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Abstract

The aim of this paper is to show that the representation with the help
of Nonstandard Analysis of a real phenomenon, presenting different obser-
vation scales, allows an important simplification of language. Indeed, it is
convenient to have available the concept of infinitely small and infinitely
large quantities in dealing with the macroscopic effects of microscopic phe-
nomena. This is illustrated on two examples : the representation of two
time scales systems and the representation of noise.
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Foreword by Claude Lobry

The present paper has been written by Tewfik Sari and myself on the basis of
notes that I prepared for the conference in honor of Michel Fliess. Below is the
introduction (in French) that I wrote in view of my oral presentation.

Il y a un peu plus de vingt ans Marc Diener et moi éditions un ouvrage
collectif “Analyse non standard et représentation du réel” [16] dont j’ai repris le
titre pour cette conférence car la question me semble toujours d’actualité. Dans
les années mille neuf cent quatre-vingt il était difficile d’évoquer l’Analyse Non
Standard sans déclencher des passions : Il y avait les “contre” et les “pour” dont
je faisais partie. Maintenant que la passion est moins forte il semble possible
d’aborder cette question de façon un peu plus scientifique. C’est ce que je vais
tenter de faire en analysant sur deux exemples choisis en automatique la capacité
de l’Analyse Non Standard à traduire formellement des discours mathématiques
informels.

Le premier exemple que j’ai choisi est celui du phénomène de “peaking” et de
son influence sur la stabilisation des systèmes ; il est tiré d’un travail commun
avec T. Sari [25, 27, 28] et je me sens assez à l’aise pour en parler. En revanche,
je me sens bien moins qualifié pour parler du second exemple puisqu’il touche
au traitement du signal, discipline que je ne connais pas. J’ai cependant décidé
d’en parler à cause de son actualité dans le cadre de ces journées en l’honneur
de Michel Fliess.

En effet, peu de temps avant le colloque j’ai découvert, avec un immense
plaisir, qu’il a l’intention d’aborder des questions de traitement du signal en
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proposant une représentation du “bruit” par des fonctions “rapidement oscil-
lantes”, cette dernière expression étant définie de façon précise dans le cadre
Non Standard [19]. Comme je l’ai déjà dit, je ne connais rien au traitement du
signal, donc je ne peux pas avoir un avis scientifiquement fondé sur l’avenir de
cette idée. Ce qui ne m’enpêche pourtant pas d’y croire et donc de vouloir lui
faire de la publicité.

Qu’est ce donc qui me donne cette foi du charbonnier ? C’est simplement le
fait, maintes fois constaté au long de sa carrière remarquablement féconde, que
chaque fois que Michel Fliess a eu une idée, cette dernière a fini par s’imposer.
Je ne vois pas pourquoi il n’en serait pas de même encore une fois !

There is a long way from a text prepared for an oral presentation and a pub-
lication in a journal. A first version was prepared in French with my accomplice
T. Sari and submitted by us. In view of the comments of the editor we tried
to give the present English version (but the french original one is accessible at
....).

1 Introduction

Let us say some words about the title : Why “Nonstandard Analysis and Rep-
resentation of Reality” ? Nonstandard Analysis (NSA) is a way to practice
mathematical analysis in which it is perfectly legal to say that a real number
is “infinitesimal and fixed for ever”. By “legal” we mean that, considered from
the point of view of the mathematical rigor, accordingly to the most recent
canons of logic, there is nothing to say against such a sentence. By the way,
any proof through NSA of a classical mathematical result can be transformed
into a classical proof, which led some people to say that NSA does not produce
anything new. This is not true. What NSA brings is a new way to formalize
a mathematical discourse into a new formalism which is proved to be not more
dangerous than the classical one. More precisely if there were a contradiction
in mathematics formalized within NSA there would be one in mathematics for-
malized in the classical sense. Thus the question is not to discuss whether NSA
is rigorous or not but rather to see if this new practice is more suitable than the
ancient one.

The first criteria is “fertility” : How many new results where obtained thanks
to NSA ? How many old conjectures have been demonstrated ? Very few, almost
none. Does this disqualify definitively NSA ? Certainly not. Presently only one
percent mathematicians use NSA in their research. Thus the disproportion
is too large in order that global comparisons make sense. In some particular
domains, like ordinary differential equations, the report is far from being equal
to zero.

A second criteria, which is less decisive since it is more subjective, is the
criteria of “elegance”. Elegance of the style was always preoccupation for sci-
entists, especially for mathematicians. We think that for certain questions the
NSA style is more elegant than the classical one and it is on this ground that
we shall put ourself in this paper. More precisely we shall try to have the point
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of view of a non mathematician user, more specifically an engineer in automatic
control, for whom mathematics are a tool for representation and understanding
of concrete phenomena.

In Automatic control science the matter is to observe in real time the system
in order to get informations from which one deduces the way to achieve some
goal. To achieve this purpose we built a “model”, that is to say a “mathematical
representation” of the real system which we are interested in. We think that
when the real phenomenon presents different observation scales, a representation
with the help of NSA allows an important simplification of language. But, what
is the price to pay for this simplification ? Do the necessary efforts made to
manipulate correctly the tools of NSA not annihilate the expected benefit ?
The answer is no. With very little effort any specialist in automatic control
can provide to himself, in addition to classical mathematical tools, a language
that is very well fitted to the expression of certain ideas. This is, at least, what
we shall try to demonstrate on two examples : The representation of two time
scale systems, on one side, the representation of noise, on the other side. Our
objective being purely pedagogical none of the presented results is really new
except, perhaps, the idea of writing in “bold ” the “external notions” with the
hope to facilitate the understanding of this formalism. In any case we hope
that our presentation will push some readers to see by themselves what is going
on. In particular they will find in the collective works [14, 18] many other
applications of the method we are advocating for.

The paper is divided in three parts. The first part presents, without any
particular previous knowledge, the necessary tools of NSA ; the few examples
given are introductory to further notions which will be exposed in parts two and
three. The second part is devoted to the “peaking phenomenon” and the third
one to the question of “noise”.

2 Nonstandard Analysis

Nonstandard Analysis was invented by A. Robinson [39]. Our background is
the theory developed by E. Nelson. This is not the only way to proceed but it
is the one we know !

The system IST (for Internal Set Theory) of E. Nelson [34] is a formal
language L which contains the language of set theory ZFC (standing for Zermelo,
Fraenkel + axiom of Choice). It contains the non defined unitary predicate “st”
which writes “st(x)” in the formulas and reads “x is standard”. A set of three
axioms : I for “Idealization”, S for “Standardization” and T for “Transfer”
define the rules of manipulation of the new predicate. E. Nelson proves that the
theory IST is “conservative” and by the way is irreproachable from the point of
view of rigor : if there would be a contradiction in IST the contradiction would
be already present in ZFC. It is not the place in this paper to describe in details
the three axioms and their immediate consequences but one must emphasize the
“double language” that IST permits within the practice that was widely spread
by G. Reeb and its school (see Sections 2.5 and 3.3).
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In L one makes the distinction between the formulas which do not contain
the predicate “st”, which are called internal (“internal” to the language of set
theory) from those which contain it, called external. Actually, when one writes
mathematics, one does not write formulas of the formal language but writes
in a technical language precise enough (at least when things are well done) to
indicate a path which could go to the formal writing. By the way, since the first
months of University, the young student knows that the sentence when t tends
to 0 the function f tends to l is formalized into :

∀ε > 0 ∃η > 0 ∀t {|t| ≤ η =⇒ |f(t)− l| ≤ ε}.

But all the art of formalism, when it is well understood, is to make allusion to
formulas which could be written and write them as least as possible.

As a consequence, in E. Nelson’s system, it is essential, when one uses ex-
pressions, to know whether they are internal or external and to take care that
something which was in the classical system a loosely way of speaking could
become in IST perfectly rigorous in the sense that the path toward a formal
text is perfectly shown. Only a manual (for instance [12, 15, 30, 38]) and some
experience are able to make you familiar with this practice. Nevertheless it is
not too difficult to give an idea of it as we shall do now.

2.1 The “large” integers

From the Transfer axiom one derives that 0 is standard and that the successor
of a standard integer is a standard integer. Thus 1 is standard, 2 is standard,
and so on. From the axiom of Idealization one deduces1 :

∃ω ∈ N ∀stn ∈ N n ≤ ω. (1)

This integer ω which is greater than any standard integer deserves to be called
“infinitely large” and also all those like it (for instance ω+ 1) which are greater
than any standard integer. By the way, saying “infinitely large” is not a loosely
way of speaking used to evoke some classical formulation but merely an abbre-
viation of an external formula (the formula (1) is external). In order to help the
understanding we use bold characters formulations for sentences in the natural
language which have an immediate external formal translation in the system
IST. Thus, by the way the expresion :

ω is an infinitely large integer

is just a synonym for the external formula :

∀stn ∈ N n ≤ ω.

Of course, we give to this expression all the affective connotation contained
in the idea of something which is “greater than everything”. The choice of

1One uses the abbreviation : ∀stx A(x) for : ∀x {st(x) =⇒ A(x)}
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such a terminology can be criticized and was criticized. In fact, in the classical
language, that we are anxious to preserve, a set is “finite” if there is a bijection
between this set and the set {1, 2, · · · , n} where n is some natural number. Thus
the following subset of N :

{0, 1, 2, · · · , ω}

is finite, even in the case where ω is infinitely large. Thus in the system of
E. Nelson the sentence :

Let ω be an infinitely large integer : the set {0, 1, 2, ...., ω} is finite,

is perfectly correct. This might be disrupting but not more than the discovery
by a student that in a topological space a set can be both open and closed.
It could have been wise to choose an other terminology but the tradition to
which we belong decided that way and we conform to it. This tradition has
the advantage to emphasize that what is metaphysical and disrupting is not the
existence of infinitely large integers but rather the existence of infinite sets in
ZFC. This relates to the discussions at the beginning of the twentieth century on
the “actual infinite” and the possibility of “intuitionistic” foundations of NSA,
which is an other subject2.

Finally notice the important fact that external formulas may define sets
in the intuitive or näıve sense which are not formal sets. Thus the external
formula :

n ∈ N ∧ st(n)

defines no “set of standard numbers”. This fact is at the origin of some powerful
tools that we shall explain later : the so called “overspill” or “permanency”
principles.

2.2 The infinitesimals

Let us forget our previous metaphysical considerations and let us come to the
“infinitely small” which, according to our feeling, carries a less heavy emotional
load than “infinitely large”. A real number is said to be infinitely large if
it is greater than some infinitely large integer. An infinitesimal (or an
infinitely small real number) will be a real number either equal to zero or
having an infinitely large inverse number. Two real numbers are infinitely
close if their difference is infinitesimal. A real number which is not infinitely
large is called limited. A real number which is limited and not infinitesimal
is called appreciable. We also call “halo” of x the collection hal(x) of real
numbers which are infinitely close to x : Note that it is not a formal set in
IST.

2For more details the reader is refered to G. Reeb’s paper La mathématique non standard,
vieille de soixante ans ? This paper was first published in October 1979, in the Series de
Mathématiques Pures et Appliquées, IRMA, Strasbourg. It appeared in 1999 as as an appendix
of J-M. Salanskis’s book Le constructivisme non standard [40], pages 277-289. A short version
of this paper, including a discussion of the mathematical theory of the moiré phenomenon,
was already published in 1981 [37].
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Thus we can work with actual infinitesimals. Within the system IST it is
perfectly legal to say :

Let ε be a strictly positive fixed infinitesimal.

The sum of two infinitesimals is as expected infinitesimal. The famous
paradox of infinitesimals :

If ε is infinitesimal, 2ε must also be infinitesimal an so on. . . . Let
n0 be the last integer such that n0ε is infinitesimal. The sum of the
two infinitesimals n0ε + ε is not an infinitesimal, which causes the
trouble,

which was solved during the nineteenth century by the method of the “passage
through the limit” is solved in IST by the interdiction which is made to consider
the collection of all integers n such that nε is infinitesimal as a true set and,
as a consequence, to take its largest value n0.

2.3 Continuous functions

Infinitesimal calculus was created for the purposes of analysis and, in particular,
to define continuity. We introduce the notation x ≈ y to say that x is infinitely
close to y. The following definition is an external definition.

Definition 2.1 (S-continuity) A function f is S-continuous if x infinitely
close to y implies f(x) infinitely close to f(y), that is to say :

∀x ∀y (x ≈ y =⇒ f(x) ≈ f(y)).

In order to understand what is the meaning of this definition let us take a > 0
and consider the piecewise constant function defined by :

x ∈ [ka, (k + 1)a[ =⇒ f(x) = ka. (2)

This function is not continuous, as everybody knows. If a is standard, it is a
standard function. It is easy to check that f is S-continuous if a is infinites-
imal. In fact

|f(x)− f(y)| ≤ |x− y|+ a

and thus, if a is infinitesimal f(x) is infinitely close to f(y).
Let us prove that a standard S-continuous function is continuous.

� Let us prove the formula :

∀stε ∃η ∀x ∀y {|x− y| ≤ η =⇒ |f(x)− f(y)| ≤ ε}. (3)

It is enough to take an arbitrary infinitesimal η. If |x− y| ≤ η, x and y
are infinitely close, so are f(x) and f(y). Thus their difference, which
is infinitesimal, is smaller than the standard number ε.
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� Using the Transfer axiom the formula (3) is equivalent to the formula :

∀ε ∃η ∀x ∀y {|x− y| ≤ η =⇒ |f(x)− f(y)| ≤ ε}

which we recognize as the definition of uniform continuity. The axiom of
Transfer is valid if the function f is standard.

We understand that the preceding proof is somewhat obscure since we never
explained what the Transfer axiom is ! We have merely introduced it to give a
general idea of the kind of proofs which appear. They have two parts : One is
made of more or less easy majorations. The other one is just “formal nonsense”;
there is nothing to understand, just apply the suitable axiom.

Conversely we could prove that if f is standard and uniformly continuous
then it is S-continuous. Thus, for standard functions, uniform continuity is
equivalent to S-continuity.

So we begin to understand how one plays the “nonstandard game”. Exter-
nal definitions (here S-continuous) are equivalent to classical definitions (here
uniform continuity) when applied to standard objects. They carry their own
meaning when applied to nonstandard objects. The nonstandard piecewise con-
stant function (2) with an infinitesimal step a (which is S-continuous but not
continuous) “seems” to be continuous if its graph is observed from a sufficiently
large distance. Hence, S-continuous can be read “seems continuous”.

2.4 A Glance at some non standard functions

We are interested in some specific non standard functions that we shall use
later. An easy way to “observe”3 a non standard function is to consider a one
parameter family of standard functions and to fix the value of the parameter
to some non standard value, for instance infinitely large. A non standard
function must be a true classical function defined by an internal formula. Be
careful to not make a confusion between a non standard function and some
external intuitive function. For instance, the “function” defined by the external
relation :

f(x) = 1 if x is infinitely small, f(x) = 0 overwise,

is not a function, even in the sense of IST.

2.4.1 Fast oscillating trigonometric functions

Consider the function :
t 7→ sin(ωt)

3Let us be clear about “observe”. It was sometimes advocated against NSA that it is
impossible to produce any infinitely small real number. This is perfectly true (but does
not prove the uselessness of NSA because, if it where the case, the number π, which is also a
complete abstraction would be useless). Thus our “observe” has to be understood in a very
weak sense.
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If ω is not infinitely large, this function is S-continuous. Conversely, if ω is
infinitely large the number π

2ω is infinitely close to 0 and sin
(
ω π

2ω

)
= 1 is

not infinitely close to sin(0). Let us compute the integral :

Iδ(x) =
1
δ

∫ x+δ

x

sin(ωt) dt

which is equal to :

Iδ(x) =
cos(ωx)− cos(ω(x+ δ))

ωδ
.

We see that if ω is infinitely large the integral Iδ(x) is infinitely small as soon
as ωδ is infinitely large, and thus, in particular, for every non infinitely small
δ. In elementary lecture courses of physics one explains that the above moving
average is a “low-pass” filter, that is to say, if one considers that an intensity of
0.01 is not appreciable (or equivalent to 0) all the frequencies greater than ω0

with ω0 = 2
0.01δ will be cut. Since the threshold 0.01 may vary, depending on

circumstances, an ideal mathematical statement, somewhat universal, should
be welcome. The following statement is possible within IST : A moving average
of non infinitesimal length stops all infinitely large frequencies.

But we must acknowledge that this point is not much convincing. Without
any call to NSA we can use the classical statement :

ω ≥ 2
εδ

=⇒ Iδ(x) ≤ ε

which is perfectly sound and much more precise. A a rule, like all classical
asymptotic formulations, NSA is not useful each time we have an explicit in-
equality. But this is far to be the general situation.

2.4.2 Impulses

In this section we have a look on a class of function which is well known of
physicists, the functions of Dirac. Let us recall that for a physicist, before the
popularization of the theory of distributions, the “Dirac function” at 0 was a
function equal to zero outside of zero, infinite at 0 and such that its integral
over the real numbers is equal to 1. Within NSA one says :

Definition 2.2 (Dirac impulse) One says that an integrable function f belongs
to the class of Dirac functions at 0 if there exists an infinitesimal δ > 0 such
that :

|x| ≥ δ ⇒ f(x) ≈ 0,
∫

R
f(x)dx ≈ 1.

Notice that the “class” of Dirac functions is not a set. Thus we shall not say
“equivalence class”. One of the most famous Dirac function is :

f(x) =
1√
2πσ

e−
x2

2σ2
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considered for an infinitely small value of the parameter σ. An other function
that we shall use later is defined by :

f(x) =
{

0 if x ≤ 0
ω2te−ωt if x > 0

which, for ω infinitely large, is also a Dirac impulse at 0. These non standard
functions are external analogues of classical distributions ; indeed one checks
very easily the :

Proposition 2.3 If f belongs to the class of Dirac functions at 0, for every
standard continuous function ψ with compact support one has :∫

R
f(x)ψ(x)dx ≈ ψ(0).

As a matter of fact the class of Dirac functions contains all the objects as mad
as an analyst might dream to.

This manner to look at things allows clarifications in certain subjects. For
instance let us consider the problem of impulse controls for non linear systems.
Consider the non linear system :

dx

dt
= u1X

1(x) + u2X
2(x). (4)

There is a problem to define the solutions when the inputs are distributions.
For instance, take the two Dirac functions :

u1(t) =

 0 if t ≤ 0,
1
ε if 0 < t < ε,
0 if ε ≤ t.

u2(t) =

 0 if t < ε,
1
ε if ε ≤ t < 2ε,
0 if 2ε ≤ t.

For ε infinitesimal these two functions are gentle functions, despite the fact
they are non standard. There is no problem to integrate (4). The result is, using
the usual notations for the one parameter group of diffeomorphisms generated
by vector fields,

X2
1 ◦X1

1 (x0).

If the two vector fieldsX1 andX2 are not commuting the exchange of u1 with u2

will change the result of the integration. Thus it is not possible to define a single
result for the integration of the whole class of Dirac functions at 0. However,
it is not forbidden to use Dirac functions in non linear systems, provided one is
careful !

2.5 Historical and bibliographical comments

A complete history of NSA is out of the scope of this paper. Let us just give
some elements of recent history. The book of A. Robinson [39], considered as
the creator of modern NSA, was published in 1966. An important school works
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within the formalism developed in this book. We do not report on this aspect
here. For references and informations on the recent progress we recommend [6].

At the beginning of the seventies, the French mathematician G. Reeb, well
known for his contributions to geometry (The Reeb foliation) discovered A. Robin-
son’s book and was very anxious to share his enthusiasm. His very radical
posture was contained in his favorite slogan :

Les entiers näıfs ne remplissent pas N.

This did’nt make the communication very easy. Nevertheless he created a school
in Strasbourg which decided to adopt the point of view of E. Nelson’s paper on
IST [34] published in 1977. A part of Reeb’s school work is synthesized in the
book by R. Lutz and M. Goze [30] published in 1982 and later in two collective
works [14, 16] to which we refer much of the time. The interested reader will
find other informations in these books. The method was presented to the French
community in applied mathematics during the “Colloque d’Analyse Numérique”
of 1981 [23] and the congress of Belle Ile en Mer in 1983 [22].

The existence of a French School in NSA was the occasion of a violent debate
which was related (with a completely non objective point of view !) in the book
of one of us [24]. More philosophical viewpoints, and by the way, in principle,
more objective ones can be found in the books [1, 40, 41]. The reader interested
by philosophical aspects related to NSA should look also at the home pages
of J. Harthong [http://moire4.u-strasbg.fr/] and G. Wallet [http://perso.univ-
lr.fr/gwallet/].

There exists numerous text books on NSA. For a short initiation we recom-
mend [14, 15, 16, 38] and for more complete expositions see the bibliography of
[14].

3 Stabilization of two times scales systems

Automatic control engineers like to stabilize plants as fast as possible. If the
system is linear one tries to put the eigenvalues as far as possible in the left
of the complex plane but it is well known that this may be dangerous in the
presence of nonlinear, even small, perturbations. Far from being stabilized the
system can explode to infinity. In 1988, M. Canalis and P. Yalo [10] remarked
the paper [21] of P.V. Kokotovic and R. Marino which for the first time (to
our knowledge) payed attention to this problem. They published a short paper
which clarifies one of the thorough reasons of this phenomenon : Before it goes
to zero a trajectory makes an excursion in the “neighborhood of infinity”. In-
dependently H.J. Sussmann and P.V. Kokotovic popularized this phenomenon
under the name “peaking phenomenon” in a paper [43] which, moreover, gives
some conditions to secure oneself against it. This is, of course, more difficult
than to just mention it. Let us see how NSA allows to speak about this phe-
nomenon.
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3.1 The peaking phenomenon

Let us point out an old trap which it is advisable to avoid. Consider the system :

dx

dt
= f(x, y),

dy

dt
= g(y) (5)

where the systems :
dx

dt
= f(x, 0) (6)

and
dy

dt
= g(y) (7)

are Globally Asymptotically Stable (GAS) at 0. The reasoning below, a little
to fast as we will see, leads to conclude to the global asymptotic stability of
system (5).

Since equation (7) is GAS, y(t) tends to 0. Thus the system :

dx

dt
= f(x, y(t))

tends to the autonomous system (6) which is GAS at 0. Hence sys-
tem (5) is GAS in 0.

But this is not true as shown by the well known example :

dx

dt
= −x(1− xy),

dy

dt
= −y. (8)

One sees immediately that t 7→ (x(t) = et, y(t) = 2e−t) is a solution which

x

Figure 1: Phase portrait of (8).

separates the phase plane in two parts as indicated on Figure 1. One can think
that the size of the basin of attraction depends on the speed with which y tends
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towards 0. More quickly one tends towards 0 the larger would be the basin of
attraction. One can note it on the family of systems :

dx

dt
= −x(1− xy),

dy

dt
= −γy, (9)

and make γ tend to infinity. For this system the separatrix is the trajectory
defined by t 7→ (x(t) = eγt, y(t) = (γ + 1)e−γt). The basin of attraction of (9)
grows indefinitely when γ tends towards infinity.

However this is not general because of the phenomenon of “peaking” which
we expose now. Consider the system :

dx
dt = −x3

2 (1 + y2)

dy1
dt = y2

dy2
dt = −γ2y1 − 2γy2

(10)

The second and third equations in the variables y1, y2 form a linear system

t

X(t) γ = 1,2,….,10
x0 =1.4, y10 =1, y20 = 0

y2(t)

Finite time explosion of order 1/γ

Figure 2: The peaking in equation (10).

which does not depend on x. It acts as a forcing term on the first equation
in the variable x. The eigenvalues of the linear system are both equal to γ.
The solutions of the linear system tend to 0 all the more quickly as γ is large.
Integrating system (10) one obtains :

x(t, γ) =
x0√

1 + x2
0[t− y10 + (y10(γt+ 1) + y20t)e−γt]

.

For the initial conditions y10 = 1 and y20 = 0, we get

x(t, γ) =
x0√

1 + x2
0[t− 1 + (γt+ 1)e−γt]

.
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When γ is large, the quantity t− 1 + (γT + 1)e−γt is very close to −1 for small
t > 0. Thus for x2

0 ≥ 1 the quantity under the radical is negative which says
that the solution x(t) has “exploded at infinity”. On Figure 2 one can see the
solutions with initial condition x0 = 1.4, y10 = 1 and y20 = 0 for increasingly
large values of γ. To understand what occurred it is enough to consider y1(t)
and y2(t) for the preceding initial conditions, which writes :

t 7→
{
y1(t) = (γt+ 1)e−γt

y2(t) = −γ2te−γt

Full system γ = 3
y10 = 1, y20 = 0

x' = f (x,0) = − x
3

2
(1+ 0)

x

t

Figure 3: The peaking in equation (10)

The function y2(t) which appears in the first equation

dx

dt
= −x

3

2
(1 + y2(t)) (11)

of system (10) is a function equal to zero for t = 0 and negative for all t > 0.
Its minimum is achieved for t = 1

γ and is equal to −γ
e . For γ large enough this

minimum is smaller than −2 and, thus, for a certain amount of time one has :

dx

dt
>
x3

2

which can “explode at infinity”. The instability comes from the fact that y2(t) is
an input of (11) more and more close to an impulse, together with the fact that
the vector fields (11) is not complete. Consider the second and third equation
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t

x

Full system γ = 5

y10 = 1, y20 = 0

x' = f (x,0) = − x
3

2
(1+ 0)

Figure 4: The peaking in equation (10).

of system (10) : 
dy1
dt = y2

dy2
dt = −γ2y1 − 2γy2

The peaking of this system is the fact that starting from the initial condition
y1 = 0 with a velocity equal to zero, to arrive near the point (0, 0) during an
elapsed time of the order of 1

γ it is definitely necessary to have, at some instant,
a negative velocity with an absolute value of the order of γ.

On Figures 3 and 4 we represent, for two values of γ and several initial
conditions x0, the solutions of the limiting system, and the solutions of the
complete system.

All this is not very mysterious but rather complicated to formalize in the
general case. One could, for example, state that the family of linear systems :

dY
dt = A(γ)Y (12)

“makes peaking” when γ tends to infinity if the two following conditions are
satisfied. The first condition is that real parts of the eigenvalues of A(γ) tend
towards −∞ when γ tends to infinity (for saying that the solutions tend more
and more quickly to 0). The second condition is that it exists for all γ at least an
initial condition of norm equal to 1 such that the maximum of the corresponding
trajectory is larger than a function of γ which tends to infinity with γ. For a
complete study the reader is refered to [43]. Let us note however that the system
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(12) is linear. How to do when it is not the case ? Let us see how the peaking
can be expressed within NSA.

3.2 An external view of the peaking phenomenon

3.2.1 Global Asymptotic Stability

Definition 3.1 (S-GAS) The differential system :

dx

dt
= f(x)

is S-Globally Asymptotically Stable at 0 (S-GAS) if for any limited ini-
tial condition x0 and all infinitely large t, x(t, x0) is infinitely small (where
x(t, x0) indicates the trajectory of initial condition x0).

This external definition of the asymptotic stability, indicated by S-GAS to dis-
tinguish it from usual global asymptotic stability, is equivalent for the standard
systems to the classical definition because one can easily prove the :

Theorem 3.2 If the differential system

dx

dt
= f(x)

is standard it is S-GAS at 0 if and only if the two following properties are
satisfied

� The system is stable at 0, which means : for every neighborhood V of 0
there exists a neighborhood W of 0 such that for every initial condition x0

belonging to W the positive half trajectory issued from x0 belong to V or,
if one prefers quantifiers :

∀ V ∃W ∀x0 ∈ W ∀t > 0 x(t, x0) ∈ V

� The point 0 is attractive, which means that for every initial condition, the
corresponding trajectory tends to 0.

In other words : A standard system is Globally Asymptotically Stable if and only
if it is S-GAS. Therefore, thanks to this theorem, the situation of S-Global
Asymptotically Stability in the same as the situation of S-continuity : It is
an external definition which coincides, when the differential system is standard,
with the concept of global asymptotic stability. It is also noticed that the defi-
nition of S-GAS is spectacularly more compact than that of global asymptotic
stability.

On the following example we see the meaning of S-GAS in the case of
a system which is not standard. Let us consider the system defined in polar
coordinates by the equations :

dθ

dt
= 1,

dρ

dt
= ρ(ε− ρ).
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It is a system which, for ε infinitely small, has a limit cycle of infinitely
small radius, which is globally asymptotically stable. Therefore, for t infinitely
large, the trajectory is infinitely close to 0, but outside a circle of radius ε.
Thus the system is not stable strictly speaking. We will not seek with demon-
stration of Theorem 3.2 and we refer to [25] for its proof which is a routine
exercise.

3.2.2 Instantaneous stability

We now consider the question of the measurement of the velocity with which
a dynamical system GAS at 0 tends to 0. It is not, a priori, very simple to
formulate since, in theory, the trajectory never reaches 0 : time to “reach” 0 is
always infinite. But this is an “ideal” mathematical vision, in practice, any real
system ends up at 0, with respect to the “precision of measurements”. The only
case where there is a simple answer is the linear case where, due to invariance,
one can define the “characteristic time” as the time spent to get the norm of the
initial condition is divided by two. Nothing like this is possible in the nonlinear
case. Within NSA we propose the following definition :

Definition 3.3 (S-IGAS) The system

dx

dt
= f(x)

is S-Instantaneously Globally Asymptotically Stable at 0 (S-IGAS at
0) if for every limited initial condition x0 and every non infinitely small
t > 0, x(t, x0) is infinitely small.

The meaning of this definition is clear : any “reasonable” initial condition is
transferred instantaneously almost into 0. To see what is the classical equivalent
of this external definition, one starts with a family of systems :

dx

dt
= f(x, γ) (13)

where γ is a positive real number.

Definition 3.4 (Seems IGAS) One says that the family of systems (13) “seems
Instantaneously Globally Asymptotically Stable (seems IGAS) at 0 when γ tends
to infinity” if :

∀R > 0 ∀r > 0 ∀t0 > 0 ∃γ0 > 0 ∀γ > γ0 ∀x0 ≤ R ∀t > t0 x(t, x0) < r

Or, in a little bit more sound words :

For any limited set of initial conditions and any ball B centered at 0
of arbitrarily small radius, when γ tends to infinity, the trajectories
penetrate more and more quickly in the ball B.

We have the following result
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Theorem 3.5 Assume that the family (13) is standard. Then the family of
systems (13) seems IGAS at 0 when γ tends to infinity if and only if for each
infinitely large γ, the system (13) is S-IGAS.

In conclusion, thanks to such a theorem (and others of the same type [25]),
everything we could prove on non standard systems about instantaneous sta-
bility will have a classical counterpart in terms of the asymptotic properties of
families of systems, when the parameter tends to infinity.

3.2.3 Stability of cascade systems

In Section 3.1 we saw on the example (10) that a cause of nonstability was
the fact that solutions “exploded to infinity” very quickly when γ increases.
It is enough to forbid this phenomenon to obtain stability. Consider the (not
necessarily standard) system

dx

dt
= f(x, y),

dy

dt
= g(y). (14)

Definition 3.6 (UIB) The system (14) is Uniformly Infinitesimally Boun-
ded (UIB) if for every limited initial condition (x0, y0) and every infinitesi-
mal time t the x component of the corresponding solution is limited.

We can now state the :

Theorem 3.7 Assume that the system (14) is UIB, that the subsystem :

dx

dt
= f(x, 0)

is S-GAS at 0 and the subsystem :

dx

dt
= g(y)

is S-IGAS at 0, then (14) is S-GAS at 0.

The proof is very simple. We begin by showing that for any limited ini-
tial condition (x0, y0) there exists an appreciable real t1 such as x(t1, x0, y0)
is limited. To show this result we use a technique known under the name
“permanence principle” which goes back to A. Robinson.

Lemma 3.8 (Robinson) Let un be a sequence of real number. As-
sume that for n standard un is infinitesimal. Then it exists an ω
infinitely large such that uω is infinitesimal.

Proof One considers the set :

A = {n ∈ N : nun ≤ 1}.
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Remark that A is a true set in the formal sense. The following
derivation is obvious:

∀n ∈ N {st(n) =⇒ n ∈ A}

since the product of a standard by an infinitesimal is infinites-
imal and as such smaller than 1. On the other side a set which
contains all the standard elements of N contains necessarily at least
an other elements, which by this way is infinitely large. Let ω
be such an element. One has ωuω ≤ 1 which implies that uω is
infinitely small an proves the lemma.

There are various alternatives of this lemma, for which one can find a synthesis
in [5].

Let us come back to our proof with the same idea. Let :

A = {t ∈ R : t ≥ 0 t x(t, x0) ≤ 1}.

The set A is a true set (in the formal sense) which contains all positive infinitely
small real numbers, by definition of UIB (The product of an infinitesimal by
a limited is infinitesimal and, by the way, smaller than 1). The set A which
contains all infinitesimals contains at least a non infinitesimal that is to say
an appreciable real t1. The inequality :

t1 x(t1, x0) ≤ 1

proves that x(t1, x0) is infinitesimal which we wanted to prove. Since the
subsystem :

dx

dt
= g(y)

is S-IGAS, for t ≥ t1 we know that y(t, y0) is infinitesimal. From the time t1
we integrate the system

dx

dt
= f(x, y(t, y0))

which is a regular perturbation of

dx

dt
= f(x, 0)

Denote by x0(t, t1, x(t1, x0, y0)) the solution of this last system issued from the
point x(t1, x0, y0) at the instant t1. From the continuous dependence of solutions
of a differential equation with respect to parameters it follows immediately that
for limited t ≥ t1 :

||x0(t, t1, x(t1, x0, y0))− x(t, x0, y0)||

is infinitely small. The Lemma of Robinson once more enables us to thus go
a little further and to say that there exists some infinitely large ω such than
on the interval [t1, ω] :

||x0(t, t1, x(t1, x0, y0))− x(t, x0, y0)||
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is infinitesimal and thus, since the system:

dx

dt
= f(x, y(t, y0))

is S-GAS at 0, for t infinitely large smaller than ω we know that x(t, x0, y0)
is infinitesimal. It remains to show that x(t, x0, y0) is infinitesimal for any
infinitely large t. Let us suppose that it is not true. Then there exists ω1 > ω
such as x(ω1, x0, y0) is not infinitely small. The difference ω1−ω is necessarily
infinitely large. The set:

B = {t : t > ω (t− ω)x(t, x0, y0) > 1}

is not empty (it contains ω1) and its infimum l is such that l − ω is limited,
which is a contradiction and achieves the proof. This proof is illustrated by
Figure 5.

Infinitely small duaration :

                    After that small duration, regular perturbation.

Non limited

xoyo

Figure 5: Illustration of the proof of Theorem 3.7.

A small remark to finish : Theorem 3.7 should not make illusion. The
sufficient condition S-UIB does not relate directly to the data. It is difficult to
give sufficient conditions relating to the second members so that a system is S-
UIB. It is what is made in [43] in the case where the subsystem in the variable
y is linear. We did not seek non standard equivalents of their conditions.

3.3 NSA and differential equations

G. Reeb was certainly the first to see all the benefit which NSA could bring to
the drafting in the field of ordinary differential equations where the geometrical
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arguments are not allways simple to formalize. He pushed at the end of the sev-
enties some young researchers of Strasbourg to be interested in the equation of
Van der Pol via NSA. In the France of mathematics which hardly began to con-
ceive that there were other pure mathematics than Bourbaki’s ones and other
applied mathematics than that of the digital simulation of partial differential
equations, to push mathematicians to be interested in a very small equation
that only the electronics specialists of the schools of engineers taught, was reso-
lutely provocative. G. Reeb did not doubt that on this old subject a new glance
would not fail to be fertile. It is what occurred with the discovery of the phe-
nomenon called canard (or duck) phenomenon, i.e. of the importance of certain
special solutions in the description of phase portrait of certain one parameter
families of differential equations [4]. Our treatment of the peaking phenomenon
very clearly claims the philosophy inaugurated in this article. NSA made many
other intrusions in the theory of differential equations like, for example, the stro-
boscopic method, which is the external vision of the classical averaging methods
[9, 42], the theory of differential equations with discontinuous right hand sides
[26], the theory of rivers [17], which does not have yet a classical equivalent, and
the consideration of the complex slow-fast differential equations [8]. We return
to [14] and its bibliography for a rather complete vision of the subject.

4 Nonstandard Theory of noise by M. Fliess

In a recent note [19] M. Fliess uses a result of P. Cartier and Y. Perrin [11] to
propose a purely deterministic approach to the question of the treatment of the
noise in signal theory. We propose in this part a small history of the ideas which
led to the result of [11] used in [19]. It consists essentially of some results from
the articles [11, 20, 35, 36]4. If we do not respect the letter of these authors
(in particular certain definitions and/or results that we attribute to them do
not necessarily appear in the original papers in the form that we give them) we
hope, on the other hand, to respect the spirit of it.

4.1 The Moire’s theory of J. Harthong

To jump from a microscopic scale to a macroscopic one by the mean of some av-
eraging is certainly the very basic job of the physicist. The Reeb’s school, mainly
through the work of J. Harthong [20], gave a contribution to that question in
NSA.

The “moiré phenomenon”, or simply “moiré” is the following phenomenon.
On Figure 6 are drawn two networks of fine black and white lines alternate. If
one superimposes two such networks as on Figure 7 one sees appearing “dark
stripes” separated by clearer ones. It is also seen that these stripes are all
the more broad as the angle between the two networks is weaker. This optical

4Since it will be question, in particular, of theories of measurement note the existence of
very many developments in this field known under the name of Loeb measure [6]. We will not
evoke them because their background is the formalism of A. Robinson.
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3

Figure 6: Two “microscopic” networks of straight lines.

phenomenon is very widespread. It is visible in particular when one looks at
curtains by transparency, with television when the “pixelized” nature of the
screen interferes with certain figures or image etc... J. Harthong immediately
saw how to benefit from NSA to theorize this phenomenon. The matter is to
model the fact that in certain areas of space, locally, the superposition of the
black lines is done on white ones, resulting in a complete black, whereas in other
areas of space a black line is superimposed with another black line, leaving clear
the neighboring line.

J. Harthong models a “network of step h” in the following way (see Figure
8). It is decided that the network of fine straight lines is at the infinitely small
scale. One thus gives oneself a strictly positive infinitely small real number
h which will be the mesh of the network and a periodic function ψ, of period
1, which takes alternatively the value 0 or 1 on intervals of length 1

2 . The
value 0 codes for “black”, the value 1 for “white”. The function ψ measures
a “transmittance”: 0 if the light does not pass, 1 if all the light passes. The
function :

(x, y) 7→ ψ

(
λx− y

h

)
takes the value 1 if h(k − 0.5) ≤ λx − y < hk, which means that on lines of
infinitesimal wideness h and slope λ the function

(x, y) 7→ ψ

(
−y
h

)
ψ

(
λx− y

h

)
takes the value 0 or 1 and codes for the superposition of an horizontal network
and a network of slope λ. In order to represent the “moiré phenomenon” J.
Harthong proposes to consider the function :

M(x, y) =
1

µ(hal(x, y))

∫ ∫
hal(x,y)

ψ

(
−v
h

)
ψ

(
λu− v

h

)
dudv (15)
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4

Figure 7: The “stripes” of moiré.

where hal(x, y) is the halo of the point (x, y) and µ indicates the Lebesgue
measure of R2. The halo of (x, y) being made up of “all” points of the plane
which are “very close” to (x, y) one can say that it is, at the same time, a
small set “in the absolute”, but “large” at the scale of h. Indeed the points
distant of

√
h of (x, y) are at a distance infinitely large compared to h of

(x, y). The average “on the halo” of (x, y) of the product of the transmitances
thus represents well locally (at the point (x, y)), on a macroscopic scale, the
effect of the product of transmittances of the two microscopic networks.

Since the figures showed that the stripes appear for the small values of the
slope, we will take for λ a number of the same order of magnitude as h, i.e.
λ = kh with k limited. Now let us replace λ by this value not in M(x, y) but
in :

Mε(x, y) =
1

(2ε)2

∫ v=y+ε

v=y−ε

∫ u=x+ε

u=x−ε

ψ

(
−v
h

)
ψ

(
ku+

−v
h

)
dudv,

where ε is infinitesimal and infinitely large compared to h. The change of
variable −v

h = w gives :

1
2ε

∫ v=y+ε

v=y−ε

ψ

(
−v
h

)
ψ

(
ku+

−v
h

)
dv =

h

2ε

∫ w=−y/h+ε/h

w=−y/h−ε/h

ψ(w)ψ(ku+ w)dw.

When ε/h is infinitely large this last integral is the average on a very great
number of periods of the periodic function w 7→ ψ(w)ψ(ku + w), and is thus
infinitely close to the average to this function over one period, i.e. :∫ 1

0

ψ(w)ψ(ku+ w)dw.
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A network with an infinitesimal
grid h

Profile

Ψ = 0 Black
Ψ = 1 White

h infinitely small

1

0

Ψ

(x,y)

Figure 8: Modelisation

Moreover the function

u 7→
∫ 1

0

ψ(w)ψ(ku+ w)dw

is S-continuous. So, we can write :

Mε(x, y) ≈
1
2ε

∫ u=x+ε

u=x−ε

∫ 1

0

ψ(w)ψ(ku+ w)dwdu.

Thus, for ε infinitely small this quantity is infinitely close to :∫ 1

0

ψ(w)ψ(kx+ w)dw

and finally :

Mε(x, y) ≈
∫ 1

0

ψ(w)ψ
(
λ

h
x+ w

)
dw.

One sees that Mε(x, y) is a quantity independent of y. This explains that stripes
are vertical, and that the period is all the more large as λ is small. This explains
also why the width of the stripes is all the more large as the slope is weak. We
thus have a theory5 which suitably describes the optical phenomenon presented
at the beginning of this paragraph. The principle is simple : make an average
on a set which is at the same time rather large on the scale of the mesh of
the networks considered, but small enough to reflect a local property. One can
imagine that this theory can extend to nonlinear networks. It is what is done
in [20].

5Here we take “theory” within the meaning of “physical theory”, i.e. of a convincing
system of representation of reality, not within the meaning of “mathematical theory”, i.e. an
irreproachable text from the point of view of the accepted mathematical rigor of the moment.
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4.2 The averaging theory of C. Reder

It undoubtedly does not have missed to the reader that, from the mathematical
point of view, the formula (15) of definition of the average “on the halo” poses
a problem, even within the framework of NSA6. Indeed “hal(x, y)”is not a
set. We thus do not have a theory of integration valid for such objects. In the
calculation of the preceding paragraph we solved the problem by integrating not
on all the halo of (x, y) but simply on a square of size 2ε. But this misses a little
“canonicity”. The clarification of these questions is not a purely formal problem
and was undertaken by C. Reder in [36] from where we extract the matter for this
paragraph. Whereas the question of the “moiré” effect is primarily a problem
with two dimensions, C. Reder considered, to start, the unidimensional case
which is simpler.

4.2.1 The apparent value at a point

One places oneself on R provided with the Lebesgue measure. One considers
a (not necessarily standard) Lebesgue integrable function f . To simplify, we
suppose that |f | is bounded by a limited constant.

Definition 4.1 (Observability at a point ) Let x be a limited real number. It
is said that the function f is observable at x and that a is an apparent value
of f at x if there is an infinitely small real number h0 > 0 such as:

∀h1 ∀h2 (h1 ≈ 0 h2 ≈ 0 h1 ≥ h0 h2 ≥ h0) =⇒ 1
h1 + h2

∫ x+h2

x−h1

f(s)ds ≈ a.

It is immediate to note that two apparent values at the same point are infinitely
close. By abuse of language we call “apparent value” (when it exists) and note
F(x) the collection of the apparent values of f at point x. If this collection were
a formal set we could call upon the axiom of the choice “to choose” a value. In
the system IST this possibility “of choosing” a particular value in a collection of
infinitely close real numbers is offered by the axiom of “standardization”. We
could use it (it is besides what is made in [36]) but that would lead us formal
developments which do not seem useful to us in this article. To paraphrase what
has been just made we will say that the “apparent value ”, when it exists, is
the average “on a sufficiently large infinitely small interval”.

In Definition 4.1 one makes the average on an interval which is contained in
hal(x) and which contains x in its interior. The following definition does not
make any more this restriction.

Definition 4.2 (Strong observability at a point ) Let x be a limited real num-
ber. It is said that the function f is strongly observable at x and that a is
an apparent value, if there is a real infinitely small h0 > 0 such that :

∀h ∀y (h ≈ 0 h ≥ h0 |y − x| ≈ 0) =⇒ 1
h

∫ y+h

y

f(s)ds ≈ a.

6Notice that J. Harthong took care well in his article not to write such a formula !
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One notes easily that an S-continuous function f at x is observable at x and
has as apparent value f(x). One has the following properties :

� A periodic function f of infinitesimal period T is strongly observable at
x and has as the apparent value a for any a such that:

a ≈ 1
T

∫ T

0

f(t)dt.

Indeed, let h0 =
√
T which is infinitely large compared to T . Let h be

an infinitesimal larger than h0. One can write : h = nT + r with n
infinitely large and r < T . The average on [y, y + h] breaks up into :

1
h

∫ y+h

y

f(t)dt =
1

nT + r

[
n

∫ y+T

y

f(t)dt+
∫ y+r

y

f(t)dt

]

from which we deduce immediately what was claimed.

� The function which is equal to 0 for x negative and 1 for x positive and
unspecified at 0 does not have an apparent value at 0. Indeed, the average
of this function on an interval which contains 0 can vary between 0 and 1
according to whether 0 is at one edge or the other of the interval.

� One shows in [36] that the function f which is null for x ≤ 0 and which
is equal to sin

(
1
x

)
for x positive is observable at 0 but is not strongly

observable there.

One can wonder under which conditions a function will often have an apparent
value. The answer is that if f is integrable it has an apparent value in almost
any point (see [36]).

4.2.2 Moving average

The purely external definition of the apparent value does not make it possible
to speak about the function which associates to x an apparent value of f at
point x when it exists. The result of this paragraph will give us the means of
solving this problem. Let us consider the function (defined for h > 0) :

x 7→Mh(x) =
1
h

∫ x+h

x

f(t)dt.

It is the “moving average” of f on a window of width h to the most elementary
meaning of the term. Since unmemorable times, to take the moving average is
a process used to regularize the functions. Is there a link between the moving
average and the apparent value ? If we return to the definition of the apparent
value at x we let find that the average on an infinitesimal interval h “large
enough” should not depend any more on h, but, a priori, the rather large “h”
depends on the point x. In fact it is not the case, as the result [36] shows :
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Theorem 4.3 There exists an infinitely small real number h0 > 0 such that
for all infinitely small real number h greater than h0, at any point x where f
is observable, the average Mh(x) is an apparent value of f . Moreover, at this
point, the function x 7→Mh(x) is observable and an apparent value of Mh is an
apparent value of f .

This theorem is not trivial and we return to [36] for its proof. On the other
hand it results from it some easy conclusions.

� Let f be integrable. There exists an infinitesimal h0 such that for h1

and h2 infinitesimals greater than h0 one has Mh1(x) ≈Mh2(x) at each
point where f is observable.

� Let h be such that In Theorem 4.3. The function x 7→Mh(x) is continuous
but is not S-continuous.

� Let I an interval such that at each point f is observable . Then x 7→Mh(x)
is S-continuous on I.

We thus can, from now, associate to a function f its “regularized” that we
note Mf . We understand there any unspecified functions Mh for h sufficiently
large, defined by Theorem 4.3. This process of regularization through moving
average is called regularization by convolution in [36]. If we start from a signal
corrupted by noise, and we draw the graph of Mh for increasing values of h from
0 we observe that the graph becomes independent of h after a certain value of h,
as it is illustrated on Figure 9. In this experiment we started from of a disturbed
signal. The width of the figure represents on the whole seven units ; the graphs
of the function Mh are shifted upwards for each new value of h, for values of
h varying of 0.02, by step of 0.02, to 0.3. 0n can consider that after h = 0.1
function Mh does not depend any more on h.

4.3 Radically Elementary Probability Theory

In [35]7 E. Nelson proposes a Nonstandard version of the theory of the Brownian
motion, which cannot leave indifferent if one knows that he is also the author
of “Dynamical theories of Brownian motion” [33]8, a very great classic. The
principle is as follows. Everyone knows the “walk of the drunkard”. It is the
stochastic process defined by :

xt+dt = xt + Zt

√
dt, (16)

where t takes discrete values 0, dt, ..., kdt, .... and where Zt is a sequence of
random variables taking values +1 or −1 with the probability 1

2 . We symbolize
this by Zt = ± which leads us to rewrite (16) as :

xt+dt = xt ±
√
dt. (17)

7Downloadable Book in English, French or Russian
8Downloadable Book
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Figure 9: Evolution of Mh.

The length
√
dt of the step is chosen in order to normalize the variance of x1 at

the value 1. The physical Brownian motion is the process in which a particle
of size of the order of some micrometers undergoes each second an incredibly
large number of shocks on behalf of the molecules of the fluid in which it is
plunged. The mathematical Brownian motion, or Wiener process wants to be
the idealization of this situation. In mathematics one idealizes “small” by the
“continuous limit”. This leads to the invention of the mathematical Brownian
motion which is a continuous time process in which at each moment one choose
with head or tail the direction of the motion. There is a very strong discrepancy
between the idea of “continuous mathematics”, represented by the real line, and
a “succession of moment”. This is why the process of Wiener is an abstract
object so difficult to define and manipulate. E. Nelson proposes to idealize
the physical Brownian motion, by considering simply the process (17) with dt
infinitesimal. The unspecified character of dt gives all its canonicity to the
process at least in all the assertions where dt does not appear explicitly. Such
an assertion is, for example :

Theorem 4.4 (Nelson) Almost surely the trajectories of the Brownian motion
are continuous.

One certainly understood that in this theorem “continuous” must be taken
within the meaning of S-continuous. The “almost surely” deserves an expla-
nation. Let us suppose that the interval of time [0, 1] is discretized as :

0, dt, 2dt, · · · , kdt, · · · , Ndt = 1,
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provided with the measure of probability product of the uniform measure on
the set {−1,+1}. Each element of this set has a probability of 1

2n and there is
not set of null measure. In addition, for a trajectory, being S-continuous is an
external property, which thus does not define a set. This is why one says of a
property P (possibly external) that it is rare if, for any standard ε there is a
set A of measure lower than ε such as if P (z) is true then z belongs to A. An
event is almost sure if its complement is a rare event.

The theory of E. Nelson is radically elementary in the sense that it uses only
a weak version of the theory IST more intuitive and simpler than the complete
theory, and a trivial theory of integration on finite sets. Most astonishing is
that, in an appendix which is not elementary (one uses all the force of IST), E.
Nelson shows that the elementary theory potentially contains any result which
the continuous theory could. He do not hesitate to present its appendix by these
words :

The purpose of this appendix is to demonstrate that theorems of the
conventional theory of stochastic processes can be derived from their
elementary analogues by arguments of the type usually described as
generalized nonsense ; there is no probabilistic reasoning in this
appendix. This shows that the elementary nonstandard theory of
stochastic processes can be used to derive conventional results ; on
the other hand, it shows that neither the elaborate machinery of the
conventional theory nor the devices from the full theory of nonstan-
dard analysis, needed to prove the equivalence of the elementary re-
sults with their conventional forms, add anything of significance :
the elementary theory has the same scientific content as the conven-
tional theory. This is intended to be a self-destructing appendix.

This book of E. Nelson, if it does not have a direct relationship with aver-
aging, the subject which interests us here, is certainly a source of inspiration
for the authors who wish to consider the question of measure theory from an
elementary point of view with the means of IST.

4.4 The measure theory of Cartier-Perrin

It is thus trying to forget the probabilities and to follow the path opened by E.
Nelson to build an elementary measure theory. Let us take on the interval [0, 1]
the sequence of points {dt, 2dt...., kdt..., Ndt = 1}, and assign to each point the
“mass” 1

n . Let us call “measure of enumeration” of a set A of [0, 1] the number :

δ(A) =
1
N

N∑
k=1

χA(kdt),

where χA is the characteristic function of the set A. The quantity δ(A) has good
properties like additivity, invariance by translation but has the unacceptable
defect to give the mass 1 to the whole set of rational of [0, 1]. It is thus difficult
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to consider a theory of measurement on such a näıve basis. In [11], P. Cartier
and Y. Perrin propose an “integration theory on finite sets” which tries to be
enough rich to meet the needs for the current analysis. They consider a finite
set (of infinitely large cardinal) X = {a1, a2..., ai..., aN} ; to each element ai

is associated a positive or null number, its “mass” mi. The measure m(A) of a
set A is the sum of the masses of the points which belong to him. Being given
a function f defined on X, with value in R one can always consider the sum :

N∑
i=1

mif(ai)

and denote it by :
N∑

i=1

mif(ai) =
∫

X

fdm.

That class of all functions being too large we shall restrict to :

Definition 4.5 (S-integrable functions) An application f from X to R is called
S-integrable if and only if : ∫

x

|f |dm

is limited and ∫
A

fdm ≈ 0

for each rare set A.

A set A is rare9 if, as in the theory of E. Nelson, it is a (possibly external)
set such that for any standard α > 0 there exists an internal set B such as A
is contained in B and m(B) ≤ α. One provides then the set X with a distance
d. One supposes that X is precompact, which means that the diameter of X is
limited and that for any non infinitely small real number r > 0 there exists
a covering of the space by a limited number of balls of radius smaller than
r. The definition of S-continuous is the same one as that which we already
defined and :

Definition 4.6 (Almost S-continuous functions) A function f from X to R
is almost S-continuous if an only if it is S-continuous on the complement
of a rare set.

This makes it possible to define the concept of “Lebesgue” integrable function.

Definition 4.7 (L-integrable functions) A function is L-integrable if and only
if it is S-integrable and almost S-continuous.

Let us add the definition of “fast oscillating” function :
9In [2] which is the extension of the Radically elementary probability theory of E. Nelson

to diffusion processes, E Benoit establishes nontrivial properties of certain rares sets
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Definition 4.8 (Fast oscillating functions) A function f from X to R is fast
oscillating if and only if it is S-integrable and if for each quarrable subset
of X one has : ∫

A

hdm ≈ 0.

Definition 4.9 A set A is quarrable if its boundary is a rare set.

We can now state the :

Theorem 4.10 (Decomposition theorem of Cartier-Perrin) Let f be an
S-integrable function. Then one has :

f = g + h

where g is L-integrable and h is fast oscillating. The decomposition is unique
up to an infinitesimal

To establish the link with the averaging theory of J. Harthong and C. Reder
let us give an idea of the proof of this result. The idea is to define a sequence
Pn of partitions of X by sets of diameters smaller and smaller and to calculate
the average of f on each atom of the partition Pn which gives a sequence of
function fn ; for suitable values of the indices the function fn will be almost
S-continuous thus Lebesgue integrable. Since all the definitions involved
are external this construction must be carried out carefully.

4.5 The Nonstandard definition of noise by M. Fliess

In a recent communication, M. Fliess [19] proposes to consider a signal (dis-
turbed), not like a continuous function, but for what it is really, a sampled
signal, i.e. a function f (the notations are not those of [19]) defined on a finite
set, but idealized in a “almost interval”. An almost-interval (to follow the
terminology of E. Nelson taken again by Cartier-Perrin) is a finite set of points:

{t0, t1..., ti..., tN}

of the interval [a, b] such as a = t0, ti−1 ≈ ti, tN = b affected of the masses

m0 = 0, and mi = ti − ti−1, i = 1, 2, · · · , ..N.

and provided with the distance induced by the natural one of R. It is thus a
finite set, precompact with the meaning of the preceding paragraph. One admits
then that the disturbed signal is an S-integrable function and, according to
Theorem 4.10, one has :

f = g + h

with g L-integrable and h fast oscillating. M. Fliess proposes to define the
“noise” as the fast oscillating part h of signal f .
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This double decision to define the noise within a discrete and purely deter-
ministic framework is a strong decision which goes against the current mathe-
matical tradition which thus treats the noise as a “white noise” like, to some
extent, a continuous realization of the “pure chance”. We will not discuss the
relevance of this choice since we are not specialists in signal processing. We
simply make some remarks of a mathematical nature.

� M. Fliess also defines in the same way the noise for signals in several
dimensions.

� One could as well have chosen to treat continuous signals within the more
classical (but still nonstandard) framework of C. Reder and the results of
[36].

� As we did in the case of the peaking, we propose a classical equivalent
of “fast oscillating”. One gives oneself a family fγ(t) of applications of
R into R. It will be said that fγ is asymptotically (when γ → +∞) fast
oscillating if and only if:

∀ε > 0 ∀M > 0 ∃γ0 ∀γ ∀a ∀B {γ > γ0&|b− a| < M ⇒

∣∣∣∣∣
∫ b

a

fγ(t)dt

∣∣∣∣∣ < ε},

that will be compared to : “On a limited interval the integral of f is
infinitely small”.

� Let us consider functions of period [0, 2π]. That one adopts the relatively
classical point of view of the functions (possibly not standard) integrable
or that more radical where [0, 2π] is replaced by one almost-interval (as
in [13]) one can develop the function into Fourier series. Thus let :

f(t) =
+∞∑

n=−∞
cne

int.

The theorem of decomposition of f in a regular part (L-integrable func-
tion or “observation function”) and an oscillating part suggests the pos-
sibility of a decomposition of the kind :

+∞∑
n=−∞

cne
int =

∑
n∈{limited}

cne
int +

∑
n∈{infinitely large}

cne
int

where the first sum would be the regular part and the second the fast os-
cillating part. For that it would be necessary to determine the conditions
under which it is possible to give a sense to the two sums (on external sets
of indices) which for the moment do not have any.

� In a very recent work [3], E. Benoit approaches this frequential point of
view in the nonperiodic case via the Laplace transform. He shows that if
f is fast oscillating, its Laplace transform F (s) is infinitely small if
Re(s) > 0 and Im(s)

Re(s) are limited.
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5 Last remarks

The reader a little familiar with IST [34] will have noticed that we did not use
the axiom of Standardization. What is it about ? It is known that in formal
set theory (in ZFC) there is an axiom which is stated as follows : If P is an
(internal) formula then

∀x ∃y ∀z{z ∈ x ∧ P (z) ⇐⇒ z ∈ y},

which says that the (intuitive) set of all those z ∈ x which have the property P
is a true set y, a set within the formal meaning of ZFC. We sufficiently insisted
on the fact that if P is not an internal formula such a formal set does not
necessarily exist and that was there one of the key of the effectiveness of the
nonstandard language.

The axiom of Standardization in IST is a provider of standard sets issued
from external formulas. It is stated as follows : Let P be a formula (not neces-
sarily internal)

∀stx ∃sty ∀stz{z ∈ x ∧ P (z) ⇐⇒ z ∈ y}

In other words, for any standard set x and any property there exists a standard
set y whose standard elements are the standard elements of x which satisfy
the property and only them. It is, in particular, the use of this axiom which
makes it possible E. Nelson to show in the appendix of [35] that its radically
elementary theory of the probabilities is equivalent to the classical theory. But
as E. Nelson says This appendix is to some extent self-destructing. This is why
a more “radical” nonstandard point of view is to recommend the use of weak
nonstandard theories like E. Nelson in [35], J-L. Callot in [7] and R. Lutz in
[29] (see also [31, 32]). In such theories one does not seek to distinguish the non
standard objects from the standard objects, in all generality. One is satisfied to
do it on integers which is sufficient to analysis. But it is not possible any more
to compare with the classical results. Thus “a standard function is uniformly
continuous if and only if it is S-continuous” does not have meaning since the
notion of “standard function” is not defined. By keeping the concept of standard
object, without using the axiom which accompanies it, we chose to allow such
comparisons. But people convinced by NSA think that they are self-destructing.
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du réel. OPU, Alger and CNRS, Paris, 1985.

[17] M. Diener, G. Reeb. Champs polynômiaux: nouvelles trajectoires re-
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