
Singular Perturbations Methods
in Control Theory

Claude Lobry Tewfik Sari

1 Introduction

Very often one encounters dynamical systems in which the derivatives of some of the
states are multiplied by a small positive parameter; that is, the scales for the dynam-
ics of the states are very diversified. When the small parameterε is multipying the
derivative as in system{

ẋ = f(t, x, z, ε), x(t0) = ξ(ε)
εż = g(t, x, z, ε), z(t0) = ζ(ε) (1)

the usual theory of continuous dependance of the solutions with respect to the param-
eters cannot be applied. The analysis of such systems is achieved with the aid of the
Singular Perturbation Theory. The purpose of Singular Perturbation Theory is to in-
vestigate the behaviour of solutions of (1) asε → 0 for 0 ≤ t ≤ T and also for
0 ≤ t < +∞.

This chapter is organized as follows. In Section 2 we recall Tikhonov’s theorem on
fast and slow systems, its extension to infinite time intervals, and Khalil’s theorem on
exponential stability of the origin of a fast and slow system. In Section 2.4 we define
the notion of practical stability in a system depending on a parameter and we show
that the extension of Tikhonov’s theorem to infinite time intervals can be reformulated
as a result of practical stability of the origin. In Section 3 we use the results of the
preceeding section to reduce the dimension of systems in the problem of feedback
stabilization. In Section 4 we discuss the peaking phenomenon in triangular systems
of the form

ẋ = f(x, y), ẏ = G(y, ε). (2)

Some states of the second equation may peak to very large values, before they rapidly
decay to zero. Such peaking solutions can destabilize the first equation. In Section 4.2
we introduce the concept ofinstantaneous stability, to measure the fast decay to zero of
the solutions of the second equation, and the concept ofuniform infinitesimal bounded-
ness, to measure the effects of peaking on the first equation. In Section 4.3 we motivate
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the case where the mappingg in the second equation depends also on thex variable.
This case arises in control problems where the feedback is computed, not on the state,
but on an estimation of the state given by an observer.

The singular perturbation model of a dynamical system is a state-space model (1) in
which the derivatives of some of the states are multiplied by asmallpositive parameter
ε. What means “small” for a scientist is usually well understood. For instance, in
population dynamics, the characteristic time of reproduction is small compare to the
effect of demographic pressure on natality rate. As another example we can say that the
dayly activity of a predator eating its prey is fast compare to its annual reproduction
[17]. What means “small” for a mathematician is somewhat different. In order to
guaranty the widely spread standard of mathematical rigor, mathematics have to be
written with respect to some formal langage in which proofs are unambigously written.

Classical analysis prohibits the use of a sentence like “ε is a small parameter”.
This is the reason why, in order to capture the idea thatε is a “small” parameter one
considers the whole family of differential equations (1) where the parameterε ranges
over an interval(0, ε0], ε0 > 0. The aim ofSingular Perturbation Theoryis to use the
limiting behaviour of the system, whenε goes to 0, to get an idea of what the system
looks like whenε is “small”.

The problem with classical singular perturbation theory [8, 14, 15, 32] lies in the
fact that its results are expressed in a rather abstract and sophisticated way. For this
reason the use of its results is not easy for non mathematically trained people and may
be subject to misinterpretations, even for mathematicians (see Lobry [18]).

Recently, Robinson [28] developped a new mathematical formalism, called Non
Standard Analysis (NSA) which is proved to be equivalent to the classical one — in the
sense that everything you formulate in the new formalism can be translated in the old
one and vice versa — in which the sentence “ε is an infinitesimal real number strictly
greater than 0” makes perfect sense. As a consequence the mathematical statement, in
the new formalism: “Let us consider system (1) withε an infinitesimal real number
strictly greater than 0” have the very natural interpretation: “withε a small parameter”,
where “small” has the intuitive meaning that every scientist understand.

The idea of using NSA in perturbation theory of differential equation goes back to
the seventies with the Reebian scholl (cf [23, 24, 26, 27] and the references therein).
It gave birth to the nonstandard perturbation theory of differential equations which has
become today a well-established tool in asymptotic theory (see the five-digits classifi-
cation 34E18 of the AMS 2000 Mathematics Subject Classification). To have an idea
of the rich literature on the subject, the reader is referred to [1, 5, 6, 7, 23, 29, 33]. In
this chapter we use the langage of NSA. For the convenience of the reader the results
are formulated in both classical terms and nonstandard terms. In the Appendix we give
a short description of NSA and we discuss the classical concepts in this context.

In this chapter we do not provide proofs of the presented results. For each result
we send the reader to a reference in the literature. For the sake of clarity we prefer
to discuss the “geometrical” meaning of the results and to illustrate them by simple
examples.
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2 Fast and slow systems

2.1 Tikhonov theory

System (1) is called afast and slow system. The vectorsx ∈ Rn andz ∈ Rm are its
slow and fast components. The mathematical tool used to deal with this different time
scales is Tikhonov’s theorem which permits to reduce the complexity of the system
through suitable approximations. If we go to thefast time, τ = (t− t0)/ε, system (1)
becomes {

x′ = εf(t0 + ετ, x, z, ε), x(0) = ξ(ε)
z′ = g(t0 + ετ, x, z, ε), z(0) = ζ(ε)

where the prime′ denotes the derivative with respect to timeτ . This system is a regular
perturbation of system{

x′ = 0, x(0) = ξ(0)
z′ = g(t0, x, z, 0), z(0) = ζ(0)

Hence thez component of any solution of system (1) varies very quickly according to
the equation

z′ = g(t0, ξ(0), z, 0), z(0) = ζ(0). (3)

This equation is called theboundary layer equation. It consists simply in equation

z′ = g(t, x, z, 0), (4)

wheret = t0 andx = ξ(0) are frozen at their initial values. A solution of (4) may
behave in one of several ways : it may be unbounded asτ →∞, it may tend toward an
equilibrium point, or it may approach a more complex attractor. Obviously, if the fast
equation has multiple stable equilibria, the asymptotic behaviour of a solution is deter-
mined by its initial value. Assume that the second case occurs, that is, the solutions of
(4) tend toward an equilibriumh(t, x), wherez = h(t, x) is a root of equation

g(t, x, z, 0) = 0. (5)

The manifoldL defined by equation (5) is called theslow manifold. The solutions
of (1) have a fast transition (boundary layer) from(ξ(0), ζ(0)) to (ξ(0), h(t0, ξ(0))),
namely to a point of the slow manifoldL. Then a slow motion takes place on the slow
manifold, according to the equation

ẋ = f(t, x, h(t, x), 0). (6)

This equation is calledthe reduced problem. It is obtained by taking the first equation
of (1) subject to the constraint (5).

This description of system (1) was given by Tikhonov [31], under suitable hy-
pothesies (see also [8, 14, 15, 20, 21, 32]). The crucial stability property we need
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for the boundary layer system (4) is the asymptotic stability of its equilibrium point
z = h(t, x), uniformly in the parameterst andx. The following definition states this
property precisely.

Definition 1 The equilibriumz = h(t, x) of system (4) is

1. stable(in the sense of Liapunov) if for everyµ > 0 there existsη > 0 (depending
on (t, x)), with the property that any solutionz(τ) of (4) for which
‖z(0)− h(t, x)‖ < η, can be continued for allτ > 0 and satisfies the inequality
‖z(τ)− h(t, x)‖ < µ.

2. attractiveif it admits a basin of attraction, that is, a neighborhoodV (depending
on (t, x)), with the property that any solutionz(τ) of (4) for whichz(0) ∈ V,
can be continued for allτ > 0 and satisfieslimτ→+∞ z(τ) = h(t, x).

3. asymptotically stableif it is stable and attractive.

4. asymptotically stable, uniformly in (t, x) ∈ [t0, t1]×X, if for everyµ > 0 there
existsη > 0 with the property that for any(t, x) ∈ [t0, t1] × X any solution
z(τ) of (4) for which‖z(0) − h(t, x)‖ < η, can be continued for allτ > 0 and
satisfies the inequality‖z(τ)− h(t, x)‖ < µ andlimτ→+∞ z(τ) = h(t, x).

We say that the basin of attraction of the equilibrium pointz = h(t, x) is uniform in
(t, x) ∈ [t0, t1] × X, if there existsa > 0, such that for all(t, x) ∈ [t0, t1] × X, the
ball of centerh(t, x) and radiusa

B = {z ∈ Rm : ‖z − h(t, x)‖ < a}

is a basin of attraction ofh(t, x).

If z = h(t, x) is asymptotically stable, uniformly in(t, x) ∈ [t0, t1]×X, then the
basin of attraction is uniform. Conversely, ifX is compact, then the asymptotic sta-
blility of z = h(t, x) together with the existence of a uniform basin of attraction imply
that the asymptotic stability is uniform in(t, x) ∈ [t0, t1] × X (see [11, 20]). Hence,
to formulate Tikhonov’s theorem under the hypothesis that the basin of attraction is
uniform as done in the present lecture or in [8, 10] is the same as formulating it under
the hypothesis that the asymptotic stability is uniform as done in [15, 31, 32]. There
are other versions of this theorem which use slightly different technical assumptions,
for example [14].

Verification of uniform asymptotic stability of the equilibrium point may be done
either by linearization or via search of a Lyapunov function. ForC1 systems, let

A =
[
∂g

∂z
(t, x, z, 0)|z=h(t,x)

]
be the Jacobian matrix evaluated at the equilibrium pointz = h(t, x). It can be shown
that if there exists a positive constantc such that for all(t, x) ∈ [t0, t1] × X, any
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eigenvalueλ of the Jacobian matrixA satisfiesReλ ≤ −c, then the equilibrium is
asymptotically stable uniformly in(t, x) ∈ [t0, t1]×X.

The discussion of asymptotic stability in NSA goes as follows.

Proposition 1 Assume thatg and h are standard. The equilibriumz = h(t, x) of
system (4) is

1. stable (in the sense of Liapunov) if any solutionz(τ) of (4) for which
z(0) ' h(t, x), can be continued for allτ > 0 and satisfiesz(τ) ' h(t, x).

2. attractiveif for all standard(t, x) it admits a standard basin of attraction, that
is, a standard neighborhoodV (depending on(t, x)), with the property that any
solutionz(τ) of (4) for whichz(0) ∈ V is standard, can be continued for all
τ > 0 and satisfiesz(τ) ' h(t, x) for all τ ' +∞.

3. asymptotically stableif for all standard(t, x) there exists a standard neighbor-
hoodV (depending on(t, x)), with the property that any solutionz(τ) of (4) for
whichz(0) ∈ V, can be continued for allτ > 0 and satisfiesz(τ) ' h(t, x) for
all τ ' +∞.

4. asymptotically stable, uniformly in (t, x) ∈ [t0, t1]×X, if there exists a standard
a > 0 such that for all(t, x) ∈ [t0, t1] × X any solutionz(τ) of (4) for which
z(0) is in the ball of centerh(t, x) and radiusa, can be continued for allτ > 0
and satisfiesz(τ) ' h(t, x) for all τ ' +∞.

Notice that if we only require that for all standardz(0) ∈ V, z(τ) ' h(t, x) for
all τ ' +∞, then we obtain the attractivity of the equilibriumz = h(t, x). The
asymptotic stability of this equilibrium is obtained if we require that for allz(0) ∈ V,
standard or not standard,z(τ) ' h(t, x) for all τ ' +∞. In fact a timeT (z(0)) such
that z(τ) ' h(t, x) for all τ > T (z(0)) can grow unboundedly even ifz(0) ranges
over a compact neighborhood ofh(t, x). This occurs for instance ifh(t, x) is attractive
but not stable as in the classical example of Vinograd (see [9] Section 40).

Theorem 1 [20] Consider the singular perturbation problem (1) and letz = h(t, x)
be an isolated root of (5). Assume that there exist positive constantst1 > t0, r andε0,
and a compact domainX ⊂ Rn such that the following conditions are satisfied for all

t0 ≤ t ≤ t1, x ∈ X, ‖z − h(t, x)‖ ≤ r, 0 < ε ≤ ε0

• The functionsf(t, x, z, ε), g(t, x, z, ε) andh(t, x) are continuous, and the initial
dataξ(ε) andζ(ε) are continuous.

• The reduced problem (6) has a unique solutionx0(t) with initial condition
x(t0) = ξ(0), defined on[t0, t1] andx0(t) ∈ X for all t ∈ [t0, t1].

• The boundary layer equation (4) has the uniqueness of the solutions with pre-
scribed initial conditions. Let̃z(τ) be the solution of equation (3).
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• The equilibrium pointz = h(t, x) of this boundary layer equation is asymptoti-
cally stable uniformly in(t, x) ∈ [t0, t1]×X.

• The initial conditionζ(0) belongs to the basin of attraction ofh(t0, ξ(0)).

Then for everyδ > 0 there exists a positive constantε∗ such that for all0 < ε < ε∗,
every solution(x(t), z(t)) of the singular perturbation problem (1) is defined at least
on [t0, t1], and satisfies

‖x(t)− x0(t)‖ ≤ δ

‖z(t)− z̃

(
t− t0

ε

)
− h(t, x0(t)) + h(t0, ξ(0))‖ ≤ δ

for all t0 ≤ t ≤ t1.

When the singular perturbation problem (1) has a unique solution, we denote it as
(x(t, ε), z(t, ε)). We have

lim
ε→0

x(t, ε) = x0(t), for t0 ≤ t ≤ t1. (7)

We have also
lim
ε→0

z(t, ε) = h(t, x0(t)), for t0 < t ≤ t1, (8)

but the limit holds only fort > t0, since there is a boundary layer att = t0, for the
z-component. Indeed, we have

lim
ε→0

(
z(t, ε)− z̃

(
t− t0

ε

))
= h(t, x0(t))− h(t0, ξ(0)), for t0 ≤ t ≤ t1.

2.2 Singular perturbations on the infinite interval

Theorem 1 is valid only over compact time intervals. The estimates (7) and (8) do
not hold in general for allt ≥ t0. This can be done if some additional conditions
are added to ensure asymptotic stability of the solutions of the reduced problem (see
[10, 14, 15, 20]). The following theorem extends Theorem 1 to the infinite-time interval
(see also [10, 14, 15]).

Theorem 2 [20] Consider the singular perturbation problem (1) and letz = h(t, x)
be an isolated root of (5). Assume that there exist positive constantsr andε0, and a
compact domainX ⊂ Rn such that the following conditions are satisfied for all

t0 ≤ t < +∞, x ∈ X, ‖z − h(t, x)‖ ≤ r, 0 < ε ≤ ε0

• The functionsf(t, x, z, ε), g(t, x, z, ε) andh(t, x) are continuous, and the initial
dataξ(ε) andζ(ε) are continuous.

• f(t, 0, 0, 0) = 0, g(t, 0, 0, 0) = 0 andh(t, 0) = 0
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• the origin of the reduced problem (6) is asymptotically stable and the initial
conditionξ(0) belongs to its basin of attraction. Letx0(t) be the solution of
the reduced system (6) with initial conditionx0(t0) = ξ(0). It is defined for all
t0 ≤ t < +∞ and we havelimt→+∞ x0(t) = 0

• The boundary layer equation (4) has the uniqueness of the solutions with pre-
scribed initial conditions. Let̃z(τ) be the solution of equation (3).

• The equilibrium pointz = h(t, x) of this boundary layer equation is asymptoti-
cally stable uniformly in(t, x) ∈ [t0, t1]×X.

• The initial conditionζ(0) belongs to the basin of attraction ofh(t0, ξ(0)).

Then for everyδ > 0 there exists a positive constantε∗ such that for all0 < ε < ε∗,
every solution(x(t), z(t)) of the singular perturbation problem (1) is defined for all
t ≥ t0, and satisfies

‖x(t)− x0(t)‖ ≤ δ

‖z(t)− z̃

(
t− t0

ε

)
− h(t, x0(t)) + h(t0, ξ(0))‖ ≤ δ

for all t ≥ t0.

Assume that the singular perturbation problem (1) has a unique solution, denoted by
(x(t, ε), z(t, ε)). Sincex0(t) is defined for allt0≤ t<+∞ and satisfies lim

t→+∞
x0(t)=0

we have
lim

ε→0,t→+∞
x(t, ε) = 0, lim

ε→0,t→+∞
z(t, ε) = 0.

This last property does not mean that the origin of the full system (1) is asymptotically
stable. It means only that it ispractically asymptotically stable(see Section 2.4). If
we want to use the Singular Perturbation Theory for the purpose of stabilization then
we need a stronger result. This is done, in the following section, if some additional
conditions are added to ensure exponential stability of the solutions of the reduced
problem and the fast equation.

2.3 Stability

Definition 2 The equilibriumz = h(t, x) of the boundary layer system (4) is expo-
nentially stable, uniformly in(t, x) ∈ [t0, t1] × X, if there exist positive constants
k, γ, and r such that for all(t, x) ∈ [t0, t1] × X, any solution of (4) for which
‖z(0)− h(t, x)‖ ≤ r satisfies

‖z(τ)‖ ≤ k‖z(0)‖e−γτ for all τ ≥ 0.

We have the following result of conceptual importance, whose proof can be found
in [14], Section 9.4 or [15], Section 7.5. Similar results can also be obtained using the
Geometric Theory of Singular Perturbations (see [12], Section B.3).
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Theorem 3 Consider the singular perturbation problem (1). Assume that

f(t, 0, 0, ε) = 0 andg(t, 0, 0, ε) = 0.

Letz = h(t, x) be an isolated root of (5) such thath(t, 0) = 0. Assume that there exist
positive constantsr andε0, and a compact domainX ⊂ Rn such that the following
conditions are satisfied for all

t0 ≤ t < +∞, x ∈ X, ‖z − h(t, x)‖ ≤ r, 0 < ε ≤ ε0

• The functionsf(t, x, z, ε), g(t, x, z, ε) andh(t, x), are C1, and the initial data
ξ(ε) andζ(ε) are continuous.

• The origin of the reduced problem (6) is exponentially stable.

• The equilibrium pointz = h(t, x) of the boundary layer equation is exponen-
tially stable uniformly in(t, x) ∈ [t0, t1]×X.

Then there existsε∗ > 0 such that for all0 < ε < ε∗, the origin of (1) is exponentially
stable.

Notice that exponential stability is necessary for this kind of result. Indeed it is well
known that asymptotic stability is not robust to arbitrary small perturbations (see [13],
Section 10.2). This point is illustrated by the following example.

Example 1 Consider the singularly perturbed system

ẋ = −x3 + εx
εż = −z

The reduced system iṡx = −x3. Its origin is asymptotically stable but not exponen-
tially stable. The origin of the full system is unstable despite the fact that the origin of
the boundary layer equationz′ = −z is exponentially stable.

It is important to notice that the origin of the full system is asymptotically stable
only for small values ofε. This point is illustrated by the following example.

Example 2 Consider the singularly perturbed system ẋ = −z2

εż1 = −z1 + x
εż2 = −z2 + z1

(9)

The boundary layer equation is

z′1 = −z1 + x, z′2 = −z2 + z1
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It has(z1 = x, z2 = x) as an exponentially stable equilibrium uniformly inx. The
corresponding reduced problem isẋ = −x. According to Theorem3 the origin of
system (9) is exponentially stable for small values ofε. Since this system is linear,
elementary computations of the eigenvalues show that the origin is exponentially stable
if ε < 2 and unstable ifε > 2.

It is important to notice that the origin of the full system is not in general globally
asymptotically stable (GAS) even if the exponential stability of the boundary layer
equation and the reduced problem are global, andε is small enough. This point is
illustrated by the following example.

Example 3 Consider the system

ẋ = −x + x2z, εż = −z. (10)

The origin of the boundary layer equationz′ = −z is globally exponentially stable and
the origin of the corresponding reduced problemẋ = −x is also globally exponentially
stable. According to Theorem3 the origin of system (10) is exponentially stable for
small values ofε. In fact the origin is exponentially stable for allε but the stability is
not global. Since

d

dt
(xz) = xz(xz − 1− 1/ε),

we see that the hyperbolaxz = 1 + 1/ε consists of two trajectories. Thus the origin
of (10) is not GAS. Tikhonov’s theorem asserts that thex-component of the solution
x(t, ε) of (10) with initial condition(x0, z0) is such that, for allt ≥ 0

lim
ε→0

x(t, ε) = x0(t) := x0e−t (11)

wherex0(t) is the solution of the reduced model, with initial conditionx0. By explicit
computations, it is easy to show that the basin of attraction of the origin of (10) is the
set{xz < 1 + 1/ε}.

2.4 Practical stability

In this section we do not assume thatf(t, 0, 0, ε) = 0 andg(t, 0, 0, ε) = 0, for all t,
so that the origin is not an equilibrium of system (1). We begin with the definition of
practical stability in a system

ẋ = f(x, ε) (12)

depending on a parameterε, without explicitly asking for the separation of variables
into fast and slow variables as in system (1).

Definition 3 The originx = 0 of system (12) is practically asymptotically stable when
ε → 0 if there existsA > 0 such that for allr > 0 there existε0 > 0 and T > 0
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satisfying that for all0 < ε < ε0, any solution of (12) starting in the ball of radiusA
is at timeT in the ball of radiusr and never leave this ball. If this property holds for
all A > 0 then the origin is said to be practically semiglobally asymptotically stable
(PSGAS) whenε → 0.

Example 4 In the following systems, wherex is real, the origin is PSGAS whenε → 0.

• ẋ = x(εx− 1). The origin is stable but not GAS.

• ẋ = ε− x. The origin is not an equilibrium.

• ẋ = x2(ε− x). The origin is unstable.

The notion of practical stability has a long history in the theory of differential equa-
tions [16]. Our notion of practical stability in a system depending on a parameter
is strongly related to the notion of practical stabilizability introduced by Byrnes and
Isidori [2]. There is a beautiful nonstandard characterization of practical stability for
standard systems:

Proposition 2 If f is standard then the origin of (12) is PSGAS whenε → 0 if and only
if for any infinitesimalε, any solution of (12) with limited initial condition is infinitely
close to the origin for all unlimited time.

Let us formulate a new practical stability result derived from Tikhonov theory.

Theorem 4 [20, 21] Consider the singularly perturbed system (1). Assume that

f(t, 0, 0, 0) = 0 andg(t, 0, 0, 0) = 0.

Letz = h(t, x) be an isolated root of (5) such thath(t, 0) = 0. We assume that

1. the equilibriumz = h(t, x) of the boundary layer equation (4) is asymptotically
stable uniformly in(t, x).

2. the origin of the corresponding reduced model (6) is asymptotically stable

The the origin of system (1) is practically asymptotically stable whenε → 0. If in
addition the equilibriumz = h(t, x) of the boundary layer equation is GAS and the
origin of the corresponding reduced model is GAS then the origin of system (1) is
PSGAS.

3 Feedback Stabilization

3.1 Stabilization

Consider the feedback stabilization of the system on Figure 1

ẋ = f(x, z),
εż = g(z, u). (13)
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- ẋ = f(x, z) -

εż = g(z, u) � u

x

z

Figure 1: The system has an open-loop equilibrium point at the origin. The control
task is to design a state feedback control law to stabilize the origin. Thez dynamics
are much faster than thex dynamics.

wheref(0, 0) = 0 andg(0, 0) = 0. The z dynamics is much faster than thex dy-
namics. Suppose that equationg(z, u) = 0 has an isolated rootz = h(u), such that
h(0) = 0, which is an exponentially stable equilibrium of the boundary-layer equation

z′ = g(z, u), (14)

uniformly in u. A procedure to design a state feedback control law to stabilize the ori-
gin is given below. We can simplify the design problem, by neglecting thez dynamics
and substitutingz = h(u) in thex equation. The reduced-order model is

ẋ = f(x, h(u))

We use this model to design a state feedback control lawu = γ(y) such that the origin
of the closed-loop model

ẋ = f(x, h(γ(x))) (15)

is exponentially stable (see Figure 2). We shall refer to this model as the reduced
closed-loop system. Suppose we have designed such a control law. Will this control
stabilize the actual system with thez dynamics included ? When the control is applied
to the actual system, the closed-loop system is

ẋ = f(x, z),
εż = g(z, γ(x)) (16)

We have the singular perturbation problem of Figure 2, where the full singularly per-
turbed model is the actual closed-loop system and the reduced model is the reduced
closed-loop system. By design, the origin of the reduced model is exponentially sta-
ble. Since the equilibriumz = h(γ(x)) is an exponentially stable equilibrium of the
boundary-layer equation

z′ = g(z, γ(x)),
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- ẋ = f(x, z)

z = h(u)&%
'$

� u = γ(x)

x

z

- ẋ = f(x, z)

εż = g(z, u) � u = γ(x)

x

z

Figure 2: The controlu = γ(x) which stabilizes the reduced problem will stabilize the
full problem for smallε

uniformly in x, by Theorem 3, the origin of the actual closed-loop system is exponen-
tially stable for sufficiently smallε. This result legitimizes the procedure of simplifi-
cation which consists in neglecting the fast dynamics. This result is summarized in the
following theorem.

Theorem 5 Assume thatf(0, 0) = 0 andg(0, 0) = 0. Letz = h(u) be an isolated root
of equationg(z, u) = 0 such thath(0) = 0. Assume thatz = h(u) is an exponentially
stable equilibrium of the boundary-layer equation (14) uniformly inu. Assume that we
can design a control lawu = γ(y) such that the origin of the reduced model (15) is
exponentially stable. Then there existsε∗ > 0 such that for all0 < ε < ε∗, the origin
of the dynamical feedback system (16) is exponentially stable.

Now, we do not assume thatz = h(u) is an exponentially stable equilibrium uni-
formly in u of the boundary layer equation (14). Since we have a controlu to our
disposal, we can design it so that this root becomes exponentially stable. A procedure
to design a composite state feedback control law to stabilize the origin is given below.

Step 1 Design a controlu = γ(y) such that the origin of the reduced system (15) is
exponentially stable uniformly inx.

Step 2 With the knowledge ofγ design a control lawu = Γ(x, z), such that
Γ(x, h(γ(x))) = 0, which stabilizises the fast equation

z′ = g(z, γ(x) + u)



SINGULAR PERTURBATION METHODS 163

at z = h(γ(x)), that is to say the equilibrium pointz = h(γ(x)) of the closed-
loop system

z′ = g(z, γ(x) + Γ(x, z)) (17)

is exponentially stable uniformly inx (see Figure 3).

Step 3 Then the composite feedback control

u = γ(x) + Γ(x, z))

will stabilizise (13), that is, for smallε, the origin is an exponentially stable
equilibrium of the closed-loop system

ẋ = f(x, z),
εż = g(z, γ(x) + Γ(x, z)) (18)

This result is summarized in the following theorem.

Theorem 6 Assume thatf(0, 0) = 0 andg(0, 0) = 0. Let z = h(u) be an isolated
root of equationg(z, u) = 0 such thath(0) = 0. Assume that we can design a control
law u = γ(y) such that the origin of the reduced model (15) is exponentially stable.
Assume that we can design a control law such that the equilibriumz = h(γ(x)) of
system (17) is exponentially stable uniformly inx. Then there existsε∗ > 0 such that
for all 0 < ε < ε∗, the origin of the dynamical feedback system (18) is exponentially
stable.

3.2 Practical Stabilization

Asymptotic stability alone, instead of exponential stability, may not be enough and
stronger technical conditions are needed (see [15], Section 7.6). Asymptotic stability
is enough to guarantee practical stability. Consider again the system (13). Suppose that
z = h(u) is an asymptotically stable equilibrium of the boundary-layer equation (14)
uniformly in u. Suppose that we can design a controlu = γ(y) such that the origin of
the closed-loop model (15) is asymptotically stable. By Theorem 4, the origin of the
actual closed-loop system (16) is practically asymptotically stable whenε goes to 0.
This result is summarized in the following theorem.

Theorem 7 Assume thatf(0, 0) = 0 andg(0, 0) = 0. Letz = h(u) be an isolated root
of equationg(z, u) = 0 such thath(0) = 0. Assume thatz = h(u) is an asymptotically
stable equilibrium of the boundary-layer equation (14) uniformly inu. Assume that we
can design a control lawu = γ(y) such that the origin of the reduced model (15)
is asymptotically stable. Then the origin of the dynamical feedback system (16) is
practically asymptotically stable whenε goes to 0.
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- ẋ = f(x, z)
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Figure 3: The composite controlu = γ(x) + Γ(x, z) will stabilize the full problem for
smallε

Now, we do not assume thatz = h(u) is an asymptotically stable equilibrium uni-
formly in u of the boundary layer equation (14). Design a controlu = γ(y) such that
the origin of the reduced system (15) is asymptotically stable. With the knowledge of
γ design a control lawu = Γ(x, z) such that the equilibrium pointz = h(γ(x)) of the
closed-loop system (17) is asymptotically stable uniformly inx. Then the composite
feedback control

u = γ(x) + Γ(x, z))

will stabilizise practically (13) for smallε. This result is summarized in the following
theorem.

Theorem 8 Assume thatf(0, 0) = 0 andg(0, 0) = 0. Let z = h(u) be an isolated
root of equationg(z, u) = 0 such thath(0) = 0. Assume that we can design a control
law u = γ(y) such that the origin of the reduced model (15) is asymptotically stable.
Assume that we can design a control law such that the equilibriumz = h(γ(x)) of
system (17) is asymptotically stable uniformly inx. Then the origin of the dynamical
feedback system (18) is practically asymptotically stable whenε goes to 0.

4 The Peaking Phenomenon

4.1 The limitations of Tikhonov’s theory

In this section, we are concerned with the asymptotic behavior, when the parameter
ε → 0, of the nonlinear triangular system (2), where˙ = d/dt, x ∈ Rn, y ∈ Rm,
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ε ∈ (0, ε0] and the mappings

f : Rn × Rm → Rn and G : Rm × (0, ε0] → Rm

are of classC1. Notice that the limit ofG is not assumed to be defined whenε → 0, so
that system (2) is a singular perturbation. We can think of the first equation in system
(2) as a controlled system taking its inputs from the second equation in system (2). The
zero-input systemis the system

ẋ = f(x, 0). (19)

We assume that

H1 : system (19) has 0 as a GAS equilibrium.

The condition H1 implies that the solutions of (19) tend to 0 ast → +∞. Our aim is
to state conditions onf andG such that the solutions of system (2) tend to zero when
ε → 0 andt → +∞.

Intuitively, if we require that the solutions ofẏ = G(y, ε) tend to 0 arbitrarily fast
in t whenε → 0, then, the idea that the solutions of system (2) ought to tend to zero
appears plausible for the following heuristics. The second equation in system (2) drives
any initial condition very fast int near the manifoldy = 0, where the zero-input system
takes over and drivesx to zero. Due to the peaking phenomenon, this idea fails. Of
course, some solutions of the second equation in system (2) may peak to very large
values before they decay to zero. The interaction of this peaking with the nonlinear
growth in the first equation in system (2) could destabilize system (2). In general the
origin of system (2) is not GAS, even if there is no peaking. The best result one can
expect for system (2) is that its origin is PSGAS whenε → 0.

Our first objective is to give a precise meaning to the hypothesis that the solution
of the second equation in (2) tend to 0 arbitrarily fast int whenε → +∞. For this
purpose we shall useInternal Set Theory(IST).

In NSA, instead of considering a family of systems (2) depending on the param-
eterε and dealing with its asymptotic propreties whenε → 0, we consider just one
(nonstandard) system

ẋ = f(x, y), ẏ = g(y), (20)

whereg(y) plays the role ofG(y, ε) with ε > 0 a fixed infinitesimal real numberand
we look to the (external) properties of system (20).

We introduce the concepts ofinstantaneous stability, which quantify the fast de-
cay to zero of the solutions of the second equation in system (2) or (20) as well as the
concepts ofuniform infinitesimal boundedness, which measure the effects of the solu-
tions of the second equation in system (2) or (20) on the first equation in this system.
All these concepts are defined in both standard and nonstandard terms. The notion of
instantaneous stabilizabiltywas previously defined (see [4]) for linear systems within
the IST framework. Our concept of instantaneous stability for a general system is a
straightforward extension of their definition.
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Let us consider the particular case where system (2) is of the form

ẋ = f(x, y), ẏ = G(y)/ε, (21)

whereG : Rm → Rm is of classC1. Assume that:

H2 : the vector fieldy → G(y) has 0 as a GAS equilibrium.

System (21) is very well understood in singular perturbation theory. The main tool is
Tikhonov’s theorem (cf. Section 2.2 and [10, 14, 20]) on the infinite interval of time.

Theorem 9 (Tikhonov) Assume thatf and G are standard,ε > 0 is infinitesimal
and H2 holds. Then for all limitedx0 and y0, thex-componentx(t) of the solution
of system (21) with initial condition(x0, y0) satisfiesx(t) ' x0(t) as long ast and
x0(t) are limited, wherex0(t) is the solution of the zero-input system (19), with initial
conditionx0. Moreover, if H1 also holds thenx(t) ' x0(t) for all t ≥ 0.

Theorem 10 Assume thatf and G are standard,ε > 0 is infinitesimal, and H1 and
H2 hold. Then for all limitedx0 andy0, the solution(x(t), y(t)) of (21) with initial
condition(x0, y0) satisfiesx(t) ' 0 andy(t) ' 0 for all positive unlimitedt, that is to
say, it is PSGAS whenε → 0.

Theorem 11 Assume that H1 and H2 hold, then for all(x0, y0), the solution
(x(t, ε), y(t, ε)) of (21) with initial condition(x0, y0) tends to 0 ast → +∞ and
ε → 0. For everyA > 0, the convergence is uniform with respect tox0 and y0 for
‖x0‖ ≤ A and‖y0‖ ≤ A.

Let us consider now the particular case where system (2) is of the form

ẋ = f(x, y), ẏ = G(ε)y, (22)

whereG(ε) is a square matrix of orderm. Assume that

H3 : the real parts of the eigenvalues ofG(ε) tend to−∞ whenε → 0.

System (22) was considered in automatic control literature. In this context the second
equation in system (22) is understood as a “high gain” dynamic feedback [30]. More
precisely, we start with a state feedback-partially linear system of the form

ẋ = f(x, y), ẏ = Ay + Bu,

where the pair(A,B) is controllable. The second equation can be easily stabilized
by u = Ky, whereK is designed such that the matrixG := A + BK is Hurwitz.
Asymptotic stability of the origin of the full closed-loop system

ẋ = f(x, y) ẏ = Gy (23)
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will now follow from assumption H1 and the concept ofinput to state stability(see
[14], p. 548). What about global stabilization ? If the linear feedback controlu = Ky
is designed to assign the eigenvalues ofG far to the left in the complex plane so that the
solutions ofẏ = Gy decay to zero arbitrarily fast, one might think that the origin of the
triangular system (23) can be GAS. It turns out that such a strategy may fail and (22) is
not reductible to Tikhonov’s theorem because of the so called “peaking phenomenon”.
The following example of Sussmann and Kokotovic (cf. [30] Example 1.1) shows a
system of type (22) such that the solutiony(t, ε) becomes unbounded whenε → 0,
even if its decay to zero is arbitrarily fast. In that case, the origin of (22) is not GAS.
Even worse, for some initial conditions, the solution escapes to infinity in finite time.

Example 5 Consider the three dimensional system

ẋ = (1 + y2)ϕ(x), ẏ = G(ε)y, (24)

whereϕ(x) = −x3/2 and

G(ε) =
(

0 1
−1/ε2 −2/ε

)
.

The condition H1 holds. Since both eigenvalues ofG(ε) are equal to−1/ε, condition
H3 is also satisfied. The exponential matrix

etG(ε) =
(

1 + t/ε t
−t/ε2 1− t/ε

)
e−t/ε (25)

shows that asε → 0, the solutiony(t, ε) = etG(ε)y0 will decay to zero arbitrarily fast.
The component(−t/ε2)e−t/ε of (25) reaches the value−1/(εe) at t = ε. Then some
solutions have a transient behaviour with a peak of order1/ε before they rapidly decay
to 0. This phenomenon is known as thepeaking phenomenon. The interaction of this
peaking with the nonlinear growth in the first equation in system (24) could destabilize
the system. Lety0 = (y10, y20), then we have

x(t, ε) =
x0√

1 + x2
0

[
t− y10 + (y10(t/ε + 1) + y20t)e−t/ε

] .

If x2
0y10 > 1 the solution will have a finite escape timete > 0 and te tends to zero

whenε → 0. For ε large enough, the solutions are attracted to 0 as soon asx2
0y10 < 1

and for all t > 0 we have

lim
ε→0

x(t, ε) = x0(t) :=
x∗0√

1 + x∗20 t
. (26)

Here,x0(t) is the solution of the zero-input systemẋ = −x3/2, with initial condition
x∗0 = x0/

√
1− x2

0y10. Since the limit (26) does not hold fort = 0, there is a bound-
ary layer at t = 0 which quickly drives the statex(t) from x0 to x∗0. The peaking
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phenomenon explains both this boundary layer for the solutions attracted to 0 and the
destabilizing effect of the second equation in system (24) on the first equation in this
system.

Example 6 If ϕ(x) = −x in (24) then the origin is GAS in spite of peaking. However,
the solutions still have a boundary layer att = 0. Since

x(t, ε) = x0ey10−t−(y10(t/ε+1)+y20t)e−t/ε

we see that, all the solutions are attracted to 0 and for allt > 0 we have

lim
ε→0

x(t, ε) = x0(t) := x∗0e
−t. (27)

Here, x0(t) is the solution of the zero-input systeṁx = −x, with initial condition
x∗0 = x0ey10 . The boundary layer att = 0 quickly drives the statex(t) fromx0 to x∗0.

The limit (11) was obtained from Tikhonov’s theorem. The limits (26) and (27)
were obtained by direct computation, because Tikhonov’s theorem does not apply to
Examples 5 and 6.

4.2 Instantaneous Stability and Uniform Infinitesimal Bounded-
ness

In the previous particular cases (21) and (22) of system (20), the fast attractivity of the
origin was guaranteed by the special form of the second equation in the system and
by conditions H2 or H3. In the general case, there is no such criteria and we must
introduce fast attractivity as a hypothesis. For this purpose, we need the following
definitions.

Definition 4 A functiont 7→ u(t) is said to be an impulse ifu(t) ' 0, for all positive
non infinitesimalt.

Definition 5 The origin of systeṁy = g(y) is instantaneously stable (IS) if for every
limitedy0, the functiont 7→ yg(t, y0) is an impulse.

Example 7 If ε > 0 is infinitesimal, then the origin of the second equation in system
(24), considered in Example 5, is IS.

The effects of any eventual peaking of the solutions of the second equation in sys-
tem (20) on the first equation in this system must be controlled. Thus, we need a
hypothesis on the behaviour of thex-component of the solutions of (20) during the
very short time where the peaking can destabilize the system. For this purpose, we
need the following definition.
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Definition 6 The system (20) is uniformly infinitesimally bounded (UIB) if for all lim-
itedx0 andy0 and for all positive infinitesimalt, thex-component

x(t) = x(f,g)(t, (x0, y0))

of the solution of (20) with initial condition(x0, y0) is limited.

We consider the condition below :

H4 : system (20) is UIB and the origin of systeṁy = g(y) is IS.

Theorem 12 [19] Assume thatf is standard and H4 holds. Then for all limitedx0

and y0, there exists a limitedx∗0 such that thex-componentx(t) of the solution of
(20) with initial condition(x0, y0) satisfiesx(t) ' x0(t), as long asx0(t) is limited
andt is appreciable positive, wherex0(t) is the solution of the zero-input system (19),
with initial condition x∗0. Moreover, if H1 also holds thenx(t) ' x0(t) for all non
infinitesimal positivet.

This result shows that a solution of system (20) starting from a limited point(x0, y0)
is approximated by a solution of the zero-input system (19) starting from a limited point
x∗0. It is a Tikhonov-like result (compare with Theorem 9). In Tikhonov’s case we had
x∗0 ' x0. However in the general case, due to the eventual peaking of the solutions of
the second equation in system (20),x∗0 6' x0 and there is a boundary layer att = 0.

Theorem 13 [19] Assume thatf is standard, and that H1 and H4 hold. Then the
origin of system (20) is PSGAS whenε → 0.

We introduced the nonstandard concepts of IS and UIB for system (20). Let us give
their standard formulation for the system (2) depending on the parameterε.

Definition 7 The origin of systeṁy = G(y, ε) is IS whenε → 0, if for everyδ > 0,
A > 0 and t0 > 0, there existsε0 > 0 such that whenever an initial conditiony0

satisfies‖y0‖ ≤ A, it follows that‖yG(t, y0, ε)‖ < δ for all t ≥ t0 and allε < ε0.

Definition 8 The system (2) is UIB whenε → 0, if for everyA > 0, there existB > 0,
t0 > 0 andε0 > 0 such that whenever an initial condition(x0, y0) satisfies‖x0‖ ≤ A
and‖y0‖ ≤ A, it follows that‖x(f,G)(t, (x0, y0), ε)‖ ≤ B for all t ∈ [0, t0] and all
ε < ε0.

We consider the condition below

H5 : the origin of systeṁy = G(y, ε) is IS whenε → 0, and system (2) is UIB when
ε → 0.

Theorem 14 [19] Assume that H1 and H5 hold. Then the origin of system (2) PSGAS
whenε → 0.
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4.3 Further developments

Thus far, we considered only triangular systems, in order to focus on the new concepts
of IS and UIB without being burdened by technicalities. The second equation does not
contain the first variable and the behavior ofy does not depend onx. There are many
applications for this particular case. There are also more realistic problems where the
second equation in system (20) depends onx also

ẋ = f(x, y), ẏ = g(x, y), (28)

and the stability of system (28) is investigated under condition H1 and the assumption
that the origin of the second equation in (28) is IS in some sense to be precised.

For instance, consider the “high gain” observer problem which is well known in
automatic control. Let us begin with the linear case which is well understood. We
consider the system

ẋ = Ax + Bu, y = Cx, (29)

with the usual assumptions of controllability of the pair(A,B) and observability of the
pair (A,C). System (29) can be stabilized byu = Rx whereR is designed such that
the matrixA + BR is Hurwitz. Consider now the Luenberger observer

˙̂x = Ax̂ + Bu + KC(x̂− x).

The error between the statex(t) and its observation̂x(t) is y = x̂−x andy is solution
of the differential equation

ẏ = (A + KC)y. (30)

If K is taken such that the matrixG := A + KC is Hurwitz, then the error tends to 0.
Moreover, if we assign the eigenvalues ofG far to the left in the complex plane, then
the origin of system (30) is IS.

Consider now the case where the feedback is based on the estimation given by the
Luenberger observer. The full system is

ẋ = Ax + BRx̂, ˙̂x = Ax̂ + BRx̂ + KC(x̂− x),

which can be rewritten using the variablesx andy as

ẋ = (A + BR)x + BRy, ẏ = (A + KC)y. (31)

This system turns out to be GAS. This can be seen by elementary algebraic consider-
ations, but also through the previous theory, in the case where we chooseK such that
the origin of the second equation in (31) is IS.

For the nonlinear case, there are circumstances where one can built Luenberger like
observers. Let us consider the problem of stabilization of the control system

ẋ = φ(x, u)
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under some feedback lawu = R(x). Assume that we have designed someR such that
system

ẋ = φ(x,R(x))

has the origin as a GAS equilibrium. Assume now that the state vectorx is not accessi-
ble to measurement, which means that only a certain functionξ = ϕ(x) of the state is
available. Is it possible to recover the statex(t) from ξ(t) ? The answer is yes, to some
extent. Namely, under some assumptions that we do not detail here, there is a system
of the form

˙̂x = ϑ(x̂, ϕ(x))

such that the errory = x̂− x tends to zero ast → +∞. Unlike in the linear case (31),
the differential equation of the error does contain the variablex. Actually one has

ẋ = φ(x,R(x̂)), ˙̂x = ϑ(x̂, ϕ(x)),

which can be rewritten in the variablesx andy as

ẋ = φ(x, R(x + y)) = f(x, y)
ẏ = ϑ(x + y, ϕ(x))− φ(x,R(x + y)) = g(x, y) (32)

Condition H1 is satisfied. If the origin of the second equation in (32) is IS in some
sense, we may hope that the origin of (32) is PSGAS. This case is not covered by the
results of this paper and thus deserves further attention.

A A short tutorial on Nonstandard Analysis

Here, we begin with an elementary approach to NSA. We follow Callot [3] and Lutz
[22]. The first object to look at it is the set of natural numbers 0, 1, 2,· · · , n, n + 1,
· · · and to decide that some of them areinfinitely large(or simply large, or unlimited)
with the following rules:

1. 0 is not large (it is limited),

2. if p is not large so isp + 1,

3. if p is not large andq ≤ p thenq is not large,

4. there existsn such thatn is large.

An easy consequence of Rule 2 is the following: ifn is large, so isn − 1. The first
objection to this set of rules is the induction principle which states that a property of
integers which satisfies rules 1 and 2 must be true for all integers. Thus from now we
must accept to work in a mathematical world where the induction principle is not true
for all the properties. Namely the induction principle is not true for all the properties
related to orders of magnitude. In other wordsthe collection of not large integers is
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not a subset of the set of integers. Actually, the reader is well trained to this way of
thinking, where the induction principle does not hold: “There should be a finite chain
linking some monkey to Darwin, repecting the rules: a monkey’s son is a monkey, the
father of a man is a man”. The induction principle does not hold for the properties of
“being a monkey’s son” or “being the father of a man” and actually there is some fuzzy
border between the two properties.

The question is whether there exists a mathematical formalism that recognizes this
fuzzy aspect of informal langage. At the first glance the answer seems to be no, so
much we have in mind that everything in mathematics has to be precise. It turns out
that Robinson [28] proved the following

• There exists a mathematical formalism called Nonstandard Analysis (NSA), in
which the adjective “large” for a natural number with the rules 1, 2, 3 and 4
makes perfect sense.

• The new formalism contains no more contradiction than the old one and every-
thing which was true for the old formalism is still true when expressed in the
new one.

The consequences of this are very important. It says that we can use freely all the
previous mathematics and give statements in the new langage of classical statements,
give new proofs, maybe prove new theorems in the new langage. We hope that NSA
statements of classical results will appear more illuminating.

Let us describe brieflyInternal Set Theory(IST) which is an axiomatic approach,
given by Nelson [25], of NSA. In IST we adjoin to ordinary mathematics (say ZFC) a
new undefined unary predicatestandard(st). The axioms of IST are the usual axioms of
ZFC plus three others which govern the use of the new predicate. Hence,all theorems
of ZFC remain valid. What is new in IST is an addition, not a change. We call a
formula of ISTexternalin the case where it involves thenewpredicate “st”; otherwise,
we call it internal. Thus, internal formulas are the formulas of ZFC. The theory IST is
a conservative extensionof ZFC, that is, every internal theorem of IST is a theorem of
ZFC.

Roughly speaking, standard objects of IST are those objects of classical mathemat-
ics as the integers 0, 1, 100 ..., the real numbersπ, e ..., the functionssinx, lnx ... The
limited (resp. large) integers of the elementary approach to NSA in the beginning of
this section are simply the standard (resp. nonstandard) integers of IST.

Definition 9 A real numberω is said to be infinitely large (or simply large, or unlim-
ited) if |ω| is greater than some large integer. A real numberε is said to be infinitesimal
(or simply small) ifε = 0 or 1/ε is large. A real number which is not large is said to
be limited. A limited number which is not infinitesimal is said to be appreciable. A
real numbery is said to be infinitely close (or simply close) tox, which is denoted by
y ' x, if |y − x| is infinitesimal.
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Thus a real numberx is infinitesimalwhen|x| < a for all standarda > 0, limited
when|x| ≤ a for some standarda, andunlimited, when it is not limited. We use the
following notations :x ' 0 for x infinitesimal,x ' +∞ for x unlimited positive,
x � 0 for x non infinitesimal positive. Thus we have

x ' 0 ⇔ ∀sta > 0 |x| < a
x � 0 ⇔ ∃sta > 0 x ≥ a

x limited ⇔ ∃sta |x| ≤ a
x ' +∞ ⇔ ∀sta x > a

(33)

The orders of magnitude and proximity introduced in Defintion 9 extend to vectors
as follows

Definition 10 An elementy ∈ Rd, whered is limited, is said to be limited if‖y‖ is
limited. It is said to be infinitely close (or simply close) tox ∈ Rd, which is denoted by
y ' x, if ‖y − x‖ is infinitesimal.

In this definition one takes for‖x‖ the Euclidean norm or

‖x‖ = max
1≤i≤d

|xi|, or ‖x‖ =
d∑

i=1

|xi|.

Since the dimensiond is assumed to be limited, the notions oflimited or closeare the
same for the three norms.

We may not use external formulas to define subsets. The notations{x ∈ R :
x is limited} or {x ∈ R : x ' 0} are not allowed. Moreover, we can prove that there
do not exist subsetsL andI of R such that, for allx in R, x is in L if and only if x is
limited, orx is in I if and only if x is infinitesimal.

B Some concepts of calculus revisited in NSA

Let us look to few concepts of calculus revisited in NSA.
a) The sequenceun tends tol whenn goes to infinity:

Classical ∀ε > 0 ∃N ∀n (n ≥ N ⇒ |un − l| ≤ ε).

NSA ∀n (n large⇒ un ' l).

The NSA characterization is read: ifn is large thenun is close tol, which is very close
to the intuitive idea of limit we want to formalize.

These concepts are equivalent only for standard sequences. Notice that the se-
quenceun = (−1)nε with ε infinitesimal, tends to 0 in NSA but not in the classical
sense. Conversely the sequenceun = 1/(nε), with ε 6= 0 infinitesimal, tends to 0 in
the classical sense but not in NSA. Of course, these examples for which the classical
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and NSA concepts are not equivalent, are not standard, since their definition make use
of the new conceptinfinitesimal.

b) The functionf is continuous atx0:

Classical ∀ε > 0 ∃η > 0 ∀x (|x− x0| ≤ η ⇒ |f(x)− f(x0)| ≤ ε).

NSA ∀x (x ' x0 ⇒ f(x) ' f(x0)).

The NSA characterization is read: ifx is close tox0 thenf(x) is close tof(x0). Again
we must emphasize on the fact that the classical and NSA concepts are equivalent only
for standard functions. Notice that the functionf(x) = O if x ≤ 0, f(x) = ε with
ε 6= 0 infinitesimal if x > 0, is continuous at 0 in NSA but not in the classical sense.
Conversely the functionf(x) = x/ε, with ε 6= 0 infinitesimal, is continuous at 0 in the
classical sense but not in NSA. With the aid of the concepts and notations introduced
in Definition 10 the discussion of continuity for functions of several variable, within
NSA, is exactly the same as above.

c) Let ẋ = f(x) be a system of differential equations onRd, with d standard. Let
x(t, x0) be the solution of initial conditionx(0) = x0. Assume thatf(ξ) = 0, that is
x = ξ is an equilibrium. This equilibrium is stable (in the sense of Lyapunov) if:

Classical ∀ε > 0 ∃η > 0 ∀x0 (‖x0 − ξ‖ ≤ η ⇒ ∀t ≥ 0 ‖x(t, x0)− ξ‖ ≤ ε).

NSA ∀x0 (x0 ' ξ ⇒ ∀t ≥ 0 x(t, x0) ' ξ)

The NSA characterization is read: ifx0 is close toξ, so isx(t, x0), for everyt ≥ 0.
Notice that the equilibriumξ = (0, 0) of the differential system{

ẋ = y + (ε− x2 − y2)x
ẏ = −x + (ε− x2 − y2)y

with ε infinitesimal positive, is stable in the sense of NSA but not in the classical sense.
Indeed, the eigenvaluesλ = ε ± i of the linear part are of positive real part, so the
equilibrium is unstable. However, the circle of infinitesimal radiusx2 + y2 = ε is an
attracting limit cycle, so any solution starting close toξ remains close to it for every
t ≥ 0. Conversely the equilibriumξ = (0, 0) for the differential system{

ẋ = y
ẏ = −ε2x

with ε infinitesimal, is stable in the classical sense but not in NSA. Indeed, sincey2 +
ε2x2 is constant, this equilibrium is a center, so is stable in the classical sense. But the
solutionx(t) = sin(εt), y(t) = ε cos(εt), with initial condition(0, ε) ' ξ, is not close
to ξ for t = π/(2ε).

d) Let us discuss nowglobal asymptotic stabilityof equilibria. The equilibriumξ
is globally asymptotically stable (GAS) if:
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Classical It is stable and∀x0 limt→+∞ x(t, x0) = ξ.

NSA If x0 is limited andt ' +∞ thenx(t, x0) ' ξ.

Notice that the equilibriumξ = 0 of the system differential̇x = x(ε − x2) with ε
infinitesimal positive, is GAS in the sense of NSA but not in the classical sense. Con-
versely the equilibriumξ = 0 for the differential systeṁx = −εx with ε > 0 infinites-
imal, is GAS in the classical sense but not in NSA. Indeed,x(t, x0) = x0 exp(−εt) is
the solution. Thusx(1/

√
ε, x0) = x0 exp(−

√
ε) is not infinitesimal ifx0 is apprecia-

ble.

References

[1] I. P. van den Berg, Nonstandard Asymptotic Analysis, Lecture Notes in Math.
1249, Springer-Verlag (1987).

[2] C. I. Byrnes and A. Isidori, Bifurcation analysis of the zero dynamics and the
practical stabilization of nonlinear minimum-phase systems.Asian Journal of
Control, 4(2) (2002), 171-185.
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G. Reeb et J.L. Callot, Strasbourg-Obernai, 12-16 juin 1995.A. Fruchard et A.
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