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Abstract. The aim of this paper is to give a presentation of the method of stro-
boscopy and to apply it in several problems in the perturbation theory of differential
equations and in numerical analysis. We give a proof based on stroboscopy of the
KBM theorem of averaging.
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1. Introduction

The method of stroboscopy was proposed in 1977 by J. L. Callot and its writer
G. Reeb (see [R,CS,S7]) for the study of the differential equation x′ = sin(tx/ε)
where ε is small (see Section 5.1 for the details). It was presented by Reeb at the
IV International Colloquium on Differential Geometry in Santiago de Compostella
(1978). The guidind principle of this method is as follows. Let φ : I → Rd, I ⊂ R
be a function which take limited values. Suppose there exists a sequence of points
(tn, xn = φ(tn)) in I × Rd satisfying

0 < tn+1 − tn ' 0 and
xn+1 − xn

tn+1 − tn
' f(tn, xn)

where f is a standard continuous function. Then the function φ is infinitely close,
to a solution x(t) of the differential equation x′ = f(t, x) whenever t and x(t) are
both limited.

Usually the function φ under consideration is not wellknown (for example it is
defined to be a solution of some differential equation) and it is difficult to verify
the required conditions, i.e. that it takes only limited values on some interval I, or
to define explicitely the sequence of points (tn, xn). For these reasons, I extended
the method of stroboscopy (see [S2]) to functions φ : I → Rd, I ⊂ R such that for
each t in I with both t and φ(t) limited, there is t′ in I such that

0 < t′ − t ' 0 and
φ(t′)− φ(t)

t′ − t
' f(t, φ(t)).

We call t and t′ successive instants of observation of the method of stroboscopy.
Here the sequence of points (tn, xn) is given by some kind of external recurrence
relation (see Sections 4.2. and 4.3.). Having in mide some applications, R. Lutz
[Lr] extended this result and proposed a selective stroboscopy where the existence of
the instant of observation t′ of the method of stroboscopy is assumed only for those
t which lie in some subset E ⊂ I. Taking in account all these ameliorations of the
original idea of stroboscopy I gave [S5] a “Stroboscopy Lemma” which is presented
in Section 2. In Section 3 a proof, based on stroboscopy, of the so-called “Short
Shadow Lemma” is given ; we give also a standard version of this foundamental tool
in Nonstandard Asymptotic Theory. Some semicontinuity properties of the orbits of
a dynamical system are obtained as a consequence of the Short Shadow Lemma. In
Section 4 the classical theorem of averaging of Krylov, Bogolioubov and Mitropolski
(KBM theorem) is proposed also as a consequence of stroboscopy ; in this version of
the KBM theorem the usually required conditions on the differential equation are
weakened. In Section 5, I give some application of stroboscopy to various problems
in the perturbation theory of differential equations and in numerical analysis :
the adiabatic invariants, the numerical instability and ghost solutions, the error
propagation in numerical schemes. In some of these problems, I prefer to use
directly the stroboscopy method, rather than to deduce the answer from some
general result : my hope is to convince you that the method of stroboscopy is
an important tool in the study of differential equations and is valuable to solve
problems. Indeed, the method of stroboscopy was appreciated by several authors
in various problems (see [S7] and its bibliographical comments).
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2. Stroboscopy

In this section U is a standard open subset of Rd, f : U → Rd is a standard
continuous function and φ : I → Rd is a function such that 0 ∈ I ⊂ R and φ(0) is
nearstandard1 in U .

Definition (Stroboscopic property). Let t and t′ be in I. The function φ is
said to satisfy the stroboscopic property S(t, t′) if [t, t′] ⊂ I, t′ ' t, φ(s) ' φ(t) for
all s in [t, t′] and

φ(t′)− φ(t)
t′ − t

' f(φ(t))

The Stroboscopy Lemma asserts that under suitable conditions the function φ
is approximated by a solution of the initial value problem

(1) x′ = f(x) x(0) = o(φ(0)).

2.1. Stroboscopy Lemma.

Theorem 1 (Stroboscopy Lemma). Suppose that
(i) there is µ > 0 such that whenever t ∈ I is limited and φ(t) ∈ UNS there is

t′ ∈ I such that t′ − t > µ and the function φ satisfies the stroboscopic property
S(t, t′).

(ii) the initial value problem (1) has a unique solution x(t). Let J = [0, ω),
0 < ω ≤ +∞, be its maximal positive interval of definition.

Then the function φ(t) is defined for any t ∈ JNS and satisfies φ(t) ' x(t)

Proof. The proof needs the Lemma 3 below (the proof of this Lemma needs some
preliminary results and is postponed to the next section). Let b be standard in
(0, ω). Since x([0, b]) is a standard compact subset of U , there is a standard k > 0,
such that the neighborhood N of x([0, b]) defined by N = {x ∈ Rd : ∃s ∈ [0, b] ‖x−
x(s)‖ ≤ k} is included in U . Define the set

A = {r ∈ [0, b] : [0, r] ⊂ I and ∀s ∈ [0, r] ‖φ(s)− x(s)‖ ≤ k}

The set A is non empty (since 0 ∈ A) and bounded above by b. Let r0 be the
lower upper bound of A. There is r ∈ A such that r0 − µ < r ≤ r0. Thus for
s ∈ [0, r] we have φ(s) ∈ N . Hence on [0, r] the function φ is nearstandard in U .
By Lemma 3 we have φ(s) ' x(s) for s ∈ [0, r]. By condition (i), there is r′ > r +µ
such that r′ ∈ E, [r, r′] ⊂ I and φ(s) ' x(s) for s ∈ [r, r′]. Hence [0, r′] ⊂ I
and ‖φ(s) − x(s)‖ ≤ k for s ∈ [0, r′]. Suppose r′ ≤ b, then r′ ∈ A which is a
contradiction with r′ > r0 = sup A. Thus r′ > b, that is for each standard b ∈ J
we have φ(s) ' x(s) for all s ∈ [0, b]. ¤
Remarks. 1. Condition (i) is a local property of the function φ. From this local
property, the Stroboscopy Lemma gives a global estimate on φ and its domain of
definition I. Indeed the function φ is defined at least on any interval [0, b] with b

1A point x ∈ U is said to be nearstandard in U if there is a standard x0 ∈ U such that
x ' x0, that is ox ∈ U , where ox is the shadow of x. We abbreviate this as x ∈ UNS , where
UNS = {x ∈ U : ∃stx0 ∈ U x ' x0} is the external-set of nearstandard points in U .
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standard in J and satisfies φ(t) ' x(t) for all t ∈ [0, b]. By permanence there is an
interval J0 = [0, ω0] ⊂ J such that ω0 ' ω, J0 ⊂ I and φ(t) ' x(t) for all t in J0.

2. Condition (i) may be weakened and replaced by
(i′) there are µ > 0 and E ⊂ I, with 0 ∈ E, such that whenever t ∈ E is limited

and φ(t) ∈ UNS there is t′ ∈ E such that t′ − t > µ and the function φ satisfies the
stroboscopic property S(t, t′).

The proof is almost the same (see [S5] for the details). This is a slightly simplified
version of the selective stroboscopy [Lr].

2.2. Preliminary lemmas.

Lemma 1. Let {(tn, xn) : n = 0, ..., N + 1} be a sequence of points in R × U .
Suppose

i) there is a standard b > 0 such that 0 = t0 < t1 < ... < tN ≤ b < tN+1 , and
tn+1 ' tn for all n = 0, ..., N ,

ii) for each n ∈ {0, ..., N} xn ∈ UNS and there exists ηn ' 0 such that xn+1 '
xn + (tn+1 − tn)[f(xn) + ηn].

Then the standard function x : [0, b] → U which, for t standard in [0, b], is defined
by x(t) := oxn where n is such that tn ≤ t < tn+1, is a solution of the initial value
problem (1), and satisfies xn ' x(tn) for all n ∈ {0, ..., N}.
Proof. Let η = max{η0, ..., ηN} and m = max{‖f(x0)‖, ..., ‖f(xN )‖}. Then we have
η ' 0 and m = ‖f(xp)‖ for some p ∈ {0, ..., N}. Since f is standard and continuous
in U , and oxp ∈ U , f(oxp) is standard and m ' ‖f(oxp)‖. Hence M = m + 1 is
limited. For n > p we have

‖xn − xp‖ = ‖
n−1∑

k=p

(xk+1 − xk)‖ = ‖
n−1∑

k=p

(tk+1 − tk)(f(xk) + ηk)‖

<

n−1∑

k=p

M(tk+1 − tk) = M |tn − tp|.

Hence tn ' tp implies xn ' xp. Thus the function x(t) is continuous on [0, b] and
satisfies xn ' x(tn) for all n ∈ {0, ..., N}. Since f is standard and continuous, for
n ∈ {0, ..., N} we have f(xn) = f(x(tn)) + αn with αn ' 0. Let t be standard in
[a, b]. There is n ∈ {0, ..., N} such that tn ≤ t < tn+1 and we have

x(t)− x(0) ' xn − x0 =
n−1∑
p=0

(tp+1 − tp)[f(xp) + ηp]

=
n−1∑
p=0

(tp+1 − tp)[f(x(tp)) + αp + ηp] '
∫ t

0

f(x(s))ds.

Therefore x(t) − x(0) =
∫ t

0
f(x(s))ds for all standard t and consequently for all

t ∈ [0, b], that is x(t) is a solution of problem (1). ¤
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Lemma 2. Suppose there is a standard b > 0 such that [0, b] ⊂ I and φ(t) ∈ UNS

for all t in [0, b]. Suppose there is µ > 0 such that for all t ∈ [0, b] there is t′ ∈ I
t′ − t > µ and the function φ satisfies the stroboscopic property S(t, t′). Then the
function φ is S-continuous on [0, b] and its shadow is a solution x(t) of the initial
value problem (1) defined on [0, b], and satisfies φ(t) ' x(t) for all t ∈ [0, b].

Proof. Define the set A = {λ ∈ R : ∀t ∈ [0, b]∩E ∃t′ ∈ E S(t, t′, λ)} where S(t, t′, λ)
is the property :

[t, t′] ⊂ I µ < t′ − t < λ ∀s ∈ [t, t′] ‖φ(s)− φ(t)‖ < λ

and ‖φ(t′)− φ(t)
t′ − t

− f(φ(t))‖ < λ.

The set A contains all the standard real numbers λ > 0. By permanence, there is
ε ' 0 in A, that is there is 0 < ε ' 0 such that for all t ∈ [0, b] there is t′ ∈ E such
that P (t, t′, ε holds. By the axiom of choice there exits a function c : [0, b]∩E → E
such that t′ = c(t), that is P (t, c(t), ε) holds for all t ∈ [0, b]∩E. Since c(t)− t > µ,
there are N > 0 and {tn : n = 0, ..., N + 1} such that t0 = 0, tN ≤ b < tN+1

and tn+1 = c(tn). Define {xn : n = 0, ..., N + 1} by xn = φ(tn). By Lemma 1
the shadow of the sequence (tn, xn) is a solution x(t) of the differential equation
x′ = f(x), defined on [0, b]. Since φ(tn) ' x(tn) for all n = 0, ..., N and φ(s) ' φ(tn)
on [tn, tn+1], we have φ(t) ' x(t) for all t ∈ [0, b]. ¤
Lemma 3. Suppose the real b in Lemma 2 is assumed to be limited (not necessarly
standard). Suppose morover that the initial value problem (1) has a unique maximal
solution x(t). Then the function x(t) is defined at least on [0, b] and we have
φ(t) ' x(t) for all t ∈ [0, b].

Proof. If b ' 0 there is nothing to prove. Assume b is not infinitesimal and let a be
standard such that 0 < a < b. By Lemma 2 the function x(t) is defined on [0, a] and
φ(t) ' x(t) for all t ∈ [0, a]. By permanence that property holds for some a ' b.
Since the standard function x(t) is defined and limited in a, it is defined at least
on [0, b]. Since x(t) ' x(a) and φ(t) ' φ(a) for all t ∈ [a, b], we have φ(t) ' x(t) for
all t ∈ [0, b]. ¤

3. Regular perturbations

Let U ⊂ Rd be the an open set. The fondamental problem of the regular per-
turbation theory is to compare the solutions of the initial values problems

(2) x′ = f0(x) x(0) = a0 ∈ U,

(3) x′ = f(x) x(0) = a ∈ U,

when f : U → Rd is close to f0 : U → Rd and the initial condition a is close to a0.
The Short Shadow Lemma (Section 3.2.) gives an answer for this problem when
a ' a0, f0 is standard and f(x) ' f0(x) for all x ∈ UNS . Since the considered
systems are n-dimensionnal, this approach include also the case of nonautonomous
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systems. We give here a proof of the Short Shadow Lemma based on the theorem
of stroboscopy. There exists also another version of the Short Shadow Lemma with
a direct proof (see [6] page 137). We first need a preliminary result (Section 3.1.)
which compare the solutions of the differential equations x′ = f0(t) and x′ = f(t, x)
with initial condition x(0) = x0 when f is close to f0. It is not necessary that the
vector field f should be limited. We require simply that it is nearly independent of
the position x : such a vector field is said to be nearly constant.

3.1. Nearly constant vector fields.

Theorem 2. Let D be a subset of Rd containing all the limited points of Rd and
let f0 : R+ → Rd and f : R+ ×D → Rd be continuous functions. Suppose that

i)
∫ t

0
f0(s)ds is limited for all limited t > 0,

ii) f0(t) ' f(t, x) for all limited t > 0 and all limited x ∈ D.
Let x0 be limited in D. Then any solution x(t) of the initial value problem

x′ = f(t, x), x(0) = x0 is defined and limited for all limited t > 0 and satisfies

x(t) ' x0 +
∫ t

0

f0(s)ds.

Proof. By permanence there exists ν ' ∞ such that the property f0(t) ' f(t, x)
holds for t ∈ [0, ν], and x ∈ B where B ⊂ D and B is the ball of center 0 and radius
ν. Suppose there is a limited t > 0 such that x(t) ' +∞. Let t > 0 be such that
t ≤ t, x(t) ' +∞ and x(s) ∈ B for all s ∈ [0, t]. Then we have

x(t) = x0 +
∫ t

0

f(s, x(s))ds ' x0 +
∫ t

0

f0(s)ds.

Hence x(t) is limited ; this is a contradiction. Therefore x(t) is defined and limited
for all limited t > 0. ¤

3.2. Short Shadow Lemma.

Theorem 3 (Short Shadow Lemma). Let U be a standard open subset of
Rd and let f0 : U → Rd be standard and continuous. Let a ∈ U be standard.
Suppose the initial value problem (2) has a unique solution φ0 and let J = [0, ω),
0 < ω ≤ +∞ be its maximal positive interval of definition. Let f : U → Rd be
continuous such that f(x) ' f0(x) for all x ∈ UNS . Then every solution φ of
the initial value problem (3) with a ' a0, is defined for all t ∈ JNS and satisfies
φ(t) ' φ0(t).

Proof. Let φ : I → U be a maximal solution of x′ = f(x) such that φ(0) ' a0.
Let ε > 0 be infinitesimal, and let t0 ∈ I be limited such that x0 = φ(t0) ∈ UNS .
The successive instant of observation of the method of stroboscopy is choosen as
follows. Under the change of variables

T =
t− t0

ε
X(T ) =

x(t0 + εT )− x0

ε
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the system (3) becomes

(4)
dX

dT
= f(x0 + εX).

Since x0 ∈ UNS , the function X → f(x0 + εX) is defined for all limited points
X ∈ Rd. Since f0 is continuous on U and f(x) ' f0(x) for all x ∈ UNS , we have
f(x0 + εX) ' f(x0 + εX) ' f0(x0) for all limited X. By Theorem 2 we have
X(T ) ' Tf0(x0) for all limited T . Define t1 by t1 = t0 + ε, then we have

φ(t1)− φ(t0)
t1 − t0

= X(1) ' f0(x0)

and φ(t) − φ(t0) = εX(T ) ' 0 for t ∈ [t0, t1]. So there is µ = ε/2 such that
whenever t0 ∈ I is limited and φ(t0) ∈ UNS there is t1 ∈ I such that φ satisfies
the stroboscopic property S(t0, t1). By the Stroboscopy Lemma φ is defined for all
t ∈ JNS and satisfies φ(t) ' φ0(t). ¤
Remarks. 1. In practice the function f is not needed to be defined on U . The same
proof works if f : H → Rd where H is a subset of Rd containing all the nearstandard
points in U . The proof is the same. The only point we have to verify is that the
system (4) is defined for all limted X ∈ Rd. This is true since x0 ∈ UNS ⊂ H.

2. By permanence we find an interval J0 = [0, ω0] ⊂ J such that ω0 ' ω, φ is
defined on J0 and φ(t) ' φ0(t) for all t ∈ J0.

3. In some applications it is useful to compare the solutions of two differential
equations x′ = f1(x) and x′ = f2(x) where f1 : H1 → Rd and f2 : H2 → Rd

are continuous functions, none being standard. The Short Shadow Lemma permits
this comparison whenever there is a standard continuous function f0 : U → Rd

having the unicity of the solutions of problem (2) and such that H1 and H2 contain
all the nearstandard points in U and f1(x) ' f0(x) and f2(x) ' f0(x) for all
x ∈ UNS . Indeed let a ∈ U be standard and let φ0 be the maximal solution of the
initial value problem (2). Let J = [0, ω), 0 < ω ≤ +∞ be its positive interval of
definition. Then for all solutions φ1, φ2 of the differential equations x′ = f1(x) and
x′ = f2(x) with initial conditions φ1(0) ' a0 and φ2(0) ' a0 there is an interval
J0 = [0, ω0] ⊂ J such that ω0 ' ω, and such that φ1 and φ2 are defined on J0 and
satisfy φ1(t) ' φ2(t) ' φ0(t) for all t ∈ J0.

3.3. Lower semicontinuity properties of orbits. We recall some facts on
general topology and lower semicontinuity [S8]. Let U ⊂ Rd be an open set. Let
C = C(U,Rd) be the set of continuous functions f : U → Rd. Let K be the set of
compact subsets of U . The topology on C defined by the formula

∀stf0 ∈ C ∀f ∈ C (f ' f0 ⇔ ∀stK ∈ K ∀x ∈ K f(x) ' f0(x))

is nothing than the topology of uniform convergence on compacta. Since Rd is a
locally compact space, to say f ' f0 is the same as saying ∀x ∈ UNS f(x) ' f0(x).

Let Γ : X → P(Y ) be a standard set-valued mapping of the standard topological
space X into the power set P(Y ) of the standard topological space Y . Let x be
standard in X.The mapping Γ is said to be lower semicontinuous at x if :

∀y ∈ X(y ' x ⇒ Γ(x) ⊂ oΓ(y))
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where oΓ(y) = S{u ∈ Y : ∃v ∈ Γ(y) v ' u} is the shadow of the subset Γ(y) ⊂ Y .
This is the same as the usual definition.

Let X (U) be the set of continuous vector fields f : U → Rd on the open set
U ⊂ Rd, such that, for any a ∈ U the solution πf (t, a) of the differential equation
x′(t) = f(x(t)), with the initial condition πf (0, a) = a is unique. Let If (a) =
(αf (a), ωf (a)), −∞ ≤ αf (a) < ωf (a) ≤ ∞, be its maximal interval of definition.
Let γf (a) = {πf (t, a) ∈ U : t ∈ If (a)} be the corresponding orbit through a. We
have the following classical semicontinuity properties ([L] page 28) : the mappings
If : U → P(R) and γf : U → P(U) are lower semicontinuous. This results are
immediate consequences of the Short Shadow Lemma. In fact this lemma has a
more general consequence : let I (resp. γ) be the mapping of X (U)×U into P(R)
(resp. P(U)) which carries (f, a) into If (a) (resp. γf (a)).

Theorem 4. The mappings I : X (u)× U → P(R) and γ : X (U)× U → P(U) are
lowercontinuous, when X (U) is endowed with the topology of uniform convergence
on compacta.

Proof. Assume that f and a are standard then, by the Short Shadow Lemma for
every b ' a, every g ' f and every standard t ∈ If (a), we have t ∈ Ig(b) and
πg(t, b) ' πf (t, a). Hence If (a) ⊂ SIg(b) ⊂ oIg(b) and γf (a) ⊂ oγg(b). ¤

3.4. A standard version of the Short Shadow Lemma. Let us give a standard
translate of Theorem 3. The set C = C(U,Rd) of continuous vector fields f : U → Rd

is endowed with the topology of uniform convergence on compacta.

Theorem 3 bis. Let U be an open subset of Rd. Let a0 ∈ U and let f0 ∈ C
having the unicity of the solution of problem (2). Let φ0 : J → U be its maximal
solution. Then for all δ > 0 and all l ∈ J , there are η > 0 and a neighborhood V of
f0 such that for all a ∈ U and all f ∈ C, any maximal solution φ(t) of problem (3)
is defined at least on [0, l] and satisfies ‖φ(t)−φ0(t)‖ < δ for all t ∈ [0, l], whenever
‖a− a0‖ < η and f ∈ V.

The proof follows the usual way to translate external notions and is left to the
reader. Notice that the results presented in the Remarks of Section 3.2, in particular
in the case where the perturbed vector field f is not assumed to be defined on
the same set U as the unperturbed vector field f0, would have very cumbersome
translates.

4. Averaging

The fundamental problem is the study of the initial value problem

(5)
dx

dτ
= εF (τ, x) x(0) = a

when ε is small. The aim of the method of averaging is to approximate the solutions
of problem (5), for times τ of order 1/ε, by the solutions of the averaged system

(6)
dx

dτ
= εf(x) x(0) = a0
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where a ' a0 and where f is an average of F with respect to the variable τ . Such
an average exists for periodic vector fields (Section 4.1.), for almost periodic vector
fields (Section 4.2.) and for the so-called KBM2 vector fields (Section 4.3.). Since
we look for the long time behaviour of the solutions, it is more suitable to consider
the systems (5) and (6) at the sime scale t = ετ . Then we have

dx

dt
= F (

t

ε
, x) x(0) = a(7)

dx

dt
= f(x) x(0) = a0.(8)

Suppose problem (8) has a unique solution y(t). Let J = [0, ω), 0 < ω ≤ +∞ be
its maximal positive interval of definition.

4.1. Periodic vector fields. Let U ⊂ Rd be an open subset. Let F0 : R×U → Rd

be a standard continuous function which is 2π-periodic in the time variable. The
function F0 is continuous in the second variable uniformly with respect to the first
variable. Indeed let s ∈ R and k ∈ Z be such that s− k2π is limited, then for any
standard x0 ∈ U and any x ' x0 we have :

F0(s, x) = F0(s− 2kπ, x) ' F0(s− 2kπ, x0) = F0(s, x0).

Let f : U → Rd be the average of F0 over one period :

f(x) =
1
2π

∫ 2π

0

F0(τ, x)dτ.

Theorem 5. Let F0 : R×U → Rd be a standard 2π-periodic continuous function.
Let a0 be standard. Let H be a subset of Rd containing all the nearstandard points
in U and let F : R+×H → Rd be continuous and such that F (s, x) ' F0(s, x) for all
s > 0 and all x ∈ UNS . Let ε > 0 and a ∈ U be such that ε ' 0 and a ' a0. Then
for every maximal solution x of problem (7) there is an interval J0 = [0, ω0] ⊂ J
such that ω0 ' ω, x is defined at least on J0 and x(t) ' y(t) for all t ∈ J0.

Proof. Let x : I → U be a maximal solution of problem (7). Let t0 ∈ I be limited,
such that x0 = x(t0) ∈ UNS . The successive instant of observation of the method
of stroboscopy is choosen as follows. Under the change of variables :

T =
t− t0

ε
X =

x− x0

ε

the system (7) becomes

dX

dt
= F (

t0
ε

+ T, x0 + εX).

Let us denote by s = t0/ε. Since x0 ∈ UNS , x0 + εX ∈ UNS for all limited X in
Rd. Then we have

F (s + T, x0 + εX) ' F0(s + T, x0 + εX) ' F0(s + T, x0)

2KBM stands for Krylov Bogolioubov and Mitropolski
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for all T > 0 and all limited X in Rd. By Theorem 2, for all limited T > 0 we have

(9) X(T ) '
∫ T

0

F (s + r, x0)dr.

Define t1 = t0 + ε2π. Then we have

x1 − x0

t1 − t0
=

X(2π)
2π

' 1
2π

∫ 2π

0

F0(s + r, x0)dr = f(x0).

Since x(t) − x(t0) = εX(T ) ' 0 for all t ∈ [t0, t1], we have proved that there is
µ = ε such that whenever t0 ∈ I is limited and x(t0) ∈ UNS there is t1 ∈ I such
that t1− t0 > µ and the function x satisfies the stroboscopic property S(t0, t1). By
the Stroboscopy Lemma there is an interval J0 = [0, ω0] ⊂ J such that ω0 ' ω, x
is defined at least on J0 and x(t) ' y(t) for all t ∈ J0. ¤
4.2. Almost periodic vector fields. Let U ⊂ Rd be an open subset. Let
F0 : R × U → Rd be a standard continuous function which is continuous in the
second variable uniformly with respect to the first variable. Suppose F0 has an
average, that is there exists a limit

f(x) = lim
T→∞

1
T

∫ s+T

s

F0(τ, x)dτ

which is uniform with respect to s ∈ R. The almost periodic functions have such
properties. The function f is standard and continuous and satisfies

f(x) ' 1
T

∫ s+T

s

F0(τ, x)dτ

for all s ∈ R, all T ' ∞ and all x ∈ UNS . Theorem 5 is true if F0 is assumed to have
the above properties. The proof is the same, the only difference being the choice
of the instant t1 of the method of stroboscopy. In the present case we proceed as
follows. The property (9) holds for all limited T . By permanence it is still true for
some unlimited T which can be choosen such that εT ' 0. Define t1 = t0 + εT .
Then we have

x1 − x0

t1 − t0
=

X(T )
T

' 1
T

∫ T

0

F0(s + r, x0)dr =
1
T

∫ s+T

s

F0(r, x0)dr ' f(x0).

Notice that this is the first time where the successive instant t1 of the method of
stroboscopy is obtained from the time t0 by an external construction. But this is
allowed by the Stroboscopy Lemma. In the next section the choice of t1 will be
more subtle3.

3The KBM theorem of averaging in the almost periodic case and in the general case was my
motivation to extend the method of stroboscopy to the situation where the sequence of instants
tn of observation is not given a priori. Indeed in this case this sequence is given by some kind of
external recurrence relation
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4.3. KBM vector fields. Let C be the set of continuous functions from R+ × U
into Rd, where U is an open subset of Rd. A nonautonomous vector field F0 ∈ C is
said to be a KBM vector field if it satisfies the following properties :

(H.1) The continuity of the function F0 in the variable x ∈ U is uniform with
respect to the variable t ∈ R+, that is :

∀x ∈ U ∀ε > 0 ∃δ > 0 ∀t ∈ R ∀x′ ∈ U (‖x′−x‖ < δ ⇒ ‖F0(t, x′)−F0(t, x)‖ < ε)

(H.2) For all x ∈ U there exists a limit

f(x) = lim
T→∞

1
T

∫ T

0

F0(t, x)dt

(H.3) The initial value problem (8) has a unique solution y(t). Let J = [0, ω),
0 < ω ≤ +∞ be its maximal positive interval of definition.

From conditions (H.1) and (H.2) we deduce that the function f : U → R is
continuous (see Lemma 4). So the averaged differential equation y′ = f(y) has a
continuous righthand.

The fundamental problem in the theory of averaging of Krylov, Bogolioubov and
Mitropolski is to approximate the solutions of the initial value problem (7) by the
function y on some subinterval J0 of J , whenever F is close to F0, a is close to a0

and ε > 0 is sufficiently small.
First we give a nonstandard formulation of the result (Theorem 6). Then we

translate a simplified version of the result into standard terms (Theorem 7) and
present a generalization (Theorem 8).

Theorem 6 (KBM Theorem of Averaging). Let F0 : R+ × U → Rd be a
standard KBM vector field and let a0 ∈ U be standard. Let H be a subset of Rd

containing all the nearstandard points in U and let F : R+×H → Rd be continuous
and such that F (s, x) ' F0(s, x) for all s > 0 and all x ∈ UNS . Let ε > 0 and a ∈ U
be such that ε ' 0 and a ' a0. Then for every maximal solution x of problem (7)
there is an interval J0 = [0, ω0] ⊂ J such that ω0 ' ω, x is defined at least on J0

and x(t) ' y(t) for all t ∈ J0.

Proof. The proof needs the Lemma 5 below (the proof of this Lemma needs some
preliminary result and is postponed to the next section). Let x : I → U be a
maximal solution of problem (7). Let t0 ∈ I be limited, such that x0 = x(t0) ∈ UNS .
By Lemma 5, there is α > 0, α ' 0 such that for all limited T ≥ 0 we have

1
S

∫ s+TS

s

F0(r, x0)dr ' Tf(x0)

where s = t0/ε and S = α/ε. The successive instant of observation of the method
of stroboscopy is choosen as follows. Under the change of variables :

T =
t− t0

α
X(T ) =

x(t0 + εT )− x0

α

the system (7) becomes

dX

dT
= F (s + ST, x0 + αX).
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Since x0 ∈ UNS , x0 + αX ∈ UNS for all limited X in Rd. Then we have

F (s + ST, x0 + αX) ' F0(s + ST, x0 + αX) ' F0(s + ST, x0)

for all T > 0 and all limited X in Rd. Moreover we have∫ T

0

F0(s + Sr, x0)dr =
1
S

∫ s+TS

s

F0(r, x0)dr ' Tf(x0),

which is limited for all limited T > 0. By Theorem 2 we have X(T ) ' Tf(x0) for
all limited T > 0. Define t1 by t1 = t0 + α. Then we have :

x(t1)− x(t0)
t1 − t0

= X(1) ' f(x0)

Since t1 − t0 = α > ε and x(t) − x(t0) = αX(T ) ' 0 for all t ∈ [t0, t1], we have
proved that there is µ = ε such that whenever t0 ∈ I is limited and x(t0) ∈ UNS

there is t1 ∈ I such that the function x satisfies the stroboscopic property S(t0, t1).
By the Stroboscopy Lemma there is an interval J0 = [0, ω0] ⊂ J such that ω0 ' ω,
x is defined at least on J0 and x(t) ' y(t) for all t ∈ J0. ¤
4.4. Preliminary lemmas. In this section U is a standard open subset of Rd

and F0 ∈ C is standard and satisfies conditions (H.1) and (H.2). The external
translations of these conditions are

(H.1′) ∀stx0 ∈ U ∀t > 0 ∀x ∈ U (x ' x0 ⇒ F0(t, x) ' F0(t, x0))
(H.2′) There is a standard function f : U → Rd such that

∀stx0 ∈ U ∀T ' +∞ f(x0) ' 1
T

∫ T

0

F0(t, x0)dt

Lemma 4. The function f is continuous and we have

f(x) ' 1
T

∫ T

0

F0(t, x)dt

for each x ∈ UNS and each T ' +∞.

Proof. Let x0 ∈ U and x ∈ U be such that x0 is standard and x ' x0. Let δ > 0
be infinitesimal. By condition (H.2), there is T0 > 0 such that

|f(x)− 1
T

∫ T

0

F0(t, x)dt| < δ

for all T > T0. Hence for some T ' +∞ we have

f(x) ' 1
T

∫ T

0

F0(t, x)dt.

By condition (H.1′) we have F0(t, x) ' F0(t, x0) for all t > 0. Therefore

f(x) ' 1
T

∫ T

0

F0(t, x0)dt.

By condition (H.2′) we deduce that f(x) ' f(x0). Thus f is continuous. Moreover
for all T ' +∞ we have

f(x) ' f(x0) ' 1
T

∫ T

0

F0(t, x0)dt ' 1
T

∫ T

0

F0(t, x)dt.

¤
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Lemma 5. For each limited t > 0 and each x ∈ UNS , there is α > 0, α ' 0 such
that for all limited T ≥ 0 we have

1
S

∫ s+TS

s

F0(r, x)dr ' Tf(x) where s =
t

ε
and S =

α

ε
.

Proof. Let t > 0 be limited and let x ∈ UNS . We use the notations s = t/ε and
g(r) = F0(r, x). Let T > 0 and S > 0 be real numbers.

i) Suppose s is limited. Let S be unlimited. If s + TS is limited then we have
T ' 0 and

1
S

∫ s+TS

s

g(r)dr ' 0 ' Tf(x).

If s + TS ' +∞ we write

1
S

∫ s+TS

s

g(r)dr =
(
T +

s

S

) 1
s + TS

∫ s+TS

0

g(r)dr − 1
S

∫ s

0

g(r)dr.

By Lemma 4 we have
1

s + TS

∫ s+TS

0

g(r)dr ' f(x).

Since 1
S

∫ s

0
g(r)dr ' 0 and s

S ' 0, we have

1
S

∫ s+TS

s

g(r)dr ' Tf(x).

This property is satisfied for all S ' +∞. It suffices to take S = 1/
√

ε for which
α = εS ' 0.

ii) Suppose s is unlimited. We write

1
S

∫ s+TS

s

g(r)dr = T
1

s + TS

∫ s+TS

0

g(r)dr

+
s

S

(
1

s + TS

∫ s+TS

0

g(r)dr − 1
s

∫ s

0

g(r)dr

)
.

Let us denote by

η(u) =
1

s + u

∫ s+u

s

g(r)dr − f(x).

By Lemma 4 we have η(u) ' 0 for all u ≥ 0. Then we have

1
S

∫ s+TS

s

g(r)dr = T
[
f(x) + η(TS)

]
+

s

S

[
η(TS)− η(0)

]
.

The quantity Tη(TS) + s
S

[
η(TS) − η(0)

]
is infinitesimal for all T limited and all

S such that s
S is limited. By permanence this property holds for some S for which

S
s ' 0. Since t = εs is limited and S

s ' 0 we have α = εS ' 0. ¤
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4.5. A standard version of the KBM Theorem. Let us give now a standard
translation of some simplified version of Theorem 6. It still is possible to trans-
late the actual version of Theorem 6 but at the price of a somewhat complicated
formulation. This translation is left to the reader. The set C = C(R+ × U,Rd) of
continuous vector fields is endowed with the topology of uniform convergence on
the product of R+ by compact subsets of U .

Theorem 7. Let F0 : R+ × U → Rd be a KBM vector field. Then for all δ > 0
and all l ∈ J , there are η > 0 and a neighborhood V of F0 in C such that for all
ε > 0, for all b ∈ U and all F ∈ C, any maximal solution x(t) of problem (7) is
defined at least on [0, l] and satisfies ‖x(t) − y(t)‖ < δ for all t ∈ [0, l], whenever
ε < η, ‖b− a‖ < η and F ∈ V.

Remark. In the usual formulations of the KMB theorem it is required that the
function F (t, x) is Lipschitz continuous in x (see [E,SV]). In our formulation this
condition has been weakened : only the continuity in x uniformly with respect to
t is assumed. Therefore averaging is valid in situations which are not covered by
the classical results. For example, by Theorem 6 the solutions of the differential
equation

dx

dt
= x2/3 cos

t

ε
are nearly constant for all limited t > 0. This result may also be verified by solving
the equation. We may obtain also second order approximations of the solutions
(see [S1]).

4.6. A generalization of the averaging theorem. In order to motivate the
generalization we propose, let us first give an example. Consider the function
F0(t, x) = sin(tx). The properties (H.2) and (H.3) are satisfied, with f(x) = 0,
but the function F0 is not continuous in x uniformly with respect to t. We cannot
apply Theorem 6. In fact the conclusion of this theorem would be false since the
solutions of the differential equation x′ = sin tx

ε are not nearly constant. However
the change of variable θ = tx transforms this equation into the system

dx

dt
= sin

θ

ε
dθ

dt
= x + t sin

θ

ε
.

When (x, t) ∈ U := {(x, t) ∈ R2 : x2 > t2} this system is equivalent to

dx

dθ
=

sin(θ/ε)
x + t sin(θ/ε)

dt

dθ
=

1
x + t sin(θ/ε)

.

This system satisfies the conditions of Theorem 6. The averaged system is (for
x > t > 0)

dx

dθ
=
√

x2 − t2 − x

t
√

x2 − t2

dt

dθ
=

1√
x2 − t2

.
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Therefore the solutions of the differential equation dx
dt = sin tx

ε are infinitely close
(in the subset x > t > 0) to the solutions of the standard differential equation

dx

dt
=
√

x2 − t2 − x

t
.

This result was first proved by J.L. Callot [R] using the stroboscopic method (see
also Section 5.1) and was at the origin of the method of stroboscopy.

This example shows that it may be interesting to study systems of more general
type (see [S2]) :

(10)

dx

dt
= F (

θ

ε
, x) x(0) = x0

dθ

dt
= G(

θ

ε
, x) θ(0) = θ0

where θ ∈ R+ and x ∈ Rd (the problem (7) is obtained by setting G = 1). More
precisely let U be an open subset of Rd and let F0 : R+ × U → Rd and G0 :
R+ × U → R be continuous functions. Suppose

(H.1∗) The continuity of F0 and G0 in x is uniform with respect to θ and
G0(x, θ) 6= 0 for all (x, θ) ∈ R+ × U .

(H.2∗) For all x ∈ U there exist the limits

f(x) = lim
T→∞

∫ T

0

F0(θ, x)
G0(θ, x)

dθ g(x) = lim
T→∞

∫ T

0

1
G0(θ, x)

dθ.

(H.3∗) The initial value problem

dy

dt
=

f(y)
g(y)

y(0) = a0 ∈ U

has a unique solution y(t). Let J = {0, ω), 0 < ω ≤ +∞ be its maximal positive
interval of definition.

From conditions (H.1∗) and (H.2∗) we deduce that the functions f : U → Rd

and g : U → R are continuous and g(x) 6= 0 on U , so the averaged differential
equation in (H.3∗) is well defined.

Theorem 8. Let U , F0 and G0 be standard and satisfy (H.1∗), (H.2∗) and (H.3∗).
Let a0 ∈ U be standard. Let H be a subset of Rd containing all the nearstandard
points in U . Let F : R+ ×H → Rd and G : R+ ×H → R be continuous functions
such that F (θ, x) ' F0(θ, x) and G(θ, x) ' G0(θ, x) for all θ > 0 and all x ∈ UNS .
Let ε > 0, x0 ∈ H and θ > 0 be such that ε ' 0 and x0 ' a0. Then for every
maximal solution (x(t), θ(t)) of the initial value problem (10) there is an interval
J0 = [0, ω0] ⊂ J such that ω0 ' ω, the functions x(t) and θ(t) are defined for all
t ∈ J0 and satisfy :

x(t) ' y(t) θ(t) ' θ0 +
∫ t

0

ds

g(y(s))
.
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Proof. The subset K = {x ∈ H : ∀θ > 0 G(θ, x) 6= 0 contains all the nearstandard
points in U . On K the system (10) may be rewritten as follows :

dx

dθ
=

F (θ/ε, x)
G(θ/ε)

dt

dθ
=

1
G(θ/ε, x)

.

This system satisfies all the conditions in Theorem 6. The associated averaged
system defined on U is

dx

dθ
= f(x)

dt

dθ
= g(x).

Since g 6= 0 on U , this averaged system is equivalent to
dx

dt
=

f(x)
g(x)

dθ

dt
=

1
g(x)

.

The solution of the first equation with initial condition a0 is y(t), it gives an ap-
proximate of x(t). The solution of the second equation with initial condition θ0 is
θ0 +

∫ t

0
ds

g(y(s)) . It gives an approximate of θ(t). ¤

5. Applications

The aim of this paragraph is to give the reader a better understanding of the
practice of stroboscopy. Let φ be the function we study : the technique of stro-
boscopy consists in selecting some instants of observation tn, eventually very irreg-
ularely distribued, in such a way that the ratio xn+1−xn

tn+1−tn
is always close to the value

g(tn, xn) of a standard function g, where xn = φ(tn). The Stroboscopy Lemma dis-
pense us from selecting all the instants tn. We have only to indicate how to choose
the successive instant of observation. This choice is often obtained as follows.

(i) Let t0 be an instant of observation of the method of stroboscopy. Observe
the function φ near (t0, x0) under some suitable microscope (where α ' 0) :

T =
t− t0

α
X =

x− x0

α
.

(ii) Use Theorem 2 (or Theorem 3) to solve approximately the differential equa-
tion satisfied by φ under this microscope. Choose a time T (depending on t0 in
general) such that X(T )

T ' g(t0, x0) where g is some standard function.
(iii) Choose t1 = t0 + αT as the successive instant of observation of the method

of stroboscopy. Then you have
x1 − x0

t1 − t0
=

X(T )
T

' g(t0, x0).

(iv) Conclude by the theorem of stroboscopy.
The nontrivial part of the method is the choice of the focusing factor α charac-

terizing the microscope. In the proof of Theorem 3 the choice of α was arbitrary.
In the proof of Theorem 5 the focusing factor α was taken equal to the infinitesimal
ε which appears naturally in problem (7). In the proof of Theorem 6 this choice
was more subtle and depended on t0 (see Lemma 5). Morover, in this last case, α
is not directly obtained from the infinitesimal ε which appears in the formulation
of the problem. In many other applications the choice of α is more constructive.
Often we may take α = ε. Let us illustrate the method in some problems in the
perturbation theory of differential equations and in numerical analysis.
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5.1. The differential equation x′ = sin tx
ε . Due to the symmetries of the asso-

ciated vector fields we may restrict our study to the subset defined by x > 0 and
t ≥ 0. The vector field is horizontal on the isoline Ik defined by tx = 2kπε, its slope
is -1 on the isoline I ′k defined by tx =

(
2k + 3

2

)
πε. Let (t, x) be a point in the region

P ⊂ R2 defined by t ≥ x > 0 and let k be such that (t, x) lies between Ik and I ′k+1.
These two isoclines define a tube in which the trajectory passing through (t, x)
is trapped. Since these two isoclines are also infinitely close, in the region P the
solutions of the differential equation are infinitely close to the hyperbolas tx = c,
where c is constant. This argument does not work in the region S ⊂ R2 defined by
x > t ≥ 0. A solution with initial condition x(0) = a > 0 will cross the isoclines
Ik until it reaches the diagonal t = x. Let (tk, xk) be the point where the solution
crosses the isocline Ik. The microscope

T =
t− tk

ε
X =

x− xk

ε

transforms our equation in

dX

dT
= sin

(
xkT + tkX + εTX +

tkxk

ε

)
X(0) = 0

Since tkxk = 2kπε, by Theorem 3 the solutions of this equation are infinitely close
to the solutions of the differential equation

dX

dT
= sin (xkT + tkX)

as long as T is limited. The change of variable θ = xkT + tkX transforms this
equation in

dθ

dT
= xk + tk sin θ

We have tk+1 = tk + εT for a value T = p for which xkp + tkX(p) + εpX(p) = 2π,
that is θ(p) ' 2π. Then we have

p '
∫ 2π

0

dθ

xk + tk sin θ
=

2π√
x2

k − t2k
X(p) ' 2π − xkp

tk
=

2π

tk

(
1− xk√

x2
k − t2k

)

Finally we have

xk+1 − xk

tk+1 − tk
=

X(p)
p

' g(tk, xk) g(t, x) =
√

x2 − t2 − x

t
.

By stroboscopy we conclude that the solutions of our differential equation are infin-
itely close, in the region S, to the solutions of the differential equation x′ = g(t, x).
This description agreees with the numerical experiment presented in Fig. 14.

4Figures 1 and 3 of the present paper was obtained by using the software package VV of Jean
Louis Callot.
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Figure 1. The solutions of x′ = sin(2tx) with initial conditions 2.5, 5,
7.5 and 10 (at left) and the corresponding solutions of x′ = g(t, x) (at
right).

5.2. The Lorentz pendulum. The small oscillations of a pendulum are described
by the differential equation

d2x

dτ2
+ ω2x = 0 ω2 =

g

l

where l is the lenght of the pendulum, g is the gravitation constant, τ is the time
and x the angular deviation. The associated vector field in the phase space is

(11)
dx

dτ
= y

dy

dτ
= −ω2x.

Along a trajectory (x(τ), y(τ)), the energy E(τ) = H(x(τ), y(τ)) where

H(x, y) =
y2 + ω2x2

2

is constant. Hence the orbits are the ellipses of constant energy.
If ω is a slowly varying parameter, that is ω is a function of ετ where ε is small,

the ratio E(τ)/ω(ετ) remains nearly constant for times of order 1/ε despite of the
fact that E and ω may vary considerably. This model was proposed by Einstein
and Lorentz at the Soloway Congress in Bruxelles in 1911 to explain the behaviour
of an electron for which the ratio of the energy to the frequence is contant, even if
this electron moves in a varying electromagnetic field. Their explanation is based
on the fact that the variation of the surrounding electromagnetic field is slow with
respect to the high frequency of the electron. Shortly afterwards it appeared that
quantum mechanic was more suitable to understand atomic behaviour, but the
interest in such phenomenons remains. A nearly constant quantity as above is
called an adiabatic invariant of the system.

When ω = ω(ετ) is slowly varying, the energy E(τ) = H(x(τ), y(τ)) satisfies the
differential equation

(12)
dE

dτ
= εω(ετ)ω′(ετ)x2



STROBOSCOPY AND AVERAGING 19

where ω′ is the derivative of the function ω. The change of time t = ετ transforms
the system (11-12) into

(13)
dx

dt
=

y

ε

dy

dt
= −ω2(t)x

ε

dE

dt
= ω(t)ω′(t)x2.

Let φ(t) = (x(t), y(t), E(t)) be a solution of this system. Let t0 be limited such that
ω(t0) is not infinitesimal and φ(t0) is limited. We may assume that y0 = y(t0) = 0,
so that E0 = E(t0) = ω(t0)2x2

0/2 where x0 = x(t0). The successive instant t1 of
observation of the method of stroboscopy is choosen as follows. The microscope

T =
t− t0

ε
F =

E − E0

ε

transforms the system (13) in

(14)
dx

dT
= y

dy

dT
= −ω2(t0 + εT )x

dF

dT
= ω(t0 + εT )ω′(t0 + εT )x2

with initial conditions x(0) = x0, y(0) = 0 and F (0) = 0. By Theorem 3 the
solutions of this system are infinitely close to the solutions of the system

(15)
dx

dT
= y

dy

dT
= −ω2(t0)x

dF

dT
= ω(t0)ω′(t0)x2.

This system may be solved explicitely ; we get

x(T ) ' x(T ) =
√

2E0

ω(t0)
cos (ω(t0)T ) y(T ) ' y(T ) = −

√
2E0 sin (ω(t0)T )

F (T ) ' F (T ) =
∫ T

0

2E0

ω2(t0)
ω(t0)ω′(t0) cos2(ω(t0)r)dr.

Define t1 = t0 + εp where p = 2π
ω(t0)

is the period the solution (x(T ), y(T )) of the
system (15). Then we have

F (p) ' F (p) = 2π
E0ω

′(t0)
ω2(t0)

.

Finally we have
E1 − E0

t1 − t0
=

F (p)
p

' E0
ω′(t0)
ω(t0)

.

By stroboscopy we obtain that E(t) is infinitely close to a solution of the differential
equation

dE

dt
= E

ω′

ω

that is E(t) ' E(0)ω(t)/ω(0), and the ratio E(t)/ω(t) is nearly contstant for all
limited t such that ω(t) is not infinitesimal.

This ratio is the adiabatic invariant of the energy divided by the frequency for
a pendulum with slowly varying frequency. The same approach works in the more
general case of Hamiltonian systems with slowly variable parameters and small
perturbations (see [S2,S4]).
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5.3. The Van der Pol oscillator and the Einstein equation for the planet
Mercury. We consider here another kind of perturbation of a linear oscillator,
namely equations of type

(16)
d2x

dτ2
+ x = εf(x,

dx

dτ
)

The Van der Pol oscillator

d2x

dτ2
+ x = ε(1− x2)

dx

dτ

is an example of this type. This also yieldss a famous example of a differential
equation in the plane with a unique limit cycle.

The Einstein equation for Mercury is

d2u

dθ2
+ u = a + εu2

which is equivalent to
d2x

dτ2
+ x = ε(x + a)2

with x = u − a and τ = θ. This equation is of type (16). Here u = 1/r, where
(r, θ) are the polar coordinates of Mercury in the plane, centered at the sun. For
ε = 0 we have the Newtonian model : the trajectory is an ellipse of the form
u = a + (b − a) cos θ. The usual perturbation theory predicts that, under the
gravitational effects of the other planets, this orbit should rotate slowly in space,
so that the major axis of the ellipse should advance (precess) by about 530 seconds
of arc per century, leading to a complete revolution in 250.000 years. However
the precession is actually observed to be of 570 seconds of an per century. The
difference is explained by gravitational effects, using the general relativity theory.

The vector field associated to equation (16) is

dx

dτ
= y

dy

dτ
= −x + εf(x, y)

whose solutions are close to those of the system

dx

dτ
= y

dy

dτ
= −x

for all limited τ . This property suggests to use the so-called the Van der Pol change
of variables :

x = A sin(τ + B) y = A cos(τ + B)

Denote φ = τ + B then we have

A′ sin φ + AB′ cosφ = 0 A′ cosφ−AB′ sin φ = εf.
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Consequently

dA

dτ
= εf

[
A sin(τ + B), A cos(τ + B)

]
cos(τ + B)

dB

dτ
=

ε

A
f
[
A sin(τ + B), A cos(τ + B)

]
sin(τ + B)

This system is of type
dX

dτ
= εF (τ,X)

where X = (A,B) and F is 2π-periodic in τ (this is a particular case of the KBM
method of averaging). Since we look for the long time behaviour of the solutions,
it is more suitable to consider this system at the time scale t = ετ . We have

dX

dt
= F (

t

ε
,X)

By the Theorem 5 any solution X(t) of this equation is approximated by a solution
of the averaged equation

dX

dt
= F0(X)

where F0 is the average of the function F over one period :

F0(X) =
1
2π

∫ 2π

0

F (τ, X)dτ

For the Van der Pol oscillator we have f(x, y) = (1 − x2)y and the averaged
system is

dA

dt
=

A

8
(4−A2)

dB

dt
= 0

The phase B is nearly constant (there is no precession) but the amplitude of the
solution is slowly varying. The value A = 2, which is an asymptotically stable
equilibrium of the averaged equation, corresponds to the limit cycle of the Van der
Pol equation, which is infinitely close to the circle of radius 2 in the plane (x, y).

For the Einstein equation of Mercury we have f(x, y) = (x + a)2. The averaged
system is

dA

dt
= 0

dB

dt
= a

Hence the amplitude is nearly constant (there is no secular variation of the am-
plitude of the orbit of Mercury due to the gravitationnal effects) but the phase is
slowly varying (there is a precession). More precisely

A(τ) ' A0 B(τ) ' −εaτ + B0.

The solution u(τ) of Einstein’s equation of Mercury satisfies

u(τ) ' a + A0 sin
[
τ(1− εa) + B0

]

for all times τ such that ετ is limited.
Then the amplitude of Mercury remains nearly constant (during centuries) and

the precession due to the gravitational effects of general relativity theory is 2πεa
radians per orbit of Mercurry. This explains the difference of 40 seconds of arc per
century which was observed, and was not understood in the Newtonian model.
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5.4. Numerical instability and ghost solutions. We study the behaviour of
the solutions of the mixed difference scheme

(1− µ)
un+1 − un−1

2h
+ µ

un+1 − un

h
= g(un) 0 ≤ µ ≤ 1 h > 0.

This scheme is used to solve numerically the differential equation u′ = g(u) where
g is a continuous function, with the starting procedure

u0 given and u1 = u0 + hg(u0).

This scheme is called a multistep method since the values of both un−1 and un

are necessary to compute un+1. The problem was studied by Yamaguti and Ushiki
[YU] in the case of logistic equation u′ = u(1 − u) (see also [CJL] and [S3]). The
logistic equation has two equilibrium points u = 1 and u = 0. The first is asymptot-
ically stable and the second is unstable. The numerical solution approximates the
true solution quite well until the true solution enters a small neighborhood of the
equilibrium point u = 1. After this a numerical instability appears. This instability
is illustrated on Fig. 2 ; several cases are distinguished :

a) If k = µ/h = 0, the numerical solution almost converges to u = 1, starts to
oscillate and then converges to the unstable equilibrium point u = 0. The numerical
solution repeates alternating cycles of smooth and oscillatory behaviour. Finally it
goes to minus infinity. Such a solution was called a ghost solution.

b) If 0 < k < 1
2 , the solution after having almost converged to u = 1, presents

cycles (when k is small these cycles are analogous to those of the case k = 0), the
form of the cycles gradually changes until the numerical solution oscillates between
two values α and β such that α < 1 < β. The difference β − α tends to 0 when k
tends to 1

2 .
c) If k ≥ 1

2 there are no ghost solutions.
The mixed difference scheme may be rewritten as follows

un+1 = un−1 +
2h

1 + kh
[k (un − un−1) + g(un)] .

Let us write this multistep method as a one step method in a higher dimensional
space. We have (

un

un+1

)
= T

(
un−1

un

)

where the mapping T : R2n → R2n is defined by

T

(
x

y

)
=




y

x +
2h

1 + kh

[
k(y − x) + g(y)

]

 .

The orbit of the starting point (u0, u1 = u0 + hg(u0)) produced by iteration of the
mapping T is the same as the sequence of points produced by the mixed difference
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Figure 2. The numerical solutions of the logistic equation u′ = u(1−u)
produced from u0 = 0.5 by the mixed difference scheme for k = 0,
k = 0.1, k = 0.4 and k = 0.5. The sequences (u2n, u2n+1) are represented
on the left of the figure.
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scheme, except that every point un is produced twice. So it suffices to consider the
orbit of (u0, u1) under the mapping T 2. This mapping has the following expression :

T 2

(
x

y

)
=




x +
2h

1 + kh
X

y +
2h

1 + kh
Y




where X = k(y − x) + g(y) and Y = k(x− y) + g
(
x + 2h

1+khX
)

+ 2hk
1+khX. The se-

quence (xn, yn) produced by the iteration of T 2 is simply the sequence (u2n, u2n+1)
produced by the mixed difference scheme. Let h > 0 be infinitesimal. Then we
have

xn+1 − xn

2h
' k(yn − xn) + g(yn)

yn+1 − yn

2h
' k(xn − yn) + g(xn).

By stroboscopy we have the following result :

Theorem 9. The sequence (xn = u2n, yn = u2n+1) produced by the mixed differ-
ence scheme is infinitely close to a reunion of orbits of the augmented differential
system

x′ = k(y − x) + g(y)

y′ = k(x− y) + g(x)

whenever (xn, yn) is limited.

Let us give now some properties of this augmented system. The diagonal plane
x = y is invariant. On this plane the sytem reduces simply to the initial single
equation x′ = g(x). Hence the numerical solution approximates the true solutions
whenever these solutions are limited and nh is limited. After this unstabilities may
occur. Let us examine this phenomenon more precisely in the particular case of the
logistic equation. The associated differential system in R2 is

x′ = k(y − x) + y(1− y)

y′ = k(x− y) + x(1− x).

For k such that 0 ≤ k < 1
2 we have four singular points (0, 0), (1, 1), (α, β) and

(β, α) where

α =
1 + 2k −√1− 4k2

2
β =

1 + 2k +
√

1− 4k2

2
.

For k ≥ 1
2 we have two singular points (0, 0) and (1, 1). The nature of these singular

points is as follows (see Fig. 3) :
a) if k = 0 then (0, 0) and (1, 1) are saddle points and (α, β) = (0, 1) and

(β, α) = (1, 0) are centers,
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Figure 3. The augmented system for the logistic equation for k = 0,
k = 0.1, k = 0.4 and k = 0.5.

b) if 0 < k <
√

5
5 then (0, 0) and (1, 1) are saddle points and (α, β) and (β, α)

are stable focuses,

c) if
√

5
5 ≤ k < 1

2 then (0, 0) and (1, 1) are saddle points and (α, β) and (β, α)
are stable nodes,

d) if k ≥ 1
2 then (0, 0) is a saddle point and (1, 1) is a stable node.

The explanation of the behaviour of the numerical solution follows easily from
the properties just mentioned of the augmented system (see Fig. 2 and 3). Consider
a numerical solution which approximates the true solution until it reaches the halo
of u = 1. Then it may diverge from u = 1 along the unstable separatrix of the
saddle point point (1, 1). The phenomenon cannot occur if k ≥ 1

2 since (1, 1) is a
stable node. When k = 0 the unstable separatrix of (1, 1) and the stable separatrix
of (0, 0) coincide, which leads of the succession of smooth behaviour and oscillatory
behaviour. When 0 < k < 1

2 the observed behaviour is explained by the fact
that the numerical solution is captured by the stable focus or node (α, β) or (β, α).
These observation are consequences of the following result (see [S6] for other similar
results) :



26 T. SARI

Lemma 6. A numerical solution which enters the halo of an asymptotically stable
equilibrium point of the augmented system, cannot leave this halo. A numerical
solution which enters the halo of a saddle point along the stable separatrix can
leave the halo of this saddle point only along the unstable separatrix.

Proof. We give the proof in the case of a saddle point. Suppose that an iterate
(xp, yp) is infinitely close to a saddle point σ, and suppose that for some m > p the
iterate (xm, ym) is at an appreciable distance a from this saddle point. Let r > 0
be standard such that r < a and let B = B(σ, r) be the ball of center σ and radius
r. Let k be the first index such that k > p and (xk, yk) /∈ B. By the stroboscopy
method the sequence (xn, yn) is infinitely close to the orbit of the augmented system
passing through (oxk, oyk) whenever n − k is of order 1/h. If the point (oxk, oyk)
is not on the unstable separatrix we get a contradiction since the sequence (xn, yn)
would have been outside B for some n between p and k. ¤

This example shows that the behaviour of the mixed difference scheme depends
on the nature of the equilibria of the augmented system. Let us give some comments
on this behaviour in the more general case of equations of the form u′ = g(u) where
g : R→ R. Two cases have to be distinguished

a. The central difference scheme (k = 0). The augmented system is

x′ = g(y) y′ = g(x).

The equilibrium points are (α, β) where α and β are roots of equation g(u) = 0.
Assume g′(α) 6= 0 for all α. The equilibrium point (α, β) is a center if g′(α)g′(β) < 0
and a saddle point if g′(α)g′(β) > 0. In particular the diagonal equilibria are saddle
points whose stable (resp. unstable) manifolds lie in the diagonal x = y if g′(α) < 0
(resp. g′(α) > 0).

Consider two roots α and β of g with the property that g′(α) > 0 and g′(β) < 0.
Then u = β (resp. u = α) is a stable (resp. unstable) equilibrium point of equation
u′ = g(u). The other solutions of equation u′ = g(u) between u = α and u = β are
monotically increasing (resp. decreasing) if α < β (resp. if α > β) and tend to α
when t tends to −∞ and to β when t tends to +∞.

Let a be between α and β, then the unstability of the numerical solution starting
from (u0, u1) ' (a, a) occurs near the stable solution u = β, along the unstable sep-
aratrix of the saddle point (β, β) of the augmented system. The unstable manifolds
of this singular points are the stable manifolds of two other singular points (α1, β1)
and (β1, α1), which are symmetric with respect to the diagonal. These two singular
points may coincide with the diagonal singular point (α, α) as in the case of the
logistic equation. However, in general they are distinct from (α, α) as in the case
of the equation u′ = cos u (see [S3] for the details).

b. The mixed difference scheme (k > 0). The diagonal equilibria of the aug-
mented system are (α, α) with α a root of equation g(u) = 0. The eigenvalues of
the linear part of the system are λ1 = f ′(α) and λ2 = −2k − f ′(α). If f ′(α) > 0
the singular point (α, α) is a saddle point whose unstable manifolds are included in
the diagonal. If f ′(α) < −2k < 0 the singular point (α, α) is a saddle point whose
stable manifolds are included in the diagonal. If −2k ≤ f ′(α) < 0 the singular
point (α, α) is a stable node.
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Let α and β be two roots of g such that g′(α) > 0 and g′(β) < 0 and let a be
between α and β. If (u0, u1) ' (a, a) and 2k ≥ −f ′(β) there is no instability (the
sequence un is infinitely close to u(nh) for all n where u(t) is the solution of the
initial value problem u′ = g(u), u(0) = a). If 2k < −f ′(β), the numerical solution
diverges from the true solution near the stable equilibrium u = β of the equation
u′ = g(u), along the unstable separatrix of the saddle point (β, β) of the augmented
system.

The non diagonal equilibria of the augmented system are solutions of the non-
linear system

k(y − x) + g(y) = 0

k(x− y) + g(x) = 0.

Let α be a root of the nonlinear equation

(16) g

(
x +

g(x)
k

)
+ g(x) = 0,

then (α, α + g(α)
k ) is an equilibrium point of the augmented system. It has to be

remarked that if α is a root of equation (16), then β = α + g(α)
k is also a root

of this equation and β + g(β)
k = α, so that (β, β + g(β)

k ) = (α + g(α)
k , α) is the

equilibrium point of the augmented system which is symmetric to the equilibrium
point (α, α + g(α)

k ), with respect to the diagonal x = y.

5.5. Error propagation in numerical schemes. Let f0, f1 : R × R → R be
standard and continuous functions. Let h > 0 be infinitesimal. The sequence of
points obtained by the scheme

(17) xn+1 = xn + hf0(xn, nh) + h2f1(xn, nh)

is infinitely close to a solution φ(t) of the differential equation

(18) x′ = f0(x, t) x(0) = x0,

whenever nh and φ(nh) are both limited. This follows by an application of the
method of stroboscopy. The error xn−φ(nh) is in general of order ε but it growths
after iterations, leading to instability. We study this phenomenon making the
assumption that f0 is continuously differentiable in x. We have the following result

Theorem 10. Let xn is the sequence produced by the numerical scheme (17). Let
φ(t) be the solution of problem (18) such that xn ' φ(nh) whenever nh and φ(nh)
are limited. Let e(t) be the solution of the nonhomogeneous linear equation

(19)
de

dt
=

∂f0

∂x
(φ(t), t)e + f1(φ(t), t)− 1

2
φ′′(t)

with the initial condition e(0) = 0. Then we have

xn = φ(nh) + he(nh) + hηn where ηn ' 0.
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Proof. We define a sequence (tn, en) by

tn = nh en =
xn − φ(tn)

h
.

Then we have

en+1 − en =
xn+1 − xn

h
− φ(tn + h)− φ(tn)

h

= f0(φ(tn) + hen, tn) + hf1(φ(tn) + hen, tn)− φ′(tn)− h

2
φ′′(tn) + hαn

where αn ' 0. Using φ′(tn) = f0(φ(tn), tn) and applying the Taylor formula we get
βn ' 0 such that

en+1 − en ' h

[
∂f0

∂x
(φ(tn), tn)en + f1(φ(tn), tn)− 1

2
φ′′(tn)

]
+ hβn.

Then we have

en+1 − en

tn+1 − tn
' ∂f0

∂x
(φ(tn), tn)en + f1(φ(tn), tn)− 1

2
φ′′(tn).

By stroboscopy the sequence of points en is infinitely close to the solution e(t) of
the differential equation (19) with initial condition e(0) = 0, whenever both tn and
φ(tn) are limited. ¤

When f1 = 0, the scheme (17) is simply the Euler scheme and the associated
differential equation (19) for the error reduces to

de

dt
=

∂f0

∂x
(φ(t), t)e− 1

2
φ′′(t)

which is the well-known differential equation for the error propagation for the Euler
scheme (see [H]).

It is easy to obtain similar results for higher order errors and other numerical
schemes. For example if the sequence xn is defined by

xn+1 = xn + hf0(xn, nh) + h2f1(xn + nh) + h3f2(xn + nh)

with f0 f1 and f2 standard and continuous functions, f0 and f1 being continuously
differentiable. Then the en is infinitely close to a solution e(t) of equation (19) as
shown above. We wish to evaluate the second-order error. Define a sequence gn by

gn =
en − e(nh)

h
.

Computing the ratio gn+1−gn

h and using stroboscopy as above we get that gn is
infinitely close to a solution g(t) of the differential equation

dg

dt
=

∂f0

∂x
(φ(t), t)g +

1
2

∂2f0

∂x2
(φ(t), t)e2(t)

+
∂f1

∂x
(φ(t), t)e(t) + f2(φ(t), t)− 1

6
φ′′′(t)− 1

2
e′′(t).
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For the Euler scheme (f1 = f2 = 0) we obtain the following differential equation
for the propagation of the second order error gn :

dg

dt
=

∂f0

∂x
(φ(t), t)g +

1
2

∂2f0

∂x2
(φ(t), t)e2(t)− 1

6
φ′′′(t)− 1

2
e′′(t).

The differential equations describing the higher order error propagations are all
linear nonhomegeneous equations of type

dE

dt
=

∂f0

∂x
(φ(t), t)E + h(t)

where h(t) is depending only on φ(t) and the errors of lower order. Such an approach
seems to be usefull in the determination of the asymptotic expansions of the error
for general multistep method (see [HL]).
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d’équations différentielles à solutions rapidement oscillantes, in Landau I. D., éditeur, Out-
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