a general system is a
straightforward extension of their definition.
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Let us consider the particular case where system (2) is of the form

= f(z,y), =G/, (21)
whereG : R™ — R™ is of classC!. Assume that:
H2 : the vector field) — G(y) has 0 as a GAS equilibrium.

System (21) is very well understood in singular perturbation theory. The main tool is
Tikhonov's theorem (cf. Section 2.2 and [10, 14, 20]) on the infinite interval of time.

Theorem 9 (Tikhonov) Assume thaff and G are standards > 0 is infinitesimal
and H2 holds. Then for all limited, and y,, the z-component:(¢) of the solution
of system (21) with initial conditiofw, yo) satisfiesz(t) ~ x¢(t) as long ast and
xo(t) are limited, wherex((t) is the solution of the zero-input system (19), with initial
conditionzy. Moreover, if H1 also holds then(t) ~ x,(t) forall ¢t > 0.

Theorem 10 Assume thaf and G are standards > 0 is infinitesimal, and H1 and
H2 hold. Then for all limitedr, andyg, the solution(x(t), y(¢)) of (21) with initial
condition(zg, yo) satisfiest(t) ~ 0 andy(¢) ~ 0 for all positive unlimited, that is to
say, it is PSGAS when— 0.

Theorem 11 Assume that H1 and H2 hold, then for &alko,y0), the solution
(z(t,e),y(t,e)) of (21) with initial condition(xzg,yo) tends to 0 ag — +oo and
¢ — 0. For everyA > 0, the convergence is uniform with respecti#pand y, for
lzol| < A and|lyoll < A.

Let us consider now the particular case where system (2) is of the form

= flz,y), §=G()y, (22)
whereG(¢) is a square matrix of orden. Assume that
H3 : the real parts of the eigenvalues®fs) tend to—oo whene — 0.

System (22) was considered in automatic control literature. In this context the second
equation in system (22) is understood as a “high gain” dynamic feedback [30]. More
precisely, we start with a state feedback-partially linear system of the form

= f(z,y), Y = Ay + Bu,

where the paif A4, B) is controllable. The second equation can be easily stabilized
by u = Ky, whereK is designed such that the matiix := A + BK is Hurwitz.
Asymptotic stability of the origin of the full closed-loop system

t=f(v,y) y=Gy (23)
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will now follow from assumption H1 and the conceptioput to state stabilitysee

[14], p. 548). What about global stabilization ? If the linear feedback control Ky

is designed to assign the eigenvalueé&/dar to the left in the complex plane so that the
solutions ofy = Gy decay to zero arbitrarily fast, one might think that the origin of the
triangular system (23) can be GAS. It turns out that such a strategy may fail and (22) is
not reductible to Tikhonov’s theorem because of the so called “peaking phenomenon”.
The following example of Sussmann and Kokotovic (cf. [30] Example 1.1) shows a
system of type (22) such that the solutigft, ¢) becomes unbounded when— 0,

even if its decay to zero is arbitrarily fast. In that case, the origin of (22) is not GAS.
Even worse, for some initial conditions, the solution escapes to infinity in finite time.

Example 5 Consider the three dimensional system
= 1+y)p(x), y=G()y, (24)

wherep(z) = —23/2 and

Gle) = ( 710/52 721/5 )

The condition H1 holds. Since both eigenvalue&'¢f) are equal to—1/¢, condition
H3 is also satisfied. The exponential matrix

e _ [ L+t/e t —t/e
¢ _< —t/e2 1-t/e )© (25)

shows that as — 0, the solutiony(t, €) = ¢!y, will decay to zero arbitrarily fast.

The component—t/c2)e~t/¢ of (25) reaches the valuel/(ce) att = . Then some
solutions have a transient behaviour with a peak of orjerbefore they rapidly decay

to 0. This phenomenon is known as pgeaking phenomenorThe interaction of this
peaking with the nonlinear growth in the first equation in system (24) could destabilize
the system. Lefy = (y10, ¥20), then we have

Lo

z(t,e) = .
\/1 + @3 [t — y10 + (y10(t/e + 1) + yaot)e /%]

If x%ylo > 1 the solution will have a finite escape time > 0 andt. tends to zero
whene — 0. For ¢ large enough, the solutions are attracted to 0 as soonzas, < 1
and for allt > 0 we have

. g

lim xz(t,e) = zo(t) == —————=. (26)

2 I+ ot

Here, z(t) is the solution of the zero-input system= —x3 /2, with initial condition
xy = xo/+/1 — x3y10. Since the limit (26) does not hold for= 0, there is a bound-
ary layer att = 0 which quickly drives the state(t) from z, to z§. The peaking
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phenomenon explains both this boundary layer for the solutions attracted to 0 and the
destabilizing effect of the second equation in system (24) on the first equation in this
system.

Example 6 If p(x) = —x in (24) then the origin is GAS in spite of peaking. However,
the solutions still have a boundary layeriat 0. Since

.T(t, 5) = Zoeym*t*(ylo(t/s+1)+y20t)e—t/g
we see that, all the solutions are attracted to 0 and fortal 0 we have

hH(lJ x(t,e) = xo(t) == xhe . (27)
£E—

Here, x(t) is the solution of the zero-input systeim= —zx, with initial condition
xf = xoe¥ro. The boundary layer at= 0 quickly drives the state(t) fromz to ;.

The limit (11) was obtained from Tikhonov’s theorem. The limits (26) and (27)
were obtained by direct computation, because Tikhonov’s theorem does not apply to
Examples 5 and 6.

4.2 Instantaneous Stability and Uniform Infinitesimal Bounded-
ness

In the previous particular cases (21) and (22) of system (20), the fast attractivity of the

origin was guaranteed by the special form of the second equation in the system and
by conditions H2 or H3. In the general case, there is no such criteria and we must
introduce fast attractivity as a hypothesis. For this purpose, we need the following

definitions.

Definition 4 A functiont — wu(t) is said to be an impulse if(¢) ~ 0, for all positive
non infinitesimat.

Definition 5 The origin of systery = g(y) is instantaneously stable (IS) if for every
limited 3, the functiont — y9(t, y0) is an impulse.

Example 7 If ¢ > 0 is infinitesimal, then the origin of the second equation in system
(24), considered in Example 5, is IS.

The effects of any eventual peaking of the solutions of the second equation in sys-
tem (20) on the first equation in this system must be controlled. Thus, we need a
hypothesis on the behaviour of thecomponent of the solutions of (20) during the
very short time where the peaking can destabilize the system. For this purpose, we
need the following definition.
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Definition 6 The system (20) is uniformly infinitesimally bounded (UIB) if for all lim-
ited 2o andy and for all positive infinitesimal, thexz-component

a(t) = 29I (¢, (x0, yo))
of the solution of (20) with initial conditiofx, yo) is limited.

We consider the condition below :

H4 : system (20) is UIB and the origin of system= g(y) is IS.

Theorem 12 [19] Assume thatf is standard and H4 holds. Then for all limiteg)
and g, there exists a limited:§; such that ther-componentz(t) of the solution of
(20) with initial condition(zo, yo) satisfiest(t) ~ z((t), as long asey(t) is limited
andt is appreciable positive, whera, (t) is the solution of the zero-input system (19),
with initial condition z§. Moreover, if H1 also holds them(t) ~ z(t) for all non
infinitesimal positive.

This result shows that a solution of system (20) starting from a limited geing)
is approximated by a solution of the zero-input system (19) starting from a limited point
x5 Itis a Tikhonov-like result (compare with Theorem 9). In Tikhonov's case we had
x4 ~ xo. However in the general case, due to the eventual peaking of the solutions of
the second equation in system (2@],% z, and there is a boundary layertat 0.

Theorem 13 [19] Assume thatf is standard, and that H1 and H4 hold. Then the
origin of system (20) is PSGAS when- 0.

We introduced the nonstandard concepts of IS and UIB for system (20). Let us give
their standard formulation for the system (2) depending on the parameter

Definition 7 The origin of systeny = G(y, ) is IS where — 0, if for everyd > 0,
A > 0andty, > 0, there existg, > 0 such that whenever an initial conditiay
satisfieg|yo|| < A, it follows that||y“ (, yo,)|| < & forall t >t and alle < &.

Definition 8 The system (2) is UIB when— 0, if for everyA > 0, there existB > 0,
to > 0 andeg > 0 such that whenever an initial conditidmo, yo) satisfies|zol| < A
and||yo|| < A, it follows that||z(/%) (¢, (0, 0),€)|| < B for all t € [0,t0] and all
e <gg.

We consider the condition below

H5 : the origin of systeny = G(y, ¢) is IS whens — 0, and system (2) is UIB when
e —0.

Theorem 14 [19] Assume that H1 and H5 hold. Then the origin of system (2) PSGAS
whene — 0.
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4.3 Further developments

Thus far, we considered only triangular systems, in order to focus on the new concepts
of IS and UIB without being burdened by technicalities. The second equation does not
contain the first variable and the behavioryadoes not depend an There are many
applications for this particular case. There are also more realistic problems where the
second equation in system (20) depends: @fso

i:f(xay)v y:g(x,y), (28)

and the stability of system (28) is investigated under condition H1 and the assumption
that the origin of the second equation in (28) is IS in some sense to be precised.

For instance, consider the “high gain” observer problem which is well known in
automatic control. Let us begin with the linear case which is well understood. We
consider the system

& = Az + Bu, y = Cux, (29)

with the usual assumptions of controllability of the pal, B) and observability of the
pair (A, C). System (29) can be stabilized by= Rx whereR is designed such that
the matrixA + BR is Hurwitz. Consider now the Luenberger observer

& = Aé + Bu+ KC(& — ).

The error between the stat¢t) and its observatiofi(¢) isy = & — « andy is solution
of the differential equation
y=(A+KC)y. (30)

If K is taken such that the matriX := A + K C is Hurwitz, then the error tends to 0.
Moreover, if we assign the eigenvalues@ffar to the left in the complex plane, then
the origin of system (30) is IS.

Consider now the case where the feedback is based on the estimation given by the
Luenberger observer. The full system is

i= Az + BRi, &= A&+ BRi+ KC(i— ),
which can be rewritten using the variablesndy as
& = (A+ BR)x + BRy, y=(A+KC)y. (31)

This system turns out to be GAS. This can be seen by elementary algebraic consider-
ations, but also through the previous theory, in the case where we chosseh that
the origin of the second equation in (31) is IS.

For the nonlinear case, there are circumstances where one can built Luenberger like
observers. Let us consider the problem of stabilization of the control system

&= ¢(x,u)
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under some feedback law= R(x). Assume that we have designed soRsuch that
system

& = ¢(z, R(x))

has the origin as a GAS equilibrium. Assume now that the state veésarot accessi-

ble to measurement, which means that only a certain funétieny(z) of the state is
available. Is it possible to recover the state) from £(¢) ? The answer is yes, to some
extent. Namely, under some assumptions that we do not detail here, there is a system
of the form

& =9(&, ()
such that the erray = & — = tends to zero as— +oc. Unlike in the linear case (31),
the differential equation of the error does contain the variabl&ctually one has

T = ¢(*T7 R(‘%)% &= 19(@7 QD(CL')),
which can be rewritten in the variablesandy as

jc:qb(x,R(x—l—y)) :f(xvy) (32)
g =9 +y, o) —dz, Rz +y)) =g(z,y)

Condition H1 is satisfied. If the origin of the second equation in (32) is IS in some
sense, we may hope that the origin of (32) is PSGAS. This case is not covered by the
results of this paper and thus deserves further attention.

A A short tutorial on Nonstandard Analysis

Here, we begin with an elementary approach to NSA. We follow Callot [3] and Lutz
[22]. The first object to look at it is the set of natural numbers 0, 1; 2,n, n + 1,

--- and to decide that some of them aménitely large(or simplylarge, or unlimited

with the following rules:

1. Ois not large (it is limited),

2. ifpisnotlargesoip + 1,

3. if pis not large and < p theng is not large,
4. there exists such that is large.

An easy consequence of Rule 2 is the followingnifs large, so is» — 1. The first
objection to this set of rules is the induction principle which states that a property of
integers which satisfies rules 1 and 2 must be true for all integers. Thus from now we
must accept to work in a mathematical world where the induction principle is not true
for all the properties. Namely the induction principle is not true for all the properties
related to orders of magnitude. In other wottle collection of not large integers is
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not a subset of the set of integer&ctually, the reader is well trained to this way of
thinking, where the induction principle does not hold: “There should be a finite chain
linking some monkey to Darwin, repecting the rules: a monkey’s son is a monkey, the
father of a man is a man”. The induction principle does not hold for the properties of
“being a monkey’s son” or “being the father of a man” and actually there is some fuzzy
border between the two properties.

The question is whether there exists a mathematical formalism that recognizes this
fuzzy aspect of informal langage. At the first glance the answer seems to be no, so
much we have in mind that everything in mathematics has to be precise. It turns out
that Robinson [28] proved the following

e There exists a mathematical formalism called Nonstandard Analysis (NSA), in
which the adjective “large” for a natural number with the rules 1, 2, 3 and 4
makes perfect sense.

e The new formalism contains no more contradiction than the old one and every-
thing which was true for the old formalism is still true when expressed in the
new one.

The consequences of this are very important. It says that we can use freely all the
previous mathematics and give statements in the new langage of classical statements,
give new proofs, maybe prove new theorems in the new langage. We hope that NSA
statements of classical results will appear more illuminating.

Let us describe brieflynternal Set TheorylST) which is an axiomatic approach,
given by Nelson [25], of NSA. In IST we adjoin to ordinary mathematics (say ZFC) a
new undefined unary predicatandard(st). The axioms of IST are the usual axioms of
ZFC plus three others which govern the use of the new predicate. Hahteorems
of ZFC remain valid What is new in IST is an addition, not a change. We call a
formula of ISTexternalin the case where it involves tiewpredicate “st”; otherwise,
we call itinternal. Thus, internal formulas are the formulas of ZFC. The theory IST is
aconservative extensiaf ZFC, that is, every internal theorem of IST is a theorem of
ZFC.

Roughly speaking, standard objects of IST are those objects of classical mathemat-
ics as the integers 0, 1, 100 ..., the real numbets..., the functionsin z, Inz ... The
limited (resp. large) integers of the elementary approach to NSA in the beginning of
this section are simply the standard (resp. nonstandard) integers of IST.

Definition 9 A real numbetw is said to be infinitely large (or simply large, or unlim-
ited) if |w| is greater than some large integer. A real numbés said to be infinitesimal

(or simply small) if: = 0 or 1/¢ is large. A real number which is not large is said to
be limited. A limited number which is not infinitesimal is said to be appreciable. A
real numbery is said to be infinitely close (or simply close)ipwhich is denoted by

y ~ x, if |y — 2| is infinitesimal.
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Thus a real number is infinitesimalwhen|z| < a for all standard: > 0, limited
when|z| < « for some standard, andunlimited when it is not limited. We use the
following notations :z ~ 0 for z infinitesimal,z ~ +oc for z unlimited positive,
x > 0 for = non infinitesimal positive. Thus we have

r~0 & Ya>0z[<a

>0 & Fa>0z>a
zlimited < Falz|<a
r~ 400 & Vazxr>a

(33)

The orders of magnitude and proximity introduced in Defintion 9 extend to vectors
as follows

Definition 10 An elemeny € R?, whered is limited, is said to be limited ify|| is
limited. Itis said to be infinitely close (or simply closexta R¢, which is denoted by
y =~ x, if |y — || is infinitesimal.

In this definition one takes fdfz|| the Euclidean norm or

d
ol = el or el =3 il
2

Since the dimensiod is assumed to be limited, the notionsliofited or closeare the
same for the three norms.

We may not use external formulas to define subsets. The notafiors R :
x is limited} or {z € R :  ~ 0} are not allowed. Moreover, we can prove that there
do not exist subsets andI of R such that, for alk: in R, z is in L if and only if z is
limited, orz is in I if and only if z is infinitesimal.

B Some concepts of calculus revisited in NSA

Let us look to few concepts of calculus revisited in NSA.
a) The sequence, tends ta whenn goes to infinity:

Classical YVe>03IN Vn(n>N=|u, -1 <e).

NSA Vn (n large= u, ~1).

The NSA characterization is readxifis large then,, is close td, which is very close
to the intuitive idea of limit we want to formalize.

These concepts are equivalent only for standard sequences. Notice that the se-
quenceu,, = (—1)"e with ¢ infinitesimal, tends to 0 in NSA but not in the classical
sense. Conversely the sequenge= 1/(ne), with € # 0 infinitesimal, tends to 0 in
the classical sense but not in NSA. Of course, these examples for which the classical
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and NSA concepts are not equivalent, are not standard, since their definition make use
of the new conceptfinitesimal
b) The functionf is continuous at::

Classical Ve>03n>0 Vz(lz—zo <n=|f(z)— f(zo)| <e).

NSA Vo (x ~zg = f(x) ~ f(x)).

The NSA characterization is read:ifis close tar, then f(z) is close tof (o). Again
we must emphasize on the fact that the classical and NSA concepts are equivalent only
for standard functions. Notice that the functigtw) = O if x < 0, f(z) = ¢ with
e # 0 infinitesimal if z > 0, is continuous at 0 in NSA but not in the classical sense.
Conversely the functiorf(z) = /e, with € # 0 infinitesimal, is continuous at 0 in the
classical sense but not in NSA. With the aid of the concepts and notations introduced
in Definition 10 the discussion of continuity for functions of several variable, within
NSA, is exactly the same as above.

c) Leti = f(x) be a system of differential equations Bf, with d standard. Let
x(t, o) be the solution of initial conditior(0) = x¢. Assume thaff(£) = 0, that is
x = £ is an equilibrium. This equilibrium is stable (in the sense of Lyapunov) if:

Classical Ve>03n>0 Vo ([|lzo—&l <n=Vt>0]z(t,xo) —&|| <e).

NSA Vg (xo = & =Vt > 0x(t,x) ~ &)

The NSA characterization is read:aif is close tag, so isz(t, =), for everyt > 0.
Notice that the equilibriuny = (0, 0) of the differential system

i = y+—a2—yHz
§ = —z+(e—22—yy

with ¢ infinitesimal positive, is stable in the sense of NSA but not in the classical sense.
Indeed, the eigenvalues = ¢ + i of the linear part are of positive real part, so the
equilibrium is unstable. However, the circle of infinitesimal radidis+ y2 = ¢ is an
attracting limit cycle, so any solution starting closeStoemains close to it for every

t > 0. Conversely the equilibriurg = (0, 0) for the differential system

T = vy
y = -’

with ¢ infinitesimal, is stable in the classical sense but not in NSA. Indeed, gin¢e
222 is constant, this equilibrium is a center, so is stable in the classical sense. But the
solutionz(t) = sin(et), y(t) = € cos(et), with initial condition (0, €) ~ &, is not close
to ¢ fort = 7w /(2e).
d) Let us discuss noglobal asymptotic stabilitpf equilibria. The equilibriunt
is globally asymptotically stable (GAS) if:
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Classical Itis stable andr lim; 1o z(t,29) = &.

NSA If ¢ is limited andt ~ 400 thenx (¢, z¢) ~ &.

Notice that the equilibriung = 0 of the system differentiat = z(e — 2?) with ¢
infinitesimal positive, is GAS in the sense of NSA but not in the classical sense. Con-
versely the equilibriung = 0 for the differential systent = —ex with ¢ > 0 infinites-

imal, is GAS in the classical sense but not in NSA. Indedd,z() = o exp(—et) is

the solution. Thus:(1//g,z¢) = z¢ exp(—+/¢) is not infinitesimal ifz, is apprecia-

ble.
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